Flexible, High‐Wettability and Fire‐Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium‐Ion Batteries

Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly f...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 44
Main Authors Li, Heng, Wu, Dabei, Wu, Jin, Dong, Li‐Ying, Zhu, Ying‐Jie, Hu, Xianluo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2017
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201703548

Cover

Loading…
Abstract Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross‐linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire‐resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as‐prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as‐prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. A new kind of highly flexible, porous, high‐wettability, fire‐resistant hydroxyapatite nanowire‐based separator with superior performance and high safety is prepared for advanced lithium‐ion batteries. The batteries with the hydroxyapatite nanowire‐based separators show better cyclability and enhanced rate capability compared with those with the commercial polypropylene separator. The as‐prepared batteries adopting the hydroxyapatite nanowire‐based separator can safely work at 150 °C.
AbstractList Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety.
Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety.Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety.
Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross‐linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire‐resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as‐prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as‐prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. A new kind of highly flexible, porous, high‐wettability, fire‐resistant hydroxyapatite nanowire‐based separator with superior performance and high safety is prepared for advanced lithium‐ion batteries. The batteries with the hydroxyapatite nanowire‐based separators show better cyclability and enhanced rate capability compared with those with the commercial polypropylene separator. The as‐prepared batteries adopting the hydroxyapatite nanowire‐based separator can safely work at 150 °C.
Author Zhu, Ying‐Jie
Hu, Xianluo
Wu, Dabei
Dong, Li‐Ying
Li, Heng
Wu, Jin
Author_xml – sequence: 1
  givenname: Heng
  surname: Li
  fullname: Li, Heng
  organization: Shanghai Institute of Ceramics University of Chinese Academy of Sciences
– sequence: 2
  givenname: Dabei
  surname: Wu
  fullname: Wu, Dabei
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Jin
  surname: Wu
  fullname: Wu, Jin
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Li‐Ying
  surname: Dong
  fullname: Dong, Li‐Ying
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Ying‐Jie
  surname: Zhu
  fullname: Zhu, Ying‐Jie
  email: y.j.zhu@mail.sic.ac.cn
  organization: Shanghai Institute of Ceramics University of Chinese Academy of Sciences
– sequence: 6
  givenname: Xianluo
  orcidid: 0000-0002-5769-167X
  surname: Hu
  fullname: Hu, Xianluo
  email: huxl@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29044775$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQhy1URLeFK0dkiQsHstiOncTHbWHZSgtI_BHHaJJMqKvEXmyHNjckXoBn5ElwtaVIlRAnS6Pvm_HM74gcWGeRkMecLTlj4gV0IywF4yXLlazukQVXgmeSaXVAFkznKtOFrA7JUQgXjDFdsOIBORSaSVmWakF-rAe8Ms2Az-nGfDn_9f3nZ4wRGjOYOFOwHV0bj6n8HoMJEWykH3AHHqLzgZ5AwI46Szdz593VDDuIJiJ9C9ZdJi_Q3nm66r6BbRO4NfHcTGPqdpacE4gRvcHwkNzvYQj46OY9Jp_Wrz6ebrLtu9dnp6tt1kouqqwXBdNCSJZrXrCygSqtIfq2VYz3vWoqDnlVMdblvMO-A1VyEIK32GolS4X5MXm277vz7uuEIdajCS0OA1h0U6i5VkLlQqo8oU_voBdu8jb9LlFFIZngVZmoJzfU1IzY1TtvRvBz_ee8CVjugda7EDz2twhn9XV-9XV-9W1-SZB3hNbEdFNnowcz_FvTe-3SDDj_Z0i9evlm9df9DdmdslE
CitedBy_id crossref_primary_10_1088_1748_605X_aba281
crossref_primary_10_1016_j_jpowsour_2019_02_037
crossref_primary_10_1016_j_nanoen_2018_04_078
crossref_primary_10_1002_smll_202103679
crossref_primary_10_1016_j_inoche_2025_114113
crossref_primary_10_1016_j_electacta_2022_140258
crossref_primary_10_1007_s10570_022_04598_3
crossref_primary_10_1016_j_mtphys_2023_101256
crossref_primary_10_1002_chem_202000679
crossref_primary_10_1007_s10570_021_04173_2
crossref_primary_10_1002_aenm_201802930
crossref_primary_10_1021_acsmaterialslett_2c00188
crossref_primary_10_1002_anie_202103403
crossref_primary_10_1016_j_memsci_2019_117725
crossref_primary_10_1002_celc_202001232
crossref_primary_10_1007_s10008_024_06047_6
crossref_primary_10_1016_j_jpowsour_2020_228649
crossref_primary_10_1021_acsami_8b06706
crossref_primary_10_1039_D3TA06261A
crossref_primary_10_1007_s41918_020_00093_0
crossref_primary_10_1016_j_memsci_2020_119001
crossref_primary_10_1016_j_memsci_2019_04_032
crossref_primary_10_1002_adfm_202425517
crossref_primary_10_1021_acsanm_2c04500
crossref_primary_10_1016_j_jcis_2024_12_229
crossref_primary_10_1016_j_ccr_2024_216104
crossref_primary_10_1016_j_talanta_2023_124979
crossref_primary_10_2174_2210298101999210104224159
crossref_primary_10_1002_adma_201808338
crossref_primary_10_1021_acssuschemeng_9b02488
crossref_primary_10_1016_j_memsci_2022_120461
crossref_primary_10_1016_j_eurpolymj_2020_109587
crossref_primary_10_1016_j_jcis_2020_10_075
crossref_primary_10_1016_j_est_2023_107231
crossref_primary_10_1039_D1RA02845F
crossref_primary_10_1002_smm2_1007
crossref_primary_10_1016_j_cej_2025_160432
crossref_primary_10_1002_adfm_202002169
crossref_primary_10_1002_app_54587
crossref_primary_10_1002_anie_202300258
crossref_primary_10_1016_j_ensm_2022_02_020
crossref_primary_10_1021_acsami_9b18134
crossref_primary_10_1039_D0EE02848G
crossref_primary_10_1002_smll_202309896
crossref_primary_10_1039_D0TA10238E
crossref_primary_10_1039_D1QM00071C
crossref_primary_10_1016_j_nanoen_2018_11_005
crossref_primary_10_3390_molecules27206808
crossref_primary_10_1002_slct_202301025
crossref_primary_10_1016_j_carbon_2019_05_010
crossref_primary_10_1021_acssuschemeng_2c04273
crossref_primary_10_1002_adfm_202102228
crossref_primary_10_1039_D4TC03416C
crossref_primary_10_1016_j_cej_2021_134394
crossref_primary_10_1021_acs_cgd_4c00530
crossref_primary_10_1021_acs_iecr_0c00254
crossref_primary_10_1002_cjoc_202100170
crossref_primary_10_1039_C9TA05804D
crossref_primary_10_1002_pc_26862
crossref_primary_10_1007_s41918_022_00131_z
crossref_primary_10_1088_1757_899X_782_2_022025
crossref_primary_10_1002_app_52184
crossref_primary_10_1007_s11581_020_03865_2
crossref_primary_10_1080_25740881_2022_2113893
crossref_primary_10_1016_j_polymer_2024_127504
crossref_primary_10_1002_chem_201804643
crossref_primary_10_1016_j_memsci_2023_122118
crossref_primary_10_1016_j_coco_2021_100659
crossref_primary_10_1557_s43578_021_00355_7
crossref_primary_10_1016_j_jpowsour_2024_235836
crossref_primary_10_1016_j_jpowsour_2019_01_005
crossref_primary_10_3390_polym14245559
crossref_primary_10_1016_j_actbio_2019_10_044
crossref_primary_10_1002_adma_202107957
crossref_primary_10_1039_C9TA12979K
crossref_primary_10_1002_adfm_202112711
crossref_primary_10_1021_acsami_4c04937
crossref_primary_10_1021_acsaem_9b00568
crossref_primary_10_1021_acsaem_2c04170
crossref_primary_10_1021_acsami_0c11266
crossref_primary_10_1002_adma_202203547
crossref_primary_10_1016_j_polymer_2023_126564
crossref_primary_10_1002_smll_201904332
crossref_primary_10_1002_slct_202002152
crossref_primary_10_1016_j_cej_2024_158268
crossref_primary_10_1016_j_mtener_2023_101462
crossref_primary_10_1016_j_memsci_2022_121120
crossref_primary_10_1021_acsaem_1c03548
crossref_primary_10_1002_aenm_201803422
crossref_primary_10_1039_D2QM00351A
crossref_primary_10_1021_acs_chemrev_9b00326
crossref_primary_10_1016_j_nanoen_2024_109449
crossref_primary_10_1021_acsaem_4c01093
crossref_primary_10_1016_j_carbpol_2020_116753
crossref_primary_10_1016_j_jpcs_2024_112118
crossref_primary_10_1002_cssc_202201464
crossref_primary_10_1016_j_scriptamat_2023_115951
crossref_primary_10_1016_j_cej_2022_139112
crossref_primary_10_1016_j_jcis_2023_06_058
crossref_primary_10_1002_adem_201900055
crossref_primary_10_1021_acs_energyfuels_1c02049
crossref_primary_10_1016_j_polymer_2025_128184
crossref_primary_10_1002_celc_202400530
crossref_primary_10_1021_acsami_8b17521
crossref_primary_10_1002_cnl2_41
crossref_primary_10_1016_j_ensm_2019_11_005
crossref_primary_10_1016_j_mtcomm_2023_106223
crossref_primary_10_1039_D2MA01029A
crossref_primary_10_1039_D0QM00976H
crossref_primary_10_1002_eem2_12129
crossref_primary_10_1016_j_matdes_2018_02_039
crossref_primary_10_1016_j_nanoen_2021_106621
crossref_primary_10_1016_j_electacta_2019_135108
crossref_primary_10_1016_j_jcis_2023_11_132
crossref_primary_10_1016_j_memsci_2022_120807
crossref_primary_10_1002_bte2_20240015
crossref_primary_10_1039_D4TA05967K
crossref_primary_10_1021_acsanm_4c03481
crossref_primary_10_1007_s10853_024_09895_9
crossref_primary_10_1039_D4TC01629G
crossref_primary_10_1002_adfm_202102546
crossref_primary_10_1007_s12274_021_3714_3
crossref_primary_10_1021_acsami_0c10630
crossref_primary_10_1016_j_carbpol_2023_121530
crossref_primary_10_1021_acsami_8b12784
crossref_primary_10_1016_j_eurpolymj_2021_110703
crossref_primary_10_1002_app_50359
crossref_primary_10_1002_smll_201704371
crossref_primary_10_1016_j_memsci_2019_117622
crossref_primary_10_1142_S0219455424400017
crossref_primary_10_1002_adfm_202409368
crossref_primary_10_1016_j_electacta_2022_141209
crossref_primary_10_1016_j_jpowsour_2024_234950
crossref_primary_10_1002_eem2_12158
crossref_primary_10_1016_j_memsci_2020_117827
crossref_primary_10_1016_j_progpolymsci_2023_101714
crossref_primary_10_1039_D0TA00439A
crossref_primary_10_1016_j_memsci_2021_119622
crossref_primary_10_1016_j_est_2022_105646
crossref_primary_10_1016_j_carbon_2024_118941
crossref_primary_10_1021_acsbiomaterials_4c00306
crossref_primary_10_1002_admt_202100772
crossref_primary_10_1021_acssuschemeng_0c06665
crossref_primary_10_1002_smll_201803387
crossref_primary_10_1002_chem_201902093
crossref_primary_10_6023_A24040141
crossref_primary_10_1007_s40820_025_01650_2
crossref_primary_10_1021_acssuschemeng_9b03793
crossref_primary_10_1007_s10853_022_07111_0
crossref_primary_10_1016_j_ensm_2018_07_006
crossref_primary_10_2174_1872210516666220325153220
crossref_primary_10_1002_smm2_1182
crossref_primary_10_1016_j_cej_2019_03_153
crossref_primary_10_1002_er_4897
crossref_primary_10_1007_s11581_019_03206_y
crossref_primary_10_1149_2_1041908jes
crossref_primary_10_1002_ange_202103403
crossref_primary_10_1002_adfm_202008208
crossref_primary_10_1021_acsmaterialslett_1c00325
crossref_primary_10_1016_j_memsci_2018_09_052
crossref_primary_10_1016_j_memsci_2020_118921
crossref_primary_10_1002_aenm_201902497
crossref_primary_10_1149_1945_7111_ac2dca
crossref_primary_10_1002_adfm_202102284
crossref_primary_10_1021_acsami_9b19049
crossref_primary_10_1007_s11581_024_05836_3
crossref_primary_10_1021_acsami_4c11705
crossref_primary_10_1186_s11671_018_2788_7
crossref_primary_10_1002_smll_202203327
crossref_primary_10_1002_adfm_202214432
crossref_primary_10_1002_smtd_202401912
crossref_primary_10_1016_j_cej_2021_132470
crossref_primary_10_1002_aenm_202401858
crossref_primary_10_1002_adfm_202308039
crossref_primary_10_1002_adfm_202008537
crossref_primary_10_1016_j_nanoen_2019_103927
crossref_primary_10_1016_j_jpowsour_2024_234259
crossref_primary_10_1039_C8CS00489G
crossref_primary_10_1016_j_jenvman_2021_113989
crossref_primary_10_1021_acsnano_4c17836
crossref_primary_10_1016_j_ensm_2021_02_042
crossref_primary_10_1016_j_colsurfa_2021_127001
crossref_primary_10_1002_adfm_202415092
crossref_primary_10_1016_j_ensm_2018_02_006
crossref_primary_10_1007_s10008_018_4049_1
crossref_primary_10_1016_j_matchemphys_2022_126056
crossref_primary_10_1007_s11426_021_1011_9
crossref_primary_10_1002_app_48959
crossref_primary_10_1016_j_jechem_2022_08_030
crossref_primary_10_1016_j_isci_2019_06_010
crossref_primary_10_1002_cjoc_202200287
crossref_primary_10_1002_elt2_42
crossref_primary_10_1002_ente_202200183
crossref_primary_10_1016_j_memsci_2022_121275
crossref_primary_10_1002_advs_201800559
crossref_primary_10_1002_smll_202301428
crossref_primary_10_1002_cnma_201900456
crossref_primary_10_1039_D2CS00513A
crossref_primary_10_1016_j_coco_2022_101183
crossref_primary_10_1016_j_memsci_2019_02_002
crossref_primary_10_1016_j_memsci_2019_02_003
crossref_primary_10_1016_j_commatsci_2023_112153
crossref_primary_10_1016_j_carbpol_2023_121570
crossref_primary_10_1039_D2CE00225F
crossref_primary_10_1002_aenm_202202357
crossref_primary_10_1016_j_compositesb_2024_111537
crossref_primary_10_1016_j_cej_2024_151120
crossref_primary_10_1016_j_jpowsour_2022_231562
crossref_primary_10_1016_j_apsusc_2022_154903
crossref_primary_10_1002_adhm_202001851
crossref_primary_10_1007_s42765_023_00322_3
crossref_primary_10_1002_nano_202000004
crossref_primary_10_1021_acsnano_3c10534
crossref_primary_10_1016_j_jcis_2025_01_164
crossref_primary_10_1016_j_solmat_2022_111696
crossref_primary_10_1002_aenm_201802430
crossref_primary_10_1016_j_ensm_2024_103426
crossref_primary_10_1021_acsaem_9b01032
crossref_primary_10_1016_j_jpowsour_2021_229973
crossref_primary_10_1016_j_clay_2019_105327
crossref_primary_10_1021_acsaem_2c00188
crossref_primary_10_1016_j_cej_2022_140397
crossref_primary_10_1002_cssc_201802370
crossref_primary_10_1016_j_cej_2019_123312
crossref_primary_10_1016_j_jpowsour_2021_230955
crossref_primary_10_26599_NR_2025_94906994
crossref_primary_10_1007_s42247_024_00716_y
crossref_primary_10_1002_adma_202006019
crossref_primary_10_1002_adfm_202425698
crossref_primary_10_3390_polym15183654
crossref_primary_10_1007_s10853_019_04218_9
crossref_primary_10_1039_D4GC01771D
crossref_primary_10_1002_adfm_202308929
crossref_primary_10_1007_s10565_020_09527_3
crossref_primary_10_1002_adma_202101698
crossref_primary_10_1016_j_mattod_2021_01_026
crossref_primary_10_1002_ejic_202000940
crossref_primary_10_1039_C9BM00953A
crossref_primary_10_1002_smll_202312124
crossref_primary_10_1016_j_jechem_2020_07_015
crossref_primary_10_1016_j_matchemphys_2022_125975
crossref_primary_10_1016_j_cej_2022_136470
crossref_primary_10_1016_j_ensm_2023_103135
crossref_primary_10_1016_j_apsusc_2019_144757
crossref_primary_10_1021_acsami_2c07869
crossref_primary_10_1016_j_ensm_2023_103133
crossref_primary_10_1002_ange_202300258
crossref_primary_10_1016_j_colsurfa_2024_135231
crossref_primary_10_1021_acsami_9b09722
crossref_primary_10_1016_j_colsurfa_2024_133970
crossref_primary_10_1016_j_memsci_2019_117364
crossref_primary_10_1039_D2NJ04947C
crossref_primary_10_1002_admi_202100163
crossref_primary_10_1002_adfm_202106176
crossref_primary_10_1021_acsnano_8b00047
crossref_primary_10_1021_acs_iecr_1c02102
crossref_primary_10_1007_s11581_020_03587_5
crossref_primary_10_1039_C8TA12196F
crossref_primary_10_1021_acsaem_1c03948
crossref_primary_10_1002_smll_202304290
crossref_primary_10_1016_j_cej_2023_144089
crossref_primary_10_1002_ceat_202000218
crossref_primary_10_1039_C9RA08273E
crossref_primary_10_1016_j_eurpolymj_2022_111222
crossref_primary_10_1039_D1TA03125B
crossref_primary_10_1021_acs_langmuir_4c01612
crossref_primary_10_1002_ente_201800768
crossref_primary_10_1016_j_ceramint_2023_04_194
crossref_primary_10_3390_en12173391
crossref_primary_10_1007_s00894_024_05863_x
crossref_primary_10_1002_adfm_202008743
crossref_primary_10_1016_j_jelechem_2019_113662
crossref_primary_10_1039_C9TA12783F
crossref_primary_10_1016_j_jallcom_2024_174600
crossref_primary_10_1016_j_electacta_2020_135821
crossref_primary_10_1016_j_jechem_2021_05_027
crossref_primary_10_1021_acsami_0c15692
crossref_primary_10_1002_smll_202300130
crossref_primary_10_1016_j_mtener_2020_100420
crossref_primary_10_3390_polym17070842
crossref_primary_10_1002_smll_202300378
crossref_primary_10_1039_C9TA12703H
crossref_primary_10_1002_advs_202103796
crossref_primary_10_1016_j_electacta_2023_143064
crossref_primary_10_1142_S1793604721430086
crossref_primary_10_1016_j_memsci_2018_07_056
crossref_primary_10_1016_j_cej_2023_145724
crossref_primary_10_1039_D0TA07511F
crossref_primary_10_1002_adma_202416733
crossref_primary_10_1016_j_mattod_2022_08_015
crossref_primary_10_1002_adma_202401482
crossref_primary_10_1039_C8TB00658J
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1016_j_jpowsour_2018_08_043
crossref_primary_10_1016_j_cis_2023_103013
crossref_primary_10_1016_j_jiec_2022_01_003
crossref_primary_10_1016_j_etran_2024_100364
crossref_primary_10_1002_adma_202008088
crossref_primary_10_1002_adma_202107523
crossref_primary_10_1016_j_ensm_2021_06_033
crossref_primary_10_1039_D1SE01277K
crossref_primary_10_2147_IJN_S238005
crossref_primary_10_1002_ente_201900078
crossref_primary_10_1021_acsami_9b17374
crossref_primary_10_1016_j_cej_2020_124259
crossref_primary_10_1016_j_est_2022_105496
crossref_primary_10_1002_marc_202400644
crossref_primary_10_1016_j_est_2022_106100
crossref_primary_10_1002_ente_202000228
crossref_primary_10_1016_j_compositesa_2022_107061
crossref_primary_10_1016_j_cej_2024_158075
crossref_primary_10_1016_j_ensm_2019_07_024
crossref_primary_10_1039_D2CE00220E
crossref_primary_10_1016_j_isci_2022_103744
crossref_primary_10_1002_cey2_187
crossref_primary_10_1016_j_est_2023_109594
crossref_primary_10_1002_smll_202205152
crossref_primary_10_3390_membranes9070078
crossref_primary_10_1002_aenm_201801778
Cites_doi 10.1021/am507145h
10.1002/ente.201402215
10.1002/adma.201100303
10.1016/j.electacta.2014.12.102
10.1126/science.1212741
10.1002/ente.201500368
10.1021/ja3091438
10.1002/aenm.201401408
10.1039/c0cs00081g
10.1038/nmat4089
10.1016/j.jpowsour.2017.02.078
10.1002/adma.201602172
10.1039/C6TA08404D
10.1039/c2ee03025j
10.1002/cssc.201600943
10.1016/j.jmst.2015.11.006
10.1039/C4EE01432D
10.1016/j.ssi.2005.05.006
10.1039/c0cs00121j
10.1016/j.jpowsour.2015.09.037
10.1021/nn406428n
10.1039/c1ee01388b
10.1007/s11581-016-1752-8
10.1039/b820555h
10.1016/j.actbio.2013.04.012
10.1016/j.electacta.2016.09.035
10.1038/451652a
10.1021/acs.nanolett.6b02069
10.1021/cr020738u
10.1021/acsami.6b12838
10.1016/j.jpowsour.2016.11.026
10.1002/aenm.201501082
10.1021/am302290n
10.1016/j.jpowsour.2012.02.038
10.1002/aenm.201500954
10.1002/chem.201304439
10.1149/2.059406jes
10.1039/C1EE02708E
10.1038/35104644
10.1021/acsami.6b09601
10.1021/am508149n
10.1016/j.jpowsour.2012.10.027
10.1039/C6EE01219A
10.1007/s10800-013-0561-2
10.1126/science.1148726
10.1039/C4TA00010B
10.1002/anie.201201429
10.1039/c1ee01189h
10.1007/s11581-013-1044-5
10.1021/acsnano.5b01126
10.1126/sciadv.1601978
10.1016/j.micromeso.2016.02.006
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201703548
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29044775
10_1002_adma_201703548
ADMA201703548
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51772116; 51522205; 51472098; 21501188
– fundername: Science and Technology Commission of Shanghai
  funderid: 15JC1491001
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4128-f26092240391607ba82902fcc501ff5b81a38800d31defda571a221cec95475e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:24:03 EDT 2025
Mon Jul 14 06:55:49 EDT 2025
Mon Jul 21 05:42:05 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Tue Jul 01 00:44:36 EDT 2025
Wed Jan 22 16:56:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords hydroxyapatite nanowires
lithium-ion batteries
separators
high safety
fire resistant
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4128-f26092240391607ba82902fcc501ff5b81a38800d31defda571a221cec95475e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5769-167X
PMID 29044775
PQID 1966402187
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_1952532453
proquest_journals_1966402187
pubmed_primary_29044775
crossref_primary_10_1002_adma_201703548
crossref_citationtrail_10_1002_adma_201703548
wiley_primary_10_1002_adma_201703548_ADMA201703548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Nov
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2008 2014; 319 2
2015; 14
2013; 3
2004; 104
2015; 5
2015; 3
2011; 40
2013 2008; 135 451
2012 2017; 208 338
2011 2012 2017; 334 51 3
2015; 9
2016; 16
2013; 5
2015; 7
2017 2016; 348 226
2015 2016 2014; 5 4 161
2012 2015; 5 5
2017 2014 2016; 20 28
2001 2009 2011 2011; 414 38 4 4
2016 2011 2016; 9 23 9
2005 2015 2016; 176 5 8
2014; 4
2013 2016 2015 2013 2016 2015; 226 32 299 43 216 154
2014; 8
2014; 7
2012; 5
2016; 8
2016; 22
2013 2014; 9 20
e_1_2_4_21_1
e_1_2_4_23_1
e_1_2_4_21_2
e_1_2_4_27_3
e_1_2_4_29_1
e_1_2_4_27_2
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_3_3
e_1_2_4_5_1
Zhu Y. (e_1_2_4_30_1) 2013; 3
e_1_2_4_1_4
e_1_2_4_3_2
e_1_2_4_7_1
e_1_2_4_7_3
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_31_2
e_1_2_4_10_1
e_1_2_4_12_1
e_1_2_4_31_3
e_1_2_4_12_2
e_1_2_4_14_1
e_1_2_4_14_2
e_1_2_4_16_1
e_1_2_4_14_3
e_1_2_4_14_4
e_1_2_4_18_1
e_1_2_4_14_5
e_1_2_4_14_6
e_1_2_4_18_2
e_1_2_4_20_1
e_1_2_4_22_1
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_28_1
Zhang J. (e_1_2_4_25_1) 2014; 4
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_13_1
Shi J. (e_1_2_4_27_1) 2015; 5
e_1_2_4_15_1
e_1_2_4_15_2
e_1_2_4_17_2
e_1_2_4_17_1
e_1_2_4_17_3
e_1_2_4_19_1
Ghazi Z. A. (e_1_2_4_31_1) 2017
References_xml – volume: 208 338
  start-page: 210 82
  year: 2012 2017
  publication-title: J. Power Sources J. Power Sources
– volume: 176 5 8
  start-page: 1903 1501082 27740
  year: 2005 2015 2016
  publication-title: Solid State Ionics Adv. Energy Mater. ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 34715
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 319 2
  start-page: 1069 5516
  year: 2008 2014
  publication-title: Science J. Mater. Chem. A
– volume: 40
  start-page: 3764
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 348 226
  start-page: 80 406
  year: 2017 2016
  publication-title: J. Power Sources Microporous Mesoporous Mater.
– volume: 20 28
  start-page: 635 9797
  year: 2017 2014 2016
  publication-title: Adv. Mater. Ionics Adv. Mater.
– volume: 7
  start-page: 3857
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 5 4 161
  start-page: 551 A1032
  year: 2015 2016 2014
  publication-title: Sci. Rep. Energy Technol. J. Electrochem. Soc.
– volume: 414 38 4 4
  start-page: 359 2565 3287 2870
  year: 2001 2009 2011 2011
  publication-title: Nature Chem. Soc. Rev. Energy Environ. Sci. Energy Environ. Sci.
– volume: 5
  start-page: 311
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 135 451
  start-page: 1167 652
  year: 2013 2008
  publication-title: J. Am. Chem. Soc. Nature
– volume: 3
  year: 2013
  publication-title: Sci. Rep.
– volume: 104
  start-page: 4419
  year: 2004
  publication-title: Chem. Rev.
– volume: 16
  start-page: 5533
  year: 2016
  publication-title: Nano Lett.
– volume: 40
  start-page: 2525
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 9 20
  start-page: 7591 1242
  year: 2013 2014
  publication-title: Acta Biomater. Chem. – Eur. J.
– volume: 14
  start-page: 23
  year: 2015
  publication-title: Nat. Mater.
– volume: 7
  start-page: 3314
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9 23 9
  start-page: 3023 3066 3252
  year: 2016 2011 2016
  publication-title: ChemSusChem Adv. Mater. Energy Environ. Sci.
– volume: 5
  start-page: 1500954
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 128
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 2231
  year: 2015
  publication-title: ACS Nano
– volume: 5 5
  start-page: 6491 1401408
  year: 2012 2015
  publication-title: Energy Environ. Sci. Adv. Energy Mater.
– volume: 334 51 3
  start-page: 928 9994 e1601978
  year: 2011 2012 2017
  publication-title: Science Angew. Chem., Int. Ed. Sci. Adv.
– volume: 7
  start-page: 738
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 5690
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2014
  publication-title: Sci. Rep.
– volume: 226 32 299 43 216 154
  start-page: 82 200 417 711 276 219
  year: 2013 2016 2015 2013 2016 2015
  publication-title: J. Power Sources J. Mater. Sci. Technol. J. Power Sources J. Appl. Electrochem. Electrochim. Acta Electrochim. Acta
– volume: 8
  start-page: 2739
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 453
  year: 2015
  publication-title: Energy Technol.
– volume: 22
  start-page: 2143
  year: 2016
  publication-title: Ionics
– ident: e_1_2_4_32_1
  doi: 10.1021/am507145h
– ident: e_1_2_4_9_1
  doi: 10.1002/ente.201402215
– ident: e_1_2_4_7_2
  doi: 10.1002/adma.201100303
– ident: e_1_2_4_14_6
  doi: 10.1016/j.electacta.2014.12.102
– ident: e_1_2_4_3_1
  doi: 10.1126/science.1212741
– ident: e_1_2_4_27_2
  doi: 10.1002/ente.201500368
– volume: 3
  year: 2013
  ident: e_1_2_4_30_1
  publication-title: Sci. Rep.
– ident: e_1_2_4_2_1
  doi: 10.1021/ja3091438
– ident: e_1_2_4_15_2
  doi: 10.1002/aenm.201401408
– ident: e_1_2_4_16_1
  doi: 10.1039/c0cs00081g
– ident: e_1_2_4_22_1
  doi: 10.1038/nmat4089
– ident: e_1_2_4_12_1
  doi: 10.1016/j.jpowsour.2017.02.078
– ident: e_1_2_4_31_3
  doi: 10.1002/adma.201602172
– ident: e_1_2_4_13_1
  doi: 10.1039/C6TA08404D
– ident: e_1_2_4_15_1
  doi: 10.1039/c2ee03025j
– ident: e_1_2_4_7_1
  doi: 10.1002/cssc.201600943
– ident: e_1_2_4_14_2
  doi: 10.1016/j.jmst.2015.11.006
– volume: 4
  year: 2014
  ident: e_1_2_4_25_1
  publication-title: Sci. Rep.
– ident: e_1_2_4_6_1
  doi: 10.1039/C4EE01432D
– ident: e_1_2_4_17_1
  doi: 10.1016/j.ssi.2005.05.006
– ident: e_1_2_4_23_1
  doi: 10.1039/c0cs00121j
– ident: e_1_2_4_14_3
  doi: 10.1016/j.jpowsour.2015.09.037
– ident: e_1_2_4_19_1
  doi: 10.1021/nn406428n
– ident: e_1_2_4_1_3
  doi: 10.1039/c1ee01388b
– ident: e_1_2_4_10_1
  doi: 10.1007/s11581-016-1752-8
– ident: e_1_2_4_1_2
  doi: 10.1039/b820555h
– ident: e_1_2_4_18_1
  doi: 10.1016/j.actbio.2013.04.012
– ident: e_1_2_4_14_5
  doi: 10.1016/j.electacta.2016.09.035
– ident: e_1_2_4_2_2
  doi: 10.1038/451652a
– ident: e_1_2_4_8_1
  doi: 10.1021/acs.nanolett.6b02069
– ident: e_1_2_4_5_1
  doi: 10.1021/cr020738u
– ident: e_1_2_4_24_1
  doi: 10.1021/acsami.6b12838
– year: 2017
  ident: e_1_2_4_31_1
  publication-title: Adv. Mater.
– ident: e_1_2_4_4_2
  doi: 10.1016/j.jpowsour.2016.11.026
– ident: e_1_2_4_17_2
  doi: 10.1002/aenm.201501082
– ident: e_1_2_4_26_1
  doi: 10.1021/am302290n
– ident: e_1_2_4_4_1
  doi: 10.1016/j.jpowsour.2012.02.038
– ident: e_1_2_4_29_1
  doi: 10.1002/aenm.201500954
– ident: e_1_2_4_18_2
  doi: 10.1002/chem.201304439
– ident: e_1_2_4_27_3
  doi: 10.1149/2.059406jes
– ident: e_1_2_4_28_1
  doi: 10.1039/C1EE02708E
– volume: 5
  year: 2015
  ident: e_1_2_4_27_1
  publication-title: Sci. Rep.
– ident: e_1_2_4_1_1
  doi: 10.1038/35104644
– ident: e_1_2_4_17_3
  doi: 10.1021/acsami.6b09601
– ident: e_1_2_4_11_1
  doi: 10.1021/am508149n
– ident: e_1_2_4_14_1
  doi: 10.1016/j.jpowsour.2012.10.027
– ident: e_1_2_4_7_3
  doi: 10.1039/C6EE01219A
– ident: e_1_2_4_14_4
  doi: 10.1007/s10800-013-0561-2
– ident: e_1_2_4_21_1
  doi: 10.1126/science.1148726
– ident: e_1_2_4_21_2
  doi: 10.1039/C4TA00010B
– ident: e_1_2_4_3_2
  doi: 10.1002/anie.201201429
– ident: e_1_2_4_1_4
  doi: 10.1039/c1ee01189h
– ident: e_1_2_4_31_2
  doi: 10.1007/s11581-013-1044-5
– ident: e_1_2_4_20_1
  doi: 10.1021/acsnano.5b01126
– ident: e_1_2_4_3_3
  doi: 10.1126/sciadv.1601978
– ident: e_1_2_4_12_2
  doi: 10.1016/j.micromeso.2016.02.006
SSID ssj0009606
Score 2.6519513
Snippet Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based...
Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Cellulose fibers
Contact angle
Crosslinking
Electrochemical analysis
Electrolytes
Fire resistance
fire resistant
Fire resistant materials
high safety
Hydroxyapatite
hydroxyapatite nanowires
Lithium
Lithium-ion batteries
Materials science
Nanowires
Product safety
Rechargeable batteries
Separators
Structural hierarchy
Structural integrity
Thermal resistance
Thermal stability
Wettability
Title Flexible, High‐Wettability and Fire‐Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201703548
https://www.ncbi.nlm.nih.gov/pubmed/29044775
https://www.proquest.com/docview/1966402187
https://www.proquest.com/docview/1952532453
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHqCc48H6kFGQkJC6k3Tj2Ojkuj9WCKIdCRW-Rn6KiTVCTPZQTEl-gn7GfhJk4m3ZBCAku0WbXzsM7M_47Gf8M8FQUpZEZGi-3uMGA59LCKZtKF2QReKl8oAf6u--ni33x9kAeXJrFH_kQ4wM38ow-XpODa9PuXEBDteu5QRmaLKpuDMKUsEWqaO-CH0XyvIft5TItp6JYURsnfGe9-nqv9JvUXFeufdczvwF6ddEx4-TL9rIz2_bbLzzH_7mrm3B90KVsFg3pFlzx9W24dolWeAd-zAmeaY78c0bZIeffzz75rouc71Oma8fmGD_x6z3fkiqtO_bB92jx5qRlL7C7dKyp2eLU0Y1oSuXuPMPw3hAvuWUon9lsSElg7w67z4fLYzzaG6wTKaA4qL8L-_PXH18u0mENh9QK7PrSgOOlkmQDTfCdKKPpxS0P1spJFoI0RaYJRzNxeeZ8cFqqTHOeWW9LKZT0-T3YqJvaPwAWAqpDawytUCNKX5QqL2h4j5WMmGYmgXT1H1Z2AJzTOhtHVUQz84oatxobN4FnY_mvEe3xx5JbK5OoBhdvKwxdU0EKSSXwZPwZnZPeuOjaN0sqI7lEySrzBO5HUxpPhe0ghFIyAd4bxF-uoZq92p2Ne5v_UukhXKXPcSblFmx0J0v_CCVVZx73bvMT7lIaDw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUA7AgfcjUMBISFxIu3HsdXJcKKst7PZQWsEtil-ioiSomz2UExJfgM_IJ2EmTlIWhJDgslKy9m7izIz_dsY_AzwRWa5lgsbLDX5gwLNxZpWJpfUy8zxXztOE_mJvPDsUr97JPpuQ1sIEPsQw4Uae0cZrcnCakN4-o4aWtgUHJWizKLvPwwXa1pt8c2f_jCBFAr3F7aUyzsci67mNI769Xn-9X_pNbK5r17bzmV4F3V92yDn5sLVq9Jb5_AvR8b_u6xpc6aQpmwRbug7nXHUDLv8ELLwJX6fEz9TH7hmjBJHvX769dU0TUN-nrKwsm2IIxdP7bknCtGrYG9fSxeuTJXuOPaZldcVmp5bupKRs7sYxjPA1IZOXDBU0m3RZCWx-1Lw_Wn3EX9vFOgEEiuP6W3A4fXnwYhZ32zjERmDvF3scMuWkHGiN70jpkt7dcm-MHCXeS50lJRFpRjZNrPO2lCopOU-MM7kUSrr0NmxUdeXuAvMeBaLRmjapEbnLcpVmNMLHSlqMEx1B3D_EwnSMc9pq47gIdGZeUOMWQ-NG8HQo_ynQPf5YcrO3iaLz8mWB0WssSCSpCB4PX6N_0kuXsnL1ispILlG1yjSCO8GWhr_CdhBCKRkBby3iL9dQTHYWk-Ho3r9UegQXZweLeTHf3Xt9Hy7R-bCwchM2mpOVe4AKq9EPWx_6AXgPHig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCRED-VZSClgJCQupM3DjpPjwhJtoa1QoaK3KH6JqiWputlDOSH1C_Qz8kmYSbJpF4SQ4BIpiZ2HMzP-27F_BnjB00yJEI030rjBgGf81EjtC-NE6qJMWkcd-ju7yWSfvzsQB1dm8Xd8iKHDjTyjjdfk4CfGbV5CQ0vTcoNCNFlU3dfhBk-ClJpf471LgBTp85a2Fws_S3g6xzYG0eZi_sVq6TetuShd27onvw3l_Km7ISdHG7NGbehvvwAd_-e17sBKL0zZqLOku3DNVvdg-Qqu8D6c50TPVMf2FaPhIT--X3y2TdOBvs9YWRmWYwDFw3t2SrK0athH27LF69Mpe431pWF1xSZnhl6kpLHcjWUY32sCJk8Z6mc26scksO3D5svh7CtebQvzdBhQbNU_gP387ac3E79fxMHXHOs-32GDKSPdQDN8A6lK-nMbOa1FEDonVBqWxKMJTBwa60wpZFhGUaitzgSXwsarsFTVlX0EzDmUh1opWqKGZzbNZJxS-x4zKZ6EygN__g0L3RPOaaGN46JjM0cFFW4xFK4HL4f0Jx3b448p1-cmUfQ-Pi0wdiWcJJL04PlwGr2TfrmUla1nlEZEAjWriD142JnScCssB86lFB5ErUH85RmK0XhnNOyt_UumZ3Dzwzgvtrd23z-GW3S4m1W5DkvN6cw-QXnVqKetB_0EIoQc4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible%2C+High%E2%80%90Wettability+and+Fire%E2%80%90Resistant+Separators+Based+on+Hydroxyapatite+Nanowires+for+Advanced+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Heng&rft.au=Wu%2C+Dabei&rft.au=Wu%2C+Jin&rft.au=Dong%2C+Li%E2%80%90Ying&rft.date=2017-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=44&rft_id=info:doi/10.1002%2Fadma.201703548&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201703548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon