Rechargeable Lithium Metal Batteries with an In‐Built Solid‐State Polymer Electrolyte and a High Voltage/Loading Ni‐Rich Layered Cathode

Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 12; pp. e1905629 - n/a
Main Authors Zhao, Chen‐Zi, Zhao, Qing, Liu, Xiaotun, Zheng, Jingxu, Stalin, Sanjuna, Zhang, Qiang, Archer, Lynden A.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high‐voltage intercalating cathodes are to be used in such batteries. Here, ether‐based electrolytes are in situ polymerized by a ring‐opening reaction in the presence of aluminum fluoride (AlF3) to create SPEs inside LiNi0.6Co0.2 Mn0.2O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid‐state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g−1 under high areal capacity of 3.0 mAh cm−2. This work offers an important pathway toward solid‐state polymer electrolytes for high‐voltage solid‐state batteries. Solid‐state batteries are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. In this work, ether‐based solid‐state polymer electrolytes are created inside a battery using ring‐opening polymerization in the presence of aluminum fluoride (AlF3). The electrolytes are shown to mitigate cathode corrosion and to enable solid‐state LiNi0.6Co0.2 Mn0.2O2 (NCM)||Li batteries with high capacities.
AbstractList Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high‐voltage intercalating cathodes are to be used in such batteries. Here, ether‐based electrolytes are in situ polymerized by a ring‐opening reaction in the presence of aluminum fluoride (AlF3) to create SPEs inside LiNi0.6Co0.2 Mn0.2O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid‐state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g−1 under high areal capacity of 3.0 mAh cm−2. This work offers an important pathway toward solid‐state polymer electrolytes for high‐voltage solid‐state batteries. Solid‐state batteries are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. In this work, ether‐based solid‐state polymer electrolytes are created inside a battery using ring‐opening polymerization in the presence of aluminum fluoride (AlF3). The electrolytes are shown to mitigate cathode corrosion and to enable solid‐state LiNi0.6Co0.2 Mn0.2O2 (NCM)||Li batteries with high capacities.
Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high‐voltage intercalating cathodes are to be used in such batteries. Here, ether‐based electrolytes are in situ polymerized by a ring‐opening reaction in the presence of aluminum fluoride (AlF3) to create SPEs inside LiNi0.6Co0.2 Mn0.2O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid‐state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g−1 under high areal capacity of 3.0 mAh cm−2. This work offers an important pathway toward solid‐state polymer electrolytes for high‐voltage solid‐state batteries.
Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that simultaneously support high-energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high-voltage intercalating cathodes are to be used in such batteries. Here, ether-based electrolytes are in situ polymerized by a ring-opening reaction in the presence of aluminum fluoride (AlF ) to create SPEs inside LiNi Co Mn O (NCM) || Li batteries that are able to overcome both challenges. AlF plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode-electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid-state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g under high areal capacity of 3.0 mAh cm . This work offers an important pathway toward solid-state polymer electrolytes for high-voltage solid-state batteries.
Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high‐voltage intercalating cathodes are to be used in such batteries. Here, ether‐based electrolytes are in situ polymerized by a ring‐opening reaction in the presence of aluminum fluoride (AlF 3 ) to create SPEs inside LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM) || Li batteries that are able to overcome both challenges. AlF 3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid‐state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g −1 under high areal capacity of 3.0 mAh cm −2 . This work offers an important pathway toward solid‐state polymer electrolytes for high‐voltage solid‐state batteries.
Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that simultaneously support high-energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high-voltage intercalating cathodes are to be used in such batteries. Here, ether-based electrolytes are in situ polymerized by a ring-opening reaction in the presence of aluminum fluoride (AlF3 ) to create SPEs inside LiNi0.6 Co0.2 Mn0.2 O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode-electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid-state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g-1 under high areal capacity of 3.0 mAh cm-2 . This work offers an important pathway toward solid-state polymer electrolytes for high-voltage solid-state batteries.Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that simultaneously support high-energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high-voltage intercalating cathodes are to be used in such batteries. Here, ether-based electrolytes are in situ polymerized by a ring-opening reaction in the presence of aluminum fluoride (AlF3 ) to create SPEs inside LiNi0.6 Co0.2 Mn0.2 O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode-electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid-state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g-1 under high areal capacity of 3.0 mAh cm-2 . This work offers an important pathway toward solid-state polymer electrolytes for high-voltage solid-state batteries.
Author Stalin, Sanjuna
Zhao, Qing
Liu, Xiaotun
Zheng, Jingxu
Zhao, Chen‐Zi
Zhang, Qiang
Archer, Lynden A.
Author_xml – sequence: 1
  givenname: Chen‐Zi
  surname: Zhao
  fullname: Zhao, Chen‐Zi
  organization: Tsinghua University
– sequence: 2
  givenname: Qing
  surname: Zhao
  fullname: Zhao, Qing
  organization: Cornell University
– sequence: 3
  givenname: Xiaotun
  surname: Liu
  fullname: Liu, Xiaotun
  organization: Cornell University
– sequence: 4
  givenname: Jingxu
  surname: Zheng
  fullname: Zheng, Jingxu
  organization: Cornell University
– sequence: 5
  givenname: Sanjuna
  surname: Stalin
  fullname: Stalin, Sanjuna
  organization: Cornell University
– sequence: 6
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Tsinghua University
– sequence: 7
  givenname: Lynden A.
  orcidid: 0000-0001-9032-2772
  surname: Archer
  fullname: Archer, Lynden A.
  email: laa25@cornell.edu
  organization: Cornell University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32053238$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQhy1URLeFK0dkiQuXbP0nycbH7VJopW2LWuBqTZzJxpUTF8dRtTeeAPGMPAmutgWpEkI-WDP6vpE9vwOyN_gBCXnN2ZwzJo6g6WEuGFesKIV6Rma8EDzLmSr2yIwpWWSqzKt9cjCON4wxVbLyBdmXghVSyGpGflyh6SBsEGqHdG1jZ6eenmMER48hRgwWR3qX-hQGejb8-v7zeLIu0mvvbJOq6wgR6Sfvtj0GeuLQxJCK1IOhoUBP7aajX72LsMGjtYfGDht6YZN5ZU1H17DFgA1dQex8gy_J8xbciK8e7kPy5cPJ59Vptr78eLZarjOTc6GyRVu0KGpuyrpmBdR5yZoy_blEqSpZy9y0vCkrA6xghiNn6cgaWlXzRV4KLg_Ju93c2-C_TThG3dvRoHMwoJ9GLWSRL-SCK5XQt0_QGz-FIb0uURVXVZ42n6g3D9RU99jo22B7CFv9uOkE5DvABD-OAVttbFqd9UMMYJ3mTN8Hqu8D1X8CTdr8ifY4-Z-C2gl31uH2P7Revj9f_nV_A-lwtUo
CitedBy_id crossref_primary_10_1039_D3TA06163A
crossref_primary_10_1016_j_ensm_2024_103179
crossref_primary_10_1002_adma_202304686
crossref_primary_10_1039_D3EE02020G
crossref_primary_10_1039_D4TA05468G
crossref_primary_10_1007_s40820_024_01354_z
crossref_primary_10_1016_j_jechem_2022_06_014
crossref_primary_10_3390_app13095608
crossref_primary_10_1016_j_cej_2022_140931
crossref_primary_10_1002_adfm_202301642
crossref_primary_10_1002_adma_202420428
crossref_primary_10_1002_eem2_12699
crossref_primary_10_1016_j_ensm_2023_03_009
crossref_primary_10_1002_adma_202310738
crossref_primary_10_1002_ange_202101537
crossref_primary_10_1002_er_6303
crossref_primary_10_1002_aenm_202301742
crossref_primary_10_1002_eom2_12383
crossref_primary_10_3390_molecules29112454
crossref_primary_10_1016_j_cej_2024_148666
crossref_primary_10_1021_acs_jpcc_2c03215
crossref_primary_10_1021_acs_nanolett_0c04959
crossref_primary_10_1002_smsc_202100055
crossref_primary_10_1016_j_xcrp_2020_100146
crossref_primary_10_1016_j_jpowsour_2021_229919
crossref_primary_10_1016_j_jechem_2020_08_026
crossref_primary_10_1016_j_cej_2022_139039
crossref_primary_10_1002_anie_202400303
crossref_primary_10_1002_sstr_202200122
crossref_primary_10_1021_acsomega_2c01926
crossref_primary_10_20517_energymater_2023_130
crossref_primary_10_1016_j_cej_2021_132985
crossref_primary_10_1016_j_ceramint_2021_12_097
crossref_primary_10_1002_cey2_129
crossref_primary_10_3390_en14175220
crossref_primary_10_1002_aenm_202302443
crossref_primary_10_1021_acsmaterialslett_2c00238
crossref_primary_10_1021_acsenergylett_3c00910
crossref_primary_10_1021_acsami_2c12518
crossref_primary_10_1007_s12274_024_6463_2
crossref_primary_10_3389_fceng_2022_828054
crossref_primary_10_1002_adma_202000721
crossref_primary_10_1007_s11581_021_04042_9
crossref_primary_10_1016_j_ssi_2021_115831
crossref_primary_10_1002_adfm_202102347
crossref_primary_10_1039_D1EE03466A
crossref_primary_10_1063_5_0134474
crossref_primary_10_1002_aesr_202000101
crossref_primary_10_20517_energymater_2023_53
crossref_primary_10_1016_j_matt_2023_02_012
crossref_primary_10_1021_acs_macromol_0c02032
crossref_primary_10_3390_nano12111888
crossref_primary_10_1002_adfm_202101380
crossref_primary_10_1039_D2CC04862K
crossref_primary_10_1002_ange_202305004
crossref_primary_10_1016_j_nanoen_2024_109620
crossref_primary_10_1002_batt_202300389
crossref_primary_10_1016_j_jechem_2022_07_006
crossref_primary_10_1002_advs_202501012
crossref_primary_10_1021_acsapm_4c02928
crossref_primary_10_1016_j_jechem_2022_12_058
crossref_primary_10_1021_acsami_3c04234
crossref_primary_10_1002_cey2_146
crossref_primary_10_1002_aenm_202103005
crossref_primary_10_1002_cssc_202200504
crossref_primary_10_1002_adma_202212039
crossref_primary_10_1002_cey2_425
crossref_primary_10_1021_acs_nanolett_4c06471
crossref_primary_10_1002_smll_202305322
crossref_primary_10_1016_j_mtener_2021_100785
crossref_primary_10_1002_aenm_202003154
crossref_primary_10_1002_ange_202309613
crossref_primary_10_1002_anie_202305004
crossref_primary_10_1039_D3CS00572K
crossref_primary_10_1002_anie_202101537
crossref_primary_10_1080_09506608_2021_1995112
crossref_primary_10_1039_D3TA03514J
crossref_primary_10_1002_ange_202400303
crossref_primary_10_1002_smll_202200891
crossref_primary_10_1007_s11581_023_04945_9
crossref_primary_10_1039_D4EE05739B
crossref_primary_10_1002_adma_202406151
crossref_primary_10_1016_j_chempr_2022_09_027
crossref_primary_10_1016_j_jechem_2020_06_052
crossref_primary_10_1002_cssc_202400281
crossref_primary_10_1002_bte2_20230037
crossref_primary_10_1016_j_jelechem_2023_117991
crossref_primary_10_1002_smll_202412494
crossref_primary_10_1016_j_mtener_2021_100893
crossref_primary_10_1039_D3QM00729D
crossref_primary_10_1002_sstr_202000042
crossref_primary_10_1002_adma_202005305
crossref_primary_10_1002_anie_202309613
crossref_primary_10_1002_aenm_202302876
crossref_primary_10_1002_elan_202200306
crossref_primary_10_1016_j_ensm_2023_02_006
crossref_primary_10_1016_j_mattod_2021_08_005
crossref_primary_10_1002_batt_202200338
crossref_primary_10_1016_j_jechem_2023_02_048
crossref_primary_10_1002_adfm_202214881
crossref_primary_10_1021_acsaem_3c01667
crossref_primary_10_1016_j_cej_2023_143714
crossref_primary_10_1038_s41467_023_35857_x
crossref_primary_10_1039_D2TA04894A
crossref_primary_10_1016_j_jechem_2023_02_040
crossref_primary_10_1021_acsnano_4c03128
crossref_primary_10_1002_chem_202403915
crossref_primary_10_1016_j_cej_2021_134323
crossref_primary_10_1002_aenm_202201264
crossref_primary_10_1016_j_jcis_2025_01_198
crossref_primary_10_1039_D0CC06849G
crossref_primary_10_1021_acsapm_4c02670
crossref_primary_10_1039_D1TA08244B
crossref_primary_10_1360_SSC_2024_0082
crossref_primary_10_1002_adma_202402401
crossref_primary_10_1021_acs_nanolett_2c00338
crossref_primary_10_1093_nsr_nwae436
crossref_primary_10_1002_adma_202409489
crossref_primary_10_1021_acsami_1c13834
crossref_primary_10_1002_adma_202300982
crossref_primary_10_1002_smll_202103617
crossref_primary_10_1002_adfm_202314063
crossref_primary_10_1002_smtd_202300314
crossref_primary_10_1038_s41467_022_35636_0
crossref_primary_10_1002_adfm_202211062
crossref_primary_10_1002_anie_202114805
crossref_primary_10_1149_1945_7111_ac2d8b
crossref_primary_10_3390_en15239235
crossref_primary_10_6023_A23030085
crossref_primary_10_1016_j_pmatsci_2024_101247
crossref_primary_10_1021_acs_langmuir_1c01035
crossref_primary_10_1002_idm2_12109
crossref_primary_10_1016_j_jcis_2022_01_163
crossref_primary_10_1021_jacs_2c06512
crossref_primary_10_1016_j_cej_2023_144990
crossref_primary_10_1021_acsenergylett_3c01004
crossref_primary_10_1002_adfm_202100891
crossref_primary_10_1002_adma_202003741
crossref_primary_10_1002_adma_202007945
crossref_primary_10_1039_D1CC02916A
crossref_primary_10_1007_s12598_025_03244_8
crossref_primary_10_1002_adma_202304951
crossref_primary_10_1002_cssc_202200038
crossref_primary_10_1002_cssc_202202216
crossref_primary_10_1002_advs_202103663
crossref_primary_10_1002_eom2_12325
crossref_primary_10_1002_adma_202419856
crossref_primary_10_1002_smll_202102233
crossref_primary_10_1098_rsos_200598
crossref_primary_10_1002_ange_202114805
crossref_primary_10_1039_D3EE00558E
crossref_primary_10_1016_j_cej_2024_154796
crossref_primary_10_1002_aenm_202201762
crossref_primary_10_1093_nsr_nwac272
crossref_primary_10_1021_acsenergylett_4c00379
crossref_primary_10_1016_j_nanoen_2023_108700
crossref_primary_10_1021_acsenergylett_3c01597
crossref_primary_10_1002_adfm_202008208
crossref_primary_10_1016_j_jechem_2022_11_059
crossref_primary_10_1039_D0TA03270K
crossref_primary_10_1016_j_jpowsour_2022_231517
Cites_doi 10.1038/nnano.2017.16
10.1002/adma.201805930
10.1002/adma.201700007
10.1149/2.081302jes
10.1126/science.aab1595
10.1021/acsami.7b12675
10.1002/aenm.201502214
10.1149/1.2048458
10.1038/s41578-019-0103-6
10.1038/s41560-018-0184-2
10.1038/ncomms12032
10.1039/JM9960600193
10.1038/s41560-019-0349-7
10.1021/acsenergylett.6b00594
10.1002/slct.201901112
10.1039/C8TA12008K
10.1021/cr5003003
10.1038/ncomms2513
10.1002/inf2.12000
10.1149/1.1433471
10.1021/jacs.8b03319
10.1038/natrevmats.2016.13
10.1039/C6TA08448F
10.1038/451652a
10.1016/S0378-7753(99)00221-9
10.1002/adfm.201809219
10.1002/aenm.201401408
10.1002/anie.201710841
10.1002/advs.201800559
10.1021/ma00095a001
10.1038/s41565-019-0465-3
10.1021/acsaem.8b02112
10.1002/adma.201805574
10.1038/nmat4041
10.1021/acs.chemrev.5b00563
10.1021/acsami.7b15808
10.1038/nchem.2470
10.1038/s41560-018-0191-3
10.1002/adma.201802661
10.1002/adma.201604460
10.1002/adma.201808392
10.1038/s41560-018-0199-8
10.1021/acsami.8b04405
10.1016/j.jpowsour.2006.10.025
10.1039/C6EE01674J
10.1021/acsami.5b11800
10.1126/sciadv.1701301
10.1016/S0013-4686(00)00710-6
10.1016/j.nanoen.2017.11.010
10.1021/acs.jpclett.6b02933
10.1038/nenergy.2016.114
10.1002/adma.201807789
10.1002/adma.201502059
10.1002/anie.201302586
10.1038/s41560-019-0336-z
10.1002/aenm.201702097
10.1002/pola.28080
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201905629
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32053238
10_1002_adma_201905629
ADMA201905629
Genre article
Journal Article
GrantInformation_xml – fundername: NSF MRSEC
  funderid: DMR‐1719875
– fundername: Department of Energy Basic Energy Sciences Program
  funderid: DE‐SC0016082
– fundername: Department of Energy Basic Energy Sciences Program
  grantid: DE-SC0016082
– fundername: NSF MRSEC
  grantid: DMR-1719875
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4129-7f5fe2b1c6bb05ab460d60956e3983b34cf1d68ca050c1e101013baf9b1746213
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:08:12 EDT 2025
Mon Jul 14 07:48:43 EDT 2025
Wed Feb 19 02:30:48 EST 2025
Tue Jul 01 02:32:44 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Jan 22 16:35:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Li-metal batteries
high-voltage systems
in situ polymerization
current collectors
solid-state polymer electrolytes
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4129-7f5fe2b1c6bb05ab460d60956e3983b34cf1d68ca050c1e101013baf9b1746213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9032-2772
PMID 32053238
PQID 2381984562
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2354737199
proquest_journals_2381984562
pubmed_primary_32053238
crossref_citationtrail_10_1002_adma_201905629
crossref_primary_10_1002_adma_201905629
wiley_primary_10_1002_adma_201905629_ADMA201905629
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2017; 8
2019; 4
2015; 5
2013; 4
2017; 2
2018; 140
2017; 3
2019; 31
1999; 81–82
2019; 2
2019; 1
2007; 165
2019; 14
2016; 54
1994; 27
2017; 29
2018; 44
2001; 46
2013; 160
2014; 114
2017; 9
2015; 350
2016; 6
2016; 7
2018; 8
2018; 3
2016; 1
2015; 27
2018; 5
2013; 52
2017; 12
2019; 29
2002; 149
2014; 13
2018; 30
2016; 116
1995; 142
2008; 451
2018; 10
2016; 8
2016; 9
1996; 6
2018; 57
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 142
  start-page: 4033
  year: 1995
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 5498
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 140
  year: 2016
  publication-title: Chem. Rev.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 4
  start-page: 312
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 4
  start-page: 1481
  year: 2013
  publication-title: Nat. Commun.
– volume: 2
  start-page: 196
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 52
  start-page: 9162
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 44
  start-page: 111
  year: 2018
  publication-title: Nano Energy
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 165
  start-page: 491
  year: 2007
  publication-title: J. Power Sources
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 3446
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 6
  year: 2019
  publication-title: InfoMat
– volume: 8
  start-page: 1072
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 705
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 57
  start-page: 2096
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 193
  year: 1996
  publication-title: J. Mater. Chem.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 3
  start-page: 641
  year: 2018
  publication-title: Nat. Energy
– volume: 4
  start-page: 6354
  year: 2019
  publication-title: ChemistrySelect
– volume: 140
  start-page: 6767
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 5995
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 600
  year: 2018
  publication-title: Nat. Energy
– volume: 7
  start-page: 7823
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 426
  year: 2016
  publication-title: Nat. Chem.
– volume: 81–82
  start-page: 416
  year: 1999
  publication-title: J. Power Sources
– volume: 2
  start-page: 3120
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 149
  start-page: A185
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 4
  start-page: 365
  year: 2019
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3221
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 1215
  year: 2001
  publication-title: Electrochim. Acta
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 269
  year: 2019
  publication-title: Nat. Energy
– volume: 160
  start-page: A356
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 27
  start-page: 4639
  year: 1994
  publication-title: Macromolecules.
– volume: 13
  start-page: 961
  year: 2014
  publication-title: Nat. Mater.
– volume: 3
  start-page: 739
  year: 2018
  publication-title: Nat. Energy
– volume: 54
  start-page: 2128
  year: 2016
– volume: 5
  start-page: 1679
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 350
  start-page: 938
  year: 2015
  publication-title: Science
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– ident: e_1_2_5_20_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_5_12_1
  doi: 10.1002/adma.201805930
– ident: e_1_2_5_35_1
  doi: 10.1002/adma.201700007
– ident: e_1_2_5_42_1
  doi: 10.1149/2.081302jes
– ident: e_1_2_5_46_1
  doi: 10.1126/science.aab1595
– ident: e_1_2_5_26_1
  doi: 10.1021/acsami.7b12675
– ident: e_1_2_5_36_1
  doi: 10.1002/aenm.201502214
– ident: e_1_2_5_54_1
  doi: 10.1149/1.2048458
– ident: e_1_2_5_1_1
  doi: 10.1038/s41578-019-0103-6
– ident: e_1_2_5_48_1
  doi: 10.1038/s41560-018-0184-2
– ident: e_1_2_5_41_1
  doi: 10.1038/ncomms12032
– ident: e_1_2_5_50_1
  doi: 10.1039/JM9960600193
– ident: e_1_2_5_38_1
  doi: 10.1038/s41560-019-0349-7
– ident: e_1_2_5_55_1
  doi: 10.1021/acsenergylett.6b00594
– ident: e_1_2_5_31_1
  doi: 10.1002/slct.201901112
– ident: e_1_2_5_23_1
  doi: 10.1039/C8TA12008K
– ident: e_1_2_5_18_1
  doi: 10.1021/cr5003003
– ident: e_1_2_5_45_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_5_21_1
  doi: 10.1002/inf2.12000
– ident: e_1_2_5_27_1
  doi: 10.1149/1.1433471
– ident: e_1_2_5_9_1
  doi: 10.1021/jacs.8b03319
– ident: e_1_2_5_16_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_5_51_1
  doi: 10.1039/C6TA08448F
– ident: e_1_2_5_2_1
  doi: 10.1038/451652a
– ident: e_1_2_5_52_1
  doi: 10.1016/S0378-7753(99)00221-9
– ident: e_1_2_5_4_1
  doi: 10.1002/adfm.201809219
– ident: e_1_2_5_7_1
  doi: 10.1002/aenm.201401408
– ident: e_1_2_5_13_1
  doi: 10.1002/anie.201710841
– ident: e_1_2_5_37_1
  doi: 10.1002/advs.201800559
– ident: e_1_2_5_39_1
  doi: 10.1021/ma00095a001
– ident: e_1_2_5_24_1
  doi: 10.1038/s41565-019-0465-3
– ident: e_1_2_5_32_1
  doi: 10.1021/acsaem.8b02112
– ident: e_1_2_5_11_1
  doi: 10.1002/adma.201805574
– ident: e_1_2_5_47_1
  doi: 10.1038/nmat4041
– ident: e_1_2_5_5_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_5_34_1
  doi: 10.1021/acsami.7b15808
– ident: e_1_2_5_22_1
  doi: 10.1038/nchem.2470
– ident: e_1_2_5_49_1
  doi: 10.1038/s41560-018-0191-3
– ident: e_1_2_5_6_1
  doi: 10.1002/adma.201802661
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201604460
– ident: e_1_2_5_14_1
  doi: 10.1002/adma.201808392
– ident: e_1_2_5_40_1
  doi: 10.1038/s41560-018-0199-8
– ident: e_1_2_5_30_1
  doi: 10.1021/acsami.8b04405
– ident: e_1_2_5_3_1
  doi: 10.1016/j.jpowsour.2006.10.025
– ident: e_1_2_5_29_1
  doi: 10.1039/C6EE01674J
– ident: e_1_2_5_43_1
  doi: 10.1021/acsami.5b11800
– ident: e_1_2_5_56_1
  doi: 10.1126/sciadv.1701301
– ident: e_1_2_5_53_1
  doi: 10.1016/S0013-4686(00)00710-6
– ident: e_1_2_5_33_1
  doi: 10.1016/j.nanoen.2017.11.010
– ident: e_1_2_5_28_1
  doi: 10.1021/acs.jpclett.6b02933
– ident: e_1_2_5_19_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201807789
– ident: e_1_2_5_25_1
  doi: 10.1002/adma.201502059
– ident: e_1_2_5_10_1
  doi: 10.1002/anie.201302586
– ident: e_1_2_5_44_1
  doi: 10.1038/s41560-019-0336-z
– ident: e_1_2_5_57_1
  doi: 10.1002/aenm.201702097
– ident: e_1_2_5_17_1
  doi: 10.1002/pola.28080
SSID ssj0009606
Score 2.6658041
Snippet Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that...
Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1905629
SubjectTerms Aluminum
Aluminum fluorides
Cathodes
Cathodic protection
Charge transport
current collectors
Electrolytes
Energy storage
high‐voltage systems
in situ polymerization
Interface stability
Lewis acid
Lithium batteries
Li‐metal batteries
Materials science
Molten salt electrolytes
Polymers
Rechargeable batteries
Solid electrolytes
solid‐state polymer electrolytes
Title Rechargeable Lithium Metal Batteries with an In‐Built Solid‐State Polymer Electrolyte and a High Voltage/Loading Ni‐Rich Layered Cathode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201905629
https://www.ncbi.nlm.nih.gov/pubmed/32053238
https://www.proquest.com/docview/2381984562
https://www.proquest.com/docview/2354737199
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3AAyu9CQUZC4uRuYid2ctxCq4K2FQKKeov8FzUiTVCbHJZTnwD1GXkSZpzdtAtCSHBMYieOM-P5xpn5hpCXqcyF9qlhUekMS8pcMvBDHJPOR8Jy7suB7fNQ7h8l747T42tZ_AM_xLjhhpoR1mtUcG3Op1ekodoF3iAwaGDCMYMPA7YQFX244o9CeB7I9kTKcplkK9bGiE_Xu69bpd-g5jpyDaZn7w7Rq0EPESdftvvObNtvv_A5_s9b3SW3l7iUzgZB2iQ3fHOP3LrGVniffAeIibxKHrOt6LzqTqr-lB54gO90oOkEr5vixi7VDX3b_Li43OmruqMf27pycBSALX3f1otTf0Z3hwI89QLO6cZRTTHmhH5u6w7WuOm8DdH99LCCnpj-T-d6gYVFKSYtts4_IEd7u59e77NlOQdmE0AVTJVp6bmJrTQmSrVJZOSQ7k56kWfCiMSWsZOZ1VEa2djHyH4njC5zA16T5LF4SDaatvGPCVXKGGUNwBkHkNRLnTgtlFdKS_DnlJgQtvqchV1ynWPJjboYWJp5gfNcjPM8Ia_G9l8Hlo8_ttxaSUex1PbzIri9GfqSE_JivAx6ij9fdOPbHttglWcV53CLR4NUjY8SHOtziGxCeJCNv4yhmL05mI1HT_6l01Nyk-PGQQim2yIb3VnvnwG66szzoEE_AXo4Hbg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LbtQwFIaPSlkAC-6XgQJGArFKJ7ETJ1mwGJhWM3RmhKBF3QU7dkREmqBOIjSseALEq_AqPAJPgk9uZUAICakLlkmci-xjn_849ncAHno8ZEJ70rITJS03Cbll4hBlcaVtFlOqk4b2ueCTA_f5oXe4AV-7vTANH6KfcMOeUY_X2MFxQnp4Qg0VqgYHGY9mfHjYrqvc06sPJmpbPpmOTRM_onR3Z__ZxGoTC1ixa_yb5Sdeoql0Yi6l7QnpclsheI1rFgZMMjdOHMWDWNieHTvaQQ4bkyIJpdHvnDrMPPcMnMU04ojrH788IVZhQFDj_ZhnhdwNOk6kTYfr37vuB38Tt-tauXZ2u5fgW1dNzRqXd9tVKbfjj78QJP-rerwMF1vpTUZNX7kCGzq_Chd-AjJeg89GRSM6SuOGMjJLy7dpdUTm2kQopCGRpnpJcO6aiJxM8--fvjyt0qwkr4osVeao1u7kRZGtjvQx2WlyDGUrc07kigiCy2rI6yIrzTA-nBX1BgaySM2dSDggM7HC3KkE92UWSl-Hg1OpkBuwmRe5vgXE96X0Y2kUmzKqW3PhKsF87fuCm5DVZwOwOvuJ4hbnjllFsqgBUdMI2zXq23UAj_vy7xuQyR9LbnXmGLUD2jKqI_sAw-UBPOgvm6EI_y-JXBcVlsFE1r4TmkfcbMy4fxWjmIKEBQOgtTH-5Rui0Xg-6o9u_8tN9-HcZH8-i2bTxd4dOE9xnqReO7gFm-Vxpe8aMVnKe3X3JfDmtO38B-Hwefk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEMetUiQEB74_FgoYCcQp3cROnOTAYWG76tLtqgKKekvt2BERaVJ1E6HlxBMgHoVX4RV4EmbyVRaEkJB64JiNnUT22PMfr_0bQh57IuTSeMqyE60sNwmFBXGItoQ2No8ZM0lD-5yL7X335YF3sEa-dmdhGj5Ev-CGI6Oer3GAH-tkeAoNlbrmBoFDAxcettsqd8zyAwRti2fTMfTwE8YmW29ebFttXgErdsG9WX7iJYYpJxZK2Z5UrrA1cteE4WHAFXfjxNEiiKXt2bFjHMSwcSWTUIF8F8zh8Nxz5DxUCzFZxPjVKbAK44Ga7sc9KxRu0GEibTZc_d5VN_ibtl2VyrWvm1wh37pWara4vN-sSrUZf_wFIPk_NeNVcrkV3nTUjJRrZM3k18mln3CMN8hn0NAIjjJ4nIzO0vJdWh3RXQPxCW04pKlZUFy5pjKn0_z7py_PqzQr6esiSzVc1cqd7hXZ8sic0K0mw1C2hN9krqmkuKmGvi2yEibx4ayojy_QeQo1kW9AZ3KJmVMpnsostLlJ9s-kQW6R9bzIzR1CfV8pP1ag1zRobiOkqyX3je9LAQGrzwfE6swniluYO-YUyaIGQ80i7Neo79cBedqXP24wJn8sudFZY9ROZ4uojusDDJYH5FF_GyYi_HdJ5qaosAymsfadEB5xu7Hi_lWcYQISHgwIq23xL98Qjca7o_7q7r9Uekgu7I0n0Ww637lHLjJcJKk3Dm6Q9fKkMvdBSZbqQT14KTk8azP_Ad12eKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rechargeable+Lithium+Metal+Batteries+with+an+In-Built+Solid-State+Polymer+Electrolyte+and+a+High+Voltage%2FLoading+Ni-Rich+Layered+Cathode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Chen-Zi&rft.au=Zhao%2C+Qing&rft.au=Liu%2C+Xiaotun&rft.au=Zheng%2C+Jingxu&rft.date=2020-03-01&rft.eissn=1521-4095&rft.volume=32&rft.issue=12&rft.spage=e1905629&rft_id=info:doi/10.1002%2Fadma.201905629&rft_id=info%3Apmid%2F32053238&rft.externalDocID=32053238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon