Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Long‐Life Aqueous Zinc–Organic Batteries

The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (1...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 16; pp. e2000338 - n/a
Main Authors Wang, Yanrong, Wang, Caixing, Ni, Zhigang, Gu, Yuming, Wang, Bingliang, Guo, Zhaowei, Wang, Zhuo, Bin, Duan, Ma, Jing, Wang, Yonggang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202000338

Cover

Loading…
Abstract The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid‐scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT−1 at 50 mA gDTT−1 with a high mass loading of 5 mgDTT cm−2, along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+) and Zn2+ to form DTT2(H+)4(Zn2+), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports. An aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode, showing high capacity and fast kinetics. Benefitting from the improved molecular stability and the inherent low solubility of DTT, the battery exhibits a superlong life of 23 000 cycles, which is much superior to previous reports.
AbstractList The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid‐scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT−1 at 50 mA gDTT−1 with a high mass loading of 5 mgDTT cm−2, along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+) and Zn2+ to form DTT2(H+)4(Zn2+), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports.
The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid‐scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT−1 at 50 mA gDTT−1 with a high mass loading of 5 mgDTT cm−2, along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+) and Zn2+ to form DTT2(H+)4(Zn2+), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports. An aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode, showing high capacity and fast kinetics. Benefitting from the improved molecular stability and the inherent low solubility of DTT, the battery exhibits a superlong life of 23 000 cycles, which is much superior to previous reports.
The newly emerged aqueous Zn-organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid-scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene-5,7,12,14-tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT -1 at 50 mA gDTT -1 with a high mass loading of 5 mgDTT cm-2 , along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+ ) and Zn2+ to form DTT2 (H+ )4 (Zn2+ ), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports.The newly emerged aqueous Zn-organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid-scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene-5,7,12,14-tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh gDTT -1 at 50 mA gDTT -1 with a high mass loading of 5 mgDTT cm-2 , along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H+ ) and Zn2+ to form DTT2 (H+ )4 (Zn2+ ), where Zn2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports.
The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid‐scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh g DTT −1 at 50 mA g DTT −1 with a high mass loading of 5 mg DTT cm −2 , along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H + ) and Zn 2+ to form DTT 2 (H + ) 4 (Zn 2+ ), where Zn 2+ is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports.
The newly emerged aqueous Zn-organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer from the unstable and/or soluble nature of organic molecules, showing limited cycle life (≤3000 cycles) that is far away from the requirement (10 000 cycles) for grid-scale energy storage. Here, a new aqueous zinc battery is proposed by using sulfur heterocyclic quinone dibenzo[b,i]thianthrene-5,7,12,14-tetraone (DTT) as the cathode. The cell shows a high reversible capacity of 210.9 mAh g at 50 mA g with a high mass loading of 5 mg cm , along with a fast kinetics for charge storage. Electrochemical measurements, ex situ analyses, and density functional theory calculation successfully demonstrate that the DTT electrode can simultaneously store both protons (H ) and Zn to form DTT (H ) (Zn ), where Zn is bound to the carboxyl groups from the adjacent DTT molecules with improved stability. Benefitting from the improved molecular stability and the inherent low solubility of DTT and related discharge products, the DTT//Zn full cell exhibits a superlong life of 23 000 cycles with a capacity retention of 83.8%, which is much superior to previous reports.
Author Wang, Yanrong
Gu, Yuming
Wang, Yonggang
Ma, Jing
Guo, Zhaowei
Wang, Caixing
Wang, Zhuo
Wang, Bingliang
Ni, Zhigang
Bin, Duan
Author_xml – sequence: 1
  givenname: Yanrong
  orcidid: 0000-0002-2447-4679
  surname: Wang
  fullname: Wang, Yanrong
  organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University
– sequence: 2
  givenname: Caixing
  surname: Wang
  fullname: Wang, Caixing
  organization: Nanjing University
– sequence: 3
  givenname: Zhigang
  surname: Ni
  fullname: Ni, Zhigang
  organization: Nanjing University
– sequence: 4
  givenname: Yuming
  surname: Gu
  fullname: Gu, Yuming
  organization: Nanjing University
– sequence: 5
  givenname: Bingliang
  surname: Wang
  fullname: Wang, Bingliang
  organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University
– sequence: 6
  givenname: Zhaowei
  surname: Guo
  fullname: Guo, Zhaowei
  organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University
– sequence: 7
  givenname: Zhuo
  surname: Wang
  fullname: Wang, Zhuo
  organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University
– sequence: 8
  givenname: Duan
  surname: Bin
  fullname: Bin, Duan
  organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University
– sequence: 9
  givenname: Jing
  surname: Ma
  fullname: Ma, Jing
  organization: Nanjing University
– sequence: 10
  givenname: Yonggang
  surname: Wang
  fullname: Wang, Yonggang
  email: ygwang@fudan.edu.cn
  organization: iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32141139$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9LHDEchkOx1NX22mMJ9NLLbPNv_uQ4bqsVVry0l15CJvObJctMsk1m0L35EQp-Qz-JWVcrCNJTCDzPy5u8R-jAeQcIfaRkTglhX3U76DkjjBDCefUGzWjOaCaIzA_QjEieZ7IQ1SE6inGdGFmQ4h065IwKSrmcoc2Jda11K_zbOoPPvYu42eKFDo2_3vb4LPhpE3EX_IDrdq0NuBFf-B7M1EPEo7_SocVL71Z3N3-XtgNc_5nAT_Eh7-7m9jKstLMGn-hxhGAhvkdvO91H-PB4HqNfp99_Ln5ky8uz80W9zIygrMqaRnRlUVWSQSFAlBXhbUtzaQqZLm0hOyJyysAQKqBluRZ5pWV6VVmSygDnx-jLPncTfKoURzXYaKDvtdv1U4yXgpdUyjyhn1-gaz8Fl9olSjKesEIk6tMjNTUDtGoT7KDDVj39ZQLEHjDBxxigU8aOerTejUHbXlGidpOp3WTq32RJm7_QnpJfFeReuLI9bP9Dq_rbRf3s3gP-WKjl
CitedBy_id crossref_primary_10_1021_acsnano_1c01389
crossref_primary_10_1002_batt_202200529
crossref_primary_10_1021_acsenergylett_2c00843
crossref_primary_10_1002_anie_202116289
crossref_primary_10_1007_s40242_023_3126_x
crossref_primary_10_1021_jacs_3c06668
crossref_primary_10_1002_anie_202208821
crossref_primary_10_1016_j_coelec_2021_100799
crossref_primary_10_1002_aenm_202002529
crossref_primary_10_1002_batt_202300010
crossref_primary_10_3390_gels8120791
crossref_primary_10_1002_anie_202106238
crossref_primary_10_1016_j_cej_2021_131092
crossref_primary_10_1021_acsami_2c21851
crossref_primary_10_1002_aenm_202202661
crossref_primary_10_1002_eem2_12851
crossref_primary_10_1038_s41578_020_00241_4
crossref_primary_10_1002_smm2_1110
crossref_primary_10_1021_acs_accounts_3c00538
crossref_primary_10_1007_s41918_020_00093_0
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1016_j_cej_2023_141336
crossref_primary_10_1007_s12274_023_5424_x
crossref_primary_10_1039_D4SC00491D
crossref_primary_10_1039_D0EE01538E
crossref_primary_10_1021_acsami_2c03170
crossref_primary_10_1007_s11581_023_04980_6
crossref_primary_10_1002_aenm_202301631
crossref_primary_10_1002_anie_202501359
crossref_primary_10_1002_smll_202400923
crossref_primary_10_1016_j_desal_2024_118120
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1002_aenm_202400276
crossref_primary_10_1002_ange_202209642
crossref_primary_10_1002_adfm_202416497
crossref_primary_10_1002_smll_202405810
crossref_primary_10_1016_j_cej_2022_139324
crossref_primary_10_1021_acsenergylett_0c02028
crossref_primary_10_1002_adfm_202004430
crossref_primary_10_1021_acsnano_2c11974
crossref_primary_10_1002_ange_202108624
crossref_primary_10_1021_acssuschemeng_1c07262
crossref_primary_10_1016_j_cej_2022_138238
crossref_primary_10_1002_ange_202304036
crossref_primary_10_1038_s41467_021_27313_5
crossref_primary_10_1016_j_mattod_2020_08_021
crossref_primary_10_1002_batt_202200431
crossref_primary_10_1002_sstr_202000064
crossref_primary_10_1016_j_mattod_2020_12_003
crossref_primary_10_26599_EMD_2023_9370007
crossref_primary_10_1021_acssuschemeng_1c05881
crossref_primary_10_1002_adfm_202416000
crossref_primary_10_1002_ange_202501359
crossref_primary_10_1016_j_pmatsci_2024_101393
crossref_primary_10_1038_s41578_022_00478_1
crossref_primary_10_1002_eem2_12507
crossref_primary_10_1016_j_cej_2022_137711
crossref_primary_10_1002_adma_202102701
crossref_primary_10_1002_adma_202101857
crossref_primary_10_1039_D4CS01072H
crossref_primary_10_1002_chem_202303917
crossref_primary_10_1016_j_cej_2024_157627
crossref_primary_10_1039_D1SC04231A
crossref_primary_10_1002_ange_202003198
crossref_primary_10_1021_acsenergylett_2c02817
crossref_primary_10_1039_D4SC08514K
crossref_primary_10_1002_adma_202301088
crossref_primary_10_1021_acsami_3c17412
crossref_primary_10_1039_D1CP01209F
crossref_primary_10_1002_anie_202304036
crossref_primary_10_1002_cnl2_37
crossref_primary_10_1021_acs_chemrev_2c00374
crossref_primary_10_2139_ssrn_4019248
crossref_primary_10_1016_j_apcata_2023_119448
crossref_primary_10_1016_j_apsusc_2023_158374
crossref_primary_10_1039_D1SC06412F
crossref_primary_10_1016_j_cej_2022_137289
crossref_primary_10_1016_j_est_2025_115512
crossref_primary_10_1016_j_est_2024_113048
crossref_primary_10_1002_advs_202310319
crossref_primary_10_1016_j_isci_2022_104204
crossref_primary_10_1039_D1MH01226F
crossref_primary_10_1002_adfm_202413711
crossref_primary_10_1002_ange_202212231
crossref_primary_10_1016_j_mser_2022_100671
crossref_primary_10_1002_adfm_202312332
crossref_primary_10_1002_adma_202409946
crossref_primary_10_1021_acsami_4c01311
crossref_primary_10_1039_D2CC03958C
crossref_primary_10_1016_j_jcis_2021_03_071
crossref_primary_10_1016_j_est_2025_116173
crossref_primary_10_1002_ange_202116289
crossref_primary_10_1039_D2TA05185K
crossref_primary_10_1039_D0TA03947K
crossref_primary_10_1016_j_jechem_2021_08_057
crossref_primary_10_1021_acsnano_3c07346
crossref_primary_10_1002_ange_202200809
crossref_primary_10_1002_anie_202108624
crossref_primary_10_1002_adma_202206812
crossref_primary_10_1002_inf2_12265
crossref_primary_10_1002_inf2_12382
crossref_primary_10_1002_anie_202216136
crossref_primary_10_1007_s12274_023_6401_8
crossref_primary_10_1016_j_inoche_2022_109580
crossref_primary_10_1039_D2TA01621D
crossref_primary_10_1039_D4TC00474D
crossref_primary_10_1002_aenm_202303616
crossref_primary_10_1039_D3EE00211J
crossref_primary_10_1002_advs_202305749
crossref_primary_10_1021_acs_accounts_4c00016
crossref_primary_10_1002_adfm_202111131
crossref_primary_10_1002_ange_202216136
crossref_primary_10_1002_celc_202100280
crossref_primary_10_1002_adfm_202306675
crossref_primary_10_1002_chem_202103088
crossref_primary_10_1002_batt_202200197
crossref_primary_10_1021_acssuschemeng_4c06991
crossref_primary_10_1002_smll_202100219
crossref_primary_10_1016_j_cej_2024_150527
crossref_primary_10_1016_j_jechem_2021_07_027
crossref_primary_10_1016_j_cej_2023_143497
crossref_primary_10_1021_jacs_1c06936
crossref_primary_10_1002_ange_202106238
crossref_primary_10_1039_D4SC04685D
crossref_primary_10_1038_s41467_021_24701_9
crossref_primary_10_1002_anie_202211107
crossref_primary_10_1007_s41918_023_00194_6
crossref_primary_10_1016_j_electacta_2021_139620
crossref_primary_10_1021_acsami_1c20087
crossref_primary_10_1039_D5CC00275C
crossref_primary_10_1039_D2TA01014C
crossref_primary_10_1002_adma_202105480
crossref_primary_10_1021_acsenergylett_2c01535
crossref_primary_10_1007_s12613_021_2312_4
crossref_primary_10_1021_acsenergylett_0c02684
crossref_primary_10_1016_j_jcis_2023_12_114
crossref_primary_10_1016_j_est_2024_112834
crossref_primary_10_1021_acssuschemeng_3c07140
crossref_primary_10_1002_adma_202200077
crossref_primary_10_1016_j_ensm_2020_07_011
crossref_primary_10_1021_acsnano_4c01137
crossref_primary_10_1088_1674_4926_41_9_091704
crossref_primary_10_1002_anie_202209642
crossref_primary_10_1002_adma_202304040
crossref_primary_10_1002_anie_202003198
crossref_primary_10_1002_ange_202211107
crossref_primary_10_1016_j_cej_2023_146741
crossref_primary_10_4491_eer_2024_198
crossref_primary_10_1016_j_cej_2023_141850
crossref_primary_10_1002_smll_202309022
crossref_primary_10_1002_celc_202400212
crossref_primary_10_1039_D4EE01560F
crossref_primary_10_1002_cphc_202300436
crossref_primary_10_1016_j_cej_2023_142824
crossref_primary_10_1002_cssc_202002401
crossref_primary_10_1021_acsaem_3c00828
crossref_primary_10_1016_j_cej_2024_156034
crossref_primary_10_1002_adma_202103617
crossref_primary_10_1021_acssuschemeng_4c08788
crossref_primary_10_1021_acsapm_4c02477
crossref_primary_10_1039_D1TA08127F
crossref_primary_10_1002_adma_202104148
crossref_primary_10_1002_aenm_202302683
crossref_primary_10_1016_j_polymer_2021_124245
crossref_primary_10_3390_en17225768
crossref_primary_10_1002_anie_202423936
crossref_primary_10_1016_j_est_2024_112736
crossref_primary_10_1021_acs_energyfuels_4c02201
crossref_primary_10_1007_s10854_024_13985_4
crossref_primary_10_1039_D2EE02961H
crossref_primary_10_1016_j_cej_2022_139963
crossref_primary_10_1002_adfm_202312636
crossref_primary_10_1038_s41467_021_22698_9
crossref_primary_10_1016_j_joule_2023_06_007
crossref_primary_10_1021_acsapm_4c03352
crossref_primary_10_1021_jacs_2c00296
crossref_primary_10_1002_anie_202200809
crossref_primary_10_1016_j_jcis_2022_11_057
crossref_primary_10_1021_acsmaterialslett_1c00499
crossref_primary_10_1039_D4EE02097A
crossref_primary_10_1016_j_ensm_2024_103544
crossref_primary_10_1002_ange_202208821
crossref_primary_10_1039_D2SE00310D
crossref_primary_10_1002_adfm_202010049
crossref_primary_10_1002_batt_202200160
crossref_primary_10_1002_anie_202212231
crossref_primary_10_20517_energymater_2024_12
crossref_primary_10_1002_adma_202106469
crossref_primary_10_1021_acsami_3c11270
crossref_primary_10_1002_aenm_202100939
crossref_primary_10_1016_j_jelechem_2023_117665
crossref_primary_10_1016_j_cej_2025_161584
crossref_primary_10_3389_fenrg_2020_00199
crossref_primary_10_1016_j_elecom_2023_107559
crossref_primary_10_1016_j_cej_2022_138652
crossref_primary_10_1021_acsaem_0c02526
crossref_primary_10_1002_adfm_202108225
crossref_primary_10_1002_anie_202203453
crossref_primary_10_1016_j_cej_2022_139621
crossref_primary_10_1016_j_ccr_2022_214772
crossref_primary_10_1007_s40843_023_2772_5
crossref_primary_10_1002_aenm_202204005
crossref_primary_10_1016_j_est_2024_113680
crossref_primary_10_1002_adma_202402234
crossref_primary_10_1002_smm2_1312
crossref_primary_10_1016_j_jelechem_2023_117511
crossref_primary_10_1016_j_cej_2021_129890
crossref_primary_10_1016_j_apmt_2022_101515
crossref_primary_10_1002_ange_202423936
crossref_primary_10_1002_anie_202008960
crossref_primary_10_1002_ange_202316835
crossref_primary_10_1002_anie_202219136
crossref_primary_10_1021_jacs_4c02364
crossref_primary_10_1007_s40820_024_01404_6
crossref_primary_10_1002_adfm_202408875
crossref_primary_10_1002_ange_202314411
crossref_primary_10_1038_s41467_022_34303_8
crossref_primary_10_1039_D4TA01952K
crossref_primary_10_1016_j_est_2023_110326
crossref_primary_10_1021_acsaem_0c02511
crossref_primary_10_1002_smll_202312237
crossref_primary_10_1002_aenm_202401006
crossref_primary_10_1002_ange_202219136
crossref_primary_10_1002_aenm_202500171
crossref_primary_10_1002_bte2_20230020
crossref_primary_10_1002_batt_202200463
crossref_primary_10_1021_acsami_3c06849
crossref_primary_10_1002_anie_202117511
crossref_primary_10_1021_acs_chemrev_9b00628
crossref_primary_10_1021_acs_accounts_4c00776
crossref_primary_10_1039_D3CC05493D
crossref_primary_10_1039_D3QM00297G
crossref_primary_10_1002_anie_202316835
crossref_primary_10_1002_adma_202203920
crossref_primary_10_1021_jacs_4c03223
crossref_primary_10_1002_ange_202400121
crossref_primary_10_1007_s40820_023_01263_7
crossref_primary_10_1002_anie_202314411
crossref_primary_10_1039_D5SC00311C
crossref_primary_10_1021_acsenergylett_4c01692
crossref_primary_10_1039_D2CC04721G
crossref_primary_10_1002_adma_202313388
crossref_primary_10_1016_j_cej_2022_137902
crossref_primary_10_1039_D2TA03655J
crossref_primary_10_1002_aenm_202302495
crossref_primary_10_1002_adfm_202313241
crossref_primary_10_1002_aenm_202301049
crossref_primary_10_1002_ange_202203453
crossref_primary_10_1021_accountsmr_3c00284
crossref_primary_10_1002_ange_202117511
crossref_primary_10_1002_smtd_202300965
crossref_primary_10_1007_s40820_022_01009_x
crossref_primary_10_1002_adma_202303906
crossref_primary_10_1016_j_jechem_2022_01_003
crossref_primary_10_1002_batt_202400675
crossref_primary_10_1021_jacs_0c07992
crossref_primary_10_1002_adma_202409771
crossref_primary_10_1002_adma_202200662
crossref_primary_10_1002_aesr_202000044
crossref_primary_10_1016_j_jcis_2023_12_104
crossref_primary_10_1002_anie_202400121
crossref_primary_10_1021_acssuschemeng_4c02541
crossref_primary_10_1016_j_cej_2022_134642
crossref_primary_10_1002_cssc_202301851
crossref_primary_10_1021_acsami_2c13261
crossref_primary_10_1002_adfm_202200517
crossref_primary_10_1016_j_electacta_2022_141717
crossref_primary_10_1002_sstr_202200221
crossref_primary_10_1039_D3TA01706K
crossref_primary_10_1002_adfm_202316182
crossref_primary_10_1002_ange_202008960
crossref_primary_10_20517_energymater_2023_116
Cites_doi 10.1038/nchem.2085
10.1002/jcc.10003
10.1002/smll.201905452
10.1039/C8EE01883A
10.1038/am.2016.82
10.1126/sciadv.aao1761
10.1038/nchem.763
10.1038/srep06066
10.1002/adma.201901521
10.1002/anie.201813223
10.1002/anie.201002439
10.1038/s41467-018-03114-1
10.1002/smll.201805427
10.1002/anie.201807121
10.1149/2.0891807jes
10.1002/anie.201106307
10.1038/nenergy.2016.39
10.1038/s41563-018-0063-z
10.1126/science.aax6873
10.1002/aenm.201402034
10.1002/adma.201705580
10.1039/C5EE02589C
10.1021/acs.chemmater.8b01317
10.1016/j.joule.2018.07.005
10.1039/C5CC02585K
10.1002/aenm.201601792
10.1038/nenergy.2016.119
10.1002/adma.201405416
10.1021/cm504717p
10.1002/adfm.201804975
10.1002/anie.201601119
10.1002/aenm.201900993
10.1002/jcc.25730
10.1002/advs.201900431
10.1038/s41467-017-00467-x
10.1126/sciadv.1501038
10.1021/jacs.7b04471
10.1016/j.chempr.2018.08.014
10.1002/aenm.201900237
10.1002/aenm.201702463
10.1038/505163a
10.1039/C6EE01871H
10.1038/s41467-018-04949-4
10.1038/s41560-019-0388-0
10.1038/nmat4919
10.1002/anie.201808886
10.1126/science.1249625
10.1021/acsenergylett.8b01296
10.1002/adma.201903778
10.1021/acsnano.9b06484
10.1039/C6CS00173D
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202000338
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32141139
10_1002_adma_202000338
ADMA202000338
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21975052
– fundername: National Basic Research Program of China (973 Program)
  funderid: 2016YFA0203302
– fundername: State Key Basic Research Program of China
  funderid: 2018YFE0201702; 2016YFA0203302
– fundername: State Key Basic Research Program of China
  grantid: 2018YFE0201702
– fundername: National Natural Science Foundation of China
  grantid: 21975052
– fundername: State Key Basic Research Program of China
  grantid: 2016YFA0203302
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2016YFA0203302
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4128-bb4f768892e64e47803dd159c69478d69f04512ec014ed25a458a91417708ce33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 16:53:28 EDT 2025
Fri Jul 25 04:11:07 EDT 2025
Wed Feb 19 02:30:07 EST 2025
Thu Apr 24 23:06:05 EDT 2025
Tue Jul 01 02:32:45 EDT 2025
Wed Jan 22 16:33:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords ultralong cycling life
organic electrodes
zinc batteries
flexible batteries
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4128-bb4f768892e64e47803dd159c69478d69f04512ec014ed25a458a91417708ce33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2447-4679
PMID 32141139
PQID 2392337164
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2374371995
proquest_journals_2392337164
pubmed_primary_32141139
crossref_citationtrail_10_1002_adma_202000338
crossref_primary_10_1002_adma_202000338
wiley_primary_10_1002_adma_202000338_ADMA202000338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2019; 9
2017; 8
2018; 28
2018; 165
2019; 4
2015; 5
2015; 4
2019; 6
2019; 31
2015; 51
2019; 13
2019; 15
2019; 58
2019; 366
2015; 8
2015; 7
2017; 139
2012; 51
2016; 55
2018; 9
2018; 17
2018; 8
2010; 49
2018; 3
2016; 1
2015; 27
2018; 2
2014; 505
2016; 2
2019; 40
2018; 4
2017; 16
2002; 23
2018; 30
2010; 2
2018; 11
2016; 8
2016; 9
2016; 45
2014; 343
2018; 57
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 23
  start-page: 237
  year: 2002
  publication-title: J. Comput. Chem.
– volume: 3
  start-page: 2404
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 27
  start-page: 3609
  year: 2015
  publication-title: Chem. Mater.
– volume: 9
  start-page: 2881
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1894
  year: 2018
  publication-title: Joule
– volume: 343
  start-page: 1210
  year: 2014
  publication-title: Science
– volume: 4
  start-page: 6066
  year: 2015
  publication-title: Sci. Rep.
– volume: 366
  start-page: 645
  year: 2019
  publication-title: Science
– volume: 4
  start-page: 495
  year: 2019
  publication-title: Nat. Energy
– volume: 45
  start-page: 6345
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 8
  start-page: 283
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 11
  start-page: 3168
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 8
  start-page: 405
  year: 2017
  publication-title: Nat. Commun.
– volume: 9
  start-page: 661
  year: 2018
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 27
  start-page: 2907
  year: 2015
  publication-title: Adv. Mater.
– volume: 58
  start-page: 2760
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 9265
  year: 2015
  publication-title: Chem. Commun.
– volume: 4
  start-page: 2600
  year: 2018
  publication-title: Chem
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 2906
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 6428
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 8444
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 505
  start-page: 163
  year: 2014
  publication-title: Nature
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 933
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 3160
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 9775
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 16
  start-page: 841
  year: 2017
  publication-title: Nat. Mater.
– volume: 40
  start-page: 1130
  year: 2019
  publication-title: J. Comput. Chem.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 3874
  year: 2018
  publication-title: Chem. Mater.
– volume: 2
  start-page: 760
  year: 2010
  publication-title: Nat. Chem.
– ident: e_1_2_4_7_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_4_49_1
  doi: 10.1002/jcc.10003
– ident: e_1_2_4_10_1
  doi: 10.1002/smll.201905452
– ident: e_1_2_4_14_1
  doi: 10.1039/C8EE01883A
– ident: e_1_2_4_36_1
  doi: 10.1038/am.2016.82
– ident: e_1_2_4_38_1
  doi: 10.1126/sciadv.aao1761
– ident: e_1_2_4_5_1
  doi: 10.1038/nchem.763
– ident: e_1_2_4_24_1
  doi: 10.1038/srep06066
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201901521
– ident: e_1_2_4_13_1
  doi: 10.1002/anie.201813223
– ident: e_1_2_4_28_1
  doi: 10.1002/anie.201002439
– ident: e_1_2_4_32_1
  doi: 10.1038/s41467-018-03114-1
– ident: e_1_2_4_6_1
  doi: 10.1002/smll.201805427
– ident: e_1_2_4_33_1
  doi: 10.1002/anie.201807121
– ident: e_1_2_4_43_1
  doi: 10.1149/2.0891807jes
– ident: e_1_2_4_23_1
  doi: 10.1002/anie.201106307
– ident: e_1_2_4_47_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_4_8_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_4_16_1
  doi: 10.1126/science.aax6873
– ident: e_1_2_4_30_1
  doi: 10.1002/aenm.201402034
– ident: e_1_2_4_19_1
  doi: 10.1002/adma.201705580
– ident: e_1_2_4_31_1
  doi: 10.1039/C5EE02589C
– ident: e_1_2_4_37_1
  doi: 10.1021/acs.chemmater.8b01317
– ident: e_1_2_4_40_1
  doi: 10.1016/j.joule.2018.07.005
– ident: e_1_2_4_21_1
  doi: 10.1039/C5CC02585K
– ident: e_1_2_4_27_1
  doi: 10.1002/aenm.201601792
– ident: e_1_2_4_9_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_4_48_1
  doi: 10.1002/adma.201405416
– ident: e_1_2_4_22_1
  doi: 10.1021/cm504717p
– ident: e_1_2_4_35_1
  doi: 10.1002/adfm.201804975
– ident: e_1_2_4_42_1
  doi: 10.1002/anie.201601119
– ident: e_1_2_4_12_1
  doi: 10.1002/aenm.201900993
– ident: e_1_2_4_50_1
  doi: 10.1002/jcc.25730
– ident: e_1_2_4_51_1
  doi: 10.1002/advs.201900431
– ident: e_1_2_4_18_1
  doi: 10.1038/s41467-017-00467-x
– ident: e_1_2_4_3_1
  doi: 10.1126/sciadv.1501038
– ident: e_1_2_4_46_1
  doi: 10.1021/jacs.7b04471
– ident: e_1_2_4_41_1
  doi: 10.1016/j.chempr.2018.08.014
– ident: e_1_2_4_17_1
  doi: 10.1002/aenm.201900237
– ident: e_1_2_4_11_1
  doi: 10.1002/aenm.201702463
– ident: e_1_2_4_1_1
  doi: 10.1038/505163a
– ident: e_1_2_4_4_1
  doi: 10.1039/C6EE01871H
– ident: e_1_2_4_25_1
  doi: 10.1038/s41467-018-04949-4
– ident: e_1_2_4_2_1
  doi: 10.1038/s41560-019-0388-0
– ident: e_1_2_4_29_1
  doi: 10.1038/nmat4919
– ident: e_1_2_4_34_1
  doi: 10.1002/anie.201808886
– ident: e_1_2_4_45_1
  doi: 10.1126/science.1249625
– ident: e_1_2_4_39_1
  doi: 10.1021/acsenergylett.8b01296
– ident: e_1_2_4_44_1
  doi: 10.1002/adma.201903778
– ident: e_1_2_4_20_1
  doi: 10.1021/acsnano.9b06484
– ident: e_1_2_4_26_1
  doi: 10.1039/C6CS00173D
SSID ssj0009606
Score 2.6872067
Snippet The newly emerged aqueous Zn–organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer...
The newly emerged aqueous Zn-organic batteries are attracting extensive attention as a promising candidate for energy storage. However, most of them suffer...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000338
SubjectTerms Density functional theory
Energy storage
flexible batteries
Materials science
Organic chemistry
organic electrodes
Quinones
Stability
Storage batteries
ultralong cycling life
Zinc
zinc batteries
Title Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Long‐Life Aqueous Zinc–Organic Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000338
https://www.ncbi.nlm.nih.gov/pubmed/32141139
https://www.proquest.com/docview/2392337164
https://www.proquest.com/docview/2374371995
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTu2hT9qmQGWkSj0FEj-S-JhCEUVsDxVIqJfIr1RLURaR3UM58RMq9R_ySzq2dwPbqqpUbrFsJ36N_Y0z8w3AW4ZbflkIlkppacqtkKnWqkptnrWt1NKIEA5o9Kk4OOGHp-L0jhd_5IcYLty8ZIT92gu40v3OLWmosoE3yLuaoJqFm7A32PKo6PMtf5SH54Fsj4lUFrxasDZmdGe5-vKp9AfUXEau4ejZfwxq0ehocfJtezbV2-bqNz7H-_TqCTya41JSx4X0FFZc9wwe3mErfA4X78fBBYZ8GXeGfMTlSvR3sqsuNbbrnIRbrJ54fxVS2zPlzT7JKEbfdT2ZBvtccjTpvt5c_zgat47U2P3JrA_vu7n-Gd1CDYmUn6jBr8HJ_ofj3YN0HrAhNRzPOZxl3qL6UknqCu54WWXMWsRLppCYsIVsPZsNdQb1MmepUFxUSuY8L8usMo6xF7DaTTr3Coi0ZZu53BWFUpwLp5jTqmXc0lI4zEogXUxYY-Zs5j6oxnkTeZhp40eyGUYygXdD-YvI4_HXkhuL-W_m8tw3FGEkY163TGBryEZJ9L9XVOcHC8sgGiu9y3sCL-O6GT7lw0HlCLYToGH2_9GGpt4b1UPq9f9UWocH_jkaGW3A6vRy5jYRP031myAjvwCpKxFU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3o9AASMhcUqb-JHEx9BSbWG3B9RKiEvkxA5aqLJVd_cAp_4EJP5hfwkz9iZlQQgJjo7txK-xv3FmvgF4IXDLzzMlYq0tj6VVOq5rU8Q2TdpW17pRPhzQ5CAbHck371VvTUi-MIEfYrhwI8nw-zUJOF1Ib1-whhrriYPI1wT1rMtwhcJ6UxCD3XcXDFIE0D3dnlCxzmTR8zYmfHu9_vq59BvYXMeu_vDZuwl13-xgc_J5a7mot5qvvzA6_le_bsGNFTRlZVhLt-GS6-7A9Z8IC-_Cyaup94JhH6Zdw_ZxxbL6C9sxpzU27Jj5i6w5I5cVVtpPhiw_2SQE4HVztvAmumw86z6en30bT1vHSuz_bDn37zs_-x48QxsWWD9Rib8HR3uvD3dG8SpmQ9xIPOpwomWLGkyhucukk3mRCGsRMjWZxoTNdEuENtw1qJo5y5WRqjA6lWmeJ0XjhLgPG92scw-BaZu3iUtdlhkjpXJGuNq0QlqeK4dZEcT9jFXNitCc4mocV4GKmVc0ktUwkhG8HMqfBCqPP5bc7BdAtRLpecURSQpB6mUEz4dsFEb6w2I6Giwsg4AsJ6_3CB6EhTN8iiJCpYi3I-B--v_ShqrcnZRD6tG_VHoGV0eHk3E13j94-xiu0fNgc7QJG4vTpXuCcGpRP_UC8wO2phVu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExClt4lfiY2hZtbBbIUSlikvk2A5aqLKr7u4BTv0JSPzD_hLG9m7aBSEkODq2E7_G_saZ-QbgBcMtv5CCpUpZmnIrVNo0ukxtnrWtapQRIRzQ6EDuHfI3R-Loghd_5IfoL9y8ZIT92gv41Lbb56Sh2gbeIO9qgmrWZbjCJUqMh0XvzwmkPD4PbHtMpEryckXbmNHt9frrx9JvWHMduoazZ3AT9KrV0eTky9Zi3myZb78QOv5Pt27BjSUwJVVcSbfhkuvuwPULdIV3YfpqHHxgyMdxZ8g-rlfSfCU7-qTBdh2TcI01I95hhVT2s_Z2n2QUw--6GZkHA10ynHSfzk6_D8etIxV2f7KYhfednf6IfqGGRM5PVOHvweHg9YedvXQZsSE1HA86nGbeov5SKuokd7woM2YtAiYjFSasVK2ns6HOoGLmLBWai1KrnOdFkZXGMXYfNrpJ5x4CUbZoM5c7KbXmXDjNXKNbxi0thMOsBNLVhNVmSWfuo2oc15GImdZ-JOt-JBN42ZefRiKPP5bcXM1_vRToWU0RRzLmlcsEnvfZKIr-_4ru_GBhGYRjhfd5T-BBXDf9p3w8qBzRdgI0zP5f2lBXu6OqTz36l0rP4Oq73UE93D94-xiu-cfR4GgTNuYnC_cEsdS8eRrE5Sd7kBQm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binding+Zinc+Ions+by+Carboxyl+Groups+from+Adjacent+Molecules+toward+Long%E2%80%90Life+Aqueous+Zinc%E2%80%93Organic+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Yanrong&rft.au=Wang%2C+Caixing&rft.au=Ni%2C+Zhigang&rft.au=Gu%2C+Yuming&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.202000338&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon