Inferring recombination patterns in African populations
Abstract Although several high-resolution recombination maps exist for European-descent populations, the recombination landscape of African populations remains relatively understudied. Given that there is high genetic divergence among groups in Africa, it is possible that recombination hotspots also...
Saved in:
Published in | Human molecular genetics Vol. 30; no. R1; pp. R11 - R16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
26.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Although several high-resolution recombination maps exist for European-descent populations, the recombination landscape of African populations remains relatively understudied. Given that there is high genetic divergence among groups in Africa, it is possible that recombination hotspots also diverge significantly. Both limitations and opportunities exist for developing recombination maps for these populations. In this review, we discuss various recombination inference methods, and the strengths and weaknesses of these methods in analyzing recombination in African-descent populations. Furthermore, we provide a decision tree and recommendations for which inference method to use in various research contexts. Establishing an appropriate methodology for recombination rate inference in a particular study will improve the accuracy of various downstream analyses including but not limited to local ancestry inference, haplotype phasing, fine-mapping of GWAS loci and genome assemblies. |
---|---|
AbstractList | Although several high-resolution recombination maps exist for European-descent populations, the recombination landscape of African populations remains relatively understudied. Given that there is high genetic divergence among groups in Africa, it is possible that recombination hotspots also diverge significantly. Both limitations and opportunities exist for developing recombination maps for these populations. In this review, we discuss various recombination inference methods, and the strengths and weaknesses of these methods in analyzing recombination in African-descent populations. Furthermore, we provide a decision tree and recommendations for which inference method to use in various research contexts. Establishing an appropriate methodology for recombination rate inference in a particular study will improve the accuracy of various downstream analyses including but not limited to local ancestry inference, haplotype phasing, fine-mapping of GWAS loci and genome assemblies. Abstract Although several high-resolution recombination maps exist for European-descent populations, the recombination landscape of African populations remains relatively understudied. Given that there is high genetic divergence among groups in Africa, it is possible that recombination hotspots also diverge significantly. Both limitations and opportunities exist for developing recombination maps for these populations. In this review, we discuss various recombination inference methods, and the strengths and weaknesses of these methods in analyzing recombination in African-descent populations. Furthermore, we provide a decision tree and recommendations for which inference method to use in various research contexts. Establishing an appropriate methodology for recombination rate inference in a particular study will improve the accuracy of various downstream analyses including but not limited to local ancestry inference, haplotype phasing, fine-mapping of GWAS loci and genome assemblies. |
Author | van Eeden, Gerald Henn, Brenna M Uren, Caitlin Möller, Marlo |
Author_xml | – sequence: 1 givenname: Gerald surname: van Eeden fullname: van Eeden, Gerald – sequence: 2 givenname: Caitlin surname: Uren fullname: Uren, Caitlin – sequence: 3 givenname: Marlo surname: Möller fullname: Möller, Marlo – sequence: 4 givenname: Brenna M surname: Henn fullname: Henn, Brenna M email: bmhenn@ucdavis.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33445180$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLxDAUhYOMOA9duZeuRJA6N48-shGGwcfAgBtdh7RNZiJtUpNW8N9bnXHQjXdz4Z6Pcw9nikbWWYXQOYYbDJzOt81mXlWyAAJHaIJZCjGBnI7QBHjK4pRDOkbTEF4BcMpodoLGlDKW4BwmKFtZrbw3dhN5VbqmMFZ2xtmolV2nvA2RsdFCe1PK4ebavv6Wwyk61rIO6my_Z-jl_u55-Rivnx5Wy8U6LhkmXYwJ1VrnIKkEWuoUU14QXiQlSSRXSqss51xihqFQuBoi6RQIrTDjaZYMQ2fodufb9kWjqlLZzstatN400n8IJ434q1izFRv3LnKMM8bYYHC1N_DurVehE40JpapraZXrgyAsy5M8gQwG9HqHlt6F4JU-vMEgvqoWQ9ViX_VAX_xOdmB_uh2Ayx3g-vZfp0_RmYos |
CitedBy_id | crossref_primary_10_1007_s00439_021_02415_8 crossref_primary_10_1093_g3journal_jkac208 crossref_primary_10_1186_s13059_022_02744_5 crossref_primary_10_1093_bib_bbab300 |
Cites_doi | 10.1093/bioinformatics/btv722 10.1186/s12863-020-00845-3 10.1086/508066 10.1371/journal.pgen.1008449 10.1016/j.tree.2008.09.010 10.1007/s00438-017-1296-2 10.1038/s41467-019-12210-9 10.1038/nature09525 10.1093/genetics/163.1.375 10.1038/ncomms14994 10.1038/nmeth.2307 10.7554/eLife.10850 10.1534/genetics.115.184820 10.1038/nrg1227 10.1016/0888-7543(87)90010-3 10.1073/pnas.1109531108 10.1534/genetics.104.036293 10.1093/molbev/msx272 10.1093/molbev/msaa038 10.1111/mec.14699 10.1126/science.1151851 10.1371/journal.pgen.1000519 10.1016/j.ajhg.2012.08.030 10.1126/science.aau1043 10.1126/sciadv.aaw9206 10.1016/j.tig.2004.02.006 10.1016/j.ajhg.2012.03.011 10.1038/s41576-020-0240-1 10.1101/gr.6386707 10.1093/genetics/156.3.1393 10.1016/j.ajhg.2013.06.020 10.1007/978-3-540-71021-9_14 10.1086/512131 10.1093/bioinformatics/btx494 10.1007/s11295-010-0281-2 10.1038/s41431-020-00768-8 10.1016/j.ajhg.2020.05.016 10.1093/genetics/159.3.1299 10.1371/journal.pgen.1004234 10.1038/nrg2193 10.1534/g3.116.028233 10.1038/nature10336 10.1371/journal.pgen.1003090 10.1016/S1097-2765(00)80138-0 10.1038/ng.894 10.1371/journal.pgen.1000529 10.1111/1755-0998.12994 10.1098/rstb.2016.0456 10.1038/nature09534 10.1098/rstb.2016.0455 10.1002/gepi.20533 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/hmg/ddab020 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1460-2083 |
EndPage | R16 |
ExternalDocumentID | 10_1093_hmg_ddab020 33445180 10.1093/hmg/ddab020 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Africa |
GeographicLocations_xml | – name: Africa |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM133531 – fundername: ; ; – fundername: ; ; grantid: R35GM133531 |
GroupedDBID | --- -DZ -E4 .2P .55 .GJ .I3 .XZ .ZR 0R~ 18M 1TH 29I 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6.Y 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN AAWDT AAYOK ABEFU ABEUO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACPQN ACPRK ACUFI ACUTJ ACUTO ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K EBS EE~ EIHJH EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KC5 KOP KQ8 KSI KSN L7B M-Z M49 MBLQV MBTAY ML0 N9A NEJ NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SJN TCN TEORI TJX TLC TMA TR2 W8F WOQ X7H X7M XSW YAYTL YKOAZ YXANX ZCG ZGI ZKX ZXP ZY4 ~91 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c412t-123fff80a3a03cf6139b29b5c25a9eefe7899a1410be1d518f6023d1496755553 |
ISSN | 0964-6906 |
IngestDate | Tue Sep 17 21:19:03 EDT 2024 Fri Oct 25 01:54:31 EDT 2024 Thu Sep 12 19:10:06 EDT 2024 Wed Oct 16 00:42:05 EDT 2024 Wed Aug 28 03:17:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | R1 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-123fff80a3a03cf6139b29b5c25a9eefe7899a1410be1d518f6023d1496755553 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 Marlo Möller and Brenna M. Henn Cosenior authors. Gerald van Eeden and Caitlin Uren Cofirst authors. |
OpenAccessLink | https://academic.oup.com/hmg/article-pdf/30/R1/R11/37322152/ddab020.pdf |
PMID | 33445180 |
PQID | 2478585070 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8117444 proquest_miscellaneous_2478585070 crossref_primary_10_1093_hmg_ddab020 pubmed_primary_33445180 oup_primary_10_1093_hmg_ddab020 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-26 |
PublicationDateYYYYMMDD | 2021-04-26 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Human molecular genetics |
PublicationTitleAlternate | Hum Mol Genet |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Gao (2021042610534785900_ref40) 2016; 6 Haenel (2021042610534785900_ref7) 2018; 27 O’Connell (2021042610534785900_ref21) 2014; 10 Lander (2021042610534785900_ref23) 1987; 1 V Barroso (2021042610534785900_ref44) 2019; 15 Li (2021042610534785900_ref15) 2006; 79 Smith (2021042610534785900_ref37) 2005; 171 Ongen (2021042610534785900_ref48) 2016; 32 Kong (2021042610534785900_ref27) 2010; 467 Stumpf (2021042610534785900_ref34) 2003; 4 1000 Genomes Project Consortium (2021042610534785900_ref35) 2010; 467 Bergero (2021042610534785900_ref5) 2009; 24 Price (2021042610534785900_ref47) 2009; 5 Lencz (2021042610534785900_ref50) 2012; 91 Rastas (2021042610534785900_ref20) 2017; 33 Tong (2021042610534785900_ref24) 2010; 6 Dapper (2021042610534785900_ref38) 2018; 35 Dréau (2021042610534785900_ref17) 2019; 10 Halldorsson (2021042610534785900_ref19) 2019; 363 Fearnhead (2021042610534785900_ref31) 2001; 159 Stapley (2021042610534785900_ref2) 2017; 372 Myers (2021042610534785900_ref33) 2003; 163 Hermann (2021042610534785900_ref30) 2019; 19 Spence (2021042610534785900_ref43) 2019; 5 Adrion (2021042610534785900_ref41) 2020; 37 Berg (2021042610534785900_ref8) 2011; 108 Auton (2021042610534785900_ref16) 2007; 17 Kuhner (2021042610534785900_ref32) 2000; 156 Wegmann (2021042610534785900_ref45) 2011; 43 Jeffreys (2021042610534785900_ref13) 1998; 2 Hassan (2021042610534785900_ref51) 2020 Carrington (2021042610534785900_ref18) 2004; 20 Uren (2021042610534785900_ref10) 2017; 292 Coop (2021042610534785900_ref28) 2008; 319 Hunter (2021042610534785900_ref1) 2007 Howie (2021042610534785900_ref26) 2009; 5 Uren (2021042610534785900_ref49) 2020; 21 Li (2021042610534785900_ref25) 2010; 34 Charlesworth (2021042610534785900_ref4) 2017; 372 Cheung (2021042610534785900_ref3) 2007; 80 Chan (2021042610534785900_ref39) 2012; 8 Hinch (2021042610534785900_ref9) 2011; 476 Johnston (2021042610534785900_ref36) 2012; 90 Kamm (2021042610534785900_ref42) 2016; 203 Bhérer (2021042610534785900_ref14) 2017; 8 Chen (2021042610534785900_ref11) 2007; 8 Peñalba (2021042610534785900_ref12) 2020; 21 Vincenten (2021042610534785900_ref6) 2015; 4 Delaneau (2021042610534785900_ref22) 2013; 10 Zhou (2021042610534785900_ref29) 2020; 107 Maples (2021042610534785900_ref46) 2013; 93 |
References_xml | – volume: 32 start-page: 1479 year: 2016 ident: 2021042610534785900_ref48 article-title: Fast and efficient QTL mapper for thousands of molecular phenotypes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv722 contributor: fullname: Ongen – volume: 21 start-page: 40 year: 2020 ident: 2021042610534785900_ref49 article-title: Putting RFMix and ADMIXTURE to the test in a complex admixed population publication-title: BMC Genet. doi: 10.1186/s12863-020-00845-3 contributor: fullname: Uren – volume: 79 start-page: 628 year: 2006 ident: 2021042610534785900_ref15 article-title: A new method for detecting human recombination hotspots and its applications to the HapMap ENCODE data publication-title: Am. J. Hum. Genet. doi: 10.1086/508066 contributor: fullname: Li – volume: 15 start-page: e1008449 year: 2019 ident: 2021042610534785900_ref44 article-title: Inference of recombination maps from a single pair of genomes and its application to ancient samples publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008449 contributor: fullname: V Barroso – volume: 24 start-page: 94 year: 2009 ident: 2021042610534785900_ref5 article-title: The evolution of restricted recombination in sex chromosomes publication-title: Trends Ecol Evol (Amst) doi: 10.1016/j.tree.2008.09.010 contributor: fullname: Bergero – volume: 292 start-page: 499 year: 2017 ident: 2021042610534785900_ref10 article-title: Population structure and infectious disease risk in southern Africa publication-title: Mol. Gen. Genomics. doi: 10.1007/s00438-017-1296-2 contributor: fullname: Uren – volume: 10 start-page: 4309 year: 2019 ident: 2021042610534785900_ref17 article-title: Genome-wide recombination map construction from single individuals using linked-read sequencing publication-title: Nat. Commun. doi: 10.1038/s41467-019-12210-9 contributor: fullname: Dréau – volume: 467 start-page: 1099 year: 2010 ident: 2021042610534785900_ref27 article-title: Fine-scale recombination rate differences between sexes, populations and individuals publication-title: Nature doi: 10.1038/nature09525 contributor: fullname: Kong – volume: 163 start-page: 375 year: 2003 ident: 2021042610534785900_ref33 article-title: Bounds on the minimum number of recombination events in a sample history publication-title: Genetics doi: 10.1093/genetics/163.1.375 contributor: fullname: Myers – volume: 8 start-page: 14994 year: 2017 ident: 2021042610534785900_ref14 article-title: Refined genetic maps reveal sexual dimorphism in human meiotic recombination at multiple scales publication-title: Nat. Commun. doi: 10.1038/ncomms14994 contributor: fullname: Bhérer – volume: 10 start-page: 5 year: 2013 ident: 2021042610534785900_ref22 article-title: Improved whole-chromosome phasing for disease and population genetic studies publication-title: Nat. Methods doi: 10.1038/nmeth.2307 contributor: fullname: Delaneau – volume: 4 start-page: 10850 year: 2015 ident: 2021042610534785900_ref6 article-title: The kinetochore prevents centromere-proximal crossover recombination during meiosis publication-title: elife doi: 10.7554/eLife.10850 contributor: fullname: Vincenten – volume: 203 start-page: 1381 year: 2016 ident: 2021042610534785900_ref42 article-title: Two-locus likelihoods under variable population size and fine-scale recombination rate estimation publication-title: Genetics doi: 10.1534/genetics.115.184820 contributor: fullname: Kamm – volume: 4 start-page: 959 year: 2003 ident: 2021042610534785900_ref34 article-title: Estimating recombination rates from population-genetic data publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1227 contributor: fullname: Stumpf – volume: 1 start-page: 174 year: 1987 ident: 2021042610534785900_ref23 article-title: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations publication-title: Genomics doi: 10.1016/0888-7543(87)90010-3 contributor: fullname: Lander – volume: 108 start-page: 12378 year: 2011 ident: 2021042610534785900_ref8 article-title: Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1109531108 contributor: fullname: Berg – volume: 171 start-page: 2051 year: 2005 ident: 2021042610534785900_ref37 article-title: A comparison of three estimators of the population-scaled recombination rate: accuracy and robustness publication-title: Genetics doi: 10.1534/genetics.104.036293 contributor: fullname: Smith – volume: 35 start-page: 335 year: 2018 ident: 2021042610534785900_ref38 article-title: Effects of demographic history on the detection of recombination hotspots from linkage disequilibrium publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msx272 contributor: fullname: Dapper – volume: 37 start-page: 1790 year: 2020 ident: 2021042610534785900_ref41 article-title: Predicting the landscape of recombination using deep learning publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa038 contributor: fullname: Adrion – volume: 27 start-page: 2477 year: 2018 ident: 2021042610534785900_ref7 article-title: Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics publication-title: Mol. Ecol. doi: 10.1111/mec.14699 contributor: fullname: Haenel – volume: 319 start-page: 1395 year: 2008 ident: 2021042610534785900_ref28 article-title: High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans publication-title: Science doi: 10.1126/science.1151851 contributor: fullname: Coop – volume: 5 start-page: e1000519 year: 2009 ident: 2021042610534785900_ref47 article-title: Sensitive detection of chromosomal segments of distinct ancestry in admixed populations publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000519 contributor: fullname: Price – volume: 91 start-page: 809 year: 2012 ident: 2021042610534785900_ref50 article-title: Length distributions of identity by descent reveal fine-scale demographic history publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2012.08.030 contributor: fullname: Lencz – volume: 363 start-page: eaau1043 year: 2019 ident: 2021042610534785900_ref19 article-title: Characterizing mutagenic effects of recombination through a sequence-level genetic map publication-title: Science doi: 10.1126/science.aau1043 contributor: fullname: Halldorsson – volume: 5 start-page: eaaw9206 year: 2019 ident: 2021042610534785900_ref43 article-title: Inference and analysis of population-specific fine-scale recombination maps across 26 diverse human populations publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw9206 contributor: fullname: Spence – volume: 20 start-page: 196 year: 2004 ident: 2021042610534785900_ref18 article-title: Justified chauvinism: advances in defining meiotic recombination through sperm typing publication-title: Trends Genet. doi: 10.1016/j.tig.2004.02.006 contributor: fullname: Carrington – volume: 90 start-page: 774 year: 2012 ident: 2021042610534785900_ref36 article-title: Population demographic history can cause the appearance of recombination hotspots publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2012.03.011 contributor: fullname: Johnston – volume: 21 start-page: 476 year: 2020 ident: 2021042610534785900_ref12 article-title: From molecules to populations: appreciating and estimating recombination rate variation publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0240-1 contributor: fullname: Peñalba – volume: 17 start-page: 1219 year: 2007 ident: 2021042610534785900_ref16 article-title: Recombination rate estimation in the presence of hotspots publication-title: Genome Res. doi: 10.1101/gr.6386707 contributor: fullname: Auton – volume: 156 start-page: 1393 year: 2000 ident: 2021042610534785900_ref32 article-title: Maximum likelihood estimation of recombination rates from population data publication-title: Genetics doi: 10.1093/genetics/156.3.1393 contributor: fullname: Kuhner – volume: 93 start-page: 278 year: 2013 ident: 2021042610534785900_ref46 article-title: RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.06.020 contributor: fullname: Maples – start-page: 381 volume-title: Molecular Genetics of Recombination year: 2007 ident: 2021042610534785900_ref1 doi: 10.1007/978-3-540-71021-9_14 contributor: fullname: Hunter – volume: 80 start-page: 526 year: 2007 ident: 2021042610534785900_ref3 article-title: Polymorphic variation in human meiotic recombination publication-title: Am. J. Hum. Genet. doi: 10.1086/512131 contributor: fullname: Cheung – volume: 33 start-page: 3726 year: 2017 ident: 2021042610534785900_ref20 article-title: Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx494 contributor: fullname: Rastas – volume: 6 start-page: 651 year: 2010 ident: 2021042610534785900_ref24 article-title: A hidden Markov model approach to multilocus linkage analysis in a full-sib family publication-title: Tree Genet. Genomes doi: 10.1007/s11295-010-0281-2 contributor: fullname: Tong – year: 2020 ident: 2021042610534785900_ref51 article-title: High-resolution population-specific recombination rates and their effect on phasing and genotype imputation publication-title: Eur. J. Hum. Genet. doi: 10.1038/s41431-020-00768-8 contributor: fullname: Hassan – volume: 107 start-page: 137 year: 2020 ident: 2021042610534785900_ref29 article-title: Population-specific recombination maps from segments of identity by descent publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.05.016 contributor: fullname: Zhou – volume: 159 start-page: 1299 year: 2001 ident: 2021042610534785900_ref31 article-title: Estimating recombination rates from population genetic data publication-title: Genetics doi: 10.1093/genetics/159.3.1299 contributor: fullname: Fearnhead – volume: 10 start-page: e1004234 year: 2014 ident: 2021042610534785900_ref21 article-title: A general approach for haplotype phasing across the full spectrum of relatedness publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004234 contributor: fullname: O’Connell – volume: 8 start-page: 762 year: 2007 ident: 2021042610534785900_ref11 article-title: Gene conversion: mechanisms, evolution and human disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2193 contributor: fullname: Chen – volume: 6 start-page: 1563 year: 2016 ident: 2021042610534785900_ref40 article-title: New software for the fast estimation of population recombination rates (fasteprr) in the genomic era publication-title: G3 (Bethesda) doi: 10.1534/g3.116.028233 contributor: fullname: Gao – volume: 476 start-page: 170 year: 2011 ident: 2021042610534785900_ref9 article-title: The landscape of recombination in African Americans publication-title: Nature doi: 10.1038/nature10336 contributor: fullname: Hinch – volume: 8 start-page: e1003090 year: 2012 ident: 2021042610534785900_ref39 article-title: Genome-wide fine-scale recombination rate variation in Drosophila melanogaster publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003090 contributor: fullname: Chan – volume: 2 start-page: 267 year: 1998 ident: 2021042610534785900_ref13 article-title: High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80138-0 contributor: fullname: Jeffreys – volume: 43 start-page: 847 year: 2011 ident: 2021042610534785900_ref45 article-title: Recombination rates in admixed individuals identified by ancestry-based inference publication-title: Nat. Genet. doi: 10.1038/ng.894 contributor: fullname: Wegmann – volume: 5 start-page: e1000529 year: 2009 ident: 2021042610534785900_ref26 article-title: A flexible and accurate genotype imputation method for the next generation of genome-wide association studies publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000529 contributor: fullname: Howie – volume: 19 start-page: 623 year: 2019 ident: 2021042610534785900_ref30 article-title: LDJump: estimating variable recombination rates from population genetic data publication-title: Mol. Ecol. Resour. doi: 10.1111/1755-0998.12994 contributor: fullname: Hermann – volume: 372 start-page: 1736, 20160456 year: 2017 ident: 2021042610534785900_ref4 article-title: Evolution of recombination rates between sex chromosomes publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. doi: 10.1098/rstb.2016.0456 contributor: fullname: Charlesworth – volume: 467 start-page: 1061 year: 2010 ident: 2021042610534785900_ref35 article-title: A map of human genome variation from population-scale sequencing publication-title: Nature doi: 10.1038/nature09534 contributor: fullname: 1000 Genomes Project Consortium – volume: 372 start-page: 1736, 20160455 year: 2017 ident: 2021042610534785900_ref2 article-title: Variation in recombination frequency and distribution across eukaryotes: patterns and processes publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. doi: 10.1098/rstb.2016.0455 contributor: fullname: Stapley – volume: 34 start-page: 816 year: 2010 ident: 2021042610534785900_ref25 article-title: MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes publication-title: Genet. Epidemiol. doi: 10.1002/gepi.20533 contributor: fullname: Li |
SSID | ssj0016437 |
Score | 2.431391 |
SecondaryResourceType | review_article |
Snippet | Abstract
Although several high-resolution recombination maps exist for European-descent populations, the recombination landscape of African populations remains... Although several high-resolution recombination maps exist for European-descent populations, the recombination landscape of African populations remains... |
SourceID | pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | R11 |
SubjectTerms | Africa Blacks - genetics Decision Trees Evolution, Molecular Genome-Wide Association Study Genomics - methods Haplotypes Humans Invited Review Polymorphism, Single Nucleotide Recombination, Genetic |
Title | Inferring recombination patterns in African populations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33445180 https://search.proquest.com/docview/2478585070 https://pubmed.ncbi.nlm.nih.gov/PMC8117444 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcAVFIC4IyiuUh5F6NfU-vM4eadUHSOFQNVJu1tpeq5GIU6XpAb6eGc96Y1d9ADlY8a53Fc9MZuc9jO0aXlZZMraxcaWK4YSQsUkKjBGzWL4uqUXbkmXyQ59M1fdZOtvYdNvsknXxpfx9Y17J_2AVxgCvmCX7D5gNm8IAfAf8whUwDNe_wvE3zNZrA-hQr12AkkvovGiLZlKIODUCgrHQqeuyL5CSEX_RNcnFjsqY1hgkbUxvOnSeOR23Bqxuarqi0QPsvTMPRDZB3_u-7lIMJ3b1c7mxuJK4vA9LG-stsd7mIDi6Tyix_a5cxr5xUasYSyDTKUOsVekEsEdtazre630yRGOnvMdJTz0Pdv5O38jvqRbW-QLY4lFV2SIRyeZgC-GGtzz5kD0SwJ6QLx7PQmAQR1dmW6HRv4PP6oQN9mD5nl88kGMGuZE9FeV6pG1PdDl7zp55nSP6SgT0gj1wzTZ7TF1If22zJxMfX_GSZYGiogFFRR1FRfMm8hQV9SjqFZseHZ4dnMS-tUZcKi7WMcgrdV2PEyttIssaZDpTCFOkpUitca52GejhFmOAC8erlI9rDcJdBeo0KJjwka_ZVrNs3FsW1TzVxhkp4SWVstyoSlhd2lQro9LSjdhuB6j8giqo5BT5IHOAZ-7hOWKfAIh3P_G5A3AOPBAdW7Zxy6vLXKgM3dtweo3YGwJ42EhKLME3hplsgIrwANZXH8408_O2zjrmYCul3t37y3bY082_5D3bWq-u3AeQVdfFx5a0_gCMuZY4 |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+recombination+patterns+in+African+populations&rft.jtitle=Human+molecular+genetics&rft.au=van+Eeden%2C+Gerald&rft.au=Uren%2C+Caitlin&rft.au=M%C3%B6ller%2C+Marlo&rft.au=Henn%2C+Brenna+M&rft.date=2021-04-26&rft.pub=Oxford+University+Press&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=30&rft.issue=R1&rft.spage=R11&rft.epage=R16&rft_id=info:doi/10.1093%2Fhmg%2Fddab020&rft.externalDocID=10.1093%2Fhmg%2Fddab020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon |