Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs

Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 26; pp. e2000699 - n/a
Main Authors Shen, Lu, Shi, Peiran, Hao, Xiaoge, Zhao, Qiang, Ma, Jiabin, He, Yan‐Bing, Kang, Feiyu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries. The strategy of suppressing Li dendrite growth and accommodating volume expansion is put forward from a new perspective of hierarchical structure designs of the Li anode from the interior (3D porous current collector and host matrix) to exterior (artificial solid electrolyte interphase (SEI), protective layer, separator, and solid‐state electrolyte). The Li dendrite growth mechanisms and suppression strategies are also concluded.
AbstractList Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries.
Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries. The strategy of suppressing Li dendrite growth and accommodating volume expansion is put forward from a new perspective of hierarchical structure designs of the Li anode from the interior (3D porous current collector and host matrix) to exterior (artificial solid electrolyte interphase (SEI), protective layer, separator, and solid‐state electrolyte). The Li dendrite growth mechanisms and suppression strategies are also concluded.
Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g −1 ). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries.
Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (-3.04 V) and high specific capacity (3860 mAh g ). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid-state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries.
Author Ma, Jiabin
He, Yan‐Bing
Zhao, Qiang
Hao, Xiaoge
Shen, Lu
Shi, Peiran
Kang, Feiyu
Author_xml – sequence: 1
  givenname: Lu
  surname: Shen
  fullname: Shen, Lu
  organization: Tsinghua University
– sequence: 2
  givenname: Peiran
  surname: Shi
  fullname: Shi, Peiran
  organization: Tsinghua University
– sequence: 3
  givenname: Xiaoge
  surname: Hao
  fullname: Hao, Xiaoge
  organization: Tsinghua University
– sequence: 4
  givenname: Qiang
  surname: Zhao
  fullname: Zhao, Qiang
  organization: Tsinghua University
– sequence: 5
  givenname: Jiabin
  surname: Ma
  fullname: Ma, Jiabin
  organization: Tsinghua University
– sequence: 6
  givenname: Yan‐Bing
  orcidid: 0000-0001-5787-5498
  surname: He
  fullname: He, Yan‐Bing
  email: he.yanbing@sz.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 7
  givenname: Feiyu
  surname: Kang
  fullname: Kang, Feiyu
  email: fykang@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32459890$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaL567bEIcsllN6MPe61jSNIm4JDApmcjy-NdBdvaSjLt_vvI7HYLveSkEfPMw0jvGTka3ICEfGUwZwD8OvRdN-fAASBX6hM5ZTkTs7zg6uhQMzghZyG8AQjG5eIzORFcZqpQcErCi3crjyFQN9DSxrUde3qHQ-NtRLocN5upaVNzGb2OuLIYaOtdT-Ma6eMQ0VvnaXT0_s--rrf0waLX3qyt0d00OJo4ekzeYFdDuCDHre4Cftmf5-Tn9_vX24dZ-fzj8famnBnJuJphLbVUuVDAWcOypmY6V-k1vJYoWyNYXWSyLtq8MFnDm6bBPF2FYFpwwxZSnJOrnXfj3a8RQ6x6Gwx2nR7QjaHiEhZZATKf0Mv_0Dc3-iFtlyimeCFAQqLmO8p4F4LHttp422u_rRhUUxzVFEd1iCMNfNtrx7rH5oD__f8EqB3w23a4_UBXLZ_K8p_8HYRxmaU
CitedBy_id crossref_primary_10_1016_j_cej_2024_149821
crossref_primary_10_1016_j_ensm_2021_11_033
crossref_primary_10_1007_s12274_022_4261_2
crossref_primary_10_1016_j_xcrp_2021_100534
crossref_primary_10_1016_j_jallcom_2023_169695
crossref_primary_10_1002_smll_202007717
crossref_primary_10_1007_s12598_022_01994_3
crossref_primary_10_1021_acsami_2c21612
crossref_primary_10_1007_s40843_022_2082_y
crossref_primary_10_1016_j_jpowsour_2023_233206
crossref_primary_10_1016_j_ces_2023_118970
crossref_primary_10_1002_advs_202308087
crossref_primary_10_1016_j_mtener_2021_100770
crossref_primary_10_1021_acsaem_1c00438
crossref_primary_10_1007_s12274_021_3433_9
crossref_primary_10_1002_smll_202106718
crossref_primary_10_1021_acsami_0c16390
crossref_primary_10_1021_acs_jpcc_1c00831
crossref_primary_10_1002_tcr_202200114
crossref_primary_10_1039_D1QM00096A
crossref_primary_10_1016_j_cej_2021_130017
crossref_primary_10_1039_D3QI01290E
crossref_primary_10_1016_j_ensm_2021_03_006
crossref_primary_10_1002_elt2_8
crossref_primary_10_1002_aenm_202101173
crossref_primary_10_1002_adfm_202206834
crossref_primary_10_1002_smll_202301740
crossref_primary_10_3390_inorganics10010005
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1021_acsami_3c00740
crossref_primary_10_1021_acsnano_4c05040
crossref_primary_10_1016_j_ensm_2022_03_014
crossref_primary_10_1002_advs_202203321
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1002_advs_202201219
crossref_primary_10_1002_inf2_12359
crossref_primary_10_1149_1945_7111_ad3eb8
crossref_primary_10_1016_j_cej_2021_132970
crossref_primary_10_1016_S1872_5805_23_60744_9
crossref_primary_10_1039_D1SE01152A
crossref_primary_10_1016_j_jpowsour_2023_233344
crossref_primary_10_1002_smtd_202301006
crossref_primary_10_1039_D2RA08027C
crossref_primary_10_3390_batteries10050165
crossref_primary_10_1039_D3TA03543C
crossref_primary_10_1002_aenm_202103291
crossref_primary_10_1002_smll_202007142
crossref_primary_10_1080_14686996_2022_2050297
crossref_primary_10_1021_acsnano_1c05497
crossref_primary_10_1021_acsaem_1c04035
crossref_primary_10_1021_acsmaterialslett_2c00945
crossref_primary_10_1063_5_0099590
crossref_primary_10_1021_acsami_1c15980
crossref_primary_10_1021_acsaem_1c03259
crossref_primary_10_3390_electrochem4020013
crossref_primary_10_1039_D3DT02427J
crossref_primary_10_1002_adfm_202004885
crossref_primary_10_1016_j_ensm_2021_01_028
crossref_primary_10_1016_j_jcis_2023_12_021
crossref_primary_10_1038_s41560_021_00852_3
crossref_primary_10_1016_j_ensm_2022_01_049
crossref_primary_10_1002_aenm_202300725
crossref_primary_10_1002_advs_202308530
crossref_primary_10_1002_cey2_348
crossref_primary_10_1557_s43580_024_00885_2
crossref_primary_10_1007_s12598_024_02645_5
crossref_primary_10_1002_smll_202303149
crossref_primary_10_1021_acs_macromol_1c01102
Cites_doi 10.1038/ncomms15893
10.1021/acs.macromol.8b01188
10.1038/ncomms4710
10.1002/adma.201703891
10.1002/adfm.201605989
10.1039/C7EE02723K
10.1073/pnas.1618871114
10.1149/1.2059378
10.1002/aenm.201703404
10.1007/s12274-017-1461-2
10.1038/ncomms2513
10.1021/acsami.8b00034
10.1038/nnano.2014.152
10.1002/adfm.201804133
10.1002/aenm.201803186
10.1016/j.nanoen.2017.10.065
10.1002/adma.201606042
10.1002/adma.201601409
10.1016/j.nanoen.2017.07.023
10.1002/adma.201801745
10.1021/acs.chemrev.5b00563
10.1126/sciadv.aau9245
10.1002/adma.201707132
10.1016/j.nanoen.2017.12.055
10.1002/aenm.201901604
10.1039/C8TA06828C
10.1039/C8CC02280A
10.1016/j.jpowsour.2018.04.019
10.1002/aenm.201702242
10.1002/anie.201710806
10.1039/C5TA06379E
10.1021/acs.nanolett.8b01421
10.1002/admi.201600140
10.1039/C8CC02672F
10.1002/anie.201608924
10.1039/C8CC07476C
10.1021/nl503125u
10.1039/C4CC05372A
10.1016/j.nanoen.2019.104309
10.1021/jacs.6b13314
10.1002/adma.201604460
10.1149/1.2908859
10.1007/s12598-017-0891-z
10.1038/nenergy.2017.83
10.1002/adma.201700389
10.1002/adfm.201803023
10.1073/pnas.1708489114
10.1016/j.jpowsour.2014.08.011
10.1007/s10008-010-1220-8
10.1016/j.ijcard.2007.06.083
10.1002/adma.201800884
10.1002/aenm.201500353
10.1021/acsenergylett.8b00453
10.1021/acsnano.7b05874
10.1039/C8TA04343D
10.1149/1.1502684
10.1021/jacs.7b01763
10.1021/jacs.6b05341
10.1002/celc.201701250
10.1016/j.nanoen.2018.01.019
10.1021/acsami.8b04592
10.1002/adma.201701169
10.1038/ncomms8436
10.1039/C6TA10142A
10.1016/j.jpowsour.2018.09.061
10.1016/j.nanoen.2017.07.038
10.1016/j.ensm.2018.03.018
10.1002/adma.201807243
10.1021/jacs.7b06437
10.1021/acsami.7b00478
10.1021/acs.nanolett.6b04695
10.1021/acs.accounts.7b00484
10.1073/pnas.1518188113
10.1039/C7EE01004D
10.1002/aenm.201803372
10.1039/C8NR01995A
10.1002/adma.201807313
10.1021/acsami.8b03572
10.1039/C8TA02810A
10.1016/j.ensm.2018.03.004
10.1039/C8TA04911D
10.1002/adma.201506124
10.1126/sciadv.aau7728
10.1016/j.carbon.2017.08.027
10.1002/aenm.201903568
10.1016/j.jpowsour.2013.08.041
10.1126/sciadv.1601659
10.1016/S0378-7753(98)00242-0
10.1038/s41565-018-0183-2
10.1002/aenm.201501933
10.1016/j.ensm.2018.04.032
10.1038/nmat4821
10.1002/adma.201703729
10.1016/j.jpowsour.2015.03.004
10.1016/0022-0728(92)80467-I
10.1002/aenm.201800564
10.1002/anie.201702099
10.1016/j.nanoen.2016.12.030
10.1016/j.nanoen.2017.05.015
10.1039/C7TA05997C
10.1038/natrevmats.2016.103
10.1021/jacs.6b06777
10.1002/aenm.201800914
10.1016/j.nanoen.2016.02.008
10.1126/sciadv.1701301
10.1201/9780824741389.ch6
10.1002/adma.201804165
10.1016/j.nanoen.2015.04.009
10.1126/sciadv.aar4410
10.1002/adfm.201805301
10.1002/anie.201811955
10.1021/acs.chemrev.7b00115
10.1038/nnano.2016.32
10.1021/acs.nanolett.8b00183
10.1002/aenm.201502214
10.1016/j.ensm.2018.03.024
10.1038/s41467-018-06126-z
10.1021/acsenergylett.7b00300
10.1016/j.joule.2018.02.001
10.1002/adma.201504117
10.1016/j.electacta.2003.09.010
10.1002/aenm.201803774
10.1002/adma.201602704
10.1021/acsami.7b18123
10.1038/s41560-019-0349-7
10.1002/adfm.201705838
10.1002/adfm.201707570
10.1103/PhysRevA.42.7355
10.1016/j.ensm.2019.01.009
10.1016/j.joule.2019.05.006
10.1002/adfm.201606422
10.1039/C6MH00218H
10.1016/j.ensm.2018.03.015
10.1016/j.jpowsour.2018.05.003
10.1016/j.jpowsour.2016.04.017
10.1002/aenm.201703360
10.1149/2.0731908jes
10.1111/jace.15294
10.1016/j.synthmet.2006.04.006
10.1149/1.2128859
10.1016/j.nanoen.2018.04.040
10.1002/adma.201603454
10.1038/ncomms10992
10.1002/advs.201500213
10.1016/j.ensm.2017.06.016
10.1126/sciadv.aat3446
10.1021/jacs.7b10864
10.1038/ncomms7362
10.1016/j.jpowsour.2017.04.026
10.1016/j.nanoen.2018.01.028
10.1002/adma.201700007
10.1002/adma.201802156
10.1016/S0378-7753(00)00427-4
10.1038/s41560-019-0474-3
10.1016/j.nantod.2011.11.002
10.1021/acsnano.5b02166
10.1016/j.jpowsour.2013.10.112
10.1016/j.nanoen.2017.12.037
10.1021/acs.nanolett.6b01581
10.1021/j100845a082
10.1021/acs.nanolett.8b05019
10.1016/j.matt.2019.06.002
10.1039/C7NR09058G
10.1002/eem2.12003
10.1021/ja412807w
10.1038/s41563-019-0305-8
10.1002/adma.201804815
10.1002/adma.201605531
10.1038/ncomms9058
10.1021/acs.nanolett.8b04906
10.1038/nenergy.2016.10
10.1021/acsenergylett.7b00175
10.1016/j.ensm.2018.10.015
10.1002/aenm.201703505
10.1016/j.ensm.2018.06.024
10.1016/S0378-7753(98)00193-1
10.1016/j.jpowsour.2016.11.097
10.1021/acs.nanolett.8b03902
10.1002/aenm.201702374
10.1002/advs.201600445
10.1002/celc.201800694
10.1002/aenm.201701437
10.1039/C3EE40795K
10.1021/acsami.8b02619
10.1016/j.jpowsour.2015.07.033
10.1021/acsami.8b08585
10.1002/adma.201706216
10.1021/acs.nanolett.7b00221
10.1021/acs.nanolett.8b04919
10.1016/j.nanoen.2017.09.037
10.1002/aenm.201701744
10.1016/j.nanoen.2018.12.001
10.1002/aenm.201800635
10.1149/1.1368105
10.1149/1.1836979
10.1149/1.1798411
10.1021/acscentsci.6b00389
10.1038/s41467-018-02888-8
10.1016/j.mattod.2018.04.004
10.1021/acsami.8b04881
10.2172/6885395
10.1002/adma.201806470
10.1002/aenm.201703644
10.1021/jp510077z
10.1002/adma.201700783
10.1002/aenm.201703152
10.1039/C8TA08095J
10.1149/2.0611701jes
10.1111/jace.13844
10.1039/C7NR08727F
10.1016/j.jpowsour.2018.04.098
10.1016/j.ensm.2018.07.004
10.1002/smtd.201800035
10.1002/adfm.201402953
10.1021/acsnano.9b06653
10.1021/acscentsci.8b00229
10.1038/nmat3191
10.1016/S0378-7753(01)00734-0
10.1002/admi.201701097
10.1016/S0167-2738(02)00080-2
10.1039/C5TA08574H
10.1002/adma.201603755
10.1021/ja305709z
10.1149/1.057304jes
10.1021/acs.nanolett.8b01295
10.1002/chem.201703464
10.1021/acs.nanolett.7b00715
10.1126/sciadv.aat5168
10.1002/smll.201803310
10.1002/adma.201807131
10.1021/acs.chemrev.8b00422
10.1038/s41557-018-0166-9
10.1038/s41560-018-0104-5
10.1016/j.ensm.2018.02.015
10.1002/anie.201710841
10.1002/adma.201805334
10.1021/acsami.7b03887
10.1002/advs.201802353
10.1038/nnano.2017.16
10.1038/s41467-019-08767-0
10.1016/j.electacta.2007.10.019
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202000699
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202000699
32459890
SMLL202000699
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Guangdong Province Technical Plan Project
  funderid: 2017B010119001; 2017B090907005
– fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program
  funderid: 2017BT01N111
– fundername: Shenzhen graphene manufacturing innovation center
  funderid: 201901161513
– fundername: National Natural Science Foundation of China
  funderid: 51672156
– fundername: Guangdong special support program
  funderid: 2015TQ01N401
– fundername: Shenzhen Technical Plan Project
  funderid: JCYJ20180508152210821; JCYJ20170817161221958; JCYJ20170412170706047; JCYJ20180508152135822
– fundername: Guangdong Province Technical Plan Project
  grantid: 2017B090907005
– fundername: Shenzhen Technical Plan Project
  grantid: JCYJ20170412170706047
– fundername: Guangdong Province Technical Plan Project
  grantid: 2017B010119001
– fundername: Shenzhen Technical Plan Project
  grantid: JCYJ20180508152210821
– fundername: Shenzhen Technical Plan Project
  grantid: JCYJ20180508152135822
– fundername: Guangdong special support program
  grantid: 2015TQ01N401
– fundername: Shenzhen graphene manufacturing innovation center
  grantid: 201901161513
– fundername: National Natural Science Foundation of China
  grantid: 51672156
– fundername: Shenzhen Technical Plan Project
  grantid: JCYJ20170817161221958
– fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program
  grantid: 2017BT01N111
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
NPM
31~
AAMNL
AAYOK
AAYXX
ACBWZ
ACRPL
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4129-eb4a49639021d15db1a696812b4e4fc31b854b8f68c5d2ddde64b8331a32c1743
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Wed Dec 04 05:56:36 EST 2024
Thu Oct 10 18:50:25 EDT 2024
Fri Dec 06 01:58:15 EST 2024
Sat Sep 28 08:27:13 EDT 2024
Sat Aug 24 01:06:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords hierarchical structural design
solid-state electrolytes
Li dendrite suppression
Li metal protection
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4129-eb4a49639021d15db1a696812b4e4fc31b854b8f68c5d2ddde64b8331a32c1743
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0001-5787-5498
PMID 32459890
PQID 2419283040
PQPubID 1046358
PageCount 40
ParticipantIDs proquest_miscellaneous_2407580464
proquest_journals_2419283040
crossref_primary_10_1002_smll_202000699
pubmed_primary_32459890
wiley_primary_10_1002_smll_202000699_SMLL202000699
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2019; 11
2000; 89
2019; 10
2019; 13
2019; 17
2019; 16
2019; 19
2019; 18
1996; 143
2020; 10
2018; 45
2012; 11
2001; 148
2018; 49
2019; 166
2014; 136
1978
2018; 46
2018; 6
1990; 42
2018; 9
2018; 8
2014; 249
2018; 3
2018; 2
2018; 5
2012; 134
2018; 4
2016; 318
2018; 1
2019; 22
1994; 141
2002; 148
2014; 14
2019; 29
2002; 149
2018; 30
2017; 164
2014; 246
1979; 126
2018; 28
2019; 9
2019; 4
2019; 3
2019; 6
2019; 5
2019; 31
2004; 49
2019; 1
2018; 101
2008; 129
2014; 271
2008; 53
2016; 16
2017; 139
1999
2016; 11
2016; 4
2018; 18
2016; 6
2016; 7
2016; 1
2016; 3
2018; 118
2001; 97–98
2004; 151
2017; 56
2015; 119
2016; 28
2018; 11
2018; 10
2018; 15
2018; 14
2018; 13
2016; 22
2017; 5
2017; 42
2017; 7
2017; 8
2017; 41
2017; 2
2017; 3
2017; 4
1999; 81–82
2019; 56
1969; 73
2019; 58
2011; 15
2018; 408
2017; 354
2013; 160
2017; 114
2017; 9
2017; 117
2014; 5
2017; 37
2017; 36
2017; 39
2017; 32
2015; 296
2016; 113
2016; 116
2014; 9
2017; 123
2008; 155
2014; 7
2014; 50
2015; 284
2015; 15
2015; 6
2015; 5
2018; 140
2015; 3
2017; 27
2015; 98
2017; 23
2018; 389
2017; 29
2015; 9
2006; 156
2018; 394
2015; 25
2018; 392
2017; 17
2017; 16
2017; 11
2017; 10
2017; 12
1999; 77
1992; 339
2018; 51
2020; 67
2016; 138
2017; 342
2012; 7
2018; 54
2018; 57
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
Yang C. (e_1_2_7_76_1) 2017; 29
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_248_1
e_1_2_7_225_1
e_1_2_7_240_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
Chi S. S. (e_1_2_7_97_1) 2017; 27
e_1_2_7_241_1
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_238_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_231_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_53_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_244_1
e_1_2_7_221_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
Yang C. (e_1_2_7_30_1) 2017; 29
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
Zhao H. (e_1_2_7_47_1) 2018; 8
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_186_1
e_1_2_7_246_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_247_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_138_1
References_xml – volume: 5
  start-page: 761
  year: 2018
  publication-title: ChemElectroChem
– volume: 42
  start-page: 7355
  year: 1990
  publication-title: Phys. Rev. A
– volume: 18
  start-page: 6113
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  start-page: 900
  year: 2019
  publication-title: Nat. Commun.
– volume: 15
  start-page: 135
  year: 2015
  publication-title: Nano Energy
– volume: 394
  start-page: 74
  year: 2018
  publication-title: J. Power Sources
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 13
  start-page: 715
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 2967
  year: 2017
  publication-title: Nano Lett.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 1505
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 6016
  year: 2014
  publication-title: Nano Lett.
– volume: 6
  start-page: 9899
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 1
  start-page: 881
  year: 2019
  publication-title: Matter
– volume: 29
  start-page: 8
  year: 2017
  publication-title: Adv. Mater.
– volume: 15
  start-page: 148
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 56
  start-page: 753
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 114
  start-page: 3584
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 6932
  year: 2016
  publication-title: Adv. Mater.
– volume: 23
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 278
  year: 2016
  publication-title: Nano Energy
– volume: 14
  start-page: 49
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 73
  start-page: 4026
  year: 1969
  publication-title: J. Phys. Chem.
– volume: 118
  year: 2018
  publication-title: Chem. Rev.
– volume: 89
  start-page: 176
  year: 2000
  publication-title: J. Power Sources
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 572
  year: 2017
  publication-title: Nat. Mater.
– volume: 58
  start-page: 1094
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– year: 1978
– volume: 28
  start-page: 2155
  year: 2016
  publication-title: Adv. Mater.
– volume: 18
  start-page: 384
  year: 2019
  publication-title: Nat. Mater.
– volume: 18
  start-page: 7414
  year: 2018
  publication-title: Nano Lett.
– volume: 27
  start-page: 10
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 36
  start-page: 339
  year: 2017
  publication-title: Rare Met.
– volume: 3
  start-page: 227
  year: 2018
  publication-title: Nat. Energy
– volume: 19
  start-page: 24
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 1481
  year: 2013
  publication-title: Nat. Commun.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3169
  year: 2018
  publication-title: ChemElectroChem
– volume: 51
  start-page: 80
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 155
  start-page: A481
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 185
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 20
  year: 2018
  publication-title: Energy Environ. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 15
  start-page: 1977
  year: 2011
  publication-title: J. Solid State Electrochem.
– volume: 101
  start-page: 1087
  year: 2018
  publication-title: J. Am. Ceram. Soc.
– volume: 28
  start-page: 2888
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 10
  start-page: 4675
  year: 2018
  publication-title: Nanoscale
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 28
  start-page: 9620
  year: 2016
  publication-title: Adv. Mater.
– volume: 32
  start-page: 241
  year: 2017
  publication-title: Nano Energy
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 29
  start-page: 28
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 249
  start-page: 392
  year: 2014
  publication-title: J. Power Sources
– volume: 28
  start-page: 9094
  year: 2016
  publication-title: Adv. Mater.
– volume: 126
  start-page: 2047
  year: 1979
  publication-title: J. Electrochem. Soc.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 5916
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1321
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 77
  start-page: 183
  year: 1999
  publication-title: J. Power Sources
– volume: 17
  start-page: 3182
  year: 2017
  publication-title: Nano Lett.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 9
  start-page: 5884
  year: 2015
  publication-title: ACS Nano
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 834
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 98
  start-page: 3603
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 56
  start-page: 595
  year: 2019
  publication-title: Nano Energy
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 339
  start-page: 451
  year: 1992
  publication-title: J. Electroanal. Chem.
– volume: 143
  start-page: 2187
  year: 1996
  publication-title: J. Electrochem. Soc.
– volume: 53
  start-page: 2501
  year: 2008
  publication-title: Electrochim. Acta
– volume: 37
  start-page: 177
  year: 2017
  publication-title: Nano Energy
– volume: 342
  start-page: 175
  year: 2017
  publication-title: J. Power Sources
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 3
  start-page: 487
  year: 2016
  publication-title: Mater. Horiz.
– volume: 5
  start-page: 2829
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 882
  year: 2019
  publication-title: Nat. Energy
– volume: 42
  start-page: 262
  year: 2017
  publication-title: Nano Energy
– volume: 284
  start-page: 103
  year: 2015
  publication-title: J. Power Sources
– volume: 15
  start-page: 37
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 81–82
  start-page: 925
  year: 1999
  publication-title: J. Power Sources
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 309
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 123
  start-page: 744
  year: 2017
  publication-title: Carbon
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 392
  start-page: 79
  year: 2018
  publication-title: J. Power Sources
– volume: 116
  start-page: 140
  year: 2016
  publication-title: Chem. Rev.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 408
  start-page: 136
  year: 2018
  publication-title: J. Power Sources
– volume: 15
  start-page: 116
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 1568
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 7069
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 113
  start-page: 2862
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 139
  start-page: 4815
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 148
  start-page: 405
  year: 2002
  publication-title: Solid State Ionics
– volume: 129
  year: 2008
  publication-title: Int. J. Cardiol.
– volume: 138
  start-page: 9385
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1385
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 57
  start-page: 2096
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 41
  start-page: 210
  year: 2017
  publication-title: Nano Energy
– volume: 10
  start-page: 1356
  year: 2017
  publication-title: Nano Res.
– volume: 9
  start-page: 464
  year: 2018
  publication-title: Nat. Commun.
– volume: 156
  start-page: 745
  year: 2006
  publication-title: Synth. Met.
– volume: 54
  start-page: 6648
  year: 2018
  publication-title: Chem. Commun.
– volume: 39
  start-page: 554
  year: 2017
  publication-title: Nano Energy
– volume: 16
  start-page: 419
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10
  year: 2012
  publication-title: Nano Today
– volume: 271
  start-page: 291
  year: 2014
  publication-title: J. Power Sources
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 4
  start-page: 365
  year: 2019
  publication-title: Nat. Energy
– volume: 46
  start-page: 176
  year: 2018
  publication-title: Nano Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1326
  year: 2019
  publication-title: Nano Lett.
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 6
  start-page: 8058
  year: 2015
  publication-title: Nat. Commun.
– volume: 148
  start-page: D78
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 17
  start-page: 565
  year: 2017
  publication-title: Nano Lett.
– volume: 16
  start-page: 4431
  year: 2016
  publication-title: Nano Lett.
– volume: 318
  start-page: 170
  year: 2016
  publication-title: J. Power Sources
– volume: 8
  start-page: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 151
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 149
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 141
  start-page: L159
  year: 1994
  publication-title: J. Electrochem. Soc.
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 3729
  year: 2018
  publication-title: Nat. Commun.
– volume: 19
  start-page: 2343
  year: 2019
  publication-title: Nano Lett.
– volume: 4
  start-page: 996
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 3
  start-page: 1212
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 6125
  year: 2018
  publication-title: Nanoscale
– volume: 140
  start-page: 82
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1662
  year: 2019
  publication-title: Joule
– volume: 2
  start-page: 16
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 354
  start-page: 68
  year: 2017
  publication-title: J. Power Sources
– volume: 389
  start-page: 120
  year: 2018
  publication-title: J. Power Sources
– volume: 97–98
  start-page: 804
  year: 2001
  publication-title: J. Power Sources
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 9
  start-page: 141
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 45
  start-page: 413
  year: 2018
  publication-title: Nano Energy
– volume: 49
  start-page: 179
  year: 2018
  publication-title: Nano Energy
– volume: 49
  start-page: 565
  year: 2004
  publication-title: Electrochim. Acta
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 2067
  year: 2018
  publication-title: Nano Lett.
– volume: 4
  start-page: 3253
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 246
  start-page: 840
  year: 2014
  publication-title: J. Power Sources
– volume: 18
  start-page: 382
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 119
  start-page: 5412
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 259
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 51
  start-page: 7666
  year: 2018
  publication-title: Macromolecules
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3710
  year: 2014
  publication-title: Nat. Commun.
– volume: 19
  start-page: 1832
  year: 2019
  publication-title: Nano Lett.
– volume: 39
  start-page: 654
  year: 2017
  publication-title: Nano Energy
– volume: 18
  start-page: 3926
  year: 2018
  publication-title: Nano Lett.
– volume: 11
  start-page: 64
  year: 2019
  publication-title: Nat. Chem.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Commun.
– volume: 45
  start-page: 463
  year: 2018
  publication-title: Nano Energy
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 45
  start-page: 203
  year: 2018
  publication-title: Nano Energy
– volume: 14
  start-page: 143
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 296
  start-page: 10
  year: 2015
  publication-title: J. Power Sources
– volume: 22
  start-page: 50
  year: 2019
  publication-title: Mater. Today
– volume: 3
  start-page: 135
  year: 2017
  publication-title: ACS Cent. Sci.
– volume: 54
  start-page: 5330
  year: 2018
  publication-title: Chem. Commun.
– volume: 136
  start-page: 5039
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 160
  start-page: A662
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– year: 1999
– ident: e_1_2_7_205_1
  doi: 10.1038/ncomms15893
– ident: e_1_2_7_186_1
  doi: 10.1021/acs.macromol.8b01188
– ident: e_1_2_7_92_1
  doi: 10.1038/ncomms4710
– ident: e_1_2_7_95_1
  doi: 10.1002/adma.201703891
– ident: e_1_2_7_127_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_7_248_1
  doi: 10.1039/C7EE02723K
– ident: e_1_2_7_68_1
  doi: 10.1073/pnas.1618871114
– ident: e_1_2_7_124_1
  doi: 10.1149/1.2059378
– ident: e_1_2_7_111_1
  doi: 10.1002/aenm.201703404
– ident: e_1_2_7_72_1
  doi: 10.1007/s12274-017-1461-2
– ident: e_1_2_7_150_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_7_242_1
  doi: 10.1021/acsami.8b00034
– volume: 27
  start-page: 10
  year: 2017
  ident: e_1_2_7_97_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Chi S. S.
– ident: e_1_2_7_162_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_7_94_1
  doi: 10.1002/adfm.201804133
– ident: e_1_2_7_101_1
  doi: 10.1002/aenm.201803186
– ident: e_1_2_7_78_1
  doi: 10.1016/j.nanoen.2017.10.065
– ident: e_1_2_7_221_1
  doi: 10.1002/adma.201606042
– ident: e_1_2_7_49_1
  doi: 10.1002/adma.201601409
– ident: e_1_2_7_234_1
  doi: 10.1016/j.nanoen.2017.07.023
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201801745
– ident: e_1_2_7_208_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_7_154_1
  doi: 10.1126/sciadv.aau9245
– ident: e_1_2_7_247_1
  doi: 10.1002/adma.201707132
– ident: e_1_2_7_65_1
  doi: 10.1016/j.nanoen.2017.12.055
– ident: e_1_2_7_237_1
  doi: 10.1002/aenm.201901604
– ident: e_1_2_7_70_1
  doi: 10.1039/C8TA06828C
– ident: e_1_2_7_21_1
  doi: 10.1039/C8CC02280A
– ident: e_1_2_7_212_1
  doi: 10.1016/j.jpowsour.2018.04.019
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201702242
– ident: e_1_2_7_156_1
  doi: 10.1002/anie.201710806
– ident: e_1_2_7_215_1
  doi: 10.1039/C5TA06379E
– ident: e_1_2_7_198_1
  doi: 10.1021/acs.nanolett.8b01421
– ident: e_1_2_7_55_1
  doi: 10.1002/admi.201600140
– ident: e_1_2_7_67_1
  doi: 10.1039/C8CC02672F
– ident: e_1_2_7_195_1
  doi: 10.1002/anie.201608924
– ident: e_1_2_7_230_1
  doi: 10.1039/C8CC07476C
– ident: e_1_2_7_166_1
  doi: 10.1021/nl503125u
– ident: e_1_2_7_217_1
  doi: 10.1039/C4CC05372A
– ident: e_1_2_7_145_1
  doi: 10.1016/j.nanoen.2019.104309
– ident: e_1_2_7_169_1
  doi: 10.1021/jacs.6b13314
– ident: e_1_2_7_229_1
  doi: 10.1002/adma.201604460
– ident: e_1_2_7_236_1
  doi: 10.1149/1.2908859
– ident: e_1_2_7_14_1
  doi: 10.1007/s12598-017-0891-z
– ident: e_1_2_7_175_1
  doi: 10.1038/nenergy.2017.83
– ident: e_1_2_7_81_1
  doi: 10.1002/adma.201700389
– ident: e_1_2_7_103_1
  doi: 10.1002/adfm.201803023
– ident: e_1_2_7_191_1
  doi: 10.1073/pnas.1708489114
– ident: e_1_2_7_134_1
  doi: 10.1016/j.jpowsour.2014.08.011
– ident: e_1_2_7_235_1
  doi: 10.1007/s10008-010-1220-8
– ident: e_1_2_7_159_1
  doi: 10.1016/j.ijcard.2007.06.083
– ident: e_1_2_7_107_1
  doi: 10.1002/adma.201800884
– ident: e_1_2_7_187_1
  doi: 10.1002/aenm.201500353
– ident: e_1_2_7_225_1
  doi: 10.1021/acsenergylett.8b00453
– ident: e_1_2_7_63_1
  doi: 10.1021/acsnano.7b05874
– ident: e_1_2_7_113_1
  doi: 10.1039/C8TA04343D
– ident: e_1_2_7_147_1
  doi: 10.1149/1.1502684
– ident: e_1_2_7_64_1
  doi: 10.1021/jacs.7b01763
– ident: e_1_2_7_238_1
  doi: 10.1021/jacs.6b05341
– ident: e_1_2_7_41_1
  doi: 10.1002/celc.201701250
– ident: e_1_2_7_62_1
  doi: 10.1016/j.nanoen.2018.01.019
– ident: e_1_2_7_125_1
  doi: 10.1021/acsami.8b04592
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201701169
– ident: e_1_2_7_121_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_7_213_1
  doi: 10.1039/C6TA10142A
– ident: e_1_2_7_57_1
  doi: 10.1016/j.jpowsour.2018.09.061
– ident: e_1_2_7_200_1
  doi: 10.1016/j.nanoen.2017.07.038
– ident: e_1_2_7_66_1
  doi: 10.1016/j.ensm.2018.03.018
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201807243
– ident: e_1_2_7_168_1
  doi: 10.1021/jacs.7b06437
– ident: e_1_2_7_196_1
  doi: 10.1021/acsami.7b00478
– ident: e_1_2_7_226_1
  doi: 10.1021/acs.nanolett.6b04695
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.accounts.7b00484
– ident: e_1_2_7_83_1
  doi: 10.1073/pnas.1518188113
– ident: e_1_2_7_183_1
  doi: 10.1039/C7EE01004D
– ident: e_1_2_7_141_1
  doi: 10.1002/aenm.201803372
– ident: e_1_2_7_112_1
  doi: 10.1039/C8NR01995A
– ident: e_1_2_7_85_1
  doi: 10.1002/adma.201807313
– ident: e_1_2_7_109_1
  doi: 10.1021/acsami.8b03572
– ident: e_1_2_7_45_1
  doi: 10.1039/C8TA02810A
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ensm.2018.03.004
– ident: e_1_2_7_102_1
  doi: 10.1039/C8TA04911D
– ident: e_1_2_7_117_1
  doi: 10.1002/adma.201506124
– ident: e_1_2_7_36_1
  doi: 10.1126/sciadv.aau7728
– ident: e_1_2_7_31_1
  doi: 10.1016/j.carbon.2017.08.027
– ident: e_1_2_7_143_1
  doi: 10.1002/aenm.201903568
– ident: e_1_2_7_120_1
  doi: 10.1016/j.jpowsour.2013.08.041
– ident: e_1_2_7_220_1
  doi: 10.1126/sciadv.1601659
– ident: e_1_2_7_23_1
  doi: 10.1016/S0378-7753(98)00242-0
– ident: e_1_2_7_139_1
  doi: 10.1038/s41565-018-0183-2
– ident: e_1_2_7_122_1
  doi: 10.1002/aenm.201501933
– ident: e_1_2_7_60_1
  doi: 10.1016/j.ensm.2018.04.032
– ident: e_1_2_7_222_1
  doi: 10.1038/nmat4821
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201703729
– ident: e_1_2_7_173_1
  doi: 10.1016/j.jpowsour.2015.03.004
– ident: e_1_2_7_130_1
  doi: 10.1016/0022-0728(92)80467-I
– ident: e_1_2_7_86_1
  doi: 10.1002/aenm.201800564
– ident: e_1_2_7_89_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_7_53_1
  doi: 10.1016/j.nanoen.2016.12.030
– ident: e_1_2_7_73_1
  doi: 10.1016/j.nanoen.2017.05.015
– ident: e_1_2_7_77_1
  doi: 10.1039/C7TA05997C
– ident: e_1_2_7_207_1
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_7_219_1
  doi: 10.1021/jacs.6b06777
– ident: e_1_2_7_39_1
  doi: 10.1002/aenm.201800914
– ident: e_1_2_7_244_1
  doi: 10.1016/j.nanoen.2016.02.008
– ident: e_1_2_7_59_1
  doi: 10.1126/sciadv.1701301
– ident: e_1_2_7_27_1
  doi: 10.1201/9780824741389.ch6
– ident: e_1_2_7_91_1
  doi: 10.1002/adma.201804165
– ident: e_1_2_7_133_1
  doi: 10.1016/j.nanoen.2015.04.009
– ident: e_1_2_7_110_1
  doi: 10.1126/sciadv.aar4410
– ident: e_1_2_7_119_1
  doi: 10.1002/adfm.201805301
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201601409
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.201811955
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_93_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_7_104_1
  doi: 10.1021/acs.nanolett.8b00183
– ident: e_1_2_7_231_1
  doi: 10.1002/aenm.201502214
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ensm.2018.03.024
– ident: e_1_2_7_164_1
  doi: 10.1038/s41467-018-06126-z
– ident: e_1_2_7_126_1
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_7_82_1
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_7_96_1
  doi: 10.1002/adma.201504117
– ident: e_1_2_7_128_1
  doi: 10.1016/j.electacta.2003.09.010
– ident: e_1_2_7_138_1
  doi: 10.1002/aenm.201803774
– ident: e_1_2_7_71_1
  doi: 10.1002/adma.201602704
– ident: e_1_2_7_189_1
  doi: 10.1021/acsami.7b18123
– ident: e_1_2_7_188_1
  doi: 10.1038/s41560-019-0349-7
– ident: e_1_2_7_58_1
  doi: 10.1016/j.nanoen.2018.01.019
– ident: e_1_2_7_118_1
  doi: 10.1002/adfm.201705838
– ident: e_1_2_7_203_1
  doi: 10.1002/adfm.201707570
– ident: e_1_2_7_24_1
  doi: 10.1103/PhysRevA.42.7355
– ident: e_1_2_7_142_1
  doi: 10.1016/j.ensm.2019.01.009
– ident: e_1_2_7_144_1
  doi: 10.1016/j.joule.2019.05.006
– ident: e_1_2_7_51_1
  doi: 10.1002/adfm.201606422
– ident: e_1_2_7_201_1
  doi: 10.1039/C6MH00218H
– ident: e_1_2_7_240_1
  doi: 10.1016/j.ensm.2018.03.015
– ident: e_1_2_7_202_1
  doi: 10.1016/j.jpowsour.2018.05.003
– ident: e_1_2_7_135_1
  doi: 10.1016/j.jpowsour.2016.04.017
– ident: e_1_2_7_114_1
  doi: 10.1002/aenm.201703360
– ident: e_1_2_7_140_1
  doi: 10.1149/2.0731908jes
– ident: e_1_2_7_223_1
  doi: 10.1111/jace.15294
– ident: e_1_2_7_177_1
  doi: 10.1016/j.synthmet.2006.04.006
– ident: e_1_2_7_35_1
  doi: 10.1149/1.2128859
– ident: e_1_2_7_42_1
  doi: 10.1016/j.nanoen.2018.04.040
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201603454
– ident: e_1_2_7_61_1
  doi: 10.1038/ncomms10992
– ident: e_1_2_7_148_1
  doi: 10.1002/advs.201500213
– ident: e_1_2_7_167_1
  doi: 10.1016/j.ensm.2017.06.016
– ident: e_1_2_7_176_1
  doi: 10.1126/sciadv.aat3446
– ident: e_1_2_7_192_1
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_7_149_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_7_180_1
  doi: 10.1016/j.jpowsour.2017.04.026
– ident: e_1_2_7_233_1
  doi: 10.1016/j.nanoen.2018.01.028
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201700007
– volume: 8
  start-page: 8
  year: 2018
  ident: e_1_2_7_47_1
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Zhao H.
– ident: e_1_2_7_98_1
  doi: 10.1002/adma.201802156
– ident: e_1_2_7_160_1
  doi: 10.1016/S0378-7753(00)00427-4
– ident: e_1_2_7_136_1
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_7_79_1
  doi: 10.1016/j.nantod.2011.11.002
– ident: e_1_2_7_165_1
  doi: 10.1021/acsnano.5b02166
– ident: e_1_2_7_243_1
  doi: 10.1016/j.jpowsour.2013.10.112
– ident: e_1_2_7_241_1
  doi: 10.1016/j.nanoen.2017.12.037
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.nanolett.6b01581
– ident: e_1_2_7_131_1
  doi: 10.1021/j100845a082
– ident: e_1_2_7_228_1
  doi: 10.1021/acs.nanolett.8b05019
– ident: e_1_2_7_20_1
  doi: 10.1016/j.matt.2019.06.002
– ident: e_1_2_7_115_1
  doi: 10.1039/C7NR09058G
– ident: e_1_2_7_17_1
  doi: 10.1002/eem2.12003
– ident: e_1_2_7_152_1
  doi: 10.1021/ja412807w
– ident: e_1_2_7_155_1
  doi: 10.1038/s41563-019-0305-8
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201804815
– ident: e_1_2_7_158_1
  doi: 10.1002/adma.201605531
– ident: e_1_2_7_50_1
  doi: 10.1038/ncomms9058
– ident: e_1_2_7_108_1
  doi: 10.1021/acs.nanolett.8b04906
– ident: e_1_2_7_74_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_29_1
  doi: 10.1021/acsenergylett.7b00175
– ident: e_1_2_7_174_1
  doi: 10.1016/j.ensm.2018.10.015
– ident: e_1_2_7_245_1
  doi: 10.1002/aenm.201703505
– ident: e_1_2_7_116_1
  doi: 10.1016/j.ensm.2018.06.024
– ident: e_1_2_7_197_1
  doi: 10.1021/jacs.6b05341
– ident: e_1_2_7_227_1
  doi: 10.1016/S0378-7753(98)00193-1
– ident: e_1_2_7_163_1
  doi: 10.1016/j.jpowsour.2016.11.097
– ident: e_1_2_7_218_1
  doi: 10.1021/acs.nanolett.8b03902
– ident: e_1_2_7_224_1
  doi: 10.1002/aenm.201702374
– ident: e_1_2_7_32_1
  doi: 10.1002/advs.201600445
– ident: e_1_2_7_56_1
  doi: 10.1002/celc.201800694
– ident: e_1_2_7_193_1
  doi: 10.1002/aenm.201701437
– ident: e_1_2_7_2_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_105_1
  doi: 10.1021/acsami.8b02619
– ident: e_1_2_7_151_1
  doi: 10.1016/j.jpowsour.2015.07.033
– ident: e_1_2_7_161_1
  doi: 10.1021/acsami.8b08585
– ident: e_1_2_7_100_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_7_239_1
  doi: 10.1021/acs.nanolett.7b00221
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.nanolett.8b04919
– ident: e_1_2_7_209_1
  doi: 10.1016/j.nanoen.2017.09.037
– volume: 29
  start-page: 8
  year: 2017
  ident: e_1_2_7_76_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Yang C.
– ident: e_1_2_7_172_1
  doi: 10.1002/aenm.201701744
– ident: e_1_2_7_18_1
  doi: 10.1016/j.nanoen.2018.12.001
– ident: e_1_2_7_84_1
  doi: 10.1002/aenm.201800635
– ident: e_1_2_7_19_1
  doi: 10.1149/1.1368105
– ident: e_1_2_7_132_1
  doi: 10.1149/1.1836979
– ident: e_1_2_7_129_1
  doi: 10.1149/1.1798411
– ident: e_1_2_7_171_1
  doi: 10.1021/acscentsci.6b00389
– ident: e_1_2_7_46_1
  doi: 10.1038/s41467-018-02888-8
– ident: e_1_2_7_179_1
  doi: 10.1016/j.mattod.2018.04.004
– ident: e_1_2_7_44_1
  doi: 10.1021/acsami.8b04881
– ident: e_1_2_7_5_1
  doi: 10.2172/6885395
– ident: e_1_2_7_157_1
  doi: 10.1002/adma.201806470
– ident: e_1_2_7_182_1
  doi: 10.1002/aenm.201703644
– ident: e_1_2_7_216_1
  doi: 10.1021/jp510077z
– ident: e_1_2_7_69_1
  doi: 10.1002/adma.201700783
– ident: e_1_2_7_88_1
  doi: 10.1002/aenm.201703152
– ident: e_1_2_7_185_1
  doi: 10.1039/C8TA08095J
– ident: e_1_2_7_137_1
  doi: 10.1149/2.0611701jes
– ident: e_1_2_7_204_1
  doi: 10.1111/jace.13844
– ident: e_1_2_7_99_1
  doi: 10.1039/C7NR08727F
– ident: e_1_2_7_211_1
  doi: 10.1016/j.jpowsour.2018.04.098
– ident: e_1_2_7_199_1
  doi: 10.1016/j.ensm.2018.07.004
– ident: e_1_2_7_106_1
  doi: 10.1002/smtd.201800035
– ident: e_1_2_7_54_1
  doi: 10.1002/adfm.201402953
– ident: e_1_2_7_246_1
  doi: 10.1021/acsnano.9b06653
– ident: e_1_2_7_146_1
  doi: 10.1021/acscentsci.8b00229
– volume: 29
  start-page: 28
  year: 2017
  ident: e_1_2_7_30_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Yang C.
– ident: e_1_2_7_13_1
  doi: 10.1038/nmat3191
– ident: e_1_2_7_25_1
  doi: 10.1016/S0378-7753(01)00734-0
– ident: e_1_2_7_153_1
  doi: 10.1002/admi.201701097
– ident: e_1_2_7_6_1
  doi: 10.1016/S0167-2738(02)00080-2
– ident: e_1_2_7_210_1
  doi: 10.1039/C5TA08574H
– ident: e_1_2_7_170_1
  doi: 10.1002/adma.201603755
– ident: e_1_2_7_214_1
  doi: 10.1021/ja305709z
– ident: e_1_2_7_26_1
  doi: 10.1149/1.057304jes
– ident: e_1_2_7_184_1
  doi: 10.1021/acs.nanolett.8b01295
– ident: e_1_2_7_206_1
  doi: 10.1002/chem.201703464
– ident: e_1_2_7_194_1
  doi: 10.1021/acs.nanolett.7b00715
– ident: e_1_2_7_75_1
  doi: 10.1126/sciadv.aat5168
– ident: e_1_2_7_87_1
  doi: 10.1002/smll.201803310
– ident: e_1_2_7_80_1
  doi: 10.1002/adma.201807131
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_7_12_1
  doi: 10.1038/s41557-018-0166-9
– ident: e_1_2_7_33_1
  doi: 10.1038/s41560-018-0104-5
– ident: e_1_2_7_181_1
  doi: 10.1016/j.ensm.2018.02.015
– ident: e_1_2_7_190_1
  doi: 10.1002/anie.201710841
– ident: e_1_2_7_90_1
  doi: 10.1002/adma.201805334
– ident: e_1_2_7_178_1
  doi: 10.1021/acsami.7b03887
– ident: e_1_2_7_232_1
  doi: 10.1002/advs.201802353
– ident: e_1_2_7_3_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-019-08767-0
– ident: e_1_2_7_123_1
  doi: 10.1016/j.electacta.2007.10.019
SSID ssj0031247
Score 2.6067097
SecondaryResourceType review_article
Snippet Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1)....
Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (-3.04 V) and high specific capacity (3860 mAh g )....
Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g −1...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2000699
SubjectTerms Anodes
Commercialization
Current distribution
Dendritic structure
Electrochemical potential
Electrolytes
Flux density
hierarchical structural design
Li dendrite suppression
Li metal protection
Lithium
Nanotechnology
Nucleation
Principles
Safety
Separators
Solid electrolytes
solid‐state electrolytes
Structural hierarchy
Title Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202000699
https://www.ncbi.nlm.nih.gov/pubmed/32459890
https://www.proquest.com/docview/2419283040
https://search.proquest.com/docview/2407580464
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-yJ33w-2M6JYLgU7e1TdP2UZxjyCaiDvZWkibD4dbKuoH613uXrnXTB0HfGtpr0-Qu-SV39wshF7Di8phuxhYbxsxCDbGkI2zL56HSPpfcNxlyvTve6bPbgTdYyuLP-SHKDTe0DDNeo4ELmTW-SEOzyRhdBybVJMQMPtv1Maav9VDyR7kweZnTVWDOspB4q2BtbDqNVfHVWekH1FxFrmbqaW8RUVQ6jzh5qc9nsh5_fONz_M9fbZPNBS6lV7ki7ZA1neySjSW2wj2S3WMsF4yMNE1odzR7Hs0ntKUTNQXYSvF40DymNqEF5a3OKKavUACZ1Gw9jtIpnaX05m1xLd9pZ4Qp0OZEljEKzo1PA96LkSXZPum3b56uO9bizAYrZgAdLC2ZYGDUIWAHZXtK2gLpd2xHMg3q4Noy8JgMhjyIPeUoGFw5FF3XFq4T4-rogFSSNNFHhPJhqBENNe2AMz9WyMTGuGZCBkoJLarksuiz6DWn5ohyEmYnwmaMymasklrRpdHCRLPIQf934MIgViXn5W0wLvSYiESnc3wGEFWA3t8qOcxVofwUIFEvDEKQdkyH_lKH6LHX7Zal478InZB1vM6DhWukAl2iTwESzeSZUftPI0UD1A
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ74OKgH34_1WRMTT7gLlC4cjY-syhrjI_FGKO3GjSsY2U3UX-9MWdDVg4neKFAoTKfztTPzFWAPZ1we143E4p2EW9RDLOnEttUUgdJNIUXTZMi1L0Xrjp_fe2U0IeXCFPwQ1YIbaYYZr0nBaUG6_skamj_1yHdgck2CYBwmUedtiuo6vq4YpFw0X2Z_FbRaFlFvlbyNDac-Wn_ULv0Am6PY1Rif0zmQZbOLmJPHg0FfHiTv3xgd__Vd8zA7hKbssOhLCzCm00WY-UJYuAT5FYVz4eDIspSF3f5Dd_DEjnWqXhC5MtohtAirTVnJeqtzRhksDHEmM6uP3eyF9TN28jo8lm-s1aUsaLMpS48qDoxbA59LwSX5Mtydntwetazhtg1WwhE9WFrymKNeBwgflO0pacfEwGM7kmvsEa4tfY9LvyP8xFOOwvFVYNF17dh1EpogrcBEmqV6DZjoBJoAUcP2BW8misjYuNA8lr5SsY5rsF8KLXou2DmigofZieg3RtVvrMFmKdNoqKV55JAL3HdxHKvBbnUZ9YucJnGqswHdg6DKJwdwDVaLvlC9CsGoF_gB1naMRH9pQ3TTDsOqtP6XSjsw1bpth1F4dnmxAdN0vogd3oQJFI_eQoTUl9tGBz4AbmEH9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NJiF42MbX6GBgJCSeQhvHcZNHtLbqoCDEh8RbZMeuqAYJIq00-Ot35zRZyx6Qxluc5BInvrN_9t39DHCAM65Q2FbqiWEqPNIQT3Ple20ZG9uWWrZdhtzZuezfiJPb8HYmi7_kh6gX3MgyXH9NBv5ohs2_pKHFwz25DlyqSRwvwEcheUzs-Z3LmkAqwNHLba-Cg5ZHzFsVbWOLN-fl54elf7DmPHR1Y0_vM6iq1mXIya-jyVgfpS-vCB3f81lf4NMUmLLjUpNW4YPN1mBlhq5wHYoLCubCrpHlGRuMxnejyQPr2Mw8IW5ltD9oGVSbsYrz1haM8lcYokzm1h5H-RMb56z7e3qsn1l_RDnQbkuWexKcOKcGPpdCS4oNuOl1r3_0vemmDV4qEDt4Vgsl0KpjBA_GD432FfHv-FwLi_oQ-DoKhY6GMkpDww32rhKLQeCrgKc0PdqExSzP7BYwOYwtwaGWH0nRTg1RsQlphdKRMcqqBhxWbZY8ltwcScnCzBP6jUn9GxuwUzVpMrXRIuHkAI8C7MUasF9fRusil4nKbD6hexBSReT-bcDXUhXqVyEUDeMoRmnuGvSNOiRXZ4NBXfr2P0J7sHTR6SWDn-en27BMp8vA4R1YxNax3xEejfWus4A_TvsGpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+on+Lithium+Dendrite+Suppression+Strategies+from+the+Interior+to+Exterior+by+Hierarchical+Structure+Designs&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Shen%2C+Lu&rft.au=Shi%2C+Peiran&rft.au=Hao%2C+Xiaoge&rft.au=Zhao%2C+Qiang&rft.date=2020-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202000699&rft.externalDBID=10.1002%252Fsmll.202000699&rft.externalDocID=SMLL202000699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon