Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs
Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 26; pp. e2000699 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries.
The strategy of suppressing Li dendrite growth and accommodating volume expansion is put forward from a new perspective of hierarchical structure designs of the Li anode from the interior (3D porous current collector and host matrix) to exterior (artificial solid electrolyte interphase (SEI), protective layer, separator, and solid‐state electrolyte). The Li dendrite growth mechanisms and suppression strategies are also concluded. |
---|---|
AbstractList | Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries. Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries. The strategy of suppressing Li dendrite growth and accommodating volume expansion is put forward from a new perspective of hierarchical structure designs of the Li anode from the interior (3D porous current collector and host matrix) to exterior (artificial solid electrolyte interphase (SEI), protective layer, separator, and solid‐state electrolyte). The Li dendrite growth mechanisms and suppression strategies are also concluded. Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g −1 ). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid‐state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries. Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (-3.04 V) and high specific capacity (3860 mAh g ). However, the safety issues impede the commercialization of Li anode batteries. In this work, research of hierarchical structure designs for Li anodes to suppress Li dendrite growth and alleviate volume expansion from the interior (by the 3D current collector and host matrix) to the exterior (by the artificial solid electrolyte interphase (SEI), protective layer, separator, and solid state electrolyte) is concluded. The basic principles for achieving Li dendrite and volume expansion free Li anode are summarized. Following these principles, 3D porous current collector and host matrix are designed to suppress the Li dendrite growth from the interior. Second, artificial SEI, the protective layer, and separator as well as solid-state electrolyte are constructed to regulate the distribution of current and control the Li nucleation and deposition homogeneously for suppressing the Li dendrite growth from exterior of Li anode. Ultimately, this work puts forward that it is significant to combine the Li dendrite suppression strategies from the interior to exterior by 3D hierarchical structure designs and Li metal modification to achieve excellent cycling and safety performance of Li metal batteries. |
Author | Ma, Jiabin He, Yan‐Bing Zhao, Qiang Hao, Xiaoge Shen, Lu Shi, Peiran Kang, Feiyu |
Author_xml | – sequence: 1 givenname: Lu surname: Shen fullname: Shen, Lu organization: Tsinghua University – sequence: 2 givenname: Peiran surname: Shi fullname: Shi, Peiran organization: Tsinghua University – sequence: 3 givenname: Xiaoge surname: Hao fullname: Hao, Xiaoge organization: Tsinghua University – sequence: 4 givenname: Qiang surname: Zhao fullname: Zhao, Qiang organization: Tsinghua University – sequence: 5 givenname: Jiabin surname: Ma fullname: Ma, Jiabin organization: Tsinghua University – sequence: 6 givenname: Yan‐Bing orcidid: 0000-0001-5787-5498 surname: He fullname: He, Yan‐Bing email: he.yanbing@sz.tsinghua.edu.cn organization: Tsinghua University – sequence: 7 givenname: Feiyu surname: Kang fullname: Kang, Feiyu email: fykang@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32459890$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaL567bEIcsllN6MPe61jSNIm4JDApmcjy-NdBdvaSjLt_vvI7HYLveSkEfPMw0jvGTka3ICEfGUwZwD8OvRdN-fAASBX6hM5ZTkTs7zg6uhQMzghZyG8AQjG5eIzORFcZqpQcErCi3crjyFQN9DSxrUde3qHQ-NtRLocN5upaVNzGb2OuLIYaOtdT-Ma6eMQ0VvnaXT0_s--rrf0waLX3qyt0d00OJo4ekzeYFdDuCDHre4Cftmf5-Tn9_vX24dZ-fzj8famnBnJuJphLbVUuVDAWcOypmY6V-k1vJYoWyNYXWSyLtq8MFnDm6bBPF2FYFpwwxZSnJOrnXfj3a8RQ6x6Gwx2nR7QjaHiEhZZATKf0Mv_0Dc3-iFtlyimeCFAQqLmO8p4F4LHttp422u_rRhUUxzVFEd1iCMNfNtrx7rH5oD__f8EqB3w23a4_UBXLZ_K8p_8HYRxmaU |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_149821 crossref_primary_10_1016_j_ensm_2021_11_033 crossref_primary_10_1007_s12274_022_4261_2 crossref_primary_10_1016_j_xcrp_2021_100534 crossref_primary_10_1016_j_jallcom_2023_169695 crossref_primary_10_1002_smll_202007717 crossref_primary_10_1007_s12598_022_01994_3 crossref_primary_10_1021_acsami_2c21612 crossref_primary_10_1007_s40843_022_2082_y crossref_primary_10_1016_j_jpowsour_2023_233206 crossref_primary_10_1016_j_ces_2023_118970 crossref_primary_10_1002_advs_202308087 crossref_primary_10_1016_j_mtener_2021_100770 crossref_primary_10_1021_acsaem_1c00438 crossref_primary_10_1007_s12274_021_3433_9 crossref_primary_10_1002_smll_202106718 crossref_primary_10_1021_acsami_0c16390 crossref_primary_10_1021_acs_jpcc_1c00831 crossref_primary_10_1002_tcr_202200114 crossref_primary_10_1039_D1QM00096A crossref_primary_10_1016_j_cej_2021_130017 crossref_primary_10_1039_D3QI01290E crossref_primary_10_1016_j_ensm_2021_03_006 crossref_primary_10_1002_elt2_8 crossref_primary_10_1002_aenm_202101173 crossref_primary_10_1002_adfm_202206834 crossref_primary_10_1002_smll_202301740 crossref_primary_10_3390_inorganics10010005 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1021_acsami_3c00740 crossref_primary_10_1021_acsnano_4c05040 crossref_primary_10_1016_j_ensm_2022_03_014 crossref_primary_10_1002_advs_202203321 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1002_advs_202201219 crossref_primary_10_1002_inf2_12359 crossref_primary_10_1149_1945_7111_ad3eb8 crossref_primary_10_1016_j_cej_2021_132970 crossref_primary_10_1016_S1872_5805_23_60744_9 crossref_primary_10_1039_D1SE01152A crossref_primary_10_1016_j_jpowsour_2023_233344 crossref_primary_10_1002_smtd_202301006 crossref_primary_10_1039_D2RA08027C crossref_primary_10_3390_batteries10050165 crossref_primary_10_1039_D3TA03543C crossref_primary_10_1002_aenm_202103291 crossref_primary_10_1002_smll_202007142 crossref_primary_10_1080_14686996_2022_2050297 crossref_primary_10_1021_acsnano_1c05497 crossref_primary_10_1021_acsaem_1c04035 crossref_primary_10_1021_acsmaterialslett_2c00945 crossref_primary_10_1063_5_0099590 crossref_primary_10_1021_acsami_1c15980 crossref_primary_10_1021_acsaem_1c03259 crossref_primary_10_3390_electrochem4020013 crossref_primary_10_1039_D3DT02427J crossref_primary_10_1002_adfm_202004885 crossref_primary_10_1016_j_ensm_2021_01_028 crossref_primary_10_1016_j_jcis_2023_12_021 crossref_primary_10_1038_s41560_021_00852_3 crossref_primary_10_1016_j_ensm_2022_01_049 crossref_primary_10_1002_aenm_202300725 crossref_primary_10_1002_advs_202308530 crossref_primary_10_1002_cey2_348 crossref_primary_10_1557_s43580_024_00885_2 crossref_primary_10_1007_s12598_024_02645_5 crossref_primary_10_1002_smll_202303149 crossref_primary_10_1021_acs_macromol_1c01102 |
Cites_doi | 10.1038/ncomms15893 10.1021/acs.macromol.8b01188 10.1038/ncomms4710 10.1002/adma.201703891 10.1002/adfm.201605989 10.1039/C7EE02723K 10.1073/pnas.1618871114 10.1149/1.2059378 10.1002/aenm.201703404 10.1007/s12274-017-1461-2 10.1038/ncomms2513 10.1021/acsami.8b00034 10.1038/nnano.2014.152 10.1002/adfm.201804133 10.1002/aenm.201803186 10.1016/j.nanoen.2017.10.065 10.1002/adma.201606042 10.1002/adma.201601409 10.1016/j.nanoen.2017.07.023 10.1002/adma.201801745 10.1021/acs.chemrev.5b00563 10.1126/sciadv.aau9245 10.1002/adma.201707132 10.1016/j.nanoen.2017.12.055 10.1002/aenm.201901604 10.1039/C8TA06828C 10.1039/C8CC02280A 10.1016/j.jpowsour.2018.04.019 10.1002/aenm.201702242 10.1002/anie.201710806 10.1039/C5TA06379E 10.1021/acs.nanolett.8b01421 10.1002/admi.201600140 10.1039/C8CC02672F 10.1002/anie.201608924 10.1039/C8CC07476C 10.1021/nl503125u 10.1039/C4CC05372A 10.1016/j.nanoen.2019.104309 10.1021/jacs.6b13314 10.1002/adma.201604460 10.1149/1.2908859 10.1007/s12598-017-0891-z 10.1038/nenergy.2017.83 10.1002/adma.201700389 10.1002/adfm.201803023 10.1073/pnas.1708489114 10.1016/j.jpowsour.2014.08.011 10.1007/s10008-010-1220-8 10.1016/j.ijcard.2007.06.083 10.1002/adma.201800884 10.1002/aenm.201500353 10.1021/acsenergylett.8b00453 10.1021/acsnano.7b05874 10.1039/C8TA04343D 10.1149/1.1502684 10.1021/jacs.7b01763 10.1021/jacs.6b05341 10.1002/celc.201701250 10.1016/j.nanoen.2018.01.019 10.1021/acsami.8b04592 10.1002/adma.201701169 10.1038/ncomms8436 10.1039/C6TA10142A 10.1016/j.jpowsour.2018.09.061 10.1016/j.nanoen.2017.07.038 10.1016/j.ensm.2018.03.018 10.1002/adma.201807243 10.1021/jacs.7b06437 10.1021/acsami.7b00478 10.1021/acs.nanolett.6b04695 10.1021/acs.accounts.7b00484 10.1073/pnas.1518188113 10.1039/C7EE01004D 10.1002/aenm.201803372 10.1039/C8NR01995A 10.1002/adma.201807313 10.1021/acsami.8b03572 10.1039/C8TA02810A 10.1016/j.ensm.2018.03.004 10.1039/C8TA04911D 10.1002/adma.201506124 10.1126/sciadv.aau7728 10.1016/j.carbon.2017.08.027 10.1002/aenm.201903568 10.1016/j.jpowsour.2013.08.041 10.1126/sciadv.1601659 10.1016/S0378-7753(98)00242-0 10.1038/s41565-018-0183-2 10.1002/aenm.201501933 10.1016/j.ensm.2018.04.032 10.1038/nmat4821 10.1002/adma.201703729 10.1016/j.jpowsour.2015.03.004 10.1016/0022-0728(92)80467-I 10.1002/aenm.201800564 10.1002/anie.201702099 10.1016/j.nanoen.2016.12.030 10.1016/j.nanoen.2017.05.015 10.1039/C7TA05997C 10.1038/natrevmats.2016.103 10.1021/jacs.6b06777 10.1002/aenm.201800914 10.1016/j.nanoen.2016.02.008 10.1126/sciadv.1701301 10.1201/9780824741389.ch6 10.1002/adma.201804165 10.1016/j.nanoen.2015.04.009 10.1126/sciadv.aar4410 10.1002/adfm.201805301 10.1002/anie.201811955 10.1021/acs.chemrev.7b00115 10.1038/nnano.2016.32 10.1021/acs.nanolett.8b00183 10.1002/aenm.201502214 10.1016/j.ensm.2018.03.024 10.1038/s41467-018-06126-z 10.1021/acsenergylett.7b00300 10.1016/j.joule.2018.02.001 10.1002/adma.201504117 10.1016/j.electacta.2003.09.010 10.1002/aenm.201803774 10.1002/adma.201602704 10.1021/acsami.7b18123 10.1038/s41560-019-0349-7 10.1002/adfm.201705838 10.1002/adfm.201707570 10.1103/PhysRevA.42.7355 10.1016/j.ensm.2019.01.009 10.1016/j.joule.2019.05.006 10.1002/adfm.201606422 10.1039/C6MH00218H 10.1016/j.ensm.2018.03.015 10.1016/j.jpowsour.2018.05.003 10.1016/j.jpowsour.2016.04.017 10.1002/aenm.201703360 10.1149/2.0731908jes 10.1111/jace.15294 10.1016/j.synthmet.2006.04.006 10.1149/1.2128859 10.1016/j.nanoen.2018.04.040 10.1002/adma.201603454 10.1038/ncomms10992 10.1002/advs.201500213 10.1016/j.ensm.2017.06.016 10.1126/sciadv.aat3446 10.1021/jacs.7b10864 10.1038/ncomms7362 10.1016/j.jpowsour.2017.04.026 10.1016/j.nanoen.2018.01.028 10.1002/adma.201700007 10.1002/adma.201802156 10.1016/S0378-7753(00)00427-4 10.1038/s41560-019-0474-3 10.1016/j.nantod.2011.11.002 10.1021/acsnano.5b02166 10.1016/j.jpowsour.2013.10.112 10.1016/j.nanoen.2017.12.037 10.1021/acs.nanolett.6b01581 10.1021/j100845a082 10.1021/acs.nanolett.8b05019 10.1016/j.matt.2019.06.002 10.1039/C7NR09058G 10.1002/eem2.12003 10.1021/ja412807w 10.1038/s41563-019-0305-8 10.1002/adma.201804815 10.1002/adma.201605531 10.1038/ncomms9058 10.1021/acs.nanolett.8b04906 10.1038/nenergy.2016.10 10.1021/acsenergylett.7b00175 10.1016/j.ensm.2018.10.015 10.1002/aenm.201703505 10.1016/j.ensm.2018.06.024 10.1016/S0378-7753(98)00193-1 10.1016/j.jpowsour.2016.11.097 10.1021/acs.nanolett.8b03902 10.1002/aenm.201702374 10.1002/advs.201600445 10.1002/celc.201800694 10.1002/aenm.201701437 10.1039/C3EE40795K 10.1021/acsami.8b02619 10.1016/j.jpowsour.2015.07.033 10.1021/acsami.8b08585 10.1002/adma.201706216 10.1021/acs.nanolett.7b00221 10.1021/acs.nanolett.8b04919 10.1016/j.nanoen.2017.09.037 10.1002/aenm.201701744 10.1016/j.nanoen.2018.12.001 10.1002/aenm.201800635 10.1149/1.1368105 10.1149/1.1836979 10.1149/1.1798411 10.1021/acscentsci.6b00389 10.1038/s41467-018-02888-8 10.1016/j.mattod.2018.04.004 10.1021/acsami.8b04881 10.2172/6885395 10.1002/adma.201806470 10.1002/aenm.201703644 10.1021/jp510077z 10.1002/adma.201700783 10.1002/aenm.201703152 10.1039/C8TA08095J 10.1149/2.0611701jes 10.1111/jace.13844 10.1039/C7NR08727F 10.1016/j.jpowsour.2018.04.098 10.1016/j.ensm.2018.07.004 10.1002/smtd.201800035 10.1002/adfm.201402953 10.1021/acsnano.9b06653 10.1021/acscentsci.8b00229 10.1038/nmat3191 10.1016/S0378-7753(01)00734-0 10.1002/admi.201701097 10.1016/S0167-2738(02)00080-2 10.1039/C5TA08574H 10.1002/adma.201603755 10.1021/ja305709z 10.1149/1.057304jes 10.1021/acs.nanolett.8b01295 10.1002/chem.201703464 10.1021/acs.nanolett.7b00715 10.1126/sciadv.aat5168 10.1002/smll.201803310 10.1002/adma.201807131 10.1021/acs.chemrev.8b00422 10.1038/s41557-018-0166-9 10.1038/s41560-018-0104-5 10.1016/j.ensm.2018.02.015 10.1002/anie.201710841 10.1002/adma.201805334 10.1021/acsami.7b03887 10.1002/advs.201802353 10.1038/nnano.2017.16 10.1038/s41467-019-08767-0 10.1016/j.electacta.2007.10.019 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202000699 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202000699 32459890 SMLL202000699 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Guangdong Province Technical Plan Project funderid: 2017B010119001; 2017B090907005 – fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program funderid: 2017BT01N111 – fundername: Shenzhen graphene manufacturing innovation center funderid: 201901161513 – fundername: National Natural Science Foundation of China funderid: 51672156 – fundername: Guangdong special support program funderid: 2015TQ01N401 – fundername: Shenzhen Technical Plan Project funderid: JCYJ20180508152210821; JCYJ20170817161221958; JCYJ20170412170706047; JCYJ20180508152135822 – fundername: Guangdong Province Technical Plan Project grantid: 2017B090907005 – fundername: Shenzhen Technical Plan Project grantid: JCYJ20170412170706047 – fundername: Guangdong Province Technical Plan Project grantid: 2017B010119001 – fundername: Shenzhen Technical Plan Project grantid: JCYJ20180508152210821 – fundername: Shenzhen Technical Plan Project grantid: JCYJ20180508152135822 – fundername: Guangdong special support program grantid: 2015TQ01N401 – fundername: Shenzhen graphene manufacturing innovation center grantid: 201901161513 – fundername: National Natural Science Foundation of China grantid: 51672156 – fundername: Shenzhen Technical Plan Project grantid: JCYJ20170817161221958 – fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program grantid: 2017BT01N111 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- NPM 31~ AAMNL AAYOK AAYXX ACBWZ ACRPL ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4129-eb4a49639021d15db1a696812b4e4fc31b854b8f68c5d2ddde64b8331a32c1743 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Wed Dec 04 05:56:36 EST 2024 Thu Oct 10 18:50:25 EDT 2024 Fri Dec 06 01:58:15 EST 2024 Sat Sep 28 08:27:13 EDT 2024 Sat Aug 24 01:06:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | hierarchical structural design solid-state electrolytes Li dendrite suppression Li metal protection |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4129-eb4a49639021d15db1a696812b4e4fc31b854b8f68c5d2ddde64b8331a32c1743 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0001-5787-5498 |
PMID | 32459890 |
PQID | 2419283040 |
PQPubID | 1046358 |
PageCount | 40 |
ParticipantIDs | proquest_miscellaneous_2407580464 proquest_journals_2419283040 crossref_primary_10_1002_smll_202000699 pubmed_primary_32459890 wiley_primary_10_1002_smll_202000699_SMLL202000699 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2019; 11 2000; 89 2019; 10 2019; 13 2019; 17 2019; 16 2019; 19 2019; 18 1996; 143 2020; 10 2018; 45 2012; 11 2001; 148 2018; 49 2019; 166 2014; 136 1978 2018; 46 2018; 6 1990; 42 2018; 9 2018; 8 2014; 249 2018; 3 2018; 2 2018; 5 2012; 134 2018; 4 2016; 318 2018; 1 2019; 22 1994; 141 2002; 148 2014; 14 2019; 29 2002; 149 2018; 30 2017; 164 2014; 246 1979; 126 2018; 28 2019; 9 2019; 4 2019; 3 2019; 6 2019; 5 2019; 31 2004; 49 2019; 1 2018; 101 2008; 129 2014; 271 2008; 53 2016; 16 2017; 139 1999 2016; 11 2016; 4 2018; 18 2016; 6 2016; 7 2016; 1 2016; 3 2018; 118 2001; 97–98 2004; 151 2017; 56 2015; 119 2016; 28 2018; 11 2018; 10 2018; 15 2018; 14 2018; 13 2016; 22 2017; 5 2017; 42 2017; 7 2017; 8 2017; 41 2017; 2 2017; 3 2017; 4 1999; 81–82 2019; 56 1969; 73 2019; 58 2011; 15 2018; 408 2017; 354 2013; 160 2017; 114 2017; 9 2017; 117 2014; 5 2017; 37 2017; 36 2017; 39 2017; 32 2015; 296 2016; 113 2016; 116 2014; 9 2017; 123 2008; 155 2014; 7 2014; 50 2015; 284 2015; 15 2015; 6 2015; 5 2018; 140 2015; 3 2017; 27 2015; 98 2017; 23 2018; 389 2017; 29 2015; 9 2006; 156 2018; 394 2015; 25 2018; 392 2017; 17 2017; 16 2017; 11 2017; 10 2017; 12 1999; 77 1992; 339 2018; 51 2020; 67 2016; 138 2017; 342 2012; 7 2018; 54 2018; 57 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 Yang C. (e_1_2_7_76_1) 2017; 29 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 Chi S. S. (e_1_2_7_97_1) 2017; 27 e_1_2_7_241_1 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_238_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_231_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_53_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 Yang C. (e_1_2_7_30_1) 2017; 29 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 Zhao H. (e_1_2_7_47_1) 2018; 8 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_186_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_138_1 |
References_xml | – volume: 5 start-page: 761 year: 2018 publication-title: ChemElectroChem – volume: 42 start-page: 7355 year: 1990 publication-title: Phys. Rev. A – volume: 18 start-page: 6113 year: 2018 publication-title: Nano Lett. – volume: 10 start-page: 900 year: 2019 publication-title: Nat. Commun. – volume: 15 start-page: 135 year: 2015 publication-title: Nano Energy – volume: 394 start-page: 74 year: 2018 publication-title: J. Power Sources – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 13 start-page: 715 year: 2018 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 2967 year: 2017 publication-title: Nano Lett. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 57 start-page: 1505 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 6016 year: 2014 publication-title: Nano Lett. – volume: 6 start-page: 9899 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 1 start-page: 881 year: 2019 publication-title: Matter – volume: 29 start-page: 8 year: 2017 publication-title: Adv. Mater. – volume: 15 start-page: 148 year: 2018 publication-title: Energy Storage Mater. – volume: 56 start-page: 753 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 114 start-page: 3584 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 6932 year: 2016 publication-title: Adv. Mater. – volume: 23 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 22 start-page: 278 year: 2016 publication-title: Nano Energy – volume: 14 start-page: 49 year: 2018 publication-title: Energy Storage Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 73 start-page: 4026 year: 1969 publication-title: J. Phys. Chem. – volume: 118 year: 2018 publication-title: Chem. Rev. – volume: 89 start-page: 176 year: 2000 publication-title: J. Power Sources – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 16 start-page: 572 year: 2017 publication-title: Nat. Mater. – volume: 58 start-page: 1094 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2019 publication-title: Sci. Adv. – year: 1978 – volume: 28 start-page: 2155 year: 2016 publication-title: Adv. Mater. – volume: 18 start-page: 384 year: 2019 publication-title: Nat. Mater. – volume: 18 start-page: 7414 year: 2018 publication-title: Nano Lett. – volume: 27 start-page: 10 year: 2017 publication-title: Adv. Funct. Mater. – volume: 36 start-page: 339 year: 2017 publication-title: Rare Met. – volume: 3 start-page: 227 year: 2018 publication-title: Nat. Energy – volume: 19 start-page: 24 year: 2019 publication-title: Energy Storage Mater. – volume: 4 start-page: 1481 year: 2013 publication-title: Nat. Commun. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 3169 year: 2018 publication-title: ChemElectroChem – volume: 51 start-page: 80 year: 2018 publication-title: Acc. Chem. Res. – volume: 155 start-page: A481 year: 2008 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 185 year: 2018 publication-title: Energy Environ. Sci. – volume: 1 start-page: 20 year: 2018 publication-title: Energy Environ. Mater. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 15 start-page: 1977 year: 2011 publication-title: J. Solid State Electrochem. – volume: 101 start-page: 1087 year: 2018 publication-title: J. Am. Ceram. Soc. – volume: 28 start-page: 2888 year: 2016 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 10 start-page: 4675 year: 2018 publication-title: Nanoscale – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 28 start-page: 9620 year: 2016 publication-title: Adv. Mater. – volume: 32 start-page: 241 year: 2017 publication-title: Nano Energy – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 29 start-page: 28 year: 2017 publication-title: Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 249 start-page: 392 year: 2014 publication-title: J. Power Sources – volume: 28 start-page: 9094 year: 2016 publication-title: Adv. Mater. – volume: 126 start-page: 2047 year: 1979 publication-title: J. Electrochem. Soc. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 139 start-page: 5916 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1321 year: 2017 publication-title: ACS Energy Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 77 start-page: 183 year: 1999 publication-title: J. Power Sources – volume: 17 start-page: 3182 year: 2017 publication-title: Nano Lett. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 9 start-page: 5884 year: 2015 publication-title: ACS Nano – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 834 year: 2015 publication-title: Adv. Funct. Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 98 start-page: 3603 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 56 start-page: 595 year: 2019 publication-title: Nano Energy – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 339 start-page: 451 year: 1992 publication-title: J. Electroanal. Chem. – volume: 143 start-page: 2187 year: 1996 publication-title: J. Electrochem. Soc. – volume: 53 start-page: 2501 year: 2008 publication-title: Electrochim. Acta – volume: 37 start-page: 177 year: 2017 publication-title: Nano Energy – volume: 342 start-page: 175 year: 2017 publication-title: J. Power Sources – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 3 start-page: 487 year: 2016 publication-title: Mater. Horiz. – volume: 5 start-page: 2829 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 882 year: 2019 publication-title: Nat. Energy – volume: 42 start-page: 262 year: 2017 publication-title: Nano Energy – volume: 284 start-page: 103 year: 2015 publication-title: J. Power Sources – volume: 15 start-page: 37 year: 2018 publication-title: Energy Storage Mater. – volume: 81–82 start-page: 925 year: 1999 publication-title: J. Power Sources – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 17 start-page: 309 year: 2019 publication-title: Energy Storage Mater. – volume: 123 start-page: 744 year: 2017 publication-title: Carbon – volume: 67 year: 2020 publication-title: Nano Energy – volume: 392 start-page: 79 year: 2018 publication-title: J. Power Sources – volume: 116 start-page: 140 year: 2016 publication-title: Chem. Rev. – volume: 14 year: 2018 publication-title: Small – volume: 408 start-page: 136 year: 2018 publication-title: J. Power Sources – volume: 15 start-page: 116 year: 2018 publication-title: Energy Storage Mater. – volume: 10 start-page: 1568 year: 2017 publication-title: Energy Environ. Sci. – volume: 10 start-page: 7069 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 113 start-page: 2862 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 139 start-page: 4815 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 148 start-page: 405 year: 2002 publication-title: Solid State Ionics – volume: 129 year: 2008 publication-title: Int. J. Cardiol. – volume: 138 start-page: 9385 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1385 year: 2017 publication-title: ACS Energy Lett. – volume: 57 start-page: 2096 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 41 start-page: 210 year: 2017 publication-title: Nano Energy – volume: 10 start-page: 1356 year: 2017 publication-title: Nano Res. – volume: 9 start-page: 464 year: 2018 publication-title: Nat. Commun. – volume: 156 start-page: 745 year: 2006 publication-title: Synth. Met. – volume: 54 start-page: 6648 year: 2018 publication-title: Chem. Commun. – volume: 39 start-page: 554 year: 2017 publication-title: Nano Energy – volume: 16 start-page: 419 year: 2019 publication-title: Energy Storage Mater. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 10 year: 2012 publication-title: Nano Today – volume: 271 start-page: 291 year: 2014 publication-title: J. Power Sources – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 4 start-page: 365 year: 2019 publication-title: Nat. Energy – volume: 46 start-page: 176 year: 2018 publication-title: Nano Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 19 start-page: 1326 year: 2019 publication-title: Nano Lett. – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 6 start-page: 8058 year: 2015 publication-title: Nat. Commun. – volume: 148 start-page: D78 year: 2001 publication-title: J. Electrochem. Soc. – volume: 17 start-page: 565 year: 2017 publication-title: Nano Lett. – volume: 16 start-page: 4431 year: 2016 publication-title: Nano Lett. – volume: 318 start-page: 170 year: 2016 publication-title: J. Power Sources – volume: 8 start-page: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 151 year: 2004 publication-title: J. Electrochem. Soc. – volume: 149 year: 2002 publication-title: J. Electrochem. Soc. – volume: 141 start-page: L159 year: 1994 publication-title: J. Electrochem. Soc. – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 3729 year: 2018 publication-title: Nat. Commun. – volume: 19 start-page: 2343 year: 2019 publication-title: Nano Lett. – volume: 4 start-page: 996 year: 2018 publication-title: ACS Cent. Sci. – volume: 3 start-page: 1212 year: 2018 publication-title: ACS Energy Lett. – volume: 10 start-page: 6125 year: 2018 publication-title: Nanoscale – volume: 140 start-page: 82 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1662 year: 2019 publication-title: Joule – volume: 2 start-page: 16 year: 2017 publication-title: Nat. Rev. Mater. – volume: 354 start-page: 68 year: 2017 publication-title: J. Power Sources – volume: 389 start-page: 120 year: 2018 publication-title: J. Power Sources – volume: 97–98 start-page: 804 year: 2001 publication-title: J. Power Sources – volume: 2 year: 2018 publication-title: Small Methods – volume: 9 start-page: 141 year: 2017 publication-title: Energy Storage Mater. – volume: 45 start-page: 413 year: 2018 publication-title: Nano Energy – volume: 49 start-page: 179 year: 2018 publication-title: Nano Energy – volume: 49 start-page: 565 year: 2004 publication-title: Electrochim. Acta – volume: 11 year: 2017 publication-title: ACS Nano – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 18 start-page: 2067 year: 2018 publication-title: Nano Lett. – volume: 4 start-page: 3253 year: 2016 publication-title: J. Mater. Chem. A – volume: 246 start-page: 840 year: 2014 publication-title: J. Power Sources – volume: 18 start-page: 382 year: 2019 publication-title: Energy Storage Mater. – volume: 119 start-page: 5412 year: 2015 publication-title: J. Phys. Chem. C – volume: 16 start-page: 259 year: 2019 publication-title: Energy Storage Mater. – volume: 51 start-page: 7666 year: 2018 publication-title: Macromolecules – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3710 year: 2014 publication-title: Nat. Commun. – volume: 19 start-page: 1832 year: 2019 publication-title: Nano Lett. – volume: 39 start-page: 654 year: 2017 publication-title: Nano Energy – volume: 18 start-page: 3926 year: 2018 publication-title: Nano Lett. – volume: 11 start-page: 64 year: 2019 publication-title: Nat. Chem. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 13 year: 2019 publication-title: ACS Nano – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 start-page: 7436 year: 2015 publication-title: Nat. Commun. – volume: 45 start-page: 463 year: 2018 publication-title: Nano Energy – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 45 start-page: 203 year: 2018 publication-title: Nano Energy – volume: 14 start-page: 143 year: 2018 publication-title: Energy Storage Mater. – volume: 296 start-page: 10 year: 2015 publication-title: J. Power Sources – volume: 22 start-page: 50 year: 2019 publication-title: Mater. Today – volume: 3 start-page: 135 year: 2017 publication-title: ACS Cent. Sci. – volume: 54 start-page: 5330 year: 2018 publication-title: Chem. Commun. – volume: 136 start-page: 5039 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 160 start-page: A662 year: 2013 publication-title: J. Electrochem. Soc. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – year: 1999 – ident: e_1_2_7_205_1 doi: 10.1038/ncomms15893 – ident: e_1_2_7_186_1 doi: 10.1021/acs.macromol.8b01188 – ident: e_1_2_7_92_1 doi: 10.1038/ncomms4710 – ident: e_1_2_7_95_1 doi: 10.1002/adma.201703891 – ident: e_1_2_7_127_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_7_248_1 doi: 10.1039/C7EE02723K – ident: e_1_2_7_68_1 doi: 10.1073/pnas.1618871114 – ident: e_1_2_7_124_1 doi: 10.1149/1.2059378 – ident: e_1_2_7_111_1 doi: 10.1002/aenm.201703404 – ident: e_1_2_7_72_1 doi: 10.1007/s12274-017-1461-2 – ident: e_1_2_7_150_1 doi: 10.1038/ncomms2513 – ident: e_1_2_7_242_1 doi: 10.1021/acsami.8b00034 – volume: 27 start-page: 10 year: 2017 ident: e_1_2_7_97_1 publication-title: Adv. Funct. Mater. contributor: fullname: Chi S. S. – ident: e_1_2_7_162_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_7_94_1 doi: 10.1002/adfm.201804133 – ident: e_1_2_7_101_1 doi: 10.1002/aenm.201803186 – ident: e_1_2_7_78_1 doi: 10.1016/j.nanoen.2017.10.065 – ident: e_1_2_7_221_1 doi: 10.1002/adma.201606042 – ident: e_1_2_7_49_1 doi: 10.1002/adma.201601409 – ident: e_1_2_7_234_1 doi: 10.1016/j.nanoen.2017.07.023 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201801745 – ident: e_1_2_7_208_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_7_154_1 doi: 10.1126/sciadv.aau9245 – ident: e_1_2_7_247_1 doi: 10.1002/adma.201707132 – ident: e_1_2_7_65_1 doi: 10.1016/j.nanoen.2017.12.055 – ident: e_1_2_7_237_1 doi: 10.1002/aenm.201901604 – ident: e_1_2_7_70_1 doi: 10.1039/C8TA06828C – ident: e_1_2_7_21_1 doi: 10.1039/C8CC02280A – ident: e_1_2_7_212_1 doi: 10.1016/j.jpowsour.2018.04.019 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201702242 – ident: e_1_2_7_156_1 doi: 10.1002/anie.201710806 – ident: e_1_2_7_215_1 doi: 10.1039/C5TA06379E – ident: e_1_2_7_198_1 doi: 10.1021/acs.nanolett.8b01421 – ident: e_1_2_7_55_1 doi: 10.1002/admi.201600140 – ident: e_1_2_7_67_1 doi: 10.1039/C8CC02672F – ident: e_1_2_7_195_1 doi: 10.1002/anie.201608924 – ident: e_1_2_7_230_1 doi: 10.1039/C8CC07476C – ident: e_1_2_7_166_1 doi: 10.1021/nl503125u – ident: e_1_2_7_217_1 doi: 10.1039/C4CC05372A – ident: e_1_2_7_145_1 doi: 10.1016/j.nanoen.2019.104309 – ident: e_1_2_7_169_1 doi: 10.1021/jacs.6b13314 – ident: e_1_2_7_229_1 doi: 10.1002/adma.201604460 – ident: e_1_2_7_236_1 doi: 10.1149/1.2908859 – ident: e_1_2_7_14_1 doi: 10.1007/s12598-017-0891-z – ident: e_1_2_7_175_1 doi: 10.1038/nenergy.2017.83 – ident: e_1_2_7_81_1 doi: 10.1002/adma.201700389 – ident: e_1_2_7_103_1 doi: 10.1002/adfm.201803023 – ident: e_1_2_7_191_1 doi: 10.1073/pnas.1708489114 – ident: e_1_2_7_134_1 doi: 10.1016/j.jpowsour.2014.08.011 – ident: e_1_2_7_235_1 doi: 10.1007/s10008-010-1220-8 – ident: e_1_2_7_159_1 doi: 10.1016/j.ijcard.2007.06.083 – ident: e_1_2_7_107_1 doi: 10.1002/adma.201800884 – ident: e_1_2_7_187_1 doi: 10.1002/aenm.201500353 – ident: e_1_2_7_225_1 doi: 10.1021/acsenergylett.8b00453 – ident: e_1_2_7_63_1 doi: 10.1021/acsnano.7b05874 – ident: e_1_2_7_113_1 doi: 10.1039/C8TA04343D – ident: e_1_2_7_147_1 doi: 10.1149/1.1502684 – ident: e_1_2_7_64_1 doi: 10.1021/jacs.7b01763 – ident: e_1_2_7_238_1 doi: 10.1021/jacs.6b05341 – ident: e_1_2_7_41_1 doi: 10.1002/celc.201701250 – ident: e_1_2_7_62_1 doi: 10.1016/j.nanoen.2018.01.019 – ident: e_1_2_7_125_1 doi: 10.1021/acsami.8b04592 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201701169 – ident: e_1_2_7_121_1 doi: 10.1038/ncomms8436 – ident: e_1_2_7_213_1 doi: 10.1039/C6TA10142A – ident: e_1_2_7_57_1 doi: 10.1016/j.jpowsour.2018.09.061 – ident: e_1_2_7_200_1 doi: 10.1016/j.nanoen.2017.07.038 – ident: e_1_2_7_66_1 doi: 10.1016/j.ensm.2018.03.018 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201807243 – ident: e_1_2_7_168_1 doi: 10.1021/jacs.7b06437 – ident: e_1_2_7_196_1 doi: 10.1021/acsami.7b00478 – ident: e_1_2_7_226_1 doi: 10.1021/acs.nanolett.6b04695 – ident: e_1_2_7_28_1 doi: 10.1021/acs.accounts.7b00484 – ident: e_1_2_7_83_1 doi: 10.1073/pnas.1518188113 – ident: e_1_2_7_183_1 doi: 10.1039/C7EE01004D – ident: e_1_2_7_141_1 doi: 10.1002/aenm.201803372 – ident: e_1_2_7_112_1 doi: 10.1039/C8NR01995A – ident: e_1_2_7_85_1 doi: 10.1002/adma.201807313 – ident: e_1_2_7_109_1 doi: 10.1021/acsami.8b03572 – ident: e_1_2_7_45_1 doi: 10.1039/C8TA02810A – ident: e_1_2_7_7_1 doi: 10.1016/j.ensm.2018.03.004 – ident: e_1_2_7_102_1 doi: 10.1039/C8TA04911D – ident: e_1_2_7_117_1 doi: 10.1002/adma.201506124 – ident: e_1_2_7_36_1 doi: 10.1126/sciadv.aau7728 – ident: e_1_2_7_31_1 doi: 10.1016/j.carbon.2017.08.027 – ident: e_1_2_7_143_1 doi: 10.1002/aenm.201903568 – ident: e_1_2_7_120_1 doi: 10.1016/j.jpowsour.2013.08.041 – ident: e_1_2_7_220_1 doi: 10.1126/sciadv.1601659 – ident: e_1_2_7_23_1 doi: 10.1016/S0378-7753(98)00242-0 – ident: e_1_2_7_139_1 doi: 10.1038/s41565-018-0183-2 – ident: e_1_2_7_122_1 doi: 10.1002/aenm.201501933 – ident: e_1_2_7_60_1 doi: 10.1016/j.ensm.2018.04.032 – ident: e_1_2_7_222_1 doi: 10.1038/nmat4821 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201703729 – ident: e_1_2_7_173_1 doi: 10.1016/j.jpowsour.2015.03.004 – ident: e_1_2_7_130_1 doi: 10.1016/0022-0728(92)80467-I – ident: e_1_2_7_86_1 doi: 10.1002/aenm.201800564 – ident: e_1_2_7_89_1 doi: 10.1002/anie.201702099 – ident: e_1_2_7_53_1 doi: 10.1016/j.nanoen.2016.12.030 – ident: e_1_2_7_73_1 doi: 10.1016/j.nanoen.2017.05.015 – ident: e_1_2_7_77_1 doi: 10.1039/C7TA05997C – ident: e_1_2_7_207_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_7_219_1 doi: 10.1021/jacs.6b06777 – ident: e_1_2_7_39_1 doi: 10.1002/aenm.201800914 – ident: e_1_2_7_244_1 doi: 10.1016/j.nanoen.2016.02.008 – ident: e_1_2_7_59_1 doi: 10.1126/sciadv.1701301 – ident: e_1_2_7_27_1 doi: 10.1201/9780824741389.ch6 – ident: e_1_2_7_91_1 doi: 10.1002/adma.201804165 – ident: e_1_2_7_133_1 doi: 10.1016/j.nanoen.2015.04.009 – ident: e_1_2_7_110_1 doi: 10.1126/sciadv.aar4410 – ident: e_1_2_7_119_1 doi: 10.1002/adfm.201805301 – ident: e_1_2_7_52_1 doi: 10.1002/adma.201601409 – ident: e_1_2_7_9_1 doi: 10.1002/anie.201811955 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_93_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_7_104_1 doi: 10.1021/acs.nanolett.8b00183 – ident: e_1_2_7_231_1 doi: 10.1002/aenm.201502214 – ident: e_1_2_7_37_1 doi: 10.1016/j.ensm.2018.03.024 – ident: e_1_2_7_164_1 doi: 10.1038/s41467-018-06126-z – ident: e_1_2_7_126_1 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_7_82_1 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_7_96_1 doi: 10.1002/adma.201504117 – ident: e_1_2_7_128_1 doi: 10.1016/j.electacta.2003.09.010 – ident: e_1_2_7_138_1 doi: 10.1002/aenm.201803774 – ident: e_1_2_7_71_1 doi: 10.1002/adma.201602704 – ident: e_1_2_7_189_1 doi: 10.1021/acsami.7b18123 – ident: e_1_2_7_188_1 doi: 10.1038/s41560-019-0349-7 – ident: e_1_2_7_58_1 doi: 10.1016/j.nanoen.2018.01.019 – ident: e_1_2_7_118_1 doi: 10.1002/adfm.201705838 – ident: e_1_2_7_203_1 doi: 10.1002/adfm.201707570 – ident: e_1_2_7_24_1 doi: 10.1103/PhysRevA.42.7355 – ident: e_1_2_7_142_1 doi: 10.1016/j.ensm.2019.01.009 – ident: e_1_2_7_144_1 doi: 10.1016/j.joule.2019.05.006 – ident: e_1_2_7_51_1 doi: 10.1002/adfm.201606422 – ident: e_1_2_7_201_1 doi: 10.1039/C6MH00218H – ident: e_1_2_7_240_1 doi: 10.1016/j.ensm.2018.03.015 – ident: e_1_2_7_202_1 doi: 10.1016/j.jpowsour.2018.05.003 – ident: e_1_2_7_135_1 doi: 10.1016/j.jpowsour.2016.04.017 – ident: e_1_2_7_114_1 doi: 10.1002/aenm.201703360 – ident: e_1_2_7_140_1 doi: 10.1149/2.0731908jes – ident: e_1_2_7_223_1 doi: 10.1111/jace.15294 – ident: e_1_2_7_177_1 doi: 10.1016/j.synthmet.2006.04.006 – ident: e_1_2_7_35_1 doi: 10.1149/1.2128859 – ident: e_1_2_7_42_1 doi: 10.1016/j.nanoen.2018.04.040 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201603454 – ident: e_1_2_7_61_1 doi: 10.1038/ncomms10992 – ident: e_1_2_7_148_1 doi: 10.1002/advs.201500213 – ident: e_1_2_7_167_1 doi: 10.1016/j.ensm.2017.06.016 – ident: e_1_2_7_176_1 doi: 10.1126/sciadv.aat3446 – ident: e_1_2_7_192_1 doi: 10.1021/jacs.7b10864 – ident: e_1_2_7_149_1 doi: 10.1038/ncomms7362 – ident: e_1_2_7_180_1 doi: 10.1016/j.jpowsour.2017.04.026 – ident: e_1_2_7_233_1 doi: 10.1016/j.nanoen.2018.01.028 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201700007 – volume: 8 start-page: 8 year: 2018 ident: e_1_2_7_47_1 publication-title: Adv. Energy Mater. contributor: fullname: Zhao H. – ident: e_1_2_7_98_1 doi: 10.1002/adma.201802156 – ident: e_1_2_7_160_1 doi: 10.1016/S0378-7753(00)00427-4 – ident: e_1_2_7_136_1 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_7_79_1 doi: 10.1016/j.nantod.2011.11.002 – ident: e_1_2_7_165_1 doi: 10.1021/acsnano.5b02166 – ident: e_1_2_7_243_1 doi: 10.1016/j.jpowsour.2013.10.112 – ident: e_1_2_7_241_1 doi: 10.1016/j.nanoen.2017.12.037 – ident: e_1_2_7_40_1 doi: 10.1021/acs.nanolett.6b01581 – ident: e_1_2_7_131_1 doi: 10.1021/j100845a082 – ident: e_1_2_7_228_1 doi: 10.1021/acs.nanolett.8b05019 – ident: e_1_2_7_20_1 doi: 10.1016/j.matt.2019.06.002 – ident: e_1_2_7_115_1 doi: 10.1039/C7NR09058G – ident: e_1_2_7_17_1 doi: 10.1002/eem2.12003 – ident: e_1_2_7_152_1 doi: 10.1021/ja412807w – ident: e_1_2_7_155_1 doi: 10.1038/s41563-019-0305-8 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201804815 – ident: e_1_2_7_158_1 doi: 10.1002/adma.201605531 – ident: e_1_2_7_50_1 doi: 10.1038/ncomms9058 – ident: e_1_2_7_108_1 doi: 10.1021/acs.nanolett.8b04906 – ident: e_1_2_7_74_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_29_1 doi: 10.1021/acsenergylett.7b00175 – ident: e_1_2_7_174_1 doi: 10.1016/j.ensm.2018.10.015 – ident: e_1_2_7_245_1 doi: 10.1002/aenm.201703505 – ident: e_1_2_7_116_1 doi: 10.1016/j.ensm.2018.06.024 – ident: e_1_2_7_197_1 doi: 10.1021/jacs.6b05341 – ident: e_1_2_7_227_1 doi: 10.1016/S0378-7753(98)00193-1 – ident: e_1_2_7_163_1 doi: 10.1016/j.jpowsour.2016.11.097 – ident: e_1_2_7_218_1 doi: 10.1021/acs.nanolett.8b03902 – ident: e_1_2_7_224_1 doi: 10.1002/aenm.201702374 – ident: e_1_2_7_32_1 doi: 10.1002/advs.201600445 – ident: e_1_2_7_56_1 doi: 10.1002/celc.201800694 – ident: e_1_2_7_193_1 doi: 10.1002/aenm.201701437 – ident: e_1_2_7_2_1 doi: 10.1039/C3EE40795K – ident: e_1_2_7_105_1 doi: 10.1021/acsami.8b02619 – ident: e_1_2_7_151_1 doi: 10.1016/j.jpowsour.2015.07.033 – ident: e_1_2_7_161_1 doi: 10.1021/acsami.8b08585 – ident: e_1_2_7_100_1 doi: 10.1002/adma.201706216 – ident: e_1_2_7_239_1 doi: 10.1021/acs.nanolett.7b00221 – ident: e_1_2_7_48_1 doi: 10.1021/acs.nanolett.8b04919 – ident: e_1_2_7_209_1 doi: 10.1016/j.nanoen.2017.09.037 – volume: 29 start-page: 8 year: 2017 ident: e_1_2_7_76_1 publication-title: Adv. Mater. contributor: fullname: Yang C. – ident: e_1_2_7_172_1 doi: 10.1002/aenm.201701744 – ident: e_1_2_7_18_1 doi: 10.1016/j.nanoen.2018.12.001 – ident: e_1_2_7_84_1 doi: 10.1002/aenm.201800635 – ident: e_1_2_7_19_1 doi: 10.1149/1.1368105 – ident: e_1_2_7_132_1 doi: 10.1149/1.1836979 – ident: e_1_2_7_129_1 doi: 10.1149/1.1798411 – ident: e_1_2_7_171_1 doi: 10.1021/acscentsci.6b00389 – ident: e_1_2_7_46_1 doi: 10.1038/s41467-018-02888-8 – ident: e_1_2_7_179_1 doi: 10.1016/j.mattod.2018.04.004 – ident: e_1_2_7_44_1 doi: 10.1021/acsami.8b04881 – ident: e_1_2_7_5_1 doi: 10.2172/6885395 – ident: e_1_2_7_157_1 doi: 10.1002/adma.201806470 – ident: e_1_2_7_182_1 doi: 10.1002/aenm.201703644 – ident: e_1_2_7_216_1 doi: 10.1021/jp510077z – ident: e_1_2_7_69_1 doi: 10.1002/adma.201700783 – ident: e_1_2_7_88_1 doi: 10.1002/aenm.201703152 – ident: e_1_2_7_185_1 doi: 10.1039/C8TA08095J – ident: e_1_2_7_137_1 doi: 10.1149/2.0611701jes – ident: e_1_2_7_204_1 doi: 10.1111/jace.13844 – ident: e_1_2_7_99_1 doi: 10.1039/C7NR08727F – ident: e_1_2_7_211_1 doi: 10.1016/j.jpowsour.2018.04.098 – ident: e_1_2_7_199_1 doi: 10.1016/j.ensm.2018.07.004 – ident: e_1_2_7_106_1 doi: 10.1002/smtd.201800035 – ident: e_1_2_7_54_1 doi: 10.1002/adfm.201402953 – ident: e_1_2_7_246_1 doi: 10.1021/acsnano.9b06653 – ident: e_1_2_7_146_1 doi: 10.1021/acscentsci.8b00229 – volume: 29 start-page: 28 year: 2017 ident: e_1_2_7_30_1 publication-title: Adv. Mater. contributor: fullname: Yang C. – ident: e_1_2_7_13_1 doi: 10.1038/nmat3191 – ident: e_1_2_7_25_1 doi: 10.1016/S0378-7753(01)00734-0 – ident: e_1_2_7_153_1 doi: 10.1002/admi.201701097 – ident: e_1_2_7_6_1 doi: 10.1016/S0167-2738(02)00080-2 – ident: e_1_2_7_210_1 doi: 10.1039/C5TA08574H – ident: e_1_2_7_170_1 doi: 10.1002/adma.201603755 – ident: e_1_2_7_214_1 doi: 10.1021/ja305709z – ident: e_1_2_7_26_1 doi: 10.1149/1.057304jes – ident: e_1_2_7_184_1 doi: 10.1021/acs.nanolett.8b01295 – ident: e_1_2_7_206_1 doi: 10.1002/chem.201703464 – ident: e_1_2_7_194_1 doi: 10.1021/acs.nanolett.7b00715 – ident: e_1_2_7_75_1 doi: 10.1126/sciadv.aat5168 – ident: e_1_2_7_87_1 doi: 10.1002/smll.201803310 – ident: e_1_2_7_80_1 doi: 10.1002/adma.201807131 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.8b00422 – ident: e_1_2_7_12_1 doi: 10.1038/s41557-018-0166-9 – ident: e_1_2_7_33_1 doi: 10.1038/s41560-018-0104-5 – ident: e_1_2_7_181_1 doi: 10.1016/j.ensm.2018.02.015 – ident: e_1_2_7_190_1 doi: 10.1002/anie.201710841 – ident: e_1_2_7_90_1 doi: 10.1002/adma.201805334 – ident: e_1_2_7_178_1 doi: 10.1021/acsami.7b03887 – ident: e_1_2_7_232_1 doi: 10.1002/advs.201802353 – ident: e_1_2_7_3_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_34_1 doi: 10.1038/s41467-019-08767-0 – ident: e_1_2_7_123_1 doi: 10.1016/j.electacta.2007.10.019 |
SSID | ssj0031247 |
Score | 2.6067097 |
SecondaryResourceType | review_article |
Snippet | Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g−1).... Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (-3.04 V) and high specific capacity (3860 mAh g ).... Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical potential (−3.04 V) and high specific capacity (3860 mAh g −1... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2000699 |
SubjectTerms | Anodes Commercialization Current distribution Dendritic structure Electrochemical potential Electrolytes Flux density hierarchical structural design Li dendrite suppression Li metal protection Lithium Nanotechnology Nucleation Principles Safety Separators Solid electrolytes solid‐state electrolytes Structural hierarchy |
Title | Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202000699 https://www.ncbi.nlm.nih.gov/pubmed/32459890 https://www.proquest.com/docview/2419283040 https://search.proquest.com/docview/2407580464 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-yJ33w-2M6JYLgU7e1TdP2UZxjyCaiDvZWkibD4dbKuoH613uXrnXTB0HfGtpr0-Qu-SV39wshF7Di8phuxhYbxsxCDbGkI2zL56HSPpfcNxlyvTve6bPbgTdYyuLP-SHKDTe0DDNeo4ELmTW-SEOzyRhdBybVJMQMPtv1Maav9VDyR7kweZnTVWDOspB4q2BtbDqNVfHVWekH1FxFrmbqaW8RUVQ6jzh5qc9nsh5_fONz_M9fbZPNBS6lV7ki7ZA1neySjSW2wj2S3WMsF4yMNE1odzR7Hs0ntKUTNQXYSvF40DymNqEF5a3OKKavUACZ1Gw9jtIpnaX05m1xLd9pZ4Qp0OZEljEKzo1PA96LkSXZPum3b56uO9bizAYrZgAdLC2ZYGDUIWAHZXtK2gLpd2xHMg3q4Noy8JgMhjyIPeUoGFw5FF3XFq4T4-rogFSSNNFHhPJhqBENNe2AMz9WyMTGuGZCBkoJLarksuiz6DWn5ohyEmYnwmaMymasklrRpdHCRLPIQf934MIgViXn5W0wLvSYiESnc3wGEFWA3t8qOcxVofwUIFEvDEKQdkyH_lKH6LHX7Zal478InZB1vM6DhWukAl2iTwESzeSZUftPI0UD1A |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ74OKgH34_1WRMTT7gLlC4cjY-syhrjI_FGKO3GjSsY2U3UX-9MWdDVg4neKFAoTKfztTPzFWAPZ1we143E4p2EW9RDLOnEttUUgdJNIUXTZMi1L0Xrjp_fe2U0IeXCFPwQ1YIbaYYZr0nBaUG6_skamj_1yHdgck2CYBwmUedtiuo6vq4YpFw0X2Z_FbRaFlFvlbyNDac-Wn_ULv0Am6PY1Rif0zmQZbOLmJPHg0FfHiTv3xgd__Vd8zA7hKbssOhLCzCm00WY-UJYuAT5FYVz4eDIspSF3f5Dd_DEjnWqXhC5MtohtAirTVnJeqtzRhksDHEmM6uP3eyF9TN28jo8lm-s1aUsaLMpS48qDoxbA59LwSX5Mtydntwetazhtg1WwhE9WFrymKNeBwgflO0pacfEwGM7kmvsEa4tfY9LvyP8xFOOwvFVYNF17dh1EpogrcBEmqV6DZjoBJoAUcP2BW8misjYuNA8lr5SsY5rsF8KLXou2DmigofZieg3RtVvrMFmKdNoqKV55JAL3HdxHKvBbnUZ9YucJnGqswHdg6DKJwdwDVaLvlC9CsGoF_gB1naMRH9pQ3TTDsOqtP6XSjsw1bpth1F4dnmxAdN0vogd3oQJFI_eQoTUl9tGBz4AbmEH9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NJiF42MbX6GBgJCSeQhvHcZNHtLbqoCDEh8RbZMeuqAYJIq00-Ot35zRZyx6Qxluc5BInvrN_9t39DHCAM65Q2FbqiWEqPNIQT3Ple20ZG9uWWrZdhtzZuezfiJPb8HYmi7_kh6gX3MgyXH9NBv5ohs2_pKHFwz25DlyqSRwvwEcheUzs-Z3LmkAqwNHLba-Cg5ZHzFsVbWOLN-fl54elf7DmPHR1Y0_vM6iq1mXIya-jyVgfpS-vCB3f81lf4NMUmLLjUpNW4YPN1mBlhq5wHYoLCubCrpHlGRuMxnejyQPr2Mw8IW5ltD9oGVSbsYrz1haM8lcYokzm1h5H-RMb56z7e3qsn1l_RDnQbkuWexKcOKcGPpdCS4oNuOl1r3_0vemmDV4qEDt4Vgsl0KpjBA_GD432FfHv-FwLi_oQ-DoKhY6GMkpDww32rhKLQeCrgKc0PdqExSzP7BYwOYwtwaGWH0nRTg1RsQlphdKRMcqqBhxWbZY8ltwcScnCzBP6jUn9GxuwUzVpMrXRIuHkAI8C7MUasF9fRusil4nKbD6hexBSReT-bcDXUhXqVyEUDeMoRmnuGvSNOiRXZ4NBXfr2P0J7sHTR6SWDn-en27BMp8vA4R1YxNax3xEejfWus4A_TvsGpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+on+Lithium+Dendrite+Suppression+Strategies+from+the+Interior+to+Exterior+by+Hierarchical+Structure+Designs&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Shen%2C+Lu&rft.au=Shi%2C+Peiran&rft.au=Hao%2C+Xiaoge&rft.au=Zhao%2C+Qiang&rft.date=2020-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=26&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202000699&rft.externalDBID=10.1002%252Fsmll.202000699&rft.externalDocID=SMLL202000699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |