Flexible, High‐Wettability and Fire‐Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium‐Ion Batteries
Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly f...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 44 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201703548 |
Cover
Loading…
Abstract | Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross‐linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire‐resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as‐prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as‐prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety.
A new kind of highly flexible, porous, high‐wettability, fire‐resistant hydroxyapatite nanowire‐based separator with superior performance and high safety is prepared for advanced lithium‐ion batteries. The batteries with the hydroxyapatite nanowire‐based separators show better cyclability and enhanced rate capability compared with those with the commercial polypropylene separator. The as‐prepared batteries adopting the hydroxyapatite nanowire‐based separator can safely work at 150 °C. |
---|---|
AbstractList | Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety.Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross‐linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire‐resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as‐prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as‐prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. A new kind of highly flexible, porous, high‐wettability, fire‐resistant hydroxyapatite nanowire‐based separator with superior performance and high safety is prepared for advanced lithium‐ion batteries. The batteries with the hydroxyapatite nanowire‐based separators show better cyclability and enhanced rate capability compared with those with the commercial polypropylene separator. The as‐prepared batteries adopting the hydroxyapatite nanowire‐based separator can safely work at 150 °C. |
Author | Zhu, Ying‐Jie Hu, Xianluo Wu, Dabei Dong, Li‐Ying Li, Heng Wu, Jin |
Author_xml | – sequence: 1 givenname: Heng surname: Li fullname: Li, Heng organization: Shanghai Institute of Ceramics University of Chinese Academy of Sciences – sequence: 2 givenname: Dabei surname: Wu fullname: Wu, Dabei organization: Huazhong University of Science and Technology – sequence: 3 givenname: Jin surname: Wu fullname: Wu, Jin organization: Chinese Academy of Sciences – sequence: 4 givenname: Li‐Ying surname: Dong fullname: Dong, Li‐Ying organization: Chinese Academy of Sciences – sequence: 5 givenname: Ying‐Jie surname: Zhu fullname: Zhu, Ying‐Jie email: y.j.zhu@mail.sic.ac.cn organization: Shanghai Institute of Ceramics University of Chinese Academy of Sciences – sequence: 6 givenname: Xianluo orcidid: 0000-0002-5769-167X surname: Hu fullname: Hu, Xianluo email: huxl@mail.hust.edu.cn organization: Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29044775$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQhy1URLeFK0dkiQsHstiOncTHbWHZSgtI_BHHaJJMqKvEXmyHNjckXoBn5ElwtaVIlRAnS6Pvm_HM74gcWGeRkMecLTlj4gV0IywF4yXLlazukQVXgmeSaXVAFkznKtOFrA7JUQgXjDFdsOIBORSaSVmWakF-rAe8Ms2Az-nGfDn_9f3nZ4wRGjOYOFOwHV0bj6n8HoMJEWykH3AHHqLzgZ5AwI46Szdz593VDDuIJiJ9C9ZdJi_Q3nm66r6BbRO4NfHcTGPqdpacE4gRvcHwkNzvYQj46OY9Jp_Wrz6ebrLtu9dnp6tt1kouqqwXBdNCSJZrXrCygSqtIfq2VYz3vWoqDnlVMdblvMO-A1VyEIK32GolS4X5MXm277vz7uuEIdajCS0OA1h0U6i5VkLlQqo8oU_voBdu8jb9LlFFIZngVZmoJzfU1IzY1TtvRvBz_ee8CVjugda7EDz2twhn9XV-9XV-9W1-SZB3hNbEdFNnowcz_FvTe-3SDDj_Z0i9evlm9df9DdmdslE |
CitedBy_id | crossref_primary_10_1088_1748_605X_aba281 crossref_primary_10_1016_j_jpowsour_2019_02_037 crossref_primary_10_1016_j_nanoen_2018_04_078 crossref_primary_10_1002_smll_202103679 crossref_primary_10_1016_j_inoche_2025_114113 crossref_primary_10_1016_j_electacta_2022_140258 crossref_primary_10_1007_s10570_022_04598_3 crossref_primary_10_1016_j_mtphys_2023_101256 crossref_primary_10_1002_chem_202000679 crossref_primary_10_1007_s10570_021_04173_2 crossref_primary_10_1002_aenm_201802930 crossref_primary_10_1021_acsmaterialslett_2c00188 crossref_primary_10_1002_anie_202103403 crossref_primary_10_1016_j_memsci_2019_117725 crossref_primary_10_1002_celc_202001232 crossref_primary_10_1007_s10008_024_06047_6 crossref_primary_10_1016_j_jpowsour_2020_228649 crossref_primary_10_1021_acsami_8b06706 crossref_primary_10_1039_D3TA06261A crossref_primary_10_1007_s41918_020_00093_0 crossref_primary_10_1016_j_memsci_2020_119001 crossref_primary_10_1016_j_memsci_2019_04_032 crossref_primary_10_1002_adfm_202425517 crossref_primary_10_1021_acsanm_2c04500 crossref_primary_10_1016_j_jcis_2024_12_229 crossref_primary_10_1016_j_ccr_2024_216104 crossref_primary_10_1016_j_talanta_2023_124979 crossref_primary_10_2174_2210298101999210104224159 crossref_primary_10_1002_adma_201808338 crossref_primary_10_1021_acssuschemeng_9b02488 crossref_primary_10_1016_j_memsci_2022_120461 crossref_primary_10_1016_j_eurpolymj_2020_109587 crossref_primary_10_1016_j_jcis_2020_10_075 crossref_primary_10_1016_j_est_2023_107231 crossref_primary_10_1039_D1RA02845F crossref_primary_10_1002_smm2_1007 crossref_primary_10_1016_j_cej_2025_160432 crossref_primary_10_1002_adfm_202002169 crossref_primary_10_1002_app_54587 crossref_primary_10_1002_anie_202300258 crossref_primary_10_1016_j_ensm_2022_02_020 crossref_primary_10_1021_acsami_9b18134 crossref_primary_10_1039_D0EE02848G crossref_primary_10_1002_smll_202309896 crossref_primary_10_1039_D0TA10238E crossref_primary_10_1039_D1QM00071C crossref_primary_10_1016_j_nanoen_2018_11_005 crossref_primary_10_3390_molecules27206808 crossref_primary_10_1002_slct_202301025 crossref_primary_10_1016_j_carbon_2019_05_010 crossref_primary_10_1021_acssuschemeng_2c04273 crossref_primary_10_1002_adfm_202102228 crossref_primary_10_1039_D4TC03416C crossref_primary_10_1016_j_cej_2021_134394 crossref_primary_10_1021_acs_cgd_4c00530 crossref_primary_10_1021_acs_iecr_0c00254 crossref_primary_10_1002_cjoc_202100170 crossref_primary_10_1039_C9TA05804D crossref_primary_10_1002_pc_26862 crossref_primary_10_1007_s41918_022_00131_z crossref_primary_10_1088_1757_899X_782_2_022025 crossref_primary_10_1002_app_52184 crossref_primary_10_1007_s11581_020_03865_2 crossref_primary_10_1080_25740881_2022_2113893 crossref_primary_10_1016_j_polymer_2024_127504 crossref_primary_10_1002_chem_201804643 crossref_primary_10_1016_j_memsci_2023_122118 crossref_primary_10_1016_j_coco_2021_100659 crossref_primary_10_1557_s43578_021_00355_7 crossref_primary_10_1016_j_jpowsour_2024_235836 crossref_primary_10_1016_j_jpowsour_2019_01_005 crossref_primary_10_3390_polym14245559 crossref_primary_10_1016_j_actbio_2019_10_044 crossref_primary_10_1002_adma_202107957 crossref_primary_10_1039_C9TA12979K crossref_primary_10_1002_adfm_202112711 crossref_primary_10_1021_acsami_4c04937 crossref_primary_10_1021_acsaem_9b00568 crossref_primary_10_1021_acsaem_2c04170 crossref_primary_10_1021_acsami_0c11266 crossref_primary_10_1002_adma_202203547 crossref_primary_10_1016_j_polymer_2023_126564 crossref_primary_10_1002_smll_201904332 crossref_primary_10_1002_slct_202002152 crossref_primary_10_1016_j_cej_2024_158268 crossref_primary_10_1016_j_mtener_2023_101462 crossref_primary_10_1016_j_memsci_2022_121120 crossref_primary_10_1021_acsaem_1c03548 crossref_primary_10_1002_aenm_201803422 crossref_primary_10_1039_D2QM00351A crossref_primary_10_1021_acs_chemrev_9b00326 crossref_primary_10_1016_j_nanoen_2024_109449 crossref_primary_10_1021_acsaem_4c01093 crossref_primary_10_1016_j_carbpol_2020_116753 crossref_primary_10_1016_j_jpcs_2024_112118 crossref_primary_10_1002_cssc_202201464 crossref_primary_10_1016_j_scriptamat_2023_115951 crossref_primary_10_1016_j_cej_2022_139112 crossref_primary_10_1016_j_jcis_2023_06_058 crossref_primary_10_1002_adem_201900055 crossref_primary_10_1021_acs_energyfuels_1c02049 crossref_primary_10_1016_j_polymer_2025_128184 crossref_primary_10_1002_celc_202400530 crossref_primary_10_1021_acsami_8b17521 crossref_primary_10_1002_cnl2_41 crossref_primary_10_1016_j_ensm_2019_11_005 crossref_primary_10_1016_j_mtcomm_2023_106223 crossref_primary_10_1039_D2MA01029A crossref_primary_10_1039_D0QM00976H crossref_primary_10_1002_eem2_12129 crossref_primary_10_1016_j_matdes_2018_02_039 crossref_primary_10_1016_j_nanoen_2021_106621 crossref_primary_10_1016_j_electacta_2019_135108 crossref_primary_10_1016_j_jcis_2023_11_132 crossref_primary_10_1016_j_memsci_2022_120807 crossref_primary_10_1002_bte2_20240015 crossref_primary_10_1039_D4TA05967K crossref_primary_10_1021_acsanm_4c03481 crossref_primary_10_1007_s10853_024_09895_9 crossref_primary_10_1039_D4TC01629G crossref_primary_10_1002_adfm_202102546 crossref_primary_10_1007_s12274_021_3714_3 crossref_primary_10_1021_acsami_0c10630 crossref_primary_10_1016_j_carbpol_2023_121530 crossref_primary_10_1021_acsami_8b12784 crossref_primary_10_1016_j_eurpolymj_2021_110703 crossref_primary_10_1002_app_50359 crossref_primary_10_1002_smll_201704371 crossref_primary_10_1016_j_memsci_2019_117622 crossref_primary_10_1142_S0219455424400017 crossref_primary_10_1002_adfm_202409368 crossref_primary_10_1016_j_electacta_2022_141209 crossref_primary_10_1016_j_jpowsour_2024_234950 crossref_primary_10_1002_eem2_12158 crossref_primary_10_1016_j_memsci_2020_117827 crossref_primary_10_1016_j_progpolymsci_2023_101714 crossref_primary_10_1039_D0TA00439A crossref_primary_10_1016_j_memsci_2021_119622 crossref_primary_10_1016_j_est_2022_105646 crossref_primary_10_1016_j_carbon_2024_118941 crossref_primary_10_1021_acsbiomaterials_4c00306 crossref_primary_10_1002_admt_202100772 crossref_primary_10_1021_acssuschemeng_0c06665 crossref_primary_10_1002_smll_201803387 crossref_primary_10_1002_chem_201902093 crossref_primary_10_6023_A24040141 crossref_primary_10_1007_s40820_025_01650_2 crossref_primary_10_1021_acssuschemeng_9b03793 crossref_primary_10_1007_s10853_022_07111_0 crossref_primary_10_1016_j_ensm_2018_07_006 crossref_primary_10_2174_1872210516666220325153220 crossref_primary_10_1002_smm2_1182 crossref_primary_10_1016_j_cej_2019_03_153 crossref_primary_10_1002_er_4897 crossref_primary_10_1007_s11581_019_03206_y crossref_primary_10_1149_2_1041908jes crossref_primary_10_1002_ange_202103403 crossref_primary_10_1002_adfm_202008208 crossref_primary_10_1021_acsmaterialslett_1c00325 crossref_primary_10_1016_j_memsci_2018_09_052 crossref_primary_10_1016_j_memsci_2020_118921 crossref_primary_10_1002_aenm_201902497 crossref_primary_10_1149_1945_7111_ac2dca crossref_primary_10_1002_adfm_202102284 crossref_primary_10_1021_acsami_9b19049 crossref_primary_10_1007_s11581_024_05836_3 crossref_primary_10_1021_acsami_4c11705 crossref_primary_10_1186_s11671_018_2788_7 crossref_primary_10_1002_smll_202203327 crossref_primary_10_1002_adfm_202214432 crossref_primary_10_1002_smtd_202401912 crossref_primary_10_1016_j_cej_2021_132470 crossref_primary_10_1002_aenm_202401858 crossref_primary_10_1002_adfm_202308039 crossref_primary_10_1002_adfm_202008537 crossref_primary_10_1016_j_nanoen_2019_103927 crossref_primary_10_1016_j_jpowsour_2024_234259 crossref_primary_10_1039_C8CS00489G crossref_primary_10_1016_j_jenvman_2021_113989 crossref_primary_10_1021_acsnano_4c17836 crossref_primary_10_1016_j_ensm_2021_02_042 crossref_primary_10_1016_j_colsurfa_2021_127001 crossref_primary_10_1002_adfm_202415092 crossref_primary_10_1016_j_ensm_2018_02_006 crossref_primary_10_1007_s10008_018_4049_1 crossref_primary_10_1016_j_matchemphys_2022_126056 crossref_primary_10_1007_s11426_021_1011_9 crossref_primary_10_1002_app_48959 crossref_primary_10_1016_j_jechem_2022_08_030 crossref_primary_10_1016_j_isci_2019_06_010 crossref_primary_10_1002_cjoc_202200287 crossref_primary_10_1002_elt2_42 crossref_primary_10_1002_ente_202200183 crossref_primary_10_1016_j_memsci_2022_121275 crossref_primary_10_1002_advs_201800559 crossref_primary_10_1002_smll_202301428 crossref_primary_10_1002_cnma_201900456 crossref_primary_10_1039_D2CS00513A crossref_primary_10_1016_j_coco_2022_101183 crossref_primary_10_1016_j_memsci_2019_02_002 crossref_primary_10_1016_j_memsci_2019_02_003 crossref_primary_10_1016_j_commatsci_2023_112153 crossref_primary_10_1016_j_carbpol_2023_121570 crossref_primary_10_1039_D2CE00225F crossref_primary_10_1002_aenm_202202357 crossref_primary_10_1016_j_compositesb_2024_111537 crossref_primary_10_1016_j_cej_2024_151120 crossref_primary_10_1016_j_jpowsour_2022_231562 crossref_primary_10_1016_j_apsusc_2022_154903 crossref_primary_10_1002_adhm_202001851 crossref_primary_10_1007_s42765_023_00322_3 crossref_primary_10_1002_nano_202000004 crossref_primary_10_1021_acsnano_3c10534 crossref_primary_10_1016_j_jcis_2025_01_164 crossref_primary_10_1016_j_solmat_2022_111696 crossref_primary_10_1002_aenm_201802430 crossref_primary_10_1016_j_ensm_2024_103426 crossref_primary_10_1021_acsaem_9b01032 crossref_primary_10_1016_j_jpowsour_2021_229973 crossref_primary_10_1016_j_clay_2019_105327 crossref_primary_10_1021_acsaem_2c00188 crossref_primary_10_1016_j_cej_2022_140397 crossref_primary_10_1002_cssc_201802370 crossref_primary_10_1016_j_cej_2019_123312 crossref_primary_10_1016_j_jpowsour_2021_230955 crossref_primary_10_26599_NR_2025_94906994 crossref_primary_10_1007_s42247_024_00716_y crossref_primary_10_1002_adma_202006019 crossref_primary_10_1002_adfm_202425698 crossref_primary_10_3390_polym15183654 crossref_primary_10_1007_s10853_019_04218_9 crossref_primary_10_1039_D4GC01771D crossref_primary_10_1002_adfm_202308929 crossref_primary_10_1007_s10565_020_09527_3 crossref_primary_10_1002_adma_202101698 crossref_primary_10_1016_j_mattod_2021_01_026 crossref_primary_10_1002_ejic_202000940 crossref_primary_10_1039_C9BM00953A crossref_primary_10_1002_smll_202312124 crossref_primary_10_1016_j_jechem_2020_07_015 crossref_primary_10_1016_j_matchemphys_2022_125975 crossref_primary_10_1016_j_cej_2022_136470 crossref_primary_10_1016_j_ensm_2023_103135 crossref_primary_10_1016_j_apsusc_2019_144757 crossref_primary_10_1021_acsami_2c07869 crossref_primary_10_1016_j_ensm_2023_103133 crossref_primary_10_1002_ange_202300258 crossref_primary_10_1016_j_colsurfa_2024_135231 crossref_primary_10_1021_acsami_9b09722 crossref_primary_10_1016_j_colsurfa_2024_133970 crossref_primary_10_1016_j_memsci_2019_117364 crossref_primary_10_1039_D2NJ04947C crossref_primary_10_1002_admi_202100163 crossref_primary_10_1002_adfm_202106176 crossref_primary_10_1021_acsnano_8b00047 crossref_primary_10_1021_acs_iecr_1c02102 crossref_primary_10_1007_s11581_020_03587_5 crossref_primary_10_1039_C8TA12196F crossref_primary_10_1021_acsaem_1c03948 crossref_primary_10_1002_smll_202304290 crossref_primary_10_1016_j_cej_2023_144089 crossref_primary_10_1002_ceat_202000218 crossref_primary_10_1039_C9RA08273E crossref_primary_10_1016_j_eurpolymj_2022_111222 crossref_primary_10_1039_D1TA03125B crossref_primary_10_1021_acs_langmuir_4c01612 crossref_primary_10_1002_ente_201800768 crossref_primary_10_1016_j_ceramint_2023_04_194 crossref_primary_10_3390_en12173391 crossref_primary_10_1007_s00894_024_05863_x crossref_primary_10_1002_adfm_202008743 crossref_primary_10_1016_j_jelechem_2019_113662 crossref_primary_10_1039_C9TA12783F crossref_primary_10_1016_j_jallcom_2024_174600 crossref_primary_10_1016_j_electacta_2020_135821 crossref_primary_10_1016_j_jechem_2021_05_027 crossref_primary_10_1021_acsami_0c15692 crossref_primary_10_1002_smll_202300130 crossref_primary_10_1016_j_mtener_2020_100420 crossref_primary_10_3390_polym17070842 crossref_primary_10_1002_smll_202300378 crossref_primary_10_1039_C9TA12703H crossref_primary_10_1002_advs_202103796 crossref_primary_10_1016_j_electacta_2023_143064 crossref_primary_10_1142_S1793604721430086 crossref_primary_10_1016_j_memsci_2018_07_056 crossref_primary_10_1016_j_cej_2023_145724 crossref_primary_10_1039_D0TA07511F crossref_primary_10_1002_adma_202416733 crossref_primary_10_1016_j_mattod_2022_08_015 crossref_primary_10_1002_adma_202401482 crossref_primary_10_1039_C8TB00658J crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1016_j_jpowsour_2018_08_043 crossref_primary_10_1016_j_cis_2023_103013 crossref_primary_10_1016_j_jiec_2022_01_003 crossref_primary_10_1016_j_etran_2024_100364 crossref_primary_10_1002_adma_202008088 crossref_primary_10_1002_adma_202107523 crossref_primary_10_1016_j_ensm_2021_06_033 crossref_primary_10_1039_D1SE01277K crossref_primary_10_2147_IJN_S238005 crossref_primary_10_1002_ente_201900078 crossref_primary_10_1021_acsami_9b17374 crossref_primary_10_1016_j_cej_2020_124259 crossref_primary_10_1016_j_est_2022_105496 crossref_primary_10_1002_marc_202400644 crossref_primary_10_1016_j_est_2022_106100 crossref_primary_10_1002_ente_202000228 crossref_primary_10_1016_j_compositesa_2022_107061 crossref_primary_10_1016_j_cej_2024_158075 crossref_primary_10_1016_j_ensm_2019_07_024 crossref_primary_10_1039_D2CE00220E crossref_primary_10_1016_j_isci_2022_103744 crossref_primary_10_1002_cey2_187 crossref_primary_10_1016_j_est_2023_109594 crossref_primary_10_1002_smll_202205152 crossref_primary_10_3390_membranes9070078 crossref_primary_10_1002_aenm_201801778 |
Cites_doi | 10.1021/am507145h 10.1002/ente.201402215 10.1002/adma.201100303 10.1016/j.electacta.2014.12.102 10.1126/science.1212741 10.1002/ente.201500368 10.1021/ja3091438 10.1002/aenm.201401408 10.1039/c0cs00081g 10.1038/nmat4089 10.1016/j.jpowsour.2017.02.078 10.1002/adma.201602172 10.1039/C6TA08404D 10.1039/c2ee03025j 10.1002/cssc.201600943 10.1016/j.jmst.2015.11.006 10.1039/C4EE01432D 10.1016/j.ssi.2005.05.006 10.1039/c0cs00121j 10.1016/j.jpowsour.2015.09.037 10.1021/nn406428n 10.1039/c1ee01388b 10.1007/s11581-016-1752-8 10.1039/b820555h 10.1016/j.actbio.2013.04.012 10.1016/j.electacta.2016.09.035 10.1038/451652a 10.1021/acs.nanolett.6b02069 10.1021/cr020738u 10.1021/acsami.6b12838 10.1016/j.jpowsour.2016.11.026 10.1002/aenm.201501082 10.1021/am302290n 10.1016/j.jpowsour.2012.02.038 10.1002/aenm.201500954 10.1002/chem.201304439 10.1149/2.059406jes 10.1039/C1EE02708E 10.1038/35104644 10.1021/acsami.6b09601 10.1021/am508149n 10.1016/j.jpowsour.2012.10.027 10.1039/C6EE01219A 10.1007/s10800-013-0561-2 10.1126/science.1148726 10.1039/C4TA00010B 10.1002/anie.201201429 10.1039/c1ee01189h 10.1007/s11581-013-1044-5 10.1021/acsnano.5b01126 10.1126/sciadv.1601978 10.1016/j.micromeso.2016.02.006 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201703548 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29044775 10_1002_adma_201703548 ADMA201703548 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51772116; 51522205; 51472098; 21501188 – fundername: Science and Technology Commission of Shanghai funderid: 15JC1491001 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4128-f26092240391607ba82902fcc501ff5b81a38800d31defda571a221cec95475e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:24:03 EDT 2025 Mon Jul 14 06:55:49 EDT 2025 Mon Jul 21 05:42:05 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Tue Jul 01 00:44:36 EDT 2025 Wed Jan 22 16:56:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | hydroxyapatite nanowires lithium-ion batteries separators high safety fire resistant |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4128-f26092240391607ba82902fcc501ff5b81a38800d31defda571a221cec95475e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5769-167X |
PMID | 29044775 |
PQID | 1966402187 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1952532453 proquest_journals_1966402187 pubmed_primary_29044775 crossref_primary_10_1002_adma_201703548 crossref_citationtrail_10_1002_adma_201703548 wiley_primary_10_1002_adma_201703548_ADMA201703548 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Nov |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2008 2014; 319 2 2015; 14 2013; 3 2004; 104 2015; 5 2015; 3 2011; 40 2013 2008; 135 451 2012 2017; 208 338 2011 2012 2017; 334 51 3 2015; 9 2016; 16 2013; 5 2015; 7 2017 2016; 348 226 2015 2016 2014; 5 4 161 2012 2015; 5 5 2017 2014 2016; 20 28 2001 2009 2011 2011; 414 38 4 4 2016 2011 2016; 9 23 9 2005 2015 2016; 176 5 8 2014; 4 2013 2016 2015 2013 2016 2015; 226 32 299 43 216 154 2014; 8 2014; 7 2012; 5 2016; 8 2016; 22 2013 2014; 9 20 e_1_2_4_21_1 e_1_2_4_23_1 e_1_2_4_21_2 e_1_2_4_27_3 e_1_2_4_29_1 e_1_2_4_27_2 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_3_3 e_1_2_4_5_1 Zhu Y. (e_1_2_4_30_1) 2013; 3 e_1_2_4_1_4 e_1_2_4_3_2 e_1_2_4_7_1 e_1_2_4_7_3 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_31_2 e_1_2_4_10_1 e_1_2_4_12_1 e_1_2_4_31_3 e_1_2_4_12_2 e_1_2_4_14_1 e_1_2_4_14_2 e_1_2_4_16_1 e_1_2_4_14_3 e_1_2_4_14_4 e_1_2_4_18_1 e_1_2_4_14_5 e_1_2_4_14_6 e_1_2_4_18_2 e_1_2_4_20_1 e_1_2_4_22_1 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_28_1 Zhang J. (e_1_2_4_25_1) 2014; 4 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_13_1 Shi J. (e_1_2_4_27_1) 2015; 5 e_1_2_4_15_1 e_1_2_4_15_2 e_1_2_4_17_2 e_1_2_4_17_1 e_1_2_4_17_3 e_1_2_4_19_1 Ghazi Z. A. (e_1_2_4_31_1) 2017 |
References_xml | – volume: 208 338 start-page: 210 82 year: 2012 2017 publication-title: J. Power Sources J. Power Sources – volume: 176 5 8 start-page: 1903 1501082 27740 year: 2005 2015 2016 publication-title: Solid State Ionics Adv. Energy Mater. ACS Appl. Mater. Interfaces – volume: 8 start-page: 34715 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 319 2 start-page: 1069 5516 year: 2008 2014 publication-title: Science J. Mater. Chem. A – volume: 40 start-page: 3764 year: 2011 publication-title: Chem. Soc. Rev. – volume: 348 226 start-page: 80 406 year: 2017 2016 publication-title: J. Power Sources Microporous Mesoporous Mater. – volume: 20 28 start-page: 635 9797 year: 2017 2014 2016 publication-title: Adv. Mater. Ionics Adv. Mater. – volume: 7 start-page: 3857 year: 2014 publication-title: Energy Environ. Sci. – volume: 5 4 161 start-page: 551 A1032 year: 2015 2016 2014 publication-title: Sci. Rep. Energy Technol. J. Electrochem. Soc. – volume: 414 38 4 4 start-page: 359 2565 3287 2870 year: 2001 2009 2011 2011 publication-title: Nature Chem. Soc. Rev. Energy Environ. Sci. Energy Environ. Sci. – volume: 5 start-page: 311 year: 2017 publication-title: J. Mater. Chem. A – volume: 135 451 start-page: 1167 652 year: 2013 2008 publication-title: J. Am. Chem. Soc. Nature – volume: 3 year: 2013 publication-title: Sci. Rep. – volume: 104 start-page: 4419 year: 2004 publication-title: Chem. Rev. – volume: 16 start-page: 5533 year: 2016 publication-title: Nano Lett. – volume: 40 start-page: 2525 year: 2011 publication-title: Chem. Soc. Rev. – volume: 9 20 start-page: 7591 1242 year: 2013 2014 publication-title: Acta Biomater. Chem. – Eur. J. – volume: 14 start-page: 23 year: 2015 publication-title: Nat. Mater. – volume: 7 start-page: 3314 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 23 9 start-page: 3023 3066 3252 year: 2016 2011 2016 publication-title: ChemSusChem Adv. Mater. Energy Environ. Sci. – volume: 5 start-page: 1500954 year: 2015 publication-title: Adv. Energy Mater. – volume: 5 start-page: 128 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 2231 year: 2015 publication-title: ACS Nano – volume: 5 5 start-page: 6491 1401408 year: 2012 2015 publication-title: Energy Environ. Sci. Adv. Energy Mater. – volume: 334 51 3 start-page: 928 9994 e1601978 year: 2011 2012 2017 publication-title: Science Angew. Chem., Int. Ed. Sci. Adv. – volume: 7 start-page: 738 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 5690 year: 2012 publication-title: Energy Environ. Sci. – volume: 4 year: 2014 publication-title: Sci. Rep. – volume: 226 32 299 43 216 154 start-page: 82 200 417 711 276 219 year: 2013 2016 2015 2013 2016 2015 publication-title: J. Power Sources J. Mater. Sci. Technol. J. Power Sources J. Appl. Electrochem. Electrochim. Acta Electrochim. Acta – volume: 8 start-page: 2739 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 453 year: 2015 publication-title: Energy Technol. – volume: 22 start-page: 2143 year: 2016 publication-title: Ionics – ident: e_1_2_4_32_1 doi: 10.1021/am507145h – ident: e_1_2_4_9_1 doi: 10.1002/ente.201402215 – ident: e_1_2_4_7_2 doi: 10.1002/adma.201100303 – ident: e_1_2_4_14_6 doi: 10.1016/j.electacta.2014.12.102 – ident: e_1_2_4_3_1 doi: 10.1126/science.1212741 – ident: e_1_2_4_27_2 doi: 10.1002/ente.201500368 – volume: 3 year: 2013 ident: e_1_2_4_30_1 publication-title: Sci. Rep. – ident: e_1_2_4_2_1 doi: 10.1021/ja3091438 – ident: e_1_2_4_15_2 doi: 10.1002/aenm.201401408 – ident: e_1_2_4_16_1 doi: 10.1039/c0cs00081g – ident: e_1_2_4_22_1 doi: 10.1038/nmat4089 – ident: e_1_2_4_12_1 doi: 10.1016/j.jpowsour.2017.02.078 – ident: e_1_2_4_31_3 doi: 10.1002/adma.201602172 – ident: e_1_2_4_13_1 doi: 10.1039/C6TA08404D – ident: e_1_2_4_15_1 doi: 10.1039/c2ee03025j – ident: e_1_2_4_7_1 doi: 10.1002/cssc.201600943 – ident: e_1_2_4_14_2 doi: 10.1016/j.jmst.2015.11.006 – volume: 4 year: 2014 ident: e_1_2_4_25_1 publication-title: Sci. Rep. – ident: e_1_2_4_6_1 doi: 10.1039/C4EE01432D – ident: e_1_2_4_17_1 doi: 10.1016/j.ssi.2005.05.006 – ident: e_1_2_4_23_1 doi: 10.1039/c0cs00121j – ident: e_1_2_4_14_3 doi: 10.1016/j.jpowsour.2015.09.037 – ident: e_1_2_4_19_1 doi: 10.1021/nn406428n – ident: e_1_2_4_1_3 doi: 10.1039/c1ee01388b – ident: e_1_2_4_10_1 doi: 10.1007/s11581-016-1752-8 – ident: e_1_2_4_1_2 doi: 10.1039/b820555h – ident: e_1_2_4_18_1 doi: 10.1016/j.actbio.2013.04.012 – ident: e_1_2_4_14_5 doi: 10.1016/j.electacta.2016.09.035 – ident: e_1_2_4_2_2 doi: 10.1038/451652a – ident: e_1_2_4_8_1 doi: 10.1021/acs.nanolett.6b02069 – ident: e_1_2_4_5_1 doi: 10.1021/cr020738u – ident: e_1_2_4_24_1 doi: 10.1021/acsami.6b12838 – year: 2017 ident: e_1_2_4_31_1 publication-title: Adv. Mater. – ident: e_1_2_4_4_2 doi: 10.1016/j.jpowsour.2016.11.026 – ident: e_1_2_4_17_2 doi: 10.1002/aenm.201501082 – ident: e_1_2_4_26_1 doi: 10.1021/am302290n – ident: e_1_2_4_4_1 doi: 10.1016/j.jpowsour.2012.02.038 – ident: e_1_2_4_29_1 doi: 10.1002/aenm.201500954 – ident: e_1_2_4_18_2 doi: 10.1002/chem.201304439 – ident: e_1_2_4_27_3 doi: 10.1149/2.059406jes – ident: e_1_2_4_28_1 doi: 10.1039/C1EE02708E – volume: 5 year: 2015 ident: e_1_2_4_27_1 publication-title: Sci. Rep. – ident: e_1_2_4_1_1 doi: 10.1038/35104644 – ident: e_1_2_4_17_3 doi: 10.1021/acsami.6b09601 – ident: e_1_2_4_11_1 doi: 10.1021/am508149n – ident: e_1_2_4_14_1 doi: 10.1016/j.jpowsour.2012.10.027 – ident: e_1_2_4_7_3 doi: 10.1039/C6EE01219A – ident: e_1_2_4_14_4 doi: 10.1007/s10800-013-0561-2 – ident: e_1_2_4_21_1 doi: 10.1126/science.1148726 – ident: e_1_2_4_21_2 doi: 10.1039/C4TA00010B – ident: e_1_2_4_3_2 doi: 10.1002/anie.201201429 – ident: e_1_2_4_1_4 doi: 10.1039/c1ee01189h – ident: e_1_2_4_31_2 doi: 10.1007/s11581-013-1044-5 – ident: e_1_2_4_20_1 doi: 10.1021/acsnano.5b01126 – ident: e_1_2_4_3_3 doi: 10.1126/sciadv.1601978 – ident: e_1_2_4_12_2 doi: 10.1016/j.micromeso.2016.02.006 |
SSID | ssj0009606 |
Score | 2.6519513 |
Snippet | Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based... Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Cellulose fibers Contact angle Crosslinking Electrochemical analysis Electrolytes Fire resistance fire resistant Fire resistant materials high safety Hydroxyapatite hydroxyapatite nanowires Lithium Lithium-ion batteries Materials science Nanowires Product safety Rechargeable batteries Separators Structural hierarchy Structural integrity Thermal resistance Thermal stability Wettability |
Title | Flexible, High‐Wettability and Fire‐Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201703548 https://www.ncbi.nlm.nih.gov/pubmed/29044775 https://www.proquest.com/docview/1966402187 https://www.proquest.com/docview/1952532453 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHqCc48H6kFGQkJC6k3Tj2Ojkuj9WCKIdCRW-Rn6KiTVCTPZQTEl-gn7GfhJk4m3ZBCAku0WbXzsM7M_47Gf8M8FQUpZEZGi-3uMGA59LCKZtKF2QReKl8oAf6u--ni33x9kAeXJrFH_kQ4wM38ow-XpODa9PuXEBDteu5QRmaLKpuDMKUsEWqaO-CH0XyvIft5TItp6JYURsnfGe9-nqv9JvUXFeufdczvwF6ddEx4-TL9rIz2_bbLzzH_7mrm3B90KVsFg3pFlzx9W24dolWeAd-zAmeaY78c0bZIeffzz75rouc71Oma8fmGD_x6z3fkiqtO_bB92jx5qRlL7C7dKyp2eLU0Y1oSuXuPMPw3hAvuWUon9lsSElg7w67z4fLYzzaG6wTKaA4qL8L-_PXH18u0mENh9QK7PrSgOOlkmQDTfCdKKPpxS0P1spJFoI0RaYJRzNxeeZ8cFqqTHOeWW9LKZT0-T3YqJvaPwAWAqpDawytUCNKX5QqL2h4j5WMmGYmgXT1H1Z2AJzTOhtHVUQz84oatxobN4FnY_mvEe3xx5JbK5OoBhdvKwxdU0EKSSXwZPwZnZPeuOjaN0sqI7lEySrzBO5HUxpPhe0ghFIyAd4bxF-uoZq92p2Ne5v_UukhXKXPcSblFmx0J0v_CCVVZx73bvMT7lIaDw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUA7AgfcjUMBISFxIu3HsdXJcKKst7PZQWsEtil-ioiSomz2UExJfgM_IJ2EmTlIWhJDgslKy9m7izIz_dsY_AzwRWa5lgsbLDX5gwLNxZpWJpfUy8zxXztOE_mJvPDsUr97JPpuQ1sIEPsQw4Uae0cZrcnCakN4-o4aWtgUHJWizKLvPwwXa1pt8c2f_jCBFAr3F7aUyzsci67mNI769Xn-9X_pNbK5r17bzmV4F3V92yDn5sLVq9Jb5_AvR8b_u6xpc6aQpmwRbug7nXHUDLv8ELLwJX6fEz9TH7hmjBJHvX769dU0TUN-nrKwsm2IIxdP7bknCtGrYG9fSxeuTJXuOPaZldcVmp5bupKRs7sYxjPA1IZOXDBU0m3RZCWx-1Lw_Wn3EX9vFOgEEiuP6W3A4fXnwYhZ32zjERmDvF3scMuWkHGiN70jpkt7dcm-MHCXeS50lJRFpRjZNrPO2lCopOU-MM7kUSrr0NmxUdeXuAvMeBaLRmjapEbnLcpVmNMLHSlqMEx1B3D_EwnSMc9pq47gIdGZeUOMWQ-NG8HQo_ynQPf5YcrO3iaLz8mWB0WssSCSpCB4PX6N_0kuXsnL1ispILlG1yjSCO8GWhr_CdhBCKRkBby3iL9dQTHYWk-Ho3r9UegQXZweLeTHf3Xt9Hy7R-bCwchM2mpOVe4AKq9EPWx_6AXgPHig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCRED-VZSClgJCQupM3DjpPjwhJtoa1QoaK3KH6JqiWputlDOSH1C_Qz8kmYSbJpF4SQ4BIpiZ2HMzP-27F_BnjB00yJEI030rjBgGf81EjtC-NE6qJMWkcd-ju7yWSfvzsQB1dm8Xd8iKHDjTyjjdfk4CfGbV5CQ0vTcoNCNFlU3dfhBk-ClJpf471LgBTp85a2Fws_S3g6xzYG0eZi_sVq6TetuShd27onvw3l_Km7ISdHG7NGbehvvwAd_-e17sBKL0zZqLOku3DNVvdg-Qqu8D6c50TPVMf2FaPhIT--X3y2TdOBvs9YWRmWYwDFw3t2SrK0athH27LF69Mpe431pWF1xSZnhl6kpLHcjWUY32sCJk8Z6mc26scksO3D5svh7CtebQvzdBhQbNU_gP387ac3E79fxMHXHOs-32GDKSPdQDN8A6lK-nMbOa1FEDonVBqWxKMJTBwa60wpZFhGUaitzgSXwsarsFTVlX0EzDmUh1opWqKGZzbNZJxS-x4zKZ6EygN__g0L3RPOaaGN46JjM0cFFW4xFK4HL4f0Jx3b448p1-cmUfQ-Pi0wdiWcJJL04PlwGr2TfrmUla1nlEZEAjWriD142JnScCssB86lFB5ErUH85RmK0XhnNOyt_UumZ3Dzwzgvtrd23z-GW3S4m1W5DkvN6cw-QXnVqKetB_0EIoQc4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible%2C+High%E2%80%90Wettability+and+Fire%E2%80%90Resistant+Separators+Based+on+Hydroxyapatite+Nanowires+for+Advanced+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Heng&rft.au=Wu%2C+Dabei&rft.au=Wu%2C+Jin&rft.au=Dong%2C+Li%E2%80%90Ying&rft.date=2017-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=44&rft_id=info:doi/10.1002%2Fadma.201703548&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201703548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |