Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride

Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) cataly...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 13; pp. e2007508 - n/a
Main Authors Jin, Huanyu, Wang, Xuesi, Tang, Cheng, Vasileff, Anthony, Li, Laiquan, Slattery, Ashley, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm−2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni‐SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni‐SN@C performs like Pt with the ability to generate hydronium ions in a high‐pH electrolyte. The catalyst operation is then demonstrated in a two‐electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm−2. An unsaturated nickel surface nitride exhibits efficient and stable performance for hydrogen evolution from seawater. The origin of the activity and stability of the unique surface nitride is investigated using in situ Raman spectroscopy. By coupling with hydrazine oxidation at the anode, a flow‐electrolyzer is assembled that can deliver a current density of 1 A cm−2 with a small cell voltage of 0.7 V.
AbstractList Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm−2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni‐SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni‐SN@C performs like Pt with the ability to generate hydronium ions in a high‐pH electrolyte. The catalyst operation is then demonstrated in a two‐electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm−2.
Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni-SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm-2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni-SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni-SN@C performs like Pt with the ability to generate hydronium ions in a high-pH electrolyte. The catalyst operation is then demonstrated in a two-electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm-2 .Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni-SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm-2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni-SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni-SN@C performs like Pt with the ability to generate hydronium ions in a high-pH electrolyte. The catalyst operation is then demonstrated in a two-electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm-2 .
Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm−2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni‐SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni‐SN@C performs like Pt with the ability to generate hydronium ions in a high‐pH electrolyte. The catalyst operation is then demonstrated in a two‐electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm−2. An unsaturated nickel surface nitride exhibits efficient and stable performance for hydrogen evolution from seawater. The origin of the activity and stability of the unique surface nitride is investigated using in situ Raman spectroscopy. By coupling with hydrazine oxidation at the anode, a flow‐electrolyzer is assembled that can deliver a current density of 1 A cm−2 with a small cell voltage of 0.7 V.
Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni-SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni-SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni-SN@C performs like Pt with the ability to generate hydronium ions in a high-pH electrolyte. The catalyst operation is then demonstrated in a two-electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm .
Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm −2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni‐SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni‐SN@C performs like Pt with the ability to generate hydronium ions in a high‐pH electrolyte. The catalyst operation is then demonstrated in a two‐electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm −2 .
Author Jin, Huanyu
Tang, Cheng
Slattery, Ashley
Vasileff, Anthony
Qiao, Shi‐Zhang
Li, Laiquan
Wang, Xuesi
Author_xml – sequence: 1
  givenname: Huanyu
  surname: Jin
  fullname: Jin, Huanyu
  organization: The University of Adelaide
– sequence: 2
  givenname: Xuesi
  surname: Wang
  fullname: Wang, Xuesi
  organization: The University of Adelaide
– sequence: 3
  givenname: Cheng
  surname: Tang
  fullname: Tang, Cheng
  organization: The University of Adelaide
– sequence: 4
  givenname: Anthony
  surname: Vasileff
  fullname: Vasileff, Anthony
  organization: The University of Adelaide
– sequence: 5
  givenname: Laiquan
  surname: Li
  fullname: Li, Laiquan
  organization: The University of Adelaide
– sequence: 6
  givenname: Ashley
  surname: Slattery
  fullname: Slattery, Ashley
  organization: The University of Adelaide
– sequence: 7
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33624901$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQRi1URLeFK0dkiQuXLGPHduzjql1YpAKHpWfLiSfFJXGKk1Dl3-PVliJVQpyskd-bsec7IydxiEjIawZrBsDfO9-7NQcOUEnQz8iKSc4KAUaekBWYUhZGCX1KzsbxFgCMAvWCnJal4sIAW5F-P7m6Q-qip7tw871b6LZtQxMwTnS3-DTcYKTbX0M3T2GItE1DT_fo7t2EiW7jQfa0XnIDeh1HN80p33j6JTQ_sKP7ObWuwVxOKXh8SZ63rhvx1cN5Tq4_bL9d7Iqrrx8_XWyuikYwrgteMWU0064FwT1gicBVXUlRScl0a1glpHOi1t6VdauUEKYutTKe1RVyj-U5eXfse5eGnzOOk-3D2GDXuYjDPNr8-RJAMsUz-vYJejvMKebXWS7BcF4qqTP15oGa6x69vUuhd2mxfxaZgfURaNIwjgnbR4SBPSRlD0nZx6SyIJ4ITZjcYcdTcqH7t2aO2n3ocPnPELu5_Lz56_4G6TGmTw
CitedBy_id crossref_primary_10_1002_ange_202113082
crossref_primary_10_1016_j_ccr_2024_216238
crossref_primary_10_1016_j_ijhydene_2022_02_181
crossref_primary_10_1016_j_rser_2024_114320
crossref_primary_10_1021_jacs_4c07607
crossref_primary_10_1021_acsanm_4c06099
crossref_primary_10_1021_acsami_1c16048
crossref_primary_10_1002_cssc_202300348
crossref_primary_10_1021_acsmaterialslett_3c01235
crossref_primary_10_1002_adfm_202304079
crossref_primary_10_1016_j_apsusc_2024_162162
crossref_primary_10_1016_j_nanoen_2024_109769
crossref_primary_10_1016_j_apcatb_2021_120883
crossref_primary_10_1002_anie_202420615
crossref_primary_10_1021_acscatal_2c05433
crossref_primary_10_1038_s41929_023_01069_1
crossref_primary_10_1021_acsanm_3c05580
crossref_primary_10_1038_s41467_024_49834_5
crossref_primary_10_1038_s41467_023_39963_8
crossref_primary_10_1016_j_jcis_2023_08_086
crossref_primary_10_1016_j_nanoen_2021_106426
crossref_primary_10_1039_D3CC01409F
crossref_primary_10_1007_s12598_023_02533_4
crossref_primary_10_1016_j_gce_2022_11_001
crossref_primary_10_1021_acs_inorgchem_3c00836
crossref_primary_10_1039_D3TA07898A
crossref_primary_10_1016_j_apcatb_2023_122397
crossref_primary_10_1016_j_apcatb_2023_123486
crossref_primary_10_1016_j_jallcom_2024_173672
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1002_smll_202204155
crossref_primary_10_1016_j_nanoen_2023_108292
crossref_primary_10_1021_acssuschemeng_2c00359
crossref_primary_10_1002_adma_202108133
crossref_primary_10_1007_s40820_023_01291_3
crossref_primary_10_1016_j_ijhydene_2022_01_161
crossref_primary_10_1016_j_xcrp_2021_100518
crossref_primary_10_1016_j_cej_2025_161611
crossref_primary_10_1002_anie_202206077
crossref_primary_10_1002_ange_202210753
crossref_primary_10_1016_j_electacta_2022_141807
crossref_primary_10_1016_j_apcatb_2023_122487
crossref_primary_10_1126_sciadv_add6978
crossref_primary_10_1016_j_jechem_2023_01_064
crossref_primary_10_1063_5_0061714
crossref_primary_10_1016_j_jechem_2023_01_067
crossref_primary_10_1021_acssuschemeng_2c02520
crossref_primary_10_1039_D3EE02467A
crossref_primary_10_1039_D1DT04346C
crossref_primary_10_1039_D4DT01713G
crossref_primary_10_1021_acsmaterialslett_4c02197
crossref_primary_10_1021_acsnano_3c02749
crossref_primary_10_1002_adma_202417593
crossref_primary_10_1021_acsomega_1c05844
crossref_primary_10_1038_s41467_022_33590_5
crossref_primary_10_1002_anie_202203929
crossref_primary_10_1021_acscatal_4c06833
crossref_primary_10_1016_j_apmate_2024_100227
crossref_primary_10_1007_s11426_023_1886_7
crossref_primary_10_1002_smll_202307052
crossref_primary_10_1038_s41586_022_05379_5
crossref_primary_10_1016_j_cej_2024_150897
crossref_primary_10_1039_D2YA00296E
crossref_primary_10_1016_j_jcis_2023_05_006
crossref_primary_10_1002_anie_202203850
crossref_primary_10_1021_acscatal_5c00623
crossref_primary_10_1002_ange_202311674
crossref_primary_10_1039_D3CC01801F
crossref_primary_10_1002_adfm_202214081
crossref_primary_10_1016_j_ijhydene_2022_08_054
crossref_primary_10_1016_j_jcis_2023_07_098
crossref_primary_10_1039_D1SE01283E
crossref_primary_10_1002_ange_202412087
crossref_primary_10_1002_anie_202308800
crossref_primary_10_1002_anie_202104394
crossref_primary_10_1039_D2TA06481B
crossref_primary_10_1073_pnas_2206946119
crossref_primary_10_1002_ange_202104394
crossref_primary_10_1016_j_apenergy_2025_125468
crossref_primary_10_1002_aesr_202100078
crossref_primary_10_1007_s10853_022_07875_5
crossref_primary_10_1002_aenm_202300148
crossref_primary_10_1002_anie_202412087
crossref_primary_10_1021_acs_energyfuels_1c02056
crossref_primary_10_1016_j_apcatb_2022_121198
crossref_primary_10_1016_j_apcatb_2022_122166
crossref_primary_10_1021_acssuschemeng_3c06742
crossref_primary_10_1007_s12274_023_5825_5
crossref_primary_10_1021_acscatal_4c01173
crossref_primary_10_1002_smsc_202300036
crossref_primary_10_1002_aenm_202300254
crossref_primary_10_1002_anie_202202518
crossref_primary_10_1002_smll_202409097
crossref_primary_10_1021_accountsmr_2c00216
crossref_primary_10_1002_adfm_202214075
crossref_primary_10_1002_smm2_1067
crossref_primary_10_1007_s44246_024_00113_4
crossref_primary_10_1002_smll_202311477
crossref_primary_10_1002_adma_202306108
crossref_primary_10_1016_j_nanoen_2024_109481
crossref_primary_10_1002_adma_202308647
crossref_primary_10_1002_cctc_202400258
crossref_primary_10_1002_ange_202202518
crossref_primary_10_1002_ece2_9
crossref_primary_10_1007_s11814_022_1123_2
crossref_primary_10_1016_j_jcis_2024_12_078
crossref_primary_10_1002_cjoc_202300324
crossref_primary_10_1016_j_carbon_2023_02_044
crossref_primary_10_1016_j_apcatb_2024_123912
crossref_primary_10_1016_j_fuel_2024_131445
crossref_primary_10_1002_smll_202105906
crossref_primary_10_1016_j_ijhydene_2022_03_016
crossref_primary_10_3390_nano12234348
crossref_primary_10_1021_acsmaterialslett_2c00324
crossref_primary_10_1039_D4QI01587H
crossref_primary_10_1002_smll_202310499
crossref_primary_10_1002_inf2_12623
crossref_primary_10_1002_adma_202416200
crossref_primary_10_1016_j_cej_2024_154776
crossref_primary_10_1007_s12274_022_4608_8
crossref_primary_10_1016_j_apcatb_2023_122551
crossref_primary_10_1016_j_nanoen_2024_109356
crossref_primary_10_1016_j_cej_2023_142132
crossref_primary_10_1002_ange_202420615
crossref_primary_10_1021_acs_energyfuels_3c00859
crossref_primary_10_1039_D4TA01464B
crossref_primary_10_1016_j_cej_2022_138079
crossref_primary_10_1002_aenm_202402611
crossref_primary_10_1002_smll_202108072
crossref_primary_10_1002_smll_202407845
crossref_primary_10_1039_D1TA05703K
crossref_primary_10_1007_s40820_023_01159_6
crossref_primary_10_1016_j_arabjc_2023_105157
crossref_primary_10_1039_D4QI02311K
crossref_primary_10_1002_anie_202317220
crossref_primary_10_1016_j_nanoen_2022_107877
crossref_primary_10_1021_acsnano_3c08450
crossref_primary_10_1002_ange_202308800
crossref_primary_10_1039_D3TA07844B
crossref_primary_10_1038_s41467_022_32937_2
crossref_primary_10_1002_anie_202213328
crossref_primary_10_1039_D4TA07515C
crossref_primary_10_1016_j_ijhydene_2024_08_169
crossref_primary_10_1002_smll_202309078
crossref_primary_10_1016_j_chempr_2022_07_010
crossref_primary_10_1002_adfm_202306061
crossref_primary_10_1002_ange_202203929
crossref_primary_10_1039_D2NJ05033A
crossref_primary_10_1002_adma_202310776
crossref_primary_10_1016_j_apcatb_2025_125215
crossref_primary_10_1016_j_jphotochem_2022_114293
crossref_primary_10_1016_j_ijhydene_2022_10_140
crossref_primary_10_1021_acsami_2c03380
crossref_primary_10_1021_acsmaterialslett_2c00143
crossref_primary_10_1002_smll_202300388
crossref_primary_10_1002_sstr_202100153
crossref_primary_10_1002_smtd_202301395
crossref_primary_10_1016_j_apcatb_2023_122996
crossref_primary_10_1002_smll_202105830
crossref_primary_10_1002_ange_202206077
crossref_primary_10_1002_smll_202301465
crossref_primary_10_1002_anie_202413897
crossref_primary_10_1016_j_jallcom_2022_166889
crossref_primary_10_1016_j_jcis_2022_01_044
crossref_primary_10_1007_s40843_022_2293_0
crossref_primary_10_1016_j_jcis_2024_04_144
crossref_primary_10_1016_j_apcatb_2022_122207
crossref_primary_10_1021_acscatal_4c04046
crossref_primary_10_1039_D3MH00814B
crossref_primary_10_1007_s11244_021_01453_w
crossref_primary_10_1016_j_bios_2022_114111
crossref_primary_10_12677_japc_2024_133039
crossref_primary_10_1021_acs_nanolett_4c03031
crossref_primary_10_1002_aenm_202406160
crossref_primary_10_1002_ange_202209555
crossref_primary_10_1016_j_jssc_2022_122879
crossref_primary_10_1039_D4TA06503D
crossref_primary_10_1016_j_cej_2024_152896
crossref_primary_10_1016_j_cej_2022_136700
crossref_primary_10_1039_D3NR05957J
crossref_primary_10_1063_5_0231081
crossref_primary_10_1149_1945_7111_ad4423
crossref_primary_10_1002_anie_202309882
crossref_primary_10_1002_anie_202502227
crossref_primary_10_14710_jebt_2024_23562
crossref_primary_10_1002_adma_202104791
crossref_primary_10_1002_adfm_202107333
crossref_primary_10_1021_acsaem_3c01997
crossref_primary_10_1016_j_isci_2023_108736
crossref_primary_10_1021_acsami_1c10060
crossref_primary_10_1002_aenm_202402429
crossref_primary_10_1016_j_cej_2024_152089
crossref_primary_10_1002_ange_202317220
crossref_primary_10_1016_j_mtener_2024_101780
crossref_primary_10_1016_j_apcatb_2023_122703
crossref_primary_10_1007_s40843_023_2632_y
crossref_primary_10_1039_D3QI01587D
crossref_primary_10_1016_j_apcatb_2022_121338
crossref_primary_10_1002_adma_202309211
crossref_primary_10_1002_adfm_202415375
crossref_primary_10_1002_aesr_202200005
crossref_primary_10_1002_cey2_368
crossref_primary_10_1039_D3GC02105J
crossref_primary_10_1016_j_apcatb_2022_121686
crossref_primary_10_1016_j_ccr_2024_215723
crossref_primary_10_1039_D1TA06149F
crossref_primary_10_1007_s42114_023_00730_4
crossref_primary_10_1016_j_seppur_2024_128369
crossref_primary_10_1039_D3QI00341H
crossref_primary_10_1039_D4QI00892H
crossref_primary_10_1016_j_ccr_2024_215959
crossref_primary_10_1016_j_fuel_2023_130131
crossref_primary_10_1016_j_chphma_2024_05_003
crossref_primary_10_1002_adfm_202213976
crossref_primary_10_1039_D4CC05143B
crossref_primary_10_1016_j_ijhydene_2022_05_268
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1039_D2TA01392D
crossref_primary_10_1002_adfm_202106156
crossref_primary_10_1021_acsami_1c13002
crossref_primary_10_1002_adfm_202210101
crossref_primary_10_1021_jacs_4c13863
crossref_primary_10_1039_D5CY00088B
crossref_primary_10_1021_acsaem_1c03970
crossref_primary_10_1021_acsanm_1c03403
crossref_primary_10_1002_aenm_202300604
crossref_primary_10_1039_D4CC05385K
crossref_primary_10_1016_j_apcatb_2022_121666
crossref_primary_10_1016_j_jpowsour_2025_236427
crossref_primary_10_1016_j_apcatb_2022_121786
crossref_primary_10_1002_cctc_202301305
crossref_primary_10_1002_adfm_202311370
crossref_primary_10_1016_j_jechem_2023_05_009
crossref_primary_10_1002_adma_202209654
crossref_primary_10_3390_catal12020123
crossref_primary_10_1016_j_cjche_2022_02_010
crossref_primary_10_1016_j_chempr_2024_07_015
crossref_primary_10_1021_acs_nanolett_2c04668
crossref_primary_10_1016_j_cej_2024_154465
crossref_primary_10_1016_j_jcis_2024_12_034
crossref_primary_10_1039_D3QI01349A
crossref_primary_10_1002_ange_202213328
crossref_primary_10_1021_accountsmr_1c00135
crossref_primary_10_1002_adfm_202405527
crossref_primary_10_1002_ange_202502227
crossref_primary_10_1021_acs_chemmater_4c02059
crossref_primary_10_1016_j_cej_2022_138026
crossref_primary_10_1016_j_jallcom_2022_165862
crossref_primary_10_34133_energymatadv_0006
crossref_primary_10_1016_j_cej_2022_139350
crossref_primary_10_3390_ma16062500
crossref_primary_10_1039_D2SE01032A
crossref_primary_10_1002_smll_202410986
crossref_primary_10_3390_catal11121523
crossref_primary_10_1016_j_materresbull_2023_112593
crossref_primary_10_1038_s41893_023_01263_w
crossref_primary_10_1002_smll_202304573
crossref_primary_10_1016_j_nanoen_2022_107656
crossref_primary_10_1016_j_jcis_2025_01_070
crossref_primary_10_1002_aenm_202301438
crossref_primary_10_1007_s12274_023_5391_x
crossref_primary_10_1016_j_jechem_2023_06_039
crossref_primary_10_1002_elt2_58
crossref_primary_10_1126_sciadv_adi7755
crossref_primary_10_1021_acsnano_4c04831
crossref_primary_10_1021_accountsmr_1c00115
crossref_primary_10_1002_smll_202208270
crossref_primary_10_1002_adfm_202314611
crossref_primary_10_1007_s40820_021_00737_w
crossref_primary_10_1021_acsnano_3c03095
crossref_primary_10_1021_acsnano_4c14866
crossref_primary_10_1016_j_ijhydene_2025_01_447
crossref_primary_10_1016_j_esci_2021_09_002
crossref_primary_10_1002_ange_202203850
crossref_primary_10_1021_acscatal_2c01772
crossref_primary_10_1016_j_apsusc_2024_159754
crossref_primary_10_1038_s41467_023_43459_w
crossref_primary_10_1002_adfm_202212321
crossref_primary_10_1002_anie_202311674
crossref_primary_10_1002_adma_202404806
crossref_primary_10_1016_j_mtchem_2023_101849
crossref_primary_10_1038_s41467_025_55856_4
crossref_primary_10_1002_adfm_202110851
crossref_primary_10_1002_cssc_202401425
crossref_primary_10_1021_acsmaterialslett_4c00409
crossref_primary_10_1038_s41467_023_35782_z
crossref_primary_10_1016_j_ccr_2023_215029
crossref_primary_10_1016_j_apcatb_2022_121728
crossref_primary_10_1039_D4SE01191K
crossref_primary_10_1002_adma_202501586
crossref_primary_10_1039_D2QI02703H
crossref_primary_10_1002_ange_202413897
crossref_primary_10_1007_s40820_023_01150_1
crossref_primary_10_1016_j_nanoen_2024_109921
crossref_primary_10_1002_smll_202103826
crossref_primary_10_1021_acscatal_3c01101
crossref_primary_10_1039_D4EE01693A
crossref_primary_10_1002_celc_202400696
crossref_primary_10_1039_D4MH00845F
crossref_primary_10_1002_advs_202200146
crossref_primary_10_1002_smll_202204889
crossref_primary_10_1039_D2TA02685F
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1002_aenm_202203002
crossref_primary_10_1016_j_cej_2024_158458
crossref_primary_10_1002_smll_202412729
crossref_primary_10_1016_j_cej_2022_138628
crossref_primary_10_1002_smm2_1083
crossref_primary_10_1016_j_jcis_2024_09_215
crossref_primary_10_1039_D3CS01122D
crossref_primary_10_1002_smll_202307407
crossref_primary_10_1038_s41467_022_29710_w
crossref_primary_10_1021_acs_inorgchem_1c02684
crossref_primary_10_1002_anie_202210753
crossref_primary_10_1002_smll_202204797
crossref_primary_10_1007_s40820_021_00656_w
crossref_primary_10_1002_smll_202202014
crossref_primary_10_1021_acs_jpclett_3c01697
crossref_primary_10_1039_D2NR00423B
crossref_primary_10_1007_s10853_024_10469_y
crossref_primary_10_1002_adsu_202400689
crossref_primary_10_1039_D3QM00730H
crossref_primary_10_1016_j_jcis_2023_08_032
crossref_primary_10_1007_s12274_022_4777_5
crossref_primary_10_1039_D3CS00717K
crossref_primary_10_1016_j_apcatb_2022_121834
crossref_primary_10_1002_smtd_202201472
crossref_primary_10_1016_j_apcatb_2022_121950
crossref_primary_10_1002_anie_202113082
crossref_primary_10_1021_acs_chemmater_4c00787
crossref_primary_10_1007_s12274_023_6011_5
crossref_primary_10_1021_acs_energyfuels_3c02121
crossref_primary_10_1016_j_ijhydene_2022_07_010
crossref_primary_10_1002_adfm_202418264
crossref_primary_10_1016_j_jssc_2024_124775
crossref_primary_10_1002_adfm_202502616
crossref_primary_10_1002_sstr_202300192
crossref_primary_10_1002_aenm_202201047
crossref_primary_10_1039_D4TA02800G
crossref_primary_10_1002_adfm_202206138
crossref_primary_10_1002_cctc_202300056
crossref_primary_10_1016_j_oneear_2023_02_003
crossref_primary_10_1007_s12598_024_02649_1
crossref_primary_10_1016_j_apcatb_2024_124698
crossref_primary_10_3390_coatings14081074
crossref_primary_10_1002_idm2_12172
crossref_primary_10_3390_su151914389
crossref_primary_10_1016_j_cej_2024_153094
crossref_primary_10_1016_j_cej_2023_141939
crossref_primary_10_1039_D4TA03393K
crossref_primary_10_1021_acsami_3c11303
crossref_primary_10_1039_D2DT00641C
crossref_primary_10_1039_D1TA09010K
crossref_primary_10_1016_j_electacta_2021_139693
crossref_primary_10_1016_j_jpowsour_2022_232439
crossref_primary_10_1002_ange_202309882
crossref_primary_10_1039_D3TA06035G
crossref_primary_10_1016_j_jechem_2022_02_024
crossref_primary_10_1016_j_mser_2024_100829
crossref_primary_10_1002_adma_202201774
crossref_primary_10_1016_j_ijhydene_2023_03_074
crossref_primary_10_1007_s40843_023_2566_y
crossref_primary_10_1016_j_ceramint_2024_02_336
crossref_primary_10_1016_j_cej_2022_137335
crossref_primary_10_1002_aenm_202103823
crossref_primary_10_1007_s40843_021_1928_7
crossref_primary_10_1021_acs_jpclett_2c02132
crossref_primary_10_1002_smll_202204634
crossref_primary_10_1007_s11708_024_0925_9
crossref_primary_10_1021_acsomega_2c04499
crossref_primary_10_1039_D3CS00822C
crossref_primary_10_3390_catal14100684
crossref_primary_10_1039_D2QM01349E
crossref_primary_10_1063_5_0232980
crossref_primary_10_1002_celc_202300743
crossref_primary_10_1016_j_apcatb_2024_124548
crossref_primary_10_1039_D4TA04608K
crossref_primary_10_1002_adfm_202407586
crossref_primary_10_1021_acsaem_3c02030
crossref_primary_10_1002_adma_202412942
crossref_primary_10_1016_j_mtcata_2025_100089
crossref_primary_10_1002_adfm_202107608
crossref_primary_10_1016_j_apcato_2024_206915
crossref_primary_10_1016_j_chempr_2024_05_018
crossref_primary_10_1016_j_cattod_2021_09_015
crossref_primary_10_1039_D3DT03066K
crossref_primary_10_1039_D3QM00423F
crossref_primary_10_1002_anie_202209555
crossref_primary_10_3390_nano14030239
Cites_doi 10.1038/nature09440
10.1038/nmat4738
10.1038/s41467-020-15563-8
10.1016/j.nanoen.2018.09.046
10.1021/acsenergylett.9b00348
10.1021/cr950232u
10.1038/nnano.2016.304
10.1038/nmat3313
10.1016/0039-6028(82)90135-2
10.1002/slct.201601979
10.1002/aenm.201900390
10.1002/adma.202002857
10.1063/1.445953
10.1016/0360-3199(82)90160-4
10.1002/anie.202005241
10.1039/C9EE01743G
10.1016/j.chempr.2020.06.037
10.1002/adma.201707261
10.1038/s41467-019-12773-7
10.1038/s41560-020-0550-8
10.1021/cm301516w
10.1038/nmat1752
10.1002/adma.201706279
10.1002/cssc.201501581
10.1021/acscatal.5b01918
10.1021/acsnano.8b07841
10.1021/jacs.6b07127
10.1039/C9TA03249E
10.1021/acssuschemeng.8b01887
10.1021/jacs.5b01446
10.1021/acssuschemeng.8b06779
10.1126/science.1103197
10.1002/adma.201805606
10.1038/s41467-018-06815-9
10.1021/jacs.7b06434
10.1038/s41467-019-10995-3
10.1002/anie.201608899
10.1002/aenm.201801926
10.1002/anie.201803543
10.1021/acsenergylett.0c01244
10.1038/s41467-018-06728-7
10.1039/C8EE00976G
10.1002/aenm.201801698
10.1038/s41563-020-0788-3
10.1038/s41467-019-13092-7
10.1002/aenm.202001174
10.1073/pnas.1900556116
10.1039/D0EE01125H
10.1038/nature11475
10.1016/j.ccr.2013.01.010
10.1002/adfm.201910028
10.1002/advs.201800406
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202007508
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33624901
10_1002_adma_202007508
ADMA202007508
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP160104866; FL170100154
– fundername: Australian Research Council
  grantid: FL170100154
– fundername: Australian Research Council
  grantid: DP160104866
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4128-27169818af042d0e3e026b75475518f91745aa4b8da3bf66449b3869d1b7e2de3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:55:11 EDT 2025
Fri Jul 25 05:38:02 EDT 2025
Wed Feb 19 02:28:26 EST 2025
Tue Jul 01 02:32:59 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Wed Jan 22 16:29:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords nickel surface nitride
hydrogen evolution
in situ Raman spectroscopy hydrazine oxidation
seawater
electrocatalysis
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4128-27169818af042d0e3e026b75475518f91745aa4b8da3bf66449b3869d1b7e2de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4568-8422
PMID 33624901
PQID 2509223658
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2493005162
proquest_journals_2509223658
pubmed_primary_33624901
crossref_primary_10_1002_adma_202007508
crossref_citationtrail_10_1002_adma_202007508
wiley_primary_10_1002_adma_202007508_ADMA202007508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 1, 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2019; 9
2019; 4
2017; 2
2019; 10
2010; 467
2019; 12
1982; 123
2020; 59
2006; 5
1996; 96
2020; 13
2020; 11
2020; 32
2020; 10
2012; 488
2004; 305
2016; 16
2012; 11
1983; 79
2017; 139
2020; 19
2018; 6
2016; 6
2020; 6
2018; 9
2020; 5
2018; 8
2018; 5
2015; 137
2020; 30
2017; 12
2017; 56
2019; 116
2013; 257
1982; 7
2018; 30
2016; 138
2018; 12
2018; 11
2012; 24
2018; 53
2016; 9
2018; 57
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 137
  start-page: 4815
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 5
  start-page: 2681
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 96
  start-page: 1477
  year: 1996
  publication-title: Chem. Rev.
– volume: 12
  start-page: 441
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 1898
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 4365
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 4531
  year: 2018
  publication-title: Nat. Commun.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 7
  start-page: 925
  year: 1982
  publication-title: Int. J. Hydrogen Energy
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1853
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 962
  year: 2016
  publication-title: ChemSusChem
– volume: 6
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 13
  start-page: 1725
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 79
  start-page: 1551
  year: 1983
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 1140
  year: 2020
  publication-title: Nat. Mater.
– volume: 6
  start-page: 2382
  year: 2020
  publication-title: Chem
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 57
  start-page: 7649
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 367
  year: 2020
  publication-title: Nat. Energy
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 8006
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 24
  start-page: 3023
  year: 2012
  publication-title: Chem. Mater.
– volume: 56
  start-page: 842
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 635
  year: 2016
  publication-title: ACS Catal.
– volume: 10
  start-page: 4876
  year: 2019
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 53
  start-page: 690
  year: 2018
  publication-title: Nano Energy
– volume: 16
  start-page: 57
  year: 2016
  publication-title: Nat. Mater.
– volume: 2
  start-page: 3401
  year: 2017
  publication-title: ChemistrySelect
– volume: 10
  start-page: 2994
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 3522
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 123
  start-page: 129
  year: 1982
  publication-title: Surf. Sci.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 467
  start-page: 555
  year: 2010
  publication-title: Nature
– volume: 257
  start-page: 2063
  year: 2013
  publication-title: Coord. Chem. Rev.
– volume: 4
  start-page: 805
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 5106
  year: 2019
  publication-title: Nat. Commun.
– volume: 116
  start-page: 6624
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: e_1_2_5_11_1
  doi: 10.1038/nature09440
– ident: e_1_2_5_4_1
  doi: 10.1038/nmat4738
– ident: e_1_2_5_27_1
  doi: 10.1038/s41467-020-15563-8
– ident: e_1_2_5_29_1
  doi: 10.1016/j.nanoen.2018.09.046
– ident: e_1_2_5_36_1
  doi: 10.1021/acsenergylett.9b00348
– ident: e_1_2_5_37_1
  doi: 10.1021/cr950232u
– ident: e_1_2_5_10_1
  doi: 10.1038/nnano.2016.304
– ident: e_1_2_5_3_1
  doi: 10.1038/nmat3313
– ident: e_1_2_5_33_1
  doi: 10.1016/0039-6028(82)90135-2
– ident: e_1_2_5_48_1
  doi: 10.1002/slct.201601979
– ident: e_1_2_5_52_1
  doi: 10.1002/aenm.201900390
– ident: e_1_2_5_5_1
  doi: 10.1002/adma.202002857
– ident: e_1_2_5_41_1
  doi: 10.1063/1.445953
– ident: e_1_2_5_42_1
  doi: 10.1016/0360-3199(82)90160-4
– ident: e_1_2_5_7_1
  doi: 10.1002/anie.202005241
– ident: e_1_2_5_28_1
  doi: 10.1039/C9EE01743G
– ident: e_1_2_5_24_1
  doi: 10.1016/j.chempr.2020.06.037
– ident: e_1_2_5_14_1
  doi: 10.1002/adma.201707261
– ident: e_1_2_5_40_1
  doi: 10.1038/s41467-019-12773-7
– ident: e_1_2_5_6_1
  doi: 10.1038/s41560-020-0550-8
– ident: e_1_2_5_30_1
  doi: 10.1021/cm301516w
– ident: e_1_2_5_22_1
  doi: 10.1038/nmat1752
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201706279
– ident: e_1_2_5_16_1
  doi: 10.1002/cssc.201501581
– ident: e_1_2_5_21_1
  doi: 10.1021/acscatal.5b01918
– ident: e_1_2_5_18_1
  doi: 10.1021/acsnano.8b07841
– ident: e_1_2_5_46_1
  doi: 10.1021/jacs.6b07127
– ident: e_1_2_5_26_1
  doi: 10.1039/C9TA03249E
– ident: e_1_2_5_51_1
  doi: 10.1021/acssuschemeng.8b01887
– ident: e_1_2_5_34_1
  doi: 10.1021/jacs.5b01446
– ident: e_1_2_5_17_1
  doi: 10.1021/acssuschemeng.8b06779
– ident: e_1_2_5_2_1
  doi: 10.1126/science.1103197
– ident: e_1_2_5_9_1
  doi: 10.1002/adma.201805606
– ident: e_1_2_5_47_1
  doi: 10.1038/s41467-018-06815-9
– ident: e_1_2_5_32_1
  doi: 10.1021/jacs.7b06434
– ident: e_1_2_5_35_1
  doi: 10.1038/s41467-019-10995-3
– ident: e_1_2_5_50_1
  doi: 10.1002/anie.201608899
– ident: e_1_2_5_15_1
  doi: 10.1002/aenm.201801926
– ident: e_1_2_5_49_1
  doi: 10.1002/anie.201803543
– ident: e_1_2_5_20_1
  doi: 10.1021/acsenergylett.0c01244
– ident: e_1_2_5_25_1
  doi: 10.1038/s41467-018-06728-7
– ident: e_1_2_5_13_1
  doi: 10.1039/C8EE00976G
– ident: e_1_2_5_39_1
  doi: 10.1002/aenm.201801698
– ident: e_1_2_5_45_1
  doi: 10.1038/s41563-020-0788-3
– ident: e_1_2_5_19_1
  doi: 10.1038/s41467-019-13092-7
– ident: e_1_2_5_44_1
  doi: 10.1002/aenm.202001174
– ident: e_1_2_5_43_1
  doi: 10.1073/pnas.1900556116
– ident: e_1_2_5_12_1
  doi: 10.1039/D0EE01125H
– ident: e_1_2_5_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_5_31_1
  doi: 10.1016/j.ccr.2013.01.010
– ident: e_1_2_5_38_1
  doi: 10.1002/adfm.201910028
– ident: e_1_2_5_23_1
  doi: 10.1002/advs.201800406
SSID ssj0009606
Score 2.7103376
Snippet Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER)...
Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2007508
SubjectTerms Anodizing
Catalysts
Clean energy
Current density
electrocatalysis
Electrolytes
Energy conversion
Heterostructures
Hydrazines
hydrogen evolution
Hydrogen evolution reactions
Hydrogen production
Hydronium ions
in situ Raman spectroscopy hydrazine oxidation
Materials science
Metal nitrides
Nickel
nickel surface nitride
Oxidation
Platinum
Seawater
Transition metals
Title Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202007508
https://www.ncbi.nlm.nih.gov/pubmed/33624901
https://www.proquest.com/docview/2509223658
https://www.proquest.com/docview/2493005162
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdP057GAzB-BjZkJCSesrW24zSP1dapQoKHjUp7i84-R0IrKUpbUPnrOTtptjIhJHiM7Pz0Xe7r5O5jgHeeozRKiamWuU91xfMUdDmlpIgy78yoaLN8P5npTH-4zq7vVPG3fIj-g1vwjPi-Dg6Odnl6Cw1FitwgGYNeqPYNCVtBFV3e8qOCPI-wPZWlhdGjLbVxIE93d9-NSvek5q5yjaHn4hHg9qLbjJObk_XKnrifv_Ec_-euHsPDTpeKcWtIh7Dn6yfw4A6t8Cl8ZWFq515gTSKkh8w3YhIBFBy3xHRDzYKNUUy-d8YsQuWKuPL4g-VsIyaxSIuE3fABxKxeBqIot5BgY7zxc3G1bip0njdXzRfyz2B2Mfl8Nk271RpSpznIpTJwdzj8Y8XvARp45Xl6Z_NM5wH6VvG0UGeI2o4Ila0M67DCqpEpaGhzL8mr57BfL2r_EkRuiJUmDYxzA43kCicRDUqlKB86oxNIt6NVug5lHlbUmJcthFmW4TGW_WNM4H3f_1sL8fhjz6Pt4JedMy9LVokFqyjWagm87ZvZDcO_Faz9Ys19dBHA_0MjE3jRGk1_KsUiQbPuSkDGof_LNZTj84_jfuvVv-z0Gg5kyL2JGUZHsL9q1v6YxdPKvokO8gtV_w7b
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB-BAkYCcUq76zhOcuCwYrfa0seBdqXegu1xJNQli7K7VMu_4q_wixg7j7IghITUA0fLjuPYM55vnPE3AC8tWWnFuQoFT2woCvJTlEkwxAgxtkamWR3leyTHE_HuND7dgG_tXZiaH6I7cHOa4fdrp-DuQHrngjVUoScO4t7qpU1c5b5dnZPXNn-zN6QlfsX57ujk7ThsEguERtB-HHJHEUOWShUkstizkSVPRCexSBw_WUEejIiVEjpFFelCEmTIdJTKDPs6sRxtRP1egasujbij6x--v2Cscg6Bp_eL4jCTIm15Int8Z32863bwN3C7jpW9sdu9Bd_baapjXM62lwu9bb7-wiD5X83jbbjZQG82qHXlDmzY8i7c-ImQ8R58Iuytp5apEpmLgJmu2MhzbJBpZuMVVjPSNzb60ugrc5dz2LFV54TYKzby99CQ6RV1wCbl3JGmUg0y0rczO2XHy6pQxlJxUX1Eex8ml_K9D2CznJX2EbBEIoFp7EljekKhyQxXSioeRZj0jRQBhK145KZha3dJQ6Z5zTPNc7dsebdsAbzu2n-ueUr-2HKrlba82a_mOQHhjIAiwdEAXnTVtNO430eqtLMltRGZy23QlzyAh7WUdq-KCAcJgpYBcC9rfxlDPhgeDrrS43956DlcG58cHuQHe0f7T-A6d6FGPqBqCzYX1dI-Jay40M-8djL4cNli_APEw2n_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48IYGChgJxClt1nGc5MBhxe5qS6FClJV6Sx2PI6Fus1V2l2r5VfwV_hFj51EWhJCQeuAY2XEcex7fJONvAF4Y8tKKc-ULHhtfFBSnKB2jjyFiZLRM0jrL90COJ-LtUXS0Ad_aszA1P0T3wc1qhrPXVsHPsNi9IA1V6HiDuHN6SZNWuW9W5xS0zV_vDWiHX3I-Gn56M_abugK-FmSOfW4ZYshRqYIkFgMTGgpE8jgSsaUnKyiAEZFSIk9QhXkhCTGkeZjIFHt5bDiakMa9AleFDFJbLGLw8YKwysYDjt0vjPxUiqSliQz47vp8193gb9h2HSo7Xze6Bd_bVapTXE52lot8R3_9hUDyf1rG23CzAd6sX2vKHdgw5V248RMd4z04JeSdTw1TJTKb_zJdsaFj2CDHzMYrrGakbWz4pdFWZo_msEOjzgmvV2zoTqEhy1c0AJuUc0uZSi3ISNtOzJQdLqtCaUOXi-ozmvswuZT3fQCb5aw0W8BiiQSlMZBaB0KhTjVXSioehhj3tBQe-K10ZLrharclQ6ZZzTLNM7ttWbdtHrzq-p_VLCV_7LndClvWWKt5RjA4JZhIYNSD510z2Rn780iVZrakPiK1lQ16knvwsBbS7lEhoSBBwNID7kTtL3PI-oP3_e7q0b_c9AyufRiMsnd7B_uP4Tq3eUYum2obNhfV0jwhoLjInzrdZHB82VL8A-_2aK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+and+Highly+Efficient+Hydrogen+Evolution+from+Seawater+Enabled+by+an+Unsaturated+Nickel+Surface+Nitride&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Huanyu&rft.au=Wang%2C+Xuesi&rft.au=Tang%2C+Cheng&rft.au=Vasileff%2C+Anthony&rft.date=2021-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202007508&rft.externalDBID=10.1002%252Fadma.202007508&rft.externalDocID=ADMA202007508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon