Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride
Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) cataly...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 13; pp. e2007508 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm−2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni‐SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni‐SN@C performs like Pt with the ability to generate hydronium ions in a high‐pH electrolyte. The catalyst operation is then demonstrated in a two‐electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm−2.
An unsaturated nickel surface nitride exhibits efficient and stable performance for hydrogen evolution from seawater. The origin of the activity and stability of the unique surface nitride is investigated using in situ Raman spectroscopy. By coupling with hydrazine oxidation at the anode, a flow‐electrolyzer is assembled that can deliver a current density of 1 A cm−2 with a small cell voltage of 0.7 V. |
---|---|
AbstractList | Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm−2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni‐SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni‐SN@C performs like Pt with the ability to generate hydronium ions in a high‐pH electrolyte. The catalyst operation is then demonstrated in a two‐electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm−2. Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni-SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm-2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni-SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni-SN@C performs like Pt with the ability to generate hydronium ions in a high-pH electrolyte. The catalyst operation is then demonstrated in a two-electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm-2 .Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni-SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm-2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni-SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni-SN@C performs like Pt with the ability to generate hydronium ions in a high-pH electrolyte. The catalyst operation is then demonstrated in a two-electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm-2 . Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm−2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni‐SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni‐SN@C performs like Pt with the ability to generate hydronium ions in a high‐pH electrolyte. The catalyst operation is then demonstrated in a two‐electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm−2. An unsaturated nickel surface nitride exhibits efficient and stable performance for hydrogen evolution from seawater. The origin of the activity and stability of the unique surface nitride is investigated using in situ Raman spectroscopy. By coupling with hydrazine oxidation at the anode, a flow‐electrolyzer is assembled that can deliver a current density of 1 A cm−2 with a small cell voltage of 0.7 V. Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni-SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni-SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni-SN@C performs like Pt with the ability to generate hydronium ions in a high-pH electrolyte. The catalyst operation is then demonstrated in a two-electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm . Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni‐SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm −2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni‐SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni‐SN@C performs like Pt with the ability to generate hydronium ions in a high‐pH electrolyte. The catalyst operation is then demonstrated in a two‐electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm −2 . |
Author | Jin, Huanyu Tang, Cheng Slattery, Ashley Vasileff, Anthony Qiao, Shi‐Zhang Li, Laiquan Wang, Xuesi |
Author_xml | – sequence: 1 givenname: Huanyu surname: Jin fullname: Jin, Huanyu organization: The University of Adelaide – sequence: 2 givenname: Xuesi surname: Wang fullname: Wang, Xuesi organization: The University of Adelaide – sequence: 3 givenname: Cheng surname: Tang fullname: Tang, Cheng organization: The University of Adelaide – sequence: 4 givenname: Anthony surname: Vasileff fullname: Vasileff, Anthony organization: The University of Adelaide – sequence: 5 givenname: Laiquan surname: Li fullname: Li, Laiquan organization: The University of Adelaide – sequence: 6 givenname: Ashley surname: Slattery fullname: Slattery, Ashley organization: The University of Adelaide – sequence: 7 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33624901$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQRi1URLeFK0dkiQuXLGPHduzjql1YpAKHpWfLiSfFJXGKk1Dl3-PVliJVQpyskd-bsec7IydxiEjIawZrBsDfO9-7NQcOUEnQz8iKSc4KAUaekBWYUhZGCX1KzsbxFgCMAvWCnJal4sIAW5F-P7m6Q-qip7tw871b6LZtQxMwTnS3-DTcYKTbX0M3T2GItE1DT_fo7t2EiW7jQfa0XnIDeh1HN80p33j6JTQ_sKP7ObWuwVxOKXh8SZ63rhvx1cN5Tq4_bL9d7Iqrrx8_XWyuikYwrgteMWU0064FwT1gicBVXUlRScl0a1glpHOi1t6VdauUEKYutTKe1RVyj-U5eXfse5eGnzOOk-3D2GDXuYjDPNr8-RJAMsUz-vYJejvMKebXWS7BcF4qqTP15oGa6x69vUuhd2mxfxaZgfURaNIwjgnbR4SBPSRlD0nZx6SyIJ4ITZjcYcdTcqH7t2aO2n3ocPnPELu5_Lz56_4G6TGmTw |
CitedBy_id | crossref_primary_10_1002_ange_202113082 crossref_primary_10_1016_j_ccr_2024_216238 crossref_primary_10_1016_j_ijhydene_2022_02_181 crossref_primary_10_1016_j_rser_2024_114320 crossref_primary_10_1021_jacs_4c07607 crossref_primary_10_1021_acsanm_4c06099 crossref_primary_10_1021_acsami_1c16048 crossref_primary_10_1002_cssc_202300348 crossref_primary_10_1021_acsmaterialslett_3c01235 crossref_primary_10_1002_adfm_202304079 crossref_primary_10_1016_j_apsusc_2024_162162 crossref_primary_10_1016_j_nanoen_2024_109769 crossref_primary_10_1016_j_apcatb_2021_120883 crossref_primary_10_1002_anie_202420615 crossref_primary_10_1021_acscatal_2c05433 crossref_primary_10_1038_s41929_023_01069_1 crossref_primary_10_1021_acsanm_3c05580 crossref_primary_10_1038_s41467_024_49834_5 crossref_primary_10_1038_s41467_023_39963_8 crossref_primary_10_1016_j_jcis_2023_08_086 crossref_primary_10_1016_j_nanoen_2021_106426 crossref_primary_10_1039_D3CC01409F crossref_primary_10_1007_s12598_023_02533_4 crossref_primary_10_1016_j_gce_2022_11_001 crossref_primary_10_1021_acs_inorgchem_3c00836 crossref_primary_10_1039_D3TA07898A crossref_primary_10_1016_j_apcatb_2023_122397 crossref_primary_10_1016_j_apcatb_2023_123486 crossref_primary_10_1016_j_jallcom_2024_173672 crossref_primary_10_1002_aenm_202404077 crossref_primary_10_1002_smll_202204155 crossref_primary_10_1016_j_nanoen_2023_108292 crossref_primary_10_1021_acssuschemeng_2c00359 crossref_primary_10_1002_adma_202108133 crossref_primary_10_1007_s40820_023_01291_3 crossref_primary_10_1016_j_ijhydene_2022_01_161 crossref_primary_10_1016_j_xcrp_2021_100518 crossref_primary_10_1016_j_cej_2025_161611 crossref_primary_10_1002_anie_202206077 crossref_primary_10_1002_ange_202210753 crossref_primary_10_1016_j_electacta_2022_141807 crossref_primary_10_1016_j_apcatb_2023_122487 crossref_primary_10_1126_sciadv_add6978 crossref_primary_10_1016_j_jechem_2023_01_064 crossref_primary_10_1063_5_0061714 crossref_primary_10_1016_j_jechem_2023_01_067 crossref_primary_10_1021_acssuschemeng_2c02520 crossref_primary_10_1039_D3EE02467A crossref_primary_10_1039_D1DT04346C crossref_primary_10_1039_D4DT01713G crossref_primary_10_1021_acsmaterialslett_4c02197 crossref_primary_10_1021_acsnano_3c02749 crossref_primary_10_1002_adma_202417593 crossref_primary_10_1021_acsomega_1c05844 crossref_primary_10_1038_s41467_022_33590_5 crossref_primary_10_1002_anie_202203929 crossref_primary_10_1021_acscatal_4c06833 crossref_primary_10_1016_j_apmate_2024_100227 crossref_primary_10_1007_s11426_023_1886_7 crossref_primary_10_1002_smll_202307052 crossref_primary_10_1038_s41586_022_05379_5 crossref_primary_10_1016_j_cej_2024_150897 crossref_primary_10_1039_D2YA00296E crossref_primary_10_1016_j_jcis_2023_05_006 crossref_primary_10_1002_anie_202203850 crossref_primary_10_1021_acscatal_5c00623 crossref_primary_10_1002_ange_202311674 crossref_primary_10_1039_D3CC01801F crossref_primary_10_1002_adfm_202214081 crossref_primary_10_1016_j_ijhydene_2022_08_054 crossref_primary_10_1016_j_jcis_2023_07_098 crossref_primary_10_1039_D1SE01283E crossref_primary_10_1002_ange_202412087 crossref_primary_10_1002_anie_202308800 crossref_primary_10_1002_anie_202104394 crossref_primary_10_1039_D2TA06481B crossref_primary_10_1073_pnas_2206946119 crossref_primary_10_1002_ange_202104394 crossref_primary_10_1016_j_apenergy_2025_125468 crossref_primary_10_1002_aesr_202100078 crossref_primary_10_1007_s10853_022_07875_5 crossref_primary_10_1002_aenm_202300148 crossref_primary_10_1002_anie_202412087 crossref_primary_10_1021_acs_energyfuels_1c02056 crossref_primary_10_1016_j_apcatb_2022_121198 crossref_primary_10_1016_j_apcatb_2022_122166 crossref_primary_10_1021_acssuschemeng_3c06742 crossref_primary_10_1007_s12274_023_5825_5 crossref_primary_10_1021_acscatal_4c01173 crossref_primary_10_1002_smsc_202300036 crossref_primary_10_1002_aenm_202300254 crossref_primary_10_1002_anie_202202518 crossref_primary_10_1002_smll_202409097 crossref_primary_10_1021_accountsmr_2c00216 crossref_primary_10_1002_adfm_202214075 crossref_primary_10_1002_smm2_1067 crossref_primary_10_1007_s44246_024_00113_4 crossref_primary_10_1002_smll_202311477 crossref_primary_10_1002_adma_202306108 crossref_primary_10_1016_j_nanoen_2024_109481 crossref_primary_10_1002_adma_202308647 crossref_primary_10_1002_cctc_202400258 crossref_primary_10_1002_ange_202202518 crossref_primary_10_1002_ece2_9 crossref_primary_10_1007_s11814_022_1123_2 crossref_primary_10_1016_j_jcis_2024_12_078 crossref_primary_10_1002_cjoc_202300324 crossref_primary_10_1016_j_carbon_2023_02_044 crossref_primary_10_1016_j_apcatb_2024_123912 crossref_primary_10_1016_j_fuel_2024_131445 crossref_primary_10_1002_smll_202105906 crossref_primary_10_1016_j_ijhydene_2022_03_016 crossref_primary_10_3390_nano12234348 crossref_primary_10_1021_acsmaterialslett_2c00324 crossref_primary_10_1039_D4QI01587H crossref_primary_10_1002_smll_202310499 crossref_primary_10_1002_inf2_12623 crossref_primary_10_1002_adma_202416200 crossref_primary_10_1016_j_cej_2024_154776 crossref_primary_10_1007_s12274_022_4608_8 crossref_primary_10_1016_j_apcatb_2023_122551 crossref_primary_10_1016_j_nanoen_2024_109356 crossref_primary_10_1016_j_cej_2023_142132 crossref_primary_10_1002_ange_202420615 crossref_primary_10_1021_acs_energyfuels_3c00859 crossref_primary_10_1039_D4TA01464B crossref_primary_10_1016_j_cej_2022_138079 crossref_primary_10_1002_aenm_202402611 crossref_primary_10_1002_smll_202108072 crossref_primary_10_1002_smll_202407845 crossref_primary_10_1039_D1TA05703K crossref_primary_10_1007_s40820_023_01159_6 crossref_primary_10_1016_j_arabjc_2023_105157 crossref_primary_10_1039_D4QI02311K crossref_primary_10_1002_anie_202317220 crossref_primary_10_1016_j_nanoen_2022_107877 crossref_primary_10_1021_acsnano_3c08450 crossref_primary_10_1002_ange_202308800 crossref_primary_10_1039_D3TA07844B crossref_primary_10_1038_s41467_022_32937_2 crossref_primary_10_1002_anie_202213328 crossref_primary_10_1039_D4TA07515C crossref_primary_10_1016_j_ijhydene_2024_08_169 crossref_primary_10_1002_smll_202309078 crossref_primary_10_1016_j_chempr_2022_07_010 crossref_primary_10_1002_adfm_202306061 crossref_primary_10_1002_ange_202203929 crossref_primary_10_1039_D2NJ05033A crossref_primary_10_1002_adma_202310776 crossref_primary_10_1016_j_apcatb_2025_125215 crossref_primary_10_1016_j_jphotochem_2022_114293 crossref_primary_10_1016_j_ijhydene_2022_10_140 crossref_primary_10_1021_acsami_2c03380 crossref_primary_10_1021_acsmaterialslett_2c00143 crossref_primary_10_1002_smll_202300388 crossref_primary_10_1002_sstr_202100153 crossref_primary_10_1002_smtd_202301395 crossref_primary_10_1016_j_apcatb_2023_122996 crossref_primary_10_1002_smll_202105830 crossref_primary_10_1002_ange_202206077 crossref_primary_10_1002_smll_202301465 crossref_primary_10_1002_anie_202413897 crossref_primary_10_1016_j_jallcom_2022_166889 crossref_primary_10_1016_j_jcis_2022_01_044 crossref_primary_10_1007_s40843_022_2293_0 crossref_primary_10_1016_j_jcis_2024_04_144 crossref_primary_10_1016_j_apcatb_2022_122207 crossref_primary_10_1021_acscatal_4c04046 crossref_primary_10_1039_D3MH00814B crossref_primary_10_1007_s11244_021_01453_w crossref_primary_10_1016_j_bios_2022_114111 crossref_primary_10_12677_japc_2024_133039 crossref_primary_10_1021_acs_nanolett_4c03031 crossref_primary_10_1002_aenm_202406160 crossref_primary_10_1002_ange_202209555 crossref_primary_10_1016_j_jssc_2022_122879 crossref_primary_10_1039_D4TA06503D crossref_primary_10_1016_j_cej_2024_152896 crossref_primary_10_1016_j_cej_2022_136700 crossref_primary_10_1039_D3NR05957J crossref_primary_10_1063_5_0231081 crossref_primary_10_1149_1945_7111_ad4423 crossref_primary_10_1002_anie_202309882 crossref_primary_10_1002_anie_202502227 crossref_primary_10_14710_jebt_2024_23562 crossref_primary_10_1002_adma_202104791 crossref_primary_10_1002_adfm_202107333 crossref_primary_10_1021_acsaem_3c01997 crossref_primary_10_1016_j_isci_2023_108736 crossref_primary_10_1021_acsami_1c10060 crossref_primary_10_1002_aenm_202402429 crossref_primary_10_1016_j_cej_2024_152089 crossref_primary_10_1002_ange_202317220 crossref_primary_10_1016_j_mtener_2024_101780 crossref_primary_10_1016_j_apcatb_2023_122703 crossref_primary_10_1007_s40843_023_2632_y crossref_primary_10_1039_D3QI01587D crossref_primary_10_1016_j_apcatb_2022_121338 crossref_primary_10_1002_adma_202309211 crossref_primary_10_1002_adfm_202415375 crossref_primary_10_1002_aesr_202200005 crossref_primary_10_1002_cey2_368 crossref_primary_10_1039_D3GC02105J crossref_primary_10_1016_j_apcatb_2022_121686 crossref_primary_10_1016_j_ccr_2024_215723 crossref_primary_10_1039_D1TA06149F crossref_primary_10_1007_s42114_023_00730_4 crossref_primary_10_1016_j_seppur_2024_128369 crossref_primary_10_1039_D3QI00341H crossref_primary_10_1039_D4QI00892H crossref_primary_10_1016_j_ccr_2024_215959 crossref_primary_10_1016_j_fuel_2023_130131 crossref_primary_10_1016_j_chphma_2024_05_003 crossref_primary_10_1002_adfm_202213976 crossref_primary_10_1039_D4CC05143B crossref_primary_10_1016_j_ijhydene_2022_05_268 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1039_D2TA01392D crossref_primary_10_1002_adfm_202106156 crossref_primary_10_1021_acsami_1c13002 crossref_primary_10_1002_adfm_202210101 crossref_primary_10_1021_jacs_4c13863 crossref_primary_10_1039_D5CY00088B crossref_primary_10_1021_acsaem_1c03970 crossref_primary_10_1021_acsanm_1c03403 crossref_primary_10_1002_aenm_202300604 crossref_primary_10_1039_D4CC05385K crossref_primary_10_1016_j_apcatb_2022_121666 crossref_primary_10_1016_j_jpowsour_2025_236427 crossref_primary_10_1016_j_apcatb_2022_121786 crossref_primary_10_1002_cctc_202301305 crossref_primary_10_1002_adfm_202311370 crossref_primary_10_1016_j_jechem_2023_05_009 crossref_primary_10_1002_adma_202209654 crossref_primary_10_3390_catal12020123 crossref_primary_10_1016_j_cjche_2022_02_010 crossref_primary_10_1016_j_chempr_2024_07_015 crossref_primary_10_1021_acs_nanolett_2c04668 crossref_primary_10_1016_j_cej_2024_154465 crossref_primary_10_1016_j_jcis_2024_12_034 crossref_primary_10_1039_D3QI01349A crossref_primary_10_1002_ange_202213328 crossref_primary_10_1021_accountsmr_1c00135 crossref_primary_10_1002_adfm_202405527 crossref_primary_10_1002_ange_202502227 crossref_primary_10_1021_acs_chemmater_4c02059 crossref_primary_10_1016_j_cej_2022_138026 crossref_primary_10_1016_j_jallcom_2022_165862 crossref_primary_10_34133_energymatadv_0006 crossref_primary_10_1016_j_cej_2022_139350 crossref_primary_10_3390_ma16062500 crossref_primary_10_1039_D2SE01032A crossref_primary_10_1002_smll_202410986 crossref_primary_10_3390_catal11121523 crossref_primary_10_1016_j_materresbull_2023_112593 crossref_primary_10_1038_s41893_023_01263_w crossref_primary_10_1002_smll_202304573 crossref_primary_10_1016_j_nanoen_2022_107656 crossref_primary_10_1016_j_jcis_2025_01_070 crossref_primary_10_1002_aenm_202301438 crossref_primary_10_1007_s12274_023_5391_x crossref_primary_10_1016_j_jechem_2023_06_039 crossref_primary_10_1002_elt2_58 crossref_primary_10_1126_sciadv_adi7755 crossref_primary_10_1021_acsnano_4c04831 crossref_primary_10_1021_accountsmr_1c00115 crossref_primary_10_1002_smll_202208270 crossref_primary_10_1002_adfm_202314611 crossref_primary_10_1007_s40820_021_00737_w crossref_primary_10_1021_acsnano_3c03095 crossref_primary_10_1021_acsnano_4c14866 crossref_primary_10_1016_j_ijhydene_2025_01_447 crossref_primary_10_1016_j_esci_2021_09_002 crossref_primary_10_1002_ange_202203850 crossref_primary_10_1021_acscatal_2c01772 crossref_primary_10_1016_j_apsusc_2024_159754 crossref_primary_10_1038_s41467_023_43459_w crossref_primary_10_1002_adfm_202212321 crossref_primary_10_1002_anie_202311674 crossref_primary_10_1002_adma_202404806 crossref_primary_10_1016_j_mtchem_2023_101849 crossref_primary_10_1038_s41467_025_55856_4 crossref_primary_10_1002_adfm_202110851 crossref_primary_10_1002_cssc_202401425 crossref_primary_10_1021_acsmaterialslett_4c00409 crossref_primary_10_1038_s41467_023_35782_z crossref_primary_10_1016_j_ccr_2023_215029 crossref_primary_10_1016_j_apcatb_2022_121728 crossref_primary_10_1039_D4SE01191K crossref_primary_10_1002_adma_202501586 crossref_primary_10_1039_D2QI02703H crossref_primary_10_1002_ange_202413897 crossref_primary_10_1007_s40820_023_01150_1 crossref_primary_10_1016_j_nanoen_2024_109921 crossref_primary_10_1002_smll_202103826 crossref_primary_10_1021_acscatal_3c01101 crossref_primary_10_1039_D4EE01693A crossref_primary_10_1002_celc_202400696 crossref_primary_10_1039_D4MH00845F crossref_primary_10_1002_advs_202200146 crossref_primary_10_1002_smll_202204889 crossref_primary_10_1039_D2TA02685F crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1002_aenm_202203002 crossref_primary_10_1016_j_cej_2024_158458 crossref_primary_10_1002_smll_202412729 crossref_primary_10_1016_j_cej_2022_138628 crossref_primary_10_1002_smm2_1083 crossref_primary_10_1016_j_jcis_2024_09_215 crossref_primary_10_1039_D3CS01122D crossref_primary_10_1002_smll_202307407 crossref_primary_10_1038_s41467_022_29710_w crossref_primary_10_1021_acs_inorgchem_1c02684 crossref_primary_10_1002_anie_202210753 crossref_primary_10_1002_smll_202204797 crossref_primary_10_1007_s40820_021_00656_w crossref_primary_10_1002_smll_202202014 crossref_primary_10_1021_acs_jpclett_3c01697 crossref_primary_10_1039_D2NR00423B crossref_primary_10_1007_s10853_024_10469_y crossref_primary_10_1002_adsu_202400689 crossref_primary_10_1039_D3QM00730H crossref_primary_10_1016_j_jcis_2023_08_032 crossref_primary_10_1007_s12274_022_4777_5 crossref_primary_10_1039_D3CS00717K crossref_primary_10_1016_j_apcatb_2022_121834 crossref_primary_10_1002_smtd_202201472 crossref_primary_10_1016_j_apcatb_2022_121950 crossref_primary_10_1002_anie_202113082 crossref_primary_10_1021_acs_chemmater_4c00787 crossref_primary_10_1007_s12274_023_6011_5 crossref_primary_10_1021_acs_energyfuels_3c02121 crossref_primary_10_1016_j_ijhydene_2022_07_010 crossref_primary_10_1002_adfm_202418264 crossref_primary_10_1016_j_jssc_2024_124775 crossref_primary_10_1002_adfm_202502616 crossref_primary_10_1002_sstr_202300192 crossref_primary_10_1002_aenm_202201047 crossref_primary_10_1039_D4TA02800G crossref_primary_10_1002_adfm_202206138 crossref_primary_10_1002_cctc_202300056 crossref_primary_10_1016_j_oneear_2023_02_003 crossref_primary_10_1007_s12598_024_02649_1 crossref_primary_10_1016_j_apcatb_2024_124698 crossref_primary_10_3390_coatings14081074 crossref_primary_10_1002_idm2_12172 crossref_primary_10_3390_su151914389 crossref_primary_10_1016_j_cej_2024_153094 crossref_primary_10_1016_j_cej_2023_141939 crossref_primary_10_1039_D4TA03393K crossref_primary_10_1021_acsami_3c11303 crossref_primary_10_1039_D2DT00641C crossref_primary_10_1039_D1TA09010K crossref_primary_10_1016_j_electacta_2021_139693 crossref_primary_10_1016_j_jpowsour_2022_232439 crossref_primary_10_1002_ange_202309882 crossref_primary_10_1039_D3TA06035G crossref_primary_10_1016_j_jechem_2022_02_024 crossref_primary_10_1016_j_mser_2024_100829 crossref_primary_10_1002_adma_202201774 crossref_primary_10_1016_j_ijhydene_2023_03_074 crossref_primary_10_1007_s40843_023_2566_y crossref_primary_10_1016_j_ceramint_2024_02_336 crossref_primary_10_1016_j_cej_2022_137335 crossref_primary_10_1002_aenm_202103823 crossref_primary_10_1007_s40843_021_1928_7 crossref_primary_10_1021_acs_jpclett_2c02132 crossref_primary_10_1002_smll_202204634 crossref_primary_10_1007_s11708_024_0925_9 crossref_primary_10_1021_acsomega_2c04499 crossref_primary_10_1039_D3CS00822C crossref_primary_10_3390_catal14100684 crossref_primary_10_1039_D2QM01349E crossref_primary_10_1063_5_0232980 crossref_primary_10_1002_celc_202300743 crossref_primary_10_1016_j_apcatb_2024_124548 crossref_primary_10_1039_D4TA04608K crossref_primary_10_1002_adfm_202407586 crossref_primary_10_1021_acsaem_3c02030 crossref_primary_10_1002_adma_202412942 crossref_primary_10_1016_j_mtcata_2025_100089 crossref_primary_10_1002_adfm_202107608 crossref_primary_10_1016_j_apcato_2024_206915 crossref_primary_10_1016_j_chempr_2024_05_018 crossref_primary_10_1016_j_cattod_2021_09_015 crossref_primary_10_1039_D3DT03066K crossref_primary_10_1039_D3QM00423F crossref_primary_10_1002_anie_202209555 crossref_primary_10_3390_nano14030239 |
Cites_doi | 10.1038/nature09440 10.1038/nmat4738 10.1038/s41467-020-15563-8 10.1016/j.nanoen.2018.09.046 10.1021/acsenergylett.9b00348 10.1021/cr950232u 10.1038/nnano.2016.304 10.1038/nmat3313 10.1016/0039-6028(82)90135-2 10.1002/slct.201601979 10.1002/aenm.201900390 10.1002/adma.202002857 10.1063/1.445953 10.1016/0360-3199(82)90160-4 10.1002/anie.202005241 10.1039/C9EE01743G 10.1016/j.chempr.2020.06.037 10.1002/adma.201707261 10.1038/s41467-019-12773-7 10.1038/s41560-020-0550-8 10.1021/cm301516w 10.1038/nmat1752 10.1002/adma.201706279 10.1002/cssc.201501581 10.1021/acscatal.5b01918 10.1021/acsnano.8b07841 10.1021/jacs.6b07127 10.1039/C9TA03249E 10.1021/acssuschemeng.8b01887 10.1021/jacs.5b01446 10.1021/acssuschemeng.8b06779 10.1126/science.1103197 10.1002/adma.201805606 10.1038/s41467-018-06815-9 10.1021/jacs.7b06434 10.1038/s41467-019-10995-3 10.1002/anie.201608899 10.1002/aenm.201801926 10.1002/anie.201803543 10.1021/acsenergylett.0c01244 10.1038/s41467-018-06728-7 10.1039/C8EE00976G 10.1002/aenm.201801698 10.1038/s41563-020-0788-3 10.1038/s41467-019-13092-7 10.1002/aenm.202001174 10.1073/pnas.1900556116 10.1039/D0EE01125H 10.1038/nature11475 10.1016/j.ccr.2013.01.010 10.1002/adfm.201910028 10.1002/advs.201800406 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202007508 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33624901 10_1002_adma_202007508 ADMA202007508 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP160104866; FL170100154 – fundername: Australian Research Council grantid: FL170100154 – fundername: Australian Research Council grantid: DP160104866 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4128-27169818af042d0e3e026b75475518f91745aa4b8da3bf66449b3869d1b7e2de3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:55:11 EDT 2025 Fri Jul 25 05:38:02 EDT 2025 Wed Feb 19 02:28:26 EST 2025 Tue Jul 01 02:32:59 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Jan 22 16:29:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | nickel surface nitride hydrogen evolution in situ Raman spectroscopy hydrazine oxidation seawater electrocatalysis |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4128-27169818af042d0e3e026b75475518f91745aa4b8da3bf66449b3869d1b7e2de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4568-8422 |
PMID | 33624901 |
PQID | 2509223658 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2493005162 proquest_journals_2509223658 pubmed_primary_33624901 crossref_primary_10_1002_adma_202007508 crossref_citationtrail_10_1002_adma_202007508 wiley_primary_10_1002_adma_202007508_ADMA202007508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 1, 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2019; 9 2019; 4 2017; 2 2019; 10 2010; 467 2019; 12 1982; 123 2020; 59 2006; 5 1996; 96 2020; 13 2020; 11 2020; 32 2020; 10 2012; 488 2004; 305 2016; 16 2012; 11 1983; 79 2017; 139 2020; 19 2018; 6 2016; 6 2020; 6 2018; 9 2020; 5 2018; 8 2018; 5 2015; 137 2020; 30 2017; 12 2017; 56 2019; 116 2013; 257 1982; 7 2018; 30 2016; 138 2018; 12 2018; 11 2012; 24 2018; 53 2016; 9 2018; 57 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 137 start-page: 4815 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 5 start-page: 2681 year: 2020 publication-title: ACS Energy Lett. – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 96 start-page: 1477 year: 1996 publication-title: Chem. Rev. – volume: 12 start-page: 441 year: 2017 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 1898 year: 2018 publication-title: Energy Environ. Sci. – volume: 9 start-page: 4365 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 4531 year: 2018 publication-title: Nat. Commun. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 7 start-page: 925 year: 1982 publication-title: Int. J. Hydrogen Energy – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1853 year: 2020 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 962 year: 2016 publication-title: ChemSusChem – volume: 6 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 13 start-page: 1725 year: 2020 publication-title: Energy Environ. Sci. – volume: 79 start-page: 1551 year: 1983 publication-title: J. Chem. Phys. – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 19 start-page: 1140 year: 2020 publication-title: Nat. Mater. – volume: 6 start-page: 2382 year: 2020 publication-title: Chem – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 57 start-page: 7649 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 367 year: 2020 publication-title: Nat. Energy – volume: 12 year: 2018 publication-title: ACS Nano – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 8006 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 24 start-page: 3023 year: 2012 publication-title: Chem. Mater. – volume: 56 start-page: 842 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 635 year: 2016 publication-title: ACS Catal. – volume: 10 start-page: 4876 year: 2019 publication-title: Nat. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 53 start-page: 690 year: 2018 publication-title: Nano Energy – volume: 16 start-page: 57 year: 2016 publication-title: Nat. Mater. – volume: 2 start-page: 3401 year: 2017 publication-title: ChemistrySelect – volume: 10 start-page: 2994 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 3522 year: 2019 publication-title: Energy Environ. Sci. – volume: 123 start-page: 129 year: 1982 publication-title: Surf. Sci. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 467 start-page: 555 year: 2010 publication-title: Nature – volume: 257 start-page: 2063 year: 2013 publication-title: Coord. Chem. Rev. – volume: 4 start-page: 805 year: 2019 publication-title: ACS Energy Lett. – volume: 10 start-page: 5106 year: 2019 publication-title: Nat. Commun. – volume: 116 start-page: 6624 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_2_5_11_1 doi: 10.1038/nature09440 – ident: e_1_2_5_4_1 doi: 10.1038/nmat4738 – ident: e_1_2_5_27_1 doi: 10.1038/s41467-020-15563-8 – ident: e_1_2_5_29_1 doi: 10.1016/j.nanoen.2018.09.046 – ident: e_1_2_5_36_1 doi: 10.1021/acsenergylett.9b00348 – ident: e_1_2_5_37_1 doi: 10.1021/cr950232u – ident: e_1_2_5_10_1 doi: 10.1038/nnano.2016.304 – ident: e_1_2_5_3_1 doi: 10.1038/nmat3313 – ident: e_1_2_5_33_1 doi: 10.1016/0039-6028(82)90135-2 – ident: e_1_2_5_48_1 doi: 10.1002/slct.201601979 – ident: e_1_2_5_52_1 doi: 10.1002/aenm.201900390 – ident: e_1_2_5_5_1 doi: 10.1002/adma.202002857 – ident: e_1_2_5_41_1 doi: 10.1063/1.445953 – ident: e_1_2_5_42_1 doi: 10.1016/0360-3199(82)90160-4 – ident: e_1_2_5_7_1 doi: 10.1002/anie.202005241 – ident: e_1_2_5_28_1 doi: 10.1039/C9EE01743G – ident: e_1_2_5_24_1 doi: 10.1016/j.chempr.2020.06.037 – ident: e_1_2_5_14_1 doi: 10.1002/adma.201707261 – ident: e_1_2_5_40_1 doi: 10.1038/s41467-019-12773-7 – ident: e_1_2_5_6_1 doi: 10.1038/s41560-020-0550-8 – ident: e_1_2_5_30_1 doi: 10.1021/cm301516w – ident: e_1_2_5_22_1 doi: 10.1038/nmat1752 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201706279 – ident: e_1_2_5_16_1 doi: 10.1002/cssc.201501581 – ident: e_1_2_5_21_1 doi: 10.1021/acscatal.5b01918 – ident: e_1_2_5_18_1 doi: 10.1021/acsnano.8b07841 – ident: e_1_2_5_46_1 doi: 10.1021/jacs.6b07127 – ident: e_1_2_5_26_1 doi: 10.1039/C9TA03249E – ident: e_1_2_5_51_1 doi: 10.1021/acssuschemeng.8b01887 – ident: e_1_2_5_34_1 doi: 10.1021/jacs.5b01446 – ident: e_1_2_5_17_1 doi: 10.1021/acssuschemeng.8b06779 – ident: e_1_2_5_2_1 doi: 10.1126/science.1103197 – ident: e_1_2_5_9_1 doi: 10.1002/adma.201805606 – ident: e_1_2_5_47_1 doi: 10.1038/s41467-018-06815-9 – ident: e_1_2_5_32_1 doi: 10.1021/jacs.7b06434 – ident: e_1_2_5_35_1 doi: 10.1038/s41467-019-10995-3 – ident: e_1_2_5_50_1 doi: 10.1002/anie.201608899 – ident: e_1_2_5_15_1 doi: 10.1002/aenm.201801926 – ident: e_1_2_5_49_1 doi: 10.1002/anie.201803543 – ident: e_1_2_5_20_1 doi: 10.1021/acsenergylett.0c01244 – ident: e_1_2_5_25_1 doi: 10.1038/s41467-018-06728-7 – ident: e_1_2_5_13_1 doi: 10.1039/C8EE00976G – ident: e_1_2_5_39_1 doi: 10.1002/aenm.201801698 – ident: e_1_2_5_45_1 doi: 10.1038/s41563-020-0788-3 – ident: e_1_2_5_19_1 doi: 10.1038/s41467-019-13092-7 – ident: e_1_2_5_44_1 doi: 10.1002/aenm.202001174 – ident: e_1_2_5_43_1 doi: 10.1073/pnas.1900556116 – ident: e_1_2_5_12_1 doi: 10.1039/D0EE01125H – ident: e_1_2_5_1_1 doi: 10.1038/nature11475 – ident: e_1_2_5_31_1 doi: 10.1016/j.ccr.2013.01.010 – ident: e_1_2_5_38_1 doi: 10.1002/adfm.201910028 – ident: e_1_2_5_23_1 doi: 10.1002/advs.201800406 |
SSID | ssj0009606 |
Score | 2.7103376 |
Snippet | Electrocatalytic production of hydrogen from seawater provides a route to low‐cost and clean energy conversion. However, the hydrogen evolution reaction (HER)... Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2007508 |
SubjectTerms | Anodizing Catalysts Clean energy Current density electrocatalysis Electrolytes Energy conversion Heterostructures Hydrazines hydrogen evolution Hydrogen evolution reactions Hydrogen production Hydronium ions in situ Raman spectroscopy hydrazine oxidation Materials science Metal nitrides Nickel nickel surface nitride Oxidation Platinum Seawater Transition metals |
Title | Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202007508 https://www.ncbi.nlm.nih.gov/pubmed/33624901 https://www.proquest.com/docview/2509223658 https://www.proquest.com/docview/2493005162 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdP057GAzB-BjZkJCSesrW24zSP1dapQoKHjUp7i84-R0IrKUpbUPnrOTtptjIhJHiM7Pz0Xe7r5O5jgHeeozRKiamWuU91xfMUdDmlpIgy78yoaLN8P5npTH-4zq7vVPG3fIj-g1vwjPi-Dg6Odnl6Cw1FitwgGYNeqPYNCVtBFV3e8qOCPI-wPZWlhdGjLbVxIE93d9-NSvek5q5yjaHn4hHg9qLbjJObk_XKnrifv_Ec_-euHsPDTpeKcWtIh7Dn6yfw4A6t8Cl8ZWFq515gTSKkh8w3YhIBFBy3xHRDzYKNUUy-d8YsQuWKuPL4g-VsIyaxSIuE3fABxKxeBqIot5BgY7zxc3G1bip0njdXzRfyz2B2Mfl8Nk271RpSpznIpTJwdzj8Y8XvARp45Xl6Z_NM5wH6VvG0UGeI2o4Ila0M67DCqpEpaGhzL8mr57BfL2r_EkRuiJUmDYxzA43kCicRDUqlKB86oxNIt6NVug5lHlbUmJcthFmW4TGW_WNM4H3f_1sL8fhjz6Pt4JedMy9LVokFqyjWagm87ZvZDcO_Faz9Ys19dBHA_0MjE3jRGk1_KsUiQbPuSkDGof_LNZTj84_jfuvVv-z0Gg5kyL2JGUZHsL9q1v6YxdPKvokO8gtV_w7b |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB-BAkYCcUq76zhOcuCwYrfa0seBdqXegu1xJNQli7K7VMu_4q_wixg7j7IghITUA0fLjuPYM55vnPE3AC8tWWnFuQoFT2woCvJTlEkwxAgxtkamWR3leyTHE_HuND7dgG_tXZiaH6I7cHOa4fdrp-DuQHrngjVUoScO4t7qpU1c5b5dnZPXNn-zN6QlfsX57ujk7ThsEguERtB-HHJHEUOWShUkstizkSVPRCexSBw_WUEejIiVEjpFFelCEmTIdJTKDPs6sRxtRP1egasujbij6x--v2Cscg6Bp_eL4jCTIm15Int8Z32863bwN3C7jpW9sdu9Bd_baapjXM62lwu9bb7-wiD5X83jbbjZQG82qHXlDmzY8i7c-ImQ8R58Iuytp5apEpmLgJmu2MhzbJBpZuMVVjPSNzb60ugrc5dz2LFV54TYKzby99CQ6RV1wCbl3JGmUg0y0rczO2XHy6pQxlJxUX1Eex8ml_K9D2CznJX2EbBEIoFp7EljekKhyQxXSioeRZj0jRQBhK145KZha3dJQ6Z5zTPNc7dsebdsAbzu2n-ueUr-2HKrlba82a_mOQHhjIAiwdEAXnTVtNO430eqtLMltRGZy23QlzyAh7WUdq-KCAcJgpYBcC9rfxlDPhgeDrrS43956DlcG58cHuQHe0f7T-A6d6FGPqBqCzYX1dI-Jay40M-8djL4cNli_APEw2n_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48IYGChgJxClt1nGc5MBhxe5qS6FClJV6Sx2PI6Fus1V2l2r5VfwV_hFj51EWhJCQeuAY2XEcex7fJONvAF4Y8tKKc-ULHhtfFBSnKB2jjyFiZLRM0jrL90COJ-LtUXS0Ad_aszA1P0T3wc1qhrPXVsHPsNi9IA1V6HiDuHN6SZNWuW9W5xS0zV_vDWiHX3I-Gn56M_abugK-FmSOfW4ZYshRqYIkFgMTGgpE8jgSsaUnKyiAEZFSIk9QhXkhCTGkeZjIFHt5bDiakMa9AleFDFJbLGLw8YKwysYDjt0vjPxUiqSliQz47vp8193gb9h2HSo7Xze6Bd_bVapTXE52lot8R3_9hUDyf1rG23CzAd6sX2vKHdgw5V248RMd4z04JeSdTw1TJTKb_zJdsaFj2CDHzMYrrGakbWz4pdFWZo_msEOjzgmvV2zoTqEhy1c0AJuUc0uZSi3ISNtOzJQdLqtCaUOXi-ozmvswuZT3fQCb5aw0W8BiiQSlMZBaB0KhTjVXSioehhj3tBQe-K10ZLrharclQ6ZZzTLNM7ttWbdtHrzq-p_VLCV_7LndClvWWKt5RjA4JZhIYNSD510z2Rn780iVZrakPiK1lQ16knvwsBbS7lEhoSBBwNID7kTtL3PI-oP3_e7q0b_c9AyufRiMsnd7B_uP4Tq3eUYum2obNhfV0jwhoLjInzrdZHB82VL8A-_2aK4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+and+Highly+Efficient+Hydrogen+Evolution+from+Seawater+Enabled+by+an+Unsaturated+Nickel+Surface+Nitride&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Huanyu&rft.au=Wang%2C+Xuesi&rft.au=Tang%2C+Cheng&rft.au=Vasileff%2C+Anthony&rft.date=2021-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202007508&rft.externalDBID=10.1002%252Fadma.202007508&rft.externalDocID=ADMA202007508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |