Rechargeable Lithium Metal Batteries with an In‐Built Solid‐State Polymer Electrolyte and a High Voltage/Loading Ni‐Rich Layered Cathode
Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 12; pp. e1905629 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high‐voltage intercalating cathodes are to be used in such batteries. Here, ether‐based electrolytes are in situ polymerized by a ring‐opening reaction in the presence of aluminum fluoride (AlF3) to create SPEs inside LiNi0.6Co0.2 Mn0.2O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid‐state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g−1 under high areal capacity of 3.0 mAh cm−2. This work offers an important pathway toward solid‐state polymer electrolytes for high‐voltage solid‐state batteries.
Solid‐state batteries are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. In this work, ether‐based solid‐state polymer electrolytes are created inside a battery using ring‐opening polymerization in the presence of aluminum fluoride (AlF3). The electrolytes are shown to mitigate cathode corrosion and to enable solid‐state LiNi0.6Co0.2 Mn0.2O2 (NCM)||Li batteries with high capacities. |
---|---|
AbstractList | Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high‐voltage intercalating cathodes are to be used in such batteries. Here, ether‐based electrolytes are in situ polymerized by a ring‐opening reaction in the presence of aluminum fluoride (AlF3) to create SPEs inside LiNi0.6Co0.2 Mn0.2O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid‐state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g−1 under high areal capacity of 3.0 mAh cm−2. This work offers an important pathway toward solid‐state polymer electrolytes for high‐voltage solid‐state batteries.
Solid‐state batteries are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. In this work, ether‐based solid‐state polymer electrolytes are created inside a battery using ring‐opening polymerization in the presence of aluminum fluoride (AlF3). The electrolytes are shown to mitigate cathode corrosion and to enable solid‐state LiNi0.6Co0.2 Mn0.2O2 (NCM)||Li batteries with high capacities. Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high‐voltage intercalating cathodes are to be used in such batteries. Here, ether‐based electrolytes are in situ polymerized by a ring‐opening reaction in the presence of aluminum fluoride (AlF3) to create SPEs inside LiNi0.6Co0.2 Mn0.2O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid‐state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g−1 under high areal capacity of 3.0 mAh cm−2. This work offers an important pathway toward solid‐state polymer electrolytes for high‐voltage solid‐state batteries. Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that simultaneously support high-energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high-voltage intercalating cathodes are to be used in such batteries. Here, ether-based electrolytes are in situ polymerized by a ring-opening reaction in the presence of aluminum fluoride (AlF ) to create SPEs inside LiNi Co Mn O (NCM) || Li batteries that are able to overcome both challenges. AlF plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode-electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid-state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g under high areal capacity of 3.0 mAh cm . This work offers an important pathway toward solid-state polymer electrolytes for high-voltage solid-state batteries. Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that simultaneously support high‐energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high‐voltage intercalating cathodes are to be used in such batteries. Here, ether‐based electrolytes are in situ polymerized by a ring‐opening reaction in the presence of aluminum fluoride (AlF 3 ) to create SPEs inside LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM) || Li batteries that are able to overcome both challenges. AlF 3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode–electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid‐state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g −1 under high areal capacity of 3.0 mAh cm −2 . This work offers an important pathway toward solid‐state polymer electrolytes for high‐voltage solid‐state batteries. Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that simultaneously support high-energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high-voltage intercalating cathodes are to be used in such batteries. Here, ether-based electrolytes are in situ polymerized by a ring-opening reaction in the presence of aluminum fluoride (AlF3 ) to create SPEs inside LiNi0.6 Co0.2 Mn0.2 O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode-electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid-state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g-1 under high areal capacity of 3.0 mAh cm-2 . This work offers an important pathway toward solid-state polymer electrolytes for high-voltage solid-state batteries.Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that simultaneously support high-energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high-voltage intercalating cathodes are to be used in such batteries. Here, ether-based electrolytes are in situ polymerized by a ring-opening reaction in the presence of aluminum fluoride (AlF3 ) to create SPEs inside LiNi0.6 Co0.2 Mn0.2 O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode-electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid-state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g-1 under high areal capacity of 3.0 mAh cm-2 . This work offers an important pathway toward solid-state polymer electrolytes for high-voltage solid-state batteries. |
Author | Stalin, Sanjuna Zhao, Qing Liu, Xiaotun Zheng, Jingxu Zhao, Chen‐Zi Zhang, Qiang Archer, Lynden A. |
Author_xml | – sequence: 1 givenname: Chen‐Zi surname: Zhao fullname: Zhao, Chen‐Zi organization: Tsinghua University – sequence: 2 givenname: Qing surname: Zhao fullname: Zhao, Qing organization: Cornell University – sequence: 3 givenname: Xiaotun surname: Liu fullname: Liu, Xiaotun organization: Cornell University – sequence: 4 givenname: Jingxu surname: Zheng fullname: Zheng, Jingxu organization: Cornell University – sequence: 5 givenname: Sanjuna surname: Stalin fullname: Stalin, Sanjuna organization: Cornell University – sequence: 6 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Tsinghua University – sequence: 7 givenname: Lynden A. orcidid: 0000-0001-9032-2772 surname: Archer fullname: Archer, Lynden A. email: laa25@cornell.edu organization: Cornell University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32053238$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQhy1URLeFK0dkiQuXbP0nycbH7VJopW2LWuBqTZzJxpUTF8dRtTeeAPGMPAmutgWpEkI-WDP6vpE9vwOyN_gBCXnN2ZwzJo6g6WEuGFesKIV6Rma8EDzLmSr2yIwpWWSqzKt9cjCON4wxVbLyBdmXghVSyGpGflyh6SBsEGqHdG1jZ6eenmMER48hRgwWR3qX-hQGejb8-v7zeLIu0mvvbJOq6wgR6Sfvtj0GeuLQxJCK1IOhoUBP7aajX72LsMGjtYfGDht6YZN5ZU1H17DFgA1dQex8gy_J8xbciK8e7kPy5cPJ59Vptr78eLZarjOTc6GyRVu0KGpuyrpmBdR5yZoy_blEqSpZy9y0vCkrA6xghiNn6cgaWlXzRV4KLg_Ju93c2-C_TThG3dvRoHMwoJ9GLWSRL-SCK5XQt0_QGz-FIb0uURVXVZ42n6g3D9RU99jo22B7CFv9uOkE5DvABD-OAVttbFqd9UMMYJ3mTN8Hqu8D1X8CTdr8ifY4-Z-C2gl31uH2P7Revj9f_nV_A-lwtUo |
CitedBy_id | crossref_primary_10_1039_D3TA06163A crossref_primary_10_1016_j_ensm_2024_103179 crossref_primary_10_1002_adma_202304686 crossref_primary_10_1039_D3EE02020G crossref_primary_10_1039_D4TA05468G crossref_primary_10_1007_s40820_024_01354_z crossref_primary_10_1016_j_jechem_2022_06_014 crossref_primary_10_3390_app13095608 crossref_primary_10_1016_j_cej_2022_140931 crossref_primary_10_1002_adfm_202301642 crossref_primary_10_1002_adma_202420428 crossref_primary_10_1002_eem2_12699 crossref_primary_10_1016_j_ensm_2023_03_009 crossref_primary_10_1002_adma_202310738 crossref_primary_10_1002_ange_202101537 crossref_primary_10_1002_er_6303 crossref_primary_10_1002_aenm_202301742 crossref_primary_10_1002_eom2_12383 crossref_primary_10_3390_molecules29112454 crossref_primary_10_1016_j_cej_2024_148666 crossref_primary_10_1021_acs_jpcc_2c03215 crossref_primary_10_1021_acs_nanolett_0c04959 crossref_primary_10_1002_smsc_202100055 crossref_primary_10_1016_j_xcrp_2020_100146 crossref_primary_10_1016_j_jpowsour_2021_229919 crossref_primary_10_1016_j_jechem_2020_08_026 crossref_primary_10_1016_j_cej_2022_139039 crossref_primary_10_1002_anie_202400303 crossref_primary_10_1002_sstr_202200122 crossref_primary_10_1021_acsomega_2c01926 crossref_primary_10_20517_energymater_2023_130 crossref_primary_10_1016_j_cej_2021_132985 crossref_primary_10_1016_j_ceramint_2021_12_097 crossref_primary_10_1002_cey2_129 crossref_primary_10_3390_en14175220 crossref_primary_10_1002_aenm_202302443 crossref_primary_10_1021_acsmaterialslett_2c00238 crossref_primary_10_1021_acsenergylett_3c00910 crossref_primary_10_1021_acsami_2c12518 crossref_primary_10_1007_s12274_024_6463_2 crossref_primary_10_3389_fceng_2022_828054 crossref_primary_10_1002_adma_202000721 crossref_primary_10_1007_s11581_021_04042_9 crossref_primary_10_1016_j_ssi_2021_115831 crossref_primary_10_1002_adfm_202102347 crossref_primary_10_1039_D1EE03466A crossref_primary_10_1063_5_0134474 crossref_primary_10_1002_aesr_202000101 crossref_primary_10_20517_energymater_2023_53 crossref_primary_10_1016_j_matt_2023_02_012 crossref_primary_10_1021_acs_macromol_0c02032 crossref_primary_10_3390_nano12111888 crossref_primary_10_1002_adfm_202101380 crossref_primary_10_1039_D2CC04862K crossref_primary_10_1002_ange_202305004 crossref_primary_10_1016_j_nanoen_2024_109620 crossref_primary_10_1002_batt_202300389 crossref_primary_10_1016_j_jechem_2022_07_006 crossref_primary_10_1002_advs_202501012 crossref_primary_10_1021_acsapm_4c02928 crossref_primary_10_1016_j_jechem_2022_12_058 crossref_primary_10_1021_acsami_3c04234 crossref_primary_10_1002_cey2_146 crossref_primary_10_1002_aenm_202103005 crossref_primary_10_1002_cssc_202200504 crossref_primary_10_1002_adma_202212039 crossref_primary_10_1002_cey2_425 crossref_primary_10_1021_acs_nanolett_4c06471 crossref_primary_10_1002_smll_202305322 crossref_primary_10_1016_j_mtener_2021_100785 crossref_primary_10_1002_aenm_202003154 crossref_primary_10_1002_ange_202309613 crossref_primary_10_1002_anie_202305004 crossref_primary_10_1039_D3CS00572K crossref_primary_10_1002_anie_202101537 crossref_primary_10_1080_09506608_2021_1995112 crossref_primary_10_1039_D3TA03514J crossref_primary_10_1002_ange_202400303 crossref_primary_10_1002_smll_202200891 crossref_primary_10_1007_s11581_023_04945_9 crossref_primary_10_1039_D4EE05739B crossref_primary_10_1002_adma_202406151 crossref_primary_10_1016_j_chempr_2022_09_027 crossref_primary_10_1016_j_jechem_2020_06_052 crossref_primary_10_1002_cssc_202400281 crossref_primary_10_1002_bte2_20230037 crossref_primary_10_1016_j_jelechem_2023_117991 crossref_primary_10_1002_smll_202412494 crossref_primary_10_1016_j_mtener_2021_100893 crossref_primary_10_1039_D3QM00729D crossref_primary_10_1002_sstr_202000042 crossref_primary_10_1002_adma_202005305 crossref_primary_10_1002_anie_202309613 crossref_primary_10_1002_aenm_202302876 crossref_primary_10_1002_elan_202200306 crossref_primary_10_1016_j_ensm_2023_02_006 crossref_primary_10_1016_j_mattod_2021_08_005 crossref_primary_10_1002_batt_202200338 crossref_primary_10_1016_j_jechem_2023_02_048 crossref_primary_10_1002_adfm_202214881 crossref_primary_10_1021_acsaem_3c01667 crossref_primary_10_1016_j_cej_2023_143714 crossref_primary_10_1038_s41467_023_35857_x crossref_primary_10_1039_D2TA04894A crossref_primary_10_1016_j_jechem_2023_02_040 crossref_primary_10_1021_acsnano_4c03128 crossref_primary_10_1002_chem_202403915 crossref_primary_10_1016_j_cej_2021_134323 crossref_primary_10_1002_aenm_202201264 crossref_primary_10_1016_j_jcis_2025_01_198 crossref_primary_10_1039_D0CC06849G crossref_primary_10_1021_acsapm_4c02670 crossref_primary_10_1039_D1TA08244B crossref_primary_10_1360_SSC_2024_0082 crossref_primary_10_1002_adma_202402401 crossref_primary_10_1021_acs_nanolett_2c00338 crossref_primary_10_1093_nsr_nwae436 crossref_primary_10_1002_adma_202409489 crossref_primary_10_1021_acsami_1c13834 crossref_primary_10_1002_adma_202300982 crossref_primary_10_1002_smll_202103617 crossref_primary_10_1002_adfm_202314063 crossref_primary_10_1002_smtd_202300314 crossref_primary_10_1038_s41467_022_35636_0 crossref_primary_10_1002_adfm_202211062 crossref_primary_10_1002_anie_202114805 crossref_primary_10_1149_1945_7111_ac2d8b crossref_primary_10_3390_en15239235 crossref_primary_10_6023_A23030085 crossref_primary_10_1016_j_pmatsci_2024_101247 crossref_primary_10_1021_acs_langmuir_1c01035 crossref_primary_10_1002_idm2_12109 crossref_primary_10_1016_j_jcis_2022_01_163 crossref_primary_10_1021_jacs_2c06512 crossref_primary_10_1016_j_cej_2023_144990 crossref_primary_10_1021_acsenergylett_3c01004 crossref_primary_10_1002_adfm_202100891 crossref_primary_10_1002_adma_202003741 crossref_primary_10_1002_adma_202007945 crossref_primary_10_1039_D1CC02916A crossref_primary_10_1007_s12598_025_03244_8 crossref_primary_10_1002_adma_202304951 crossref_primary_10_1002_cssc_202200038 crossref_primary_10_1002_cssc_202202216 crossref_primary_10_1002_advs_202103663 crossref_primary_10_1002_eom2_12325 crossref_primary_10_1002_adma_202419856 crossref_primary_10_1002_smll_202102233 crossref_primary_10_1098_rsos_200598 crossref_primary_10_1002_ange_202114805 crossref_primary_10_1039_D3EE00558E crossref_primary_10_1016_j_cej_2024_154796 crossref_primary_10_1002_aenm_202201762 crossref_primary_10_1093_nsr_nwac272 crossref_primary_10_1021_acsenergylett_4c00379 crossref_primary_10_1016_j_nanoen_2023_108700 crossref_primary_10_1021_acsenergylett_3c01597 crossref_primary_10_1002_adfm_202008208 crossref_primary_10_1016_j_jechem_2022_11_059 crossref_primary_10_1039_D0TA03270K crossref_primary_10_1016_j_jpowsour_2022_231517 |
Cites_doi | 10.1038/nnano.2017.16 10.1002/adma.201805930 10.1002/adma.201700007 10.1149/2.081302jes 10.1126/science.aab1595 10.1021/acsami.7b12675 10.1002/aenm.201502214 10.1149/1.2048458 10.1038/s41578-019-0103-6 10.1038/s41560-018-0184-2 10.1038/ncomms12032 10.1039/JM9960600193 10.1038/s41560-019-0349-7 10.1021/acsenergylett.6b00594 10.1002/slct.201901112 10.1039/C8TA12008K 10.1021/cr5003003 10.1038/ncomms2513 10.1002/inf2.12000 10.1149/1.1433471 10.1021/jacs.8b03319 10.1038/natrevmats.2016.13 10.1039/C6TA08448F 10.1038/451652a 10.1016/S0378-7753(99)00221-9 10.1002/adfm.201809219 10.1002/aenm.201401408 10.1002/anie.201710841 10.1002/advs.201800559 10.1021/ma00095a001 10.1038/s41565-019-0465-3 10.1021/acsaem.8b02112 10.1002/adma.201805574 10.1038/nmat4041 10.1021/acs.chemrev.5b00563 10.1021/acsami.7b15808 10.1038/nchem.2470 10.1038/s41560-018-0191-3 10.1002/adma.201802661 10.1002/adma.201604460 10.1002/adma.201808392 10.1038/s41560-018-0199-8 10.1021/acsami.8b04405 10.1016/j.jpowsour.2006.10.025 10.1039/C6EE01674J 10.1021/acsami.5b11800 10.1126/sciadv.1701301 10.1016/S0013-4686(00)00710-6 10.1016/j.nanoen.2017.11.010 10.1021/acs.jpclett.6b02933 10.1038/nenergy.2016.114 10.1002/adma.201807789 10.1002/adma.201502059 10.1002/anie.201302586 10.1038/s41560-019-0336-z 10.1002/aenm.201702097 10.1002/pola.28080 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201905629 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32053238 10_1002_adma_201905629 ADMA201905629 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NSF MRSEC funderid: DMR‐1719875 – fundername: Department of Energy Basic Energy Sciences Program funderid: DE‐SC0016082 – fundername: Department of Energy Basic Energy Sciences Program grantid: DE-SC0016082 – fundername: NSF MRSEC grantid: DMR-1719875 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4129-7f5fe2b1c6bb05ab460d60956e3983b34cf1d68ca050c1e101013baf9b1746213 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:08:12 EDT 2025 Mon Jul 14 07:48:43 EDT 2025 Wed Feb 19 02:30:48 EST 2025 Tue Jul 01 02:32:44 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Jan 22 16:35:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Li-metal batteries high-voltage systems in situ polymerization current collectors solid-state polymer electrolytes |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4129-7f5fe2b1c6bb05ab460d60956e3983b34cf1d68ca050c1e101013baf9b1746213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9032-2772 |
PMID | 32053238 |
PQID | 2381984562 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2354737199 proquest_journals_2381984562 pubmed_primary_32053238 crossref_citationtrail_10_1002_adma_201905629 crossref_primary_10_1002_adma_201905629 wiley_primary_10_1002_adma_201905629_ADMA201905629 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2017; 8 2019; 4 2015; 5 2013; 4 2017; 2 2018; 140 2017; 3 2019; 31 1999; 81–82 2019; 2 2019; 1 2007; 165 2019; 14 2016; 54 1994; 27 2017; 29 2018; 44 2001; 46 2013; 160 2014; 114 2017; 9 2015; 350 2016; 6 2016; 7 2018; 8 2018; 3 2016; 1 2015; 27 2018; 5 2013; 52 2017; 12 2019; 29 2002; 149 2014; 13 2018; 30 2016; 116 1995; 142 2008; 451 2018; 10 2016; 8 2016; 9 1996; 6 2018; 57 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 142 start-page: 4033 year: 1995 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 5498 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 140 year: 2016 publication-title: Chem. Rev. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 4 start-page: 312 year: 2019 publication-title: Nat. Rev. Mater. – volume: 4 start-page: 1481 year: 2013 publication-title: Nat. Commun. – volume: 2 start-page: 196 year: 2017 publication-title: ACS Energy Lett. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 52 start-page: 9162 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 44 start-page: 111 year: 2018 publication-title: Nano Energy – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 165 start-page: 491 year: 2007 publication-title: J. Power Sources – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 8 start-page: 3446 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 6 year: 2019 publication-title: InfoMat – volume: 8 start-page: 1072 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 705 year: 2019 publication-title: Nat. Nanotechnol. – volume: 57 start-page: 2096 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 193 year: 1996 publication-title: J. Mater. Chem. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 3 start-page: 641 year: 2018 publication-title: Nat. Energy – volume: 4 start-page: 6354 year: 2019 publication-title: ChemistrySelect – volume: 140 start-page: 6767 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 5995 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 600 year: 2018 publication-title: Nat. Energy – volume: 7 start-page: 7823 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 426 year: 2016 publication-title: Nat. Chem. – volume: 81–82 start-page: 416 year: 1999 publication-title: J. Power Sources – volume: 2 start-page: 3120 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 149 start-page: A185 year: 2002 publication-title: J. Electrochem. Soc. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 4 start-page: 365 year: 2019 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 3221 year: 2016 publication-title: Energy Environ. Sci. – volume: 46 start-page: 1215 year: 2001 publication-title: Electrochim. Acta – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 4 start-page: 269 year: 2019 publication-title: Nat. Energy – volume: 160 start-page: A356 year: 2013 publication-title: J. Electrochem. Soc. – volume: 27 start-page: 4639 year: 1994 publication-title: Macromolecules. – volume: 13 start-page: 961 year: 2014 publication-title: Nat. Mater. – volume: 3 start-page: 739 year: 2018 publication-title: Nat. Energy – volume: 54 start-page: 2128 year: 2016 – volume: 5 start-page: 1679 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 350 start-page: 938 year: 2015 publication-title: Science – volume: 451 start-page: 652 year: 2008 publication-title: Nature – ident: e_1_2_5_20_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_5_12_1 doi: 10.1002/adma.201805930 – ident: e_1_2_5_35_1 doi: 10.1002/adma.201700007 – ident: e_1_2_5_42_1 doi: 10.1149/2.081302jes – ident: e_1_2_5_46_1 doi: 10.1126/science.aab1595 – ident: e_1_2_5_26_1 doi: 10.1021/acsami.7b12675 – ident: e_1_2_5_36_1 doi: 10.1002/aenm.201502214 – ident: e_1_2_5_54_1 doi: 10.1149/1.2048458 – ident: e_1_2_5_1_1 doi: 10.1038/s41578-019-0103-6 – ident: e_1_2_5_48_1 doi: 10.1038/s41560-018-0184-2 – ident: e_1_2_5_41_1 doi: 10.1038/ncomms12032 – ident: e_1_2_5_50_1 doi: 10.1039/JM9960600193 – ident: e_1_2_5_38_1 doi: 10.1038/s41560-019-0349-7 – ident: e_1_2_5_55_1 doi: 10.1021/acsenergylett.6b00594 – ident: e_1_2_5_31_1 doi: 10.1002/slct.201901112 – ident: e_1_2_5_23_1 doi: 10.1039/C8TA12008K – ident: e_1_2_5_18_1 doi: 10.1021/cr5003003 – ident: e_1_2_5_45_1 doi: 10.1038/ncomms2513 – ident: e_1_2_5_21_1 doi: 10.1002/inf2.12000 – ident: e_1_2_5_27_1 doi: 10.1149/1.1433471 – ident: e_1_2_5_9_1 doi: 10.1021/jacs.8b03319 – ident: e_1_2_5_16_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_5_51_1 doi: 10.1039/C6TA08448F – ident: e_1_2_5_2_1 doi: 10.1038/451652a – ident: e_1_2_5_52_1 doi: 10.1016/S0378-7753(99)00221-9 – ident: e_1_2_5_4_1 doi: 10.1002/adfm.201809219 – ident: e_1_2_5_7_1 doi: 10.1002/aenm.201401408 – ident: e_1_2_5_13_1 doi: 10.1002/anie.201710841 – ident: e_1_2_5_37_1 doi: 10.1002/advs.201800559 – ident: e_1_2_5_39_1 doi: 10.1021/ma00095a001 – ident: e_1_2_5_24_1 doi: 10.1038/s41565-019-0465-3 – ident: e_1_2_5_32_1 doi: 10.1021/acsaem.8b02112 – ident: e_1_2_5_11_1 doi: 10.1002/adma.201805574 – ident: e_1_2_5_47_1 doi: 10.1038/nmat4041 – ident: e_1_2_5_5_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_5_34_1 doi: 10.1021/acsami.7b15808 – ident: e_1_2_5_22_1 doi: 10.1038/nchem.2470 – ident: e_1_2_5_49_1 doi: 10.1038/s41560-018-0191-3 – ident: e_1_2_5_6_1 doi: 10.1002/adma.201802661 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201604460 – ident: e_1_2_5_14_1 doi: 10.1002/adma.201808392 – ident: e_1_2_5_40_1 doi: 10.1038/s41560-018-0199-8 – ident: e_1_2_5_30_1 doi: 10.1021/acsami.8b04405 – ident: e_1_2_5_3_1 doi: 10.1016/j.jpowsour.2006.10.025 – ident: e_1_2_5_29_1 doi: 10.1039/C6EE01674J – ident: e_1_2_5_43_1 doi: 10.1021/acsami.5b11800 – ident: e_1_2_5_56_1 doi: 10.1126/sciadv.1701301 – ident: e_1_2_5_53_1 doi: 10.1016/S0013-4686(00)00710-6 – ident: e_1_2_5_33_1 doi: 10.1016/j.nanoen.2017.11.010 – ident: e_1_2_5_28_1 doi: 10.1021/acs.jpclett.6b02933 – ident: e_1_2_5_19_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_5_15_1 doi: 10.1002/adma.201807789 – ident: e_1_2_5_25_1 doi: 10.1002/adma.201502059 – ident: e_1_2_5_10_1 doi: 10.1002/anie.201302586 – ident: e_1_2_5_44_1 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_5_57_1 doi: 10.1002/aenm.201702097 – ident: e_1_2_5_17_1 doi: 10.1002/pola.28080 |
SSID | ssj0009606 |
Score | 2.6658041 |
Snippet | Solid‐state batteries enabled by solid‐state polymer electrolytes (SPEs) are under active consideration for their promise as cost‐effective platforms that... Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1905629 |
SubjectTerms | Aluminum Aluminum fluorides Cathodes Cathodic protection Charge transport current collectors Electrolytes Energy storage high‐voltage systems in situ polymerization Interface stability Lewis acid Lithium batteries Li‐metal batteries Materials science Molten salt electrolytes Polymers Rechargeable batteries Solid electrolytes solid‐state polymer electrolytes |
Title | Rechargeable Lithium Metal Batteries with an In‐Built Solid‐State Polymer Electrolyte and a High Voltage/Loading Ni‐Rich Layered Cathode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201905629 https://www.ncbi.nlm.nih.gov/pubmed/32053238 https://www.proquest.com/docview/2381984562 https://www.proquest.com/docview/2354737199 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT3AAyu9CQUZC4uRuYid2ctxCq4K2FQKKeov8FzUiTVCbHJZTnwD1GXkSZpzdtAtCSHBMYieOM-P5xpn5hpCXqcyF9qlhUekMS8pcMvBDHJPOR8Jy7suB7fNQ7h8l747T42tZ_AM_xLjhhpoR1mtUcG3Op1ekodoF3iAwaGDCMYMPA7YQFX244o9CeB7I9kTKcplkK9bGiE_Xu69bpd-g5jpyDaZn7w7Rq0EPESdftvvObNtvv_A5_s9b3SW3l7iUzgZB2iQ3fHOP3LrGVniffAeIibxKHrOt6LzqTqr-lB54gO90oOkEr5vixi7VDX3b_Li43OmruqMf27pycBSALX3f1otTf0Z3hwI89QLO6cZRTTHmhH5u6w7WuOm8DdH99LCCnpj-T-d6gYVFKSYtts4_IEd7u59e77NlOQdmE0AVTJVp6bmJrTQmSrVJZOSQ7k56kWfCiMSWsZOZ1VEa2djHyH4njC5zA16T5LF4SDaatvGPCVXKGGUNwBkHkNRLnTgtlFdKS_DnlJgQtvqchV1ynWPJjboYWJp5gfNcjPM8Ia_G9l8Hlo8_ttxaSUex1PbzIri9GfqSE_JivAx6ij9fdOPbHttglWcV53CLR4NUjY8SHOtziGxCeJCNv4yhmL05mI1HT_6l01Nyk-PGQQim2yIb3VnvnwG66szzoEE_AXo4Hbg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LbtQwFIaPSlkAC-6XgQJGArFKJ7ETJ1mwGJhWM3RmhKBF3QU7dkREmqBOIjSseALEq_AqPAJPgk9uZUAICakLlkmci-xjn_849ncAHno8ZEJ70rITJS03Cbll4hBlcaVtFlOqk4b2ueCTA_f5oXe4AV-7vTANH6KfcMOeUY_X2MFxQnp4Qg0VqgYHGY9mfHjYrqvc06sPJmpbPpmOTRM_onR3Z__ZxGoTC1ixa_yb5Sdeoql0Yi6l7QnpclsheI1rFgZMMjdOHMWDWNieHTvaQQ4bkyIJpdHvnDrMPPcMnMU04ojrH788IVZhQFDj_ZhnhdwNOk6kTYfr37vuB38Tt-tauXZ2u5fgW1dNzRqXd9tVKbfjj78QJP-rerwMF1vpTUZNX7kCGzq_Chd-AjJeg89GRSM6SuOGMjJLy7dpdUTm2kQopCGRpnpJcO6aiJxM8--fvjyt0qwkr4osVeao1u7kRZGtjvQx2WlyDGUrc07kigiCy2rI6yIrzTA-nBX1BgaySM2dSDggM7HC3KkE92UWSl-Hg1OpkBuwmRe5vgXE96X0Y2kUmzKqW3PhKsF87fuCm5DVZwOwOvuJ4hbnjllFsqgBUdMI2zXq23UAj_vy7xuQyR9LbnXmGLUD2jKqI_sAw-UBPOgvm6EI_y-JXBcVlsFE1r4TmkfcbMy4fxWjmIKEBQOgtTH-5Rui0Xg-6o9u_8tN9-HcZH8-i2bTxd4dOE9xnqReO7gFm-Vxpe8aMVnKe3X3JfDmtO38B-Hwefk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEMetUiQEB74_FgoYCcQp3cROnOTAYWG76tLtqgKKekvt2BERaVJ1E6HlxBMgHoVX4RV4EmbyVRaEkJB64JiNnUT22PMfr_0bQh57IuTSeMqyE60sNwmFBXGItoQ2No8ZM0lD-5yL7X335YF3sEa-dmdhGj5Ev-CGI6Oer3GAH-tkeAoNlbrmBoFDAxcettsqd8zyAwRti2fTMfTwE8YmW29ebFttXgErdsG9WX7iJYYpJxZK2Z5UrrA1cteE4WHAFXfjxNEiiKXt2bFjHMSwcSWTUIF8F8zh8Nxz5DxUCzFZxPjVKbAK44Ga7sc9KxRu0GEibTZc_d5VN_ibtl2VyrWvm1wh37pWara4vN-sSrUZf_wFIPk_NeNVcrkV3nTUjJRrZM3k18mln3CMN8hn0NAIjjJ4nIzO0vJdWh3RXQPxCW04pKlZUFy5pjKn0_z7py_PqzQr6esiSzVc1cqd7hXZ8sic0K0mw1C2hN9krqmkuKmGvi2yEibx4ayojy_QeQo1kW9AZ3KJmVMpnsostLlJ9s-kQW6R9bzIzR1CfV8pP1ag1zRobiOkqyX3je9LAQGrzwfE6swniluYO-YUyaIGQ80i7Neo79cBedqXP24wJn8sudFZY9ROZ4uojusDDJYH5FF_GyYi_HdJ5qaosAymsfadEB5xu7Hi_lWcYQISHgwIq23xL98Qjca7o_7q7r9Uekgu7I0n0Ww637lHLjJcJKk3Dm6Q9fKkMvdBSZbqQT14KTk8azP_Ad12eKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rechargeable+Lithium+Metal+Batteries+with+an+In-Built+Solid-State+Polymer+Electrolyte+and+a+High+Voltage%2FLoading+Ni-Rich+Layered+Cathode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Chen-Zi&rft.au=Zhao%2C+Qing&rft.au=Liu%2C+Xiaotun&rft.au=Zheng%2C+Jingxu&rft.date=2020-03-01&rft.eissn=1521-4095&rft.volume=32&rft.issue=12&rft.spage=e1905629&rft_id=info:doi/10.1002%2Fadma.201905629&rft_id=info%3Apmid%2F32053238&rft.externalDocID=32053238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |