Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Long‐Life Aqueous Zinc–Organic Batteries
The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (1...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 16; pp. e2000338 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202000338 |
Cover
Loading…
Abstract | The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid‐scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT−1 at 50 mA gDTT−1 with a high mass loading of 5 mgDTT cm−2, along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+) and Zn2+ to form DTT2(H+)4(Zn2+), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports.
An aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode, showing high capacity and fast kinetics. Benefitting from the improved molecular stability and the inherent low solubility of DTT, the battery exhibits a superlong life of 23 000 cycles, which is much superior to previous reports. |
---|---|
AbstractList | The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid‐scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT−1 at 50 mA gDTT−1 with a high mass loading of 5 mgDTT cm−2, along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+) and Zn2+ to form DTT2(H+)4(Zn2+), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports. The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid‐scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT−1 at 50 mA gDTT−1 with a high mass loading of 5 mgDTT cm−2, along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+) and Zn2+ to form DTT2(H+)4(Zn2+), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports. An aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode, showing high capacity and fast kinetics. Benefitting from the improved molecular stability and the inherent low solubility of DTT, the battery exhibits a superlong life of 23 000 cycles, which is much superior to previous reports. The newly emerged aqueous Zn-organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid-scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene-5,7,12,14-tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT -1 at 50 mA gDTT -1 with a high mass loading of 5 mgDTT cm-2 , along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+ ) and Zn2+ to form DTT2 (H+ )4 (Zn2+ ), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports.The newly emerged aqueous Zn-organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid-scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene-5,7,12,14-tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT -1 at 50 mA gDTT -1 with a high mass loading of 5 mgDTT cm-2 , along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+ ) and Zn2+ to form DTT2 (H+ )4 (Zn2+ ), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports. The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid‐scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh g DTT −1 at 50 mA g DTT −1 with a high mass loading of 5 mg DTT cm −2 , along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H + ) and Zn 2+ to form DTT 2 (H + ) 4 (Zn 2+ ), where Zn 2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports. The newly emerged aqueous Zn-organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid-scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene-5,7,12,14-tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh g at 50 mA g with a high mass loading of 5 mg cm , along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H ) and Zn to form DTT (H ) (Zn ), where Zn is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports. |
Author | Wang, Yanrong Gu, Yuming Wang, Yonggang Ma, Jing Guo, Zhaowei Wang, Caixing Wang, Zhuo Wang, Bingliang Ni, Zhigang Bin, Duan |
Author_xml | – sequence: 1 givenname: Yanrong orcidid: 0000-0002-2447-4679 surname: Wang fullname: Wang, Yanrong organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University – sequence: 2 givenname: Caixing surname: Wang fullname: Wang, Caixing organization: Nanjing University – sequence: 3 givenname: Zhigang surname: Ni fullname: Ni, Zhigang organization: Nanjing University – sequence: 4 givenname: Yuming surname: Gu fullname: Gu, Yuming organization: Nanjing University – sequence: 5 givenname: Bingliang surname: Wang fullname: Wang, Bingliang organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University – sequence: 6 givenname: Zhaowei surname: Guo fullname: Guo, Zhaowei organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University – sequence: 7 givenname: Zhuo surname: Wang fullname: Wang, Zhuo organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University – sequence: 8 givenname: Duan surname: Bin fullname: Bin, Duan organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University – sequence: 9 givenname: Jing surname: Ma fullname: Ma, Jing organization: Nanjing University – sequence: 10 givenname: Yonggang surname: Wang fullname: Wang, Yonggang email: ygwang@fudan.edu.cn organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32141139$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9LHDEchkOx1NX22mMJ9NLLbPNv_uQ4bqsVVry0l15CJvObJctMsk1m0L35EQp-Qz-JWVcrCNJTCDzPy5u8R-jAeQcIfaRkTglhX3U76DkjjBDCefUGzWjOaCaIzA_QjEieZ7IQ1SE6inGdGFmQ4h065IwKSrmcoc2Jda11K_zbOoPPvYu42eKFDo2_3vb4LPhpE3EX_IDrdq0NuBFf-B7M1EPEo7_SocVL71Z3N3-XtgNc_5nAT_Eh7-7m9jKstLMGn-hxhGAhvkdvO91H-PB4HqNfp99_Ln5ky8uz80W9zIygrMqaRnRlUVWSQSFAlBXhbUtzaQqZLm0hOyJyysAQKqBluRZ5pWV6VVmSygDnx-jLPncTfKoURzXYaKDvtdv1U4yXgpdUyjyhn1-gaz8Fl9olSjKesEIk6tMjNTUDtGoT7KDDVj39ZQLEHjDBxxigU8aOerTejUHbXlGidpOp3WTq32RJm7_QnpJfFeReuLI9bP9Dq_rbRf3s3gP-WKjl |
CitedBy_id | crossref_primary_10_1021_acsnano_1c01389 crossref_primary_10_1002_batt_202200529 crossref_primary_10_1021_acsenergylett_2c00843 crossref_primary_10_1002_anie_202116289 crossref_primary_10_1007_s40242_023_3126_x crossref_primary_10_1021_jacs_3c06668 crossref_primary_10_1002_anie_202208821 crossref_primary_10_1016_j_coelec_2021_100799 crossref_primary_10_1002_aenm_202002529 crossref_primary_10_1002_batt_202300010 crossref_primary_10_3390_gels8120791 crossref_primary_10_1002_anie_202106238 crossref_primary_10_1016_j_cej_2021_131092 crossref_primary_10_1021_acsami_2c21851 crossref_primary_10_1002_aenm_202202661 crossref_primary_10_1002_eem2_12851 crossref_primary_10_1038_s41578_020_00241_4 crossref_primary_10_1002_smm2_1110 crossref_primary_10_1021_acs_accounts_3c00538 crossref_primary_10_1007_s41918_020_00093_0 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1016_j_cej_2023_141336 crossref_primary_10_1007_s12274_023_5424_x crossref_primary_10_1039_D4SC00491D crossref_primary_10_1039_D0EE01538E crossref_primary_10_1021_acsami_2c03170 crossref_primary_10_1007_s11581_023_04980_6 crossref_primary_10_1002_aenm_202301631 crossref_primary_10_1002_anie_202501359 crossref_primary_10_1002_smll_202400923 crossref_primary_10_1016_j_desal_2024_118120 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1002_aenm_202400276 crossref_primary_10_1002_ange_202209642 crossref_primary_10_1002_adfm_202416497 crossref_primary_10_1002_smll_202405810 crossref_primary_10_1016_j_cej_2022_139324 crossref_primary_10_1021_acsenergylett_0c02028 crossref_primary_10_1002_adfm_202004430 crossref_primary_10_1021_acsnano_2c11974 crossref_primary_10_1002_ange_202108624 crossref_primary_10_1021_acssuschemeng_1c07262 crossref_primary_10_1016_j_cej_2022_138238 crossref_primary_10_1002_ange_202304036 crossref_primary_10_1038_s41467_021_27313_5 crossref_primary_10_1016_j_mattod_2020_08_021 crossref_primary_10_1002_batt_202200431 crossref_primary_10_1002_sstr_202000064 crossref_primary_10_1016_j_mattod_2020_12_003 crossref_primary_10_26599_EMD_2023_9370007 crossref_primary_10_1021_acssuschemeng_1c05881 crossref_primary_10_1002_adfm_202416000 crossref_primary_10_1002_ange_202501359 crossref_primary_10_1016_j_pmatsci_2024_101393 crossref_primary_10_1038_s41578_022_00478_1 crossref_primary_10_1002_eem2_12507 crossref_primary_10_1016_j_cej_2022_137711 crossref_primary_10_1002_adma_202102701 crossref_primary_10_1002_adma_202101857 crossref_primary_10_1039_D4CS01072H crossref_primary_10_1002_chem_202303917 crossref_primary_10_1016_j_cej_2024_157627 crossref_primary_10_1039_D1SC04231A crossref_primary_10_1002_ange_202003198 crossref_primary_10_1021_acsenergylett_2c02817 crossref_primary_10_1039_D4SC08514K crossref_primary_10_1002_adma_202301088 crossref_primary_10_1021_acsami_3c17412 crossref_primary_10_1039_D1CP01209F crossref_primary_10_1002_anie_202304036 crossref_primary_10_1002_cnl2_37 crossref_primary_10_1021_acs_chemrev_2c00374 crossref_primary_10_2139_ssrn_4019248 crossref_primary_10_1016_j_apcata_2023_119448 crossref_primary_10_1016_j_apsusc_2023_158374 crossref_primary_10_1039_D1SC06412F crossref_primary_10_1016_j_cej_2022_137289 crossref_primary_10_1016_j_est_2025_115512 crossref_primary_10_1016_j_est_2024_113048 crossref_primary_10_1002_advs_202310319 crossref_primary_10_1016_j_isci_2022_104204 crossref_primary_10_1039_D1MH01226F crossref_primary_10_1002_adfm_202413711 crossref_primary_10_1002_ange_202212231 crossref_primary_10_1016_j_mser_2022_100671 crossref_primary_10_1002_adfm_202312332 crossref_primary_10_1002_adma_202409946 crossref_primary_10_1021_acsami_4c01311 crossref_primary_10_1039_D2CC03958C crossref_primary_10_1016_j_jcis_2021_03_071 crossref_primary_10_1016_j_est_2025_116173 crossref_primary_10_1002_ange_202116289 crossref_primary_10_1039_D2TA05185K crossref_primary_10_1039_D0TA03947K crossref_primary_10_1016_j_jechem_2021_08_057 crossref_primary_10_1021_acsnano_3c07346 crossref_primary_10_1002_ange_202200809 crossref_primary_10_1002_anie_202108624 crossref_primary_10_1002_adma_202206812 crossref_primary_10_1002_inf2_12265 crossref_primary_10_1002_inf2_12382 crossref_primary_10_1002_anie_202216136 crossref_primary_10_1007_s12274_023_6401_8 crossref_primary_10_1016_j_inoche_2022_109580 crossref_primary_10_1039_D2TA01621D crossref_primary_10_1039_D4TC00474D crossref_primary_10_1002_aenm_202303616 crossref_primary_10_1039_D3EE00211J crossref_primary_10_1002_advs_202305749 crossref_primary_10_1021_acs_accounts_4c00016 crossref_primary_10_1002_adfm_202111131 crossref_primary_10_1002_ange_202216136 crossref_primary_10_1002_celc_202100280 crossref_primary_10_1002_adfm_202306675 crossref_primary_10_1002_chem_202103088 crossref_primary_10_1002_batt_202200197 crossref_primary_10_1021_acssuschemeng_4c06991 crossref_primary_10_1002_smll_202100219 crossref_primary_10_1016_j_cej_2024_150527 crossref_primary_10_1016_j_jechem_2021_07_027 crossref_primary_10_1016_j_cej_2023_143497 crossref_primary_10_1021_jacs_1c06936 crossref_primary_10_1002_ange_202106238 crossref_primary_10_1039_D4SC04685D crossref_primary_10_1038_s41467_021_24701_9 crossref_primary_10_1002_anie_202211107 crossref_primary_10_1007_s41918_023_00194_6 crossref_primary_10_1016_j_electacta_2021_139620 crossref_primary_10_1021_acsami_1c20087 crossref_primary_10_1039_D5CC00275C crossref_primary_10_1039_D2TA01014C crossref_primary_10_1002_adma_202105480 crossref_primary_10_1021_acsenergylett_2c01535 crossref_primary_10_1007_s12613_021_2312_4 crossref_primary_10_1021_acsenergylett_0c02684 crossref_primary_10_1016_j_jcis_2023_12_114 crossref_primary_10_1016_j_est_2024_112834 crossref_primary_10_1021_acssuschemeng_3c07140 crossref_primary_10_1002_adma_202200077 crossref_primary_10_1016_j_ensm_2020_07_011 crossref_primary_10_1021_acsnano_4c01137 crossref_primary_10_1088_1674_4926_41_9_091704 crossref_primary_10_1002_anie_202209642 crossref_primary_10_1002_adma_202304040 crossref_primary_10_1002_anie_202003198 crossref_primary_10_1002_ange_202211107 crossref_primary_10_1016_j_cej_2023_146741 crossref_primary_10_4491_eer_2024_198 crossref_primary_10_1016_j_cej_2023_141850 crossref_primary_10_1002_smll_202309022 crossref_primary_10_1002_celc_202400212 crossref_primary_10_1039_D4EE01560F crossref_primary_10_1002_cphc_202300436 crossref_primary_10_1016_j_cej_2023_142824 crossref_primary_10_1002_cssc_202002401 crossref_primary_10_1021_acsaem_3c00828 crossref_primary_10_1016_j_cej_2024_156034 crossref_primary_10_1002_adma_202103617 crossref_primary_10_1021_acssuschemeng_4c08788 crossref_primary_10_1021_acsapm_4c02477 crossref_primary_10_1039_D1TA08127F crossref_primary_10_1002_adma_202104148 crossref_primary_10_1002_aenm_202302683 crossref_primary_10_1016_j_polymer_2021_124245 crossref_primary_10_3390_en17225768 crossref_primary_10_1002_anie_202423936 crossref_primary_10_1016_j_est_2024_112736 crossref_primary_10_1021_acs_energyfuels_4c02201 crossref_primary_10_1007_s10854_024_13985_4 crossref_primary_10_1039_D2EE02961H crossref_primary_10_1016_j_cej_2022_139963 crossref_primary_10_1002_adfm_202312636 crossref_primary_10_1038_s41467_021_22698_9 crossref_primary_10_1016_j_joule_2023_06_007 crossref_primary_10_1021_acsapm_4c03352 crossref_primary_10_1021_jacs_2c00296 crossref_primary_10_1002_anie_202200809 crossref_primary_10_1016_j_jcis_2022_11_057 crossref_primary_10_1021_acsmaterialslett_1c00499 crossref_primary_10_1039_D4EE02097A crossref_primary_10_1016_j_ensm_2024_103544 crossref_primary_10_1002_ange_202208821 crossref_primary_10_1039_D2SE00310D crossref_primary_10_1002_adfm_202010049 crossref_primary_10_1002_batt_202200160 crossref_primary_10_1002_anie_202212231 crossref_primary_10_20517_energymater_2024_12 crossref_primary_10_1002_adma_202106469 crossref_primary_10_1021_acsami_3c11270 crossref_primary_10_1002_aenm_202100939 crossref_primary_10_1016_j_jelechem_2023_117665 crossref_primary_10_1016_j_cej_2025_161584 crossref_primary_10_3389_fenrg_2020_00199 crossref_primary_10_1016_j_elecom_2023_107559 crossref_primary_10_1016_j_cej_2022_138652 crossref_primary_10_1021_acsaem_0c02526 crossref_primary_10_1002_adfm_202108225 crossref_primary_10_1002_anie_202203453 crossref_primary_10_1016_j_cej_2022_139621 crossref_primary_10_1016_j_ccr_2022_214772 crossref_primary_10_1007_s40843_023_2772_5 crossref_primary_10_1002_aenm_202204005 crossref_primary_10_1016_j_est_2024_113680 crossref_primary_10_1002_adma_202402234 crossref_primary_10_1002_smm2_1312 crossref_primary_10_1016_j_jelechem_2023_117511 crossref_primary_10_1016_j_cej_2021_129890 crossref_primary_10_1016_j_apmt_2022_101515 crossref_primary_10_1002_ange_202423936 crossref_primary_10_1002_anie_202008960 crossref_primary_10_1002_ange_202316835 crossref_primary_10_1002_anie_202219136 crossref_primary_10_1021_jacs_4c02364 crossref_primary_10_1007_s40820_024_01404_6 crossref_primary_10_1002_adfm_202408875 crossref_primary_10_1002_ange_202314411 crossref_primary_10_1038_s41467_022_34303_8 crossref_primary_10_1039_D4TA01952K crossref_primary_10_1016_j_est_2023_110326 crossref_primary_10_1021_acsaem_0c02511 crossref_primary_10_1002_smll_202312237 crossref_primary_10_1002_aenm_202401006 crossref_primary_10_1002_ange_202219136 crossref_primary_10_1002_aenm_202500171 crossref_primary_10_1002_bte2_20230020 crossref_primary_10_1002_batt_202200463 crossref_primary_10_1021_acsami_3c06849 crossref_primary_10_1002_anie_202117511 crossref_primary_10_1021_acs_chemrev_9b00628 crossref_primary_10_1021_acs_accounts_4c00776 crossref_primary_10_1039_D3CC05493D crossref_primary_10_1039_D3QM00297G crossref_primary_10_1002_anie_202316835 crossref_primary_10_1002_adma_202203920 crossref_primary_10_1021_jacs_4c03223 crossref_primary_10_1002_ange_202400121 crossref_primary_10_1007_s40820_023_01263_7 crossref_primary_10_1002_anie_202314411 crossref_primary_10_1039_D5SC00311C crossref_primary_10_1021_acsenergylett_4c01692 crossref_primary_10_1039_D2CC04721G crossref_primary_10_1002_adma_202313388 crossref_primary_10_1016_j_cej_2022_137902 crossref_primary_10_1039_D2TA03655J crossref_primary_10_1002_aenm_202302495 crossref_primary_10_1002_adfm_202313241 crossref_primary_10_1002_aenm_202301049 crossref_primary_10_1002_ange_202203453 crossref_primary_10_1021_accountsmr_3c00284 crossref_primary_10_1002_ange_202117511 crossref_primary_10_1002_smtd_202300965 crossref_primary_10_1007_s40820_022_01009_x crossref_primary_10_1002_adma_202303906 crossref_primary_10_1016_j_jechem_2022_01_003 crossref_primary_10_1002_batt_202400675 crossref_primary_10_1021_jacs_0c07992 crossref_primary_10_1002_adma_202409771 crossref_primary_10_1002_adma_202200662 crossref_primary_10_1002_aesr_202000044 crossref_primary_10_1016_j_jcis_2023_12_104 crossref_primary_10_1002_anie_202400121 crossref_primary_10_1021_acssuschemeng_4c02541 crossref_primary_10_1016_j_cej_2022_134642 crossref_primary_10_1002_cssc_202301851 crossref_primary_10_1021_acsami_2c13261 crossref_primary_10_1002_adfm_202200517 crossref_primary_10_1016_j_electacta_2022_141717 crossref_primary_10_1002_sstr_202200221 crossref_primary_10_1039_D3TA01706K crossref_primary_10_1002_adfm_202316182 crossref_primary_10_1002_ange_202008960 crossref_primary_10_20517_energymater_2023_116 |
Cites_doi | 10.1038/nchem.2085 10.1002/jcc.10003 10.1002/smll.201905452 10.1039/C8EE01883A 10.1038/am.2016.82 10.1126/sciadv.aao1761 10.1038/nchem.763 10.1038/srep06066 10.1002/adma.201901521 10.1002/anie.201813223 10.1002/anie.201002439 10.1038/s41467-018-03114-1 10.1002/smll.201805427 10.1002/anie.201807121 10.1149/2.0891807jes 10.1002/anie.201106307 10.1038/nenergy.2016.39 10.1038/s41563-018-0063-z 10.1126/science.aax6873 10.1002/aenm.201402034 10.1002/adma.201705580 10.1039/C5EE02589C 10.1021/acs.chemmater.8b01317 10.1016/j.joule.2018.07.005 10.1039/C5CC02585K 10.1002/aenm.201601792 10.1038/nenergy.2016.119 10.1002/adma.201405416 10.1021/cm504717p 10.1002/adfm.201804975 10.1002/anie.201601119 10.1002/aenm.201900993 10.1002/jcc.25730 10.1002/advs.201900431 10.1038/s41467-017-00467-x 10.1126/sciadv.1501038 10.1021/jacs.7b04471 10.1016/j.chempr.2018.08.014 10.1002/aenm.201900237 10.1002/aenm.201702463 10.1038/505163a 10.1039/C6EE01871H 10.1038/s41467-018-04949-4 10.1038/s41560-019-0388-0 10.1038/nmat4919 10.1002/anie.201808886 10.1126/science.1249625 10.1021/acsenergylett.8b01296 10.1002/adma.201903778 10.1021/acsnano.9b06484 10.1039/C6CS00173D |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202000338 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32141139 10_1002_adma_202000338 ADMA202000338 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21975052 – fundername: National Basic Research Program of China (973 Program) funderid: 2016YFA0203302 – fundername: State Key Basic Research Program of China funderid: 2018YFE0201702; 2016YFA0203302 – fundername: State Key Basic Research Program of China grantid: 2018YFE0201702 – fundername: National Natural Science Foundation of China grantid: 21975052 – fundername: State Key Basic Research Program of China grantid: 2016YFA0203302 – fundername: National Basic Research Program of China (973 Program) grantid: 2016YFA0203302 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4128-bb4f768892e64e47803dd159c69478d69f04512ec014ed25a458a91417708ce33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 16:53:28 EDT 2025 Fri Jul 25 04:11:07 EDT 2025 Wed Feb 19 02:30:07 EST 2025 Thu Apr 24 23:06:05 EDT 2025 Tue Jul 01 02:32:45 EDT 2025 Wed Jan 22 16:33:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | ultralong cycling life organic electrodes zinc batteries flexible batteries |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4128-bb4f768892e64e47803dd159c69478d69f04512ec014ed25a458a91417708ce33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2447-4679 |
PMID | 32141139 |
PQID | 2392337164 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2374371995 proquest_journals_2392337164 pubmed_primary_32141139 crossref_citationtrail_10_1002_adma_202000338 crossref_primary_10_1002_adma_202000338 wiley_primary_10_1002_adma_202000338_ADMA202000338 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2019; 9 2017; 8 2018; 28 2018; 165 2019; 4 2015; 5 2015; 4 2019; 6 2019; 31 2015; 51 2019; 13 2019; 15 2019; 58 2019; 366 2015; 8 2015; 7 2017; 139 2012; 51 2016; 55 2018; 9 2018; 17 2018; 8 2010; 49 2018; 3 2016; 1 2015; 27 2018; 2 2014; 505 2016; 2 2019; 40 2018; 4 2017; 16 2002; 23 2018; 30 2010; 2 2018; 11 2016; 8 2016; 9 2016; 45 2014; 343 2018; 57 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 23 start-page: 237 year: 2002 publication-title: J. Comput. Chem. – volume: 3 start-page: 2404 year: 2018 publication-title: ACS Energy Lett. – volume: 27 start-page: 3609 year: 2015 publication-title: Chem. Mater. – volume: 9 start-page: 2881 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1894 year: 2018 publication-title: Joule – volume: 343 start-page: 1210 year: 2014 publication-title: Science – volume: 4 start-page: 6066 year: 2015 publication-title: Sci. Rep. – volume: 366 start-page: 645 year: 2019 publication-title: Science – volume: 4 start-page: 495 year: 2019 publication-title: Nat. Energy – volume: 45 start-page: 6345 year: 2016 publication-title: Chem. Soc. Rev. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 8 start-page: 283 year: 2016 publication-title: NPG Asia Mater. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 11 start-page: 3168 year: 2018 publication-title: Energy Environ. Sci. – volume: 15 year: 2019 publication-title: Small – volume: 8 start-page: 405 year: 2017 publication-title: Nat. Commun. – volume: 9 start-page: 661 year: 2018 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 27 start-page: 2907 year: 2015 publication-title: Adv. Mater. – volume: 58 start-page: 2760 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 9265 year: 2015 publication-title: Chem. Commun. – volume: 4 start-page: 2600 year: 2018 publication-title: Chem – volume: 17 start-page: 543 year: 2018 publication-title: Nat. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 9 start-page: 2906 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 55 start-page: 6428 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 49 start-page: 8444 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 505 start-page: 163 year: 2014 publication-title: Nature – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 933 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 3160 year: 2015 publication-title: Energy Environ. Sci. – volume: 139 start-page: 9775 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 16 start-page: 841 year: 2017 publication-title: Nat. Mater. – volume: 40 start-page: 1130 year: 2019 publication-title: J. Comput. Chem. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 3874 year: 2018 publication-title: Chem. Mater. – volume: 2 start-page: 760 year: 2010 publication-title: Nat. Chem. – ident: e_1_2_4_7_1 doi: 10.1038/nchem.2085 – ident: e_1_2_4_49_1 doi: 10.1002/jcc.10003 – ident: e_1_2_4_10_1 doi: 10.1002/smll.201905452 – ident: e_1_2_4_14_1 doi: 10.1039/C8EE01883A – ident: e_1_2_4_36_1 doi: 10.1038/am.2016.82 – ident: e_1_2_4_38_1 doi: 10.1126/sciadv.aao1761 – ident: e_1_2_4_5_1 doi: 10.1038/nchem.763 – ident: e_1_2_4_24_1 doi: 10.1038/srep06066 – ident: e_1_2_4_15_1 doi: 10.1002/adma.201901521 – ident: e_1_2_4_13_1 doi: 10.1002/anie.201813223 – ident: e_1_2_4_28_1 doi: 10.1002/anie.201002439 – ident: e_1_2_4_32_1 doi: 10.1038/s41467-018-03114-1 – ident: e_1_2_4_6_1 doi: 10.1002/smll.201805427 – ident: e_1_2_4_33_1 doi: 10.1002/anie.201807121 – ident: e_1_2_4_43_1 doi: 10.1149/2.0891807jes – ident: e_1_2_4_23_1 doi: 10.1002/anie.201106307 – ident: e_1_2_4_47_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_4_8_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_4_16_1 doi: 10.1126/science.aax6873 – ident: e_1_2_4_30_1 doi: 10.1002/aenm.201402034 – ident: e_1_2_4_19_1 doi: 10.1002/adma.201705580 – ident: e_1_2_4_31_1 doi: 10.1039/C5EE02589C – ident: e_1_2_4_37_1 doi: 10.1021/acs.chemmater.8b01317 – ident: e_1_2_4_40_1 doi: 10.1016/j.joule.2018.07.005 – ident: e_1_2_4_21_1 doi: 10.1039/C5CC02585K – ident: e_1_2_4_27_1 doi: 10.1002/aenm.201601792 – ident: e_1_2_4_9_1 doi: 10.1038/nenergy.2016.119 – ident: e_1_2_4_48_1 doi: 10.1002/adma.201405416 – ident: e_1_2_4_22_1 doi: 10.1021/cm504717p – ident: e_1_2_4_35_1 doi: 10.1002/adfm.201804975 – ident: e_1_2_4_42_1 doi: 10.1002/anie.201601119 – ident: e_1_2_4_12_1 doi: 10.1002/aenm.201900993 – ident: e_1_2_4_50_1 doi: 10.1002/jcc.25730 – ident: e_1_2_4_51_1 doi: 10.1002/advs.201900431 – ident: e_1_2_4_18_1 doi: 10.1038/s41467-017-00467-x – ident: e_1_2_4_3_1 doi: 10.1126/sciadv.1501038 – ident: e_1_2_4_46_1 doi: 10.1021/jacs.7b04471 – ident: e_1_2_4_41_1 doi: 10.1016/j.chempr.2018.08.014 – ident: e_1_2_4_17_1 doi: 10.1002/aenm.201900237 – ident: e_1_2_4_11_1 doi: 10.1002/aenm.201702463 – ident: e_1_2_4_1_1 doi: 10.1038/505163a – ident: e_1_2_4_4_1 doi: 10.1039/C6EE01871H – ident: e_1_2_4_25_1 doi: 10.1038/s41467-018-04949-4 – ident: e_1_2_4_2_1 doi: 10.1038/s41560-019-0388-0 – ident: e_1_2_4_29_1 doi: 10.1038/nmat4919 – ident: e_1_2_4_34_1 doi: 10.1002/anie.201808886 – ident: e_1_2_4_45_1 doi: 10.1126/science.1249625 – ident: e_1_2_4_39_1 doi: 10.1021/acsenergylett.8b01296 – ident: e_1_2_4_44_1 doi: 10.1002/adma.201903778 – ident: e_1_2_4_20_1 doi: 10.1021/acsnano.9b06484 – ident: e_1_2_4_26_1 doi: 10.1039/C6CS00173D |
SSID | ssj0009606 |
Score | 2.6872067 |
Snippet | The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer... The newly emerged aqueous Zn-organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000338 |
SubjectTerms | Density functional theory Energy storage flexible batteries Materials science Organic chemistry organic electrodes Quinones Stability Storage batteries ultralong cycling life Zinc zinc batteries |
Title | Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Long‐Life Aqueous Zinc–Organic Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000338 https://www.ncbi.nlm.nih.gov/pubmed/32141139 https://www.proquest.com/docview/2392337164 https://www.proquest.com/docview/2374371995 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTu2hT9qmQGWkSj0FEj-S-JhCEUVsDxVIqJfIr1RLURaR3UM58RMq9R_ySzq2dwPbqqpUbrFsJ36N_Y0z8w3AW4ZbflkIlkppacqtkKnWqkptnrWt1NKIEA5o9Kk4OOGHp-L0jhd_5IcYLty8ZIT92gu40v3OLWmosoE3yLuaoJqFm7A32PKo6PMtf5SH54Fsj4lUFrxasDZmdGe5-vKp9AfUXEau4ejZfwxq0ehocfJtezbV2-bqNz7H-_TqCTya41JSx4X0FFZc9wwe3mErfA4X78fBBYZ8GXeGfMTlSvR3sqsuNbbrnIRbrJ54fxVS2zPlzT7JKEbfdT2ZBvtccjTpvt5c_zgat47U2P3JrA_vu7n-Gd1CDYmUn6jBr8HJ_ofj3YN0HrAhNRzPOZxl3qL6UknqCu54WWXMWsRLppCYsIVsPZsNdQb1MmepUFxUSuY8L8usMo6xF7DaTTr3Coi0ZZu53BWFUpwLp5jTqmXc0lI4zEogXUxYY-Zs5j6oxnkTeZhp40eyGUYygXdD-YvI4_HXkhuL-W_m8tw3FGEkY163TGBryEZJ9L9XVOcHC8sgGiu9y3sCL-O6GT7lw0HlCLYToGH2_9GGpt4b1UPq9f9UWocH_jkaGW3A6vRy5jYRP031myAjvwCpKxFU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3o9AASMhcUqb-JHEx9BSbWG3B9RKiEvkxA5aqLJVd_cAp_4EJP5hfwkz9iZlQQgJjo7txK-xv3FmvgF4IXDLzzMlYq0tj6VVOq5rU8Q2TdpW17pRPhzQ5CAbHck371VvTUi-MIEfYrhwI8nw-zUJOF1Ib1-whhrriYPI1wT1rMtwhcJ6UxCD3XcXDFIE0D3dnlCxzmTR8zYmfHu9_vq59BvYXMeu_vDZuwl13-xgc_J5a7mot5qvvzA6_le_bsGNFTRlZVhLt-GS6-7A9Z8IC-_Cyaup94JhH6Zdw_ZxxbL6C9sxpzU27Jj5i6w5I5cVVtpPhiw_2SQE4HVztvAmumw86z6en30bT1vHSuz_bDn37zs_-x48QxsWWD9Rib8HR3uvD3dG8SpmQ9xIPOpwomWLGkyhucukk3mRCGsRMjWZxoTNdEuENtw1qJo5y5WRqjA6lWmeJ0XjhLgPG92scw-BaZu3iUtdlhkjpXJGuNq0QlqeK4dZEcT9jFXNitCc4mocV4GKmVc0ktUwkhG8HMqfBCqPP5bc7BdAtRLpecURSQpB6mUEz4dsFEb6w2I6Giwsg4AsJ6_3CB6EhTN8iiJCpYi3I-B--v_ShqrcnZRD6tG_VHoGV0eHk3E13j94-xiu0fNgc7QJG4vTpXuCcGpRP_UC8wO2phVu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExClt4lfiY2hZtbBbIUSlikvk2A5aqLKr7u4BTv0JSPzD_hLG9m7aBSEkODq2E7_G_saZ-QbgBcMtv5CCpUpZmnIrVNo0ukxtnrWtapQRIRzQ6EDuHfI3R-Loghd_5IfoL9y8ZIT92gv41Lbb56Sh2gbeIO9qgmrWZbjCJUqMh0XvzwmkPD4PbHtMpEryckXbmNHt9frrx9JvWHMduoazZ3AT9KrV0eTky9Zi3myZb78QOv5Pt27BjSUwJVVcSbfhkuvuwPULdIV3YfpqHHxgyMdxZ8g-rlfSfCU7-qTBdh2TcI01I95hhVT2s_Z2n2QUw--6GZkHA10ynHSfzk6_D8etIxV2f7KYhfednf6IfqGGRM5PVOHvweHg9YedvXQZsSE1HA86nGbeov5SKuokd7woM2YtAiYjFSasVK2ns6HOoGLmLBWai1KrnOdFkZXGMXYfNrpJ5x4CUbZoM5c7KbXmXDjNXKNbxi0thMOsBNLVhNVmSWfuo2oc15GImdZ-JOt-JBN42ZefRiKPP5bcXM1_vRToWU0RRzLmlcsEnvfZKIr-_4ru_GBhGYRjhfd5T-BBXDf9p3w8qBzRdgI0zP5f2lBXu6OqTz36l0rP4Oq73UE93D94-xiu-cfR4GgTNuYnC_cEsdS8eRrE5Sd7kBQm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binding+Zinc+Ions+by+Carboxyl+Groups+from+Adjacent+Molecules+toward+Long%E2%80%90Life+Aqueous+Zinc%E2%80%93Organic+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Yanrong&rft.au=Wang%2C+Caixing&rft.au=Ni%2C+Zhigang&rft.au=Gu%2C+Yuming&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.202000338&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |