Recent Progress in Rechargeable Sodium‐Ion Batteries: toward High‐Power Applications
The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 32; pp. e1805427 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.
The sodium‐ion battery (SIB) is an ideal choice for large‐scale energy storage, and high pulse‐power capability is essentially required for its applications. The recent progress of high‐power SIBs including cathodes, anode materials, electrolytes, and aqueous systems is reviewed. Special attention is given on understanding the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, and strategies to promote the rate performance. |
---|---|
AbstractList | The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na
+
diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future. The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future. The sodium‐ion battery (SIB) is an ideal choice for large‐scale energy storage, and high pulse‐power capability is essentially required for its applications. The recent progress of high‐power SIBs including cathodes, anode materials, electrolytes, and aqueous systems is reviewed. Special attention is given on understanding the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, and strategies to promote the rate performance. The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium-ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid-scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium-ion battery (SIB) is regarded as an ideal battery choice for grid-scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse-power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high-power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium-ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid-scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium-ion battery (SIB) is regarded as an ideal battery choice for grid-scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse-power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high-power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future. The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium-ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid-scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium-ion battery (SIB) is regarded as an ideal battery choice for grid-scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse-power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high-power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future. The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future. |
Author | Pu, Xiangjun Cao, Yuliang Cao, Shunan Wang, Huiming Zhao, Dong Yang, Hanxi Chen, Zhongxue Ai, Xinping |
Author_xml | – sequence: 1 givenname: Xiangjun orcidid: 0000-0003-0246-7926 surname: Pu fullname: Pu, Xiangjun organization: Wuhan University – sequence: 2 givenname: Huiming surname: Wang fullname: Wang, Huiming organization: Wuhan University – sequence: 3 givenname: Dong surname: Zhao fullname: Zhao, Dong organization: Wuhan University – sequence: 4 givenname: Hanxi orcidid: 0000-0002-6704-2542 surname: Yang fullname: Yang, Hanxi organization: Wuhan University – sequence: 5 givenname: Xinping orcidid: 0000-0002-8280-0866 surname: Ai fullname: Ai, Xinping organization: Wuhan University – sequence: 6 givenname: Shunan orcidid: 0000-0002-3264-851X surname: Cao fullname: Cao, Shunan organization: Wuhan University – sequence: 7 givenname: Zhongxue orcidid: 0000-0002-1526-7336 surname: Chen fullname: Chen, Zhongxue email: zxchen_pmc@whu.edu.cn organization: Wuhan University – sequence: 8 givenname: Yuliang orcidid: 0000-0001-6092-5652 surname: Cao fullname: Cao, Yuliang email: ylcao@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30773812$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAUhoMo3rcupeDGzYy5tUncqXgZGFG8gLuQtqdjJG3GpGVw5yP4jD6J1fECgrjKIef7Dsn519Bi4xtAaIvgIcGY7sXauSHFROKUU7GAVklG2CCTVC1-1wSvoLUYHzBmhHKxjFYYFoJJQlfR3RUU0LTJZfCTADEmtkn6q3sTJmByB8m1L21Xvz6_jHyTHJq2hWAh7ietn5lQJmd2ct83L_0MQnIwnTpbmNb6Jm6gpcq4CJuf5zq6PTm-OTobjC9OR0cH40HBCRUDYIwKKcqUcUNSWeVZqZikGa-4wbmUeZEpTkshSkUrrPI0p0XFVZWzDKQsga2j3fncafCPHcRW1zYW4JxpwHdRUyIZkSoVuEd3fqEPvgtN_zpNaaak6neS9dT2J9XlNZR6GmxtwpP-2lkP8DlQBB9jgEoXtv34dBuMdZpg_R6Nfo9Gf0fTa8Nf2tfkPwU1F2bWwdM_tL4-H49_3DcyV6Jh |
CitedBy_id | crossref_primary_10_1016_j_jssc_2021_122440 crossref_primary_10_1039_D0TA06533A crossref_primary_10_3390_ma16134871 crossref_primary_10_1002_sstr_202100001 crossref_primary_10_1016_j_nanoen_2024_109880 crossref_primary_10_1016_j_rser_2023_114167 crossref_primary_10_1039_D4NR02220C crossref_primary_10_1016_j_nanoen_2019_104295 crossref_primary_10_1016_j_jpowsour_2021_229907 crossref_primary_10_1021_acsaem_1c03192 crossref_primary_10_1002_aenm_202103461 crossref_primary_10_1016_j_nanoen_2019_05_030 crossref_primary_10_1039_D3SC02382F crossref_primary_10_1002_ange_202111215 crossref_primary_10_3390_batteries11020061 crossref_primary_10_1016_j_electacta_2021_137905 crossref_primary_10_1021_acsanm_2c04860 crossref_primary_10_3390_en15155659 crossref_primary_10_1016_j_matchemphys_2021_124456 crossref_primary_10_1002_aenm_202400367 crossref_primary_10_1002_adma_202000338 crossref_primary_10_1016_j_memsci_2023_122266 crossref_primary_10_3390_batteries9020116 crossref_primary_10_1021_acsami_1c02216 crossref_primary_10_1002_ente_202101024 crossref_primary_10_1021_acsaem_9b01101 crossref_primary_10_3866_PKU_WHXB202303041 crossref_primary_10_1016_j_apsusc_2023_156775 crossref_primary_10_1002_smtd_202100580 crossref_primary_10_1016_j_cej_2024_150316 crossref_primary_10_1016_j_jechem_2025_01_015 crossref_primary_10_1016_j_surfin_2023_103787 crossref_primary_10_1021_acsami_0c12052 crossref_primary_10_1016_j_nanoen_2020_104728 crossref_primary_10_1016_j_mser_2023_100737 crossref_primary_10_1016_j_enrev_2023_100066 crossref_primary_10_1021_acs_energyfuels_0c03138 crossref_primary_10_1016_j_mattod_2023_06_013 crossref_primary_10_1039_C9TA12770D crossref_primary_10_1007_s40820_020_0381_y crossref_primary_10_1002_adfm_202419997 crossref_primary_10_1016_j_electacta_2021_139675 crossref_primary_10_1002_aesr_202200030 crossref_primary_10_1016_j_jallcom_2021_161388 crossref_primary_10_1021_acsami_9b12041 crossref_primary_10_1016_j_electacta_2024_144262 crossref_primary_10_1002_batt_202400076 crossref_primary_10_3390_ma13163453 crossref_primary_10_1016_j_susmat_2024_e01052 crossref_primary_10_1016_j_est_2023_110306 crossref_primary_10_1039_C9CC04136B crossref_primary_10_1016_j_elecom_2020_106897 crossref_primary_10_1021_acssuschemeng_9b05098 crossref_primary_10_1002_smll_201906669 crossref_primary_10_1002_adfm_202009458 crossref_primary_10_1039_D0RA05468B crossref_primary_10_3389_fenrg_2022_847818 crossref_primary_10_1016_j_apsusc_2022_153529 crossref_primary_10_1016_j_electacta_2020_136532 crossref_primary_10_1016_j_cej_2022_141097 crossref_primary_10_1002_aenm_202200959 crossref_primary_10_1002_aenm_202200715 crossref_primary_10_1002_aenm_202403164 crossref_primary_10_1002_smtd_202300699 crossref_primary_10_1039_D1TA01626A crossref_primary_10_1016_j_est_2025_115994 crossref_primary_10_1002_smtd_202400865 crossref_primary_10_1021_acs_energyfuels_4c05539 crossref_primary_10_1016_j_apsusc_2024_161270 crossref_primary_10_1016_j_jelechem_2024_118289 crossref_primary_10_1002_ange_202104167 crossref_primary_10_1016_j_jmst_2021_11_034 crossref_primary_10_1021_acsami_0c11375 crossref_primary_10_1007_s11581_024_05424_5 crossref_primary_10_1016_j_ceramint_2022_12_105 crossref_primary_10_1016_S1003_6326_22_65792_3 crossref_primary_10_1002_eem2_12131 crossref_primary_10_1016_j_ensm_2019_09_036 crossref_primary_10_1002_adfm_202210725 crossref_primary_10_1016_j_ensm_2024_103645 crossref_primary_10_1021_acsnano_0c06250 crossref_primary_10_1134_S107042721910001X crossref_primary_10_1016_j_est_2024_112407 crossref_primary_10_1007_s11581_023_05119_3 crossref_primary_10_1007_s41918_024_00226_9 crossref_primary_10_1021_acs_nanolett_4c01912 crossref_primary_10_1016_j_carbon_2020_12_083 crossref_primary_10_1016_j_cej_2024_149432 crossref_primary_10_1002_cey2_449 crossref_primary_10_1007_s12633_023_02522_3 crossref_primary_10_1016_j_nanoen_2024_109557 crossref_primary_10_1002_adma_202108304 crossref_primary_10_1002_aenm_202003256 crossref_primary_10_1016_j_jpcs_2025_112623 crossref_primary_10_1002_smll_202400709 crossref_primary_10_1039_D2NR00128D crossref_primary_10_1002_smtd_202400642 crossref_primary_10_1002_ange_202317439 crossref_primary_10_1016_j_ensm_2024_103511 crossref_primary_10_1002_smll_202307275 crossref_primary_10_1016_j_cej_2020_126963 crossref_primary_10_1039_D4MH01218F crossref_primary_10_1021_acsomega_2c03322 crossref_primary_10_1039_D2NR00172A crossref_primary_10_1016_j_ceramint_2020_10_025 crossref_primary_10_1007_s40843_021_1780_x crossref_primary_10_1016_j_cej_2024_153471 crossref_primary_10_1016_j_jpcs_2021_110511 crossref_primary_10_1016_j_jcis_2023_12_170 crossref_primary_10_1080_01411594_2022_2110098 crossref_primary_10_1007_s12598_023_02351_8 crossref_primary_10_1016_j_jece_2021_106319 crossref_primary_10_1021_acsami_9b12984 crossref_primary_10_1039_D3TA07300A crossref_primary_10_1039_D3SC06956G crossref_primary_10_1016_j_jechem_2021_02_027 crossref_primary_10_1021_acsami_3c01687 crossref_primary_10_1039_D1TA06760E crossref_primary_10_1002_smtd_202100372 crossref_primary_10_1007_s12598_021_01893_z crossref_primary_10_1016_j_ensm_2021_07_008 crossref_primary_10_1021_acsami_1c22817 crossref_primary_10_1016_j_jpowsour_2024_235000 crossref_primary_10_1039_D2DT01171A crossref_primary_10_1016_j_diamond_2023_109903 crossref_primary_10_1002_adfm_202400779 crossref_primary_10_1021_acsaem_1c03414 crossref_primary_10_1016_j_est_2023_108781 crossref_primary_10_1002_cey2_222 crossref_primary_10_1021_acs_jpcc_1c01639 crossref_primary_10_1039_D4SC08518C crossref_primary_10_1002_anie_202104167 crossref_primary_10_1002_adfm_202315498 crossref_primary_10_1016_j_jpowsour_2021_230922 crossref_primary_10_1002_aenm_202202939 crossref_primary_10_1039_D0TA06614A crossref_primary_10_1002_eom2_12393 crossref_primary_10_1016_j_ceja_2022_100292 crossref_primary_10_1002_adma_202202137 crossref_primary_10_1002_sstr_202100082 crossref_primary_10_1021_acsaem_3c01910 crossref_primary_10_1016_j_ssi_2024_116545 crossref_primary_10_1016_j_jelechem_2019_113694 crossref_primary_10_1016_j_jcis_2021_06_081 crossref_primary_10_1039_D3QI00173C crossref_primary_10_3390_nano10122336 crossref_primary_10_1016_j_jics_2022_100424 crossref_primary_10_1149_1945_7111_ac47eb crossref_primary_10_3390_polym15061496 crossref_primary_10_1016_j_ceramint_2022_01_295 crossref_primary_10_1021_acs_nanolett_2c04465 crossref_primary_10_1016_j_electacta_2020_137356 crossref_primary_10_1016_j_jpowsour_2023_233329 crossref_primary_10_1016_j_electacta_2021_139139 crossref_primary_10_1002_wene_400 crossref_primary_10_1016_j_ensm_2023_103063 crossref_primary_10_1039_D3CC06123J crossref_primary_10_1021_acsami_0c04481 crossref_primary_10_1002_anie_202317439 crossref_primary_10_1021_acsami_4c12929 crossref_primary_10_1016_j_jallcom_2022_166631 crossref_primary_10_1039_D1CC06898A crossref_primary_10_1002_celc_202000797 crossref_primary_10_1016_j_electacta_2021_137982 crossref_primary_10_1149_1945_7111_ac7e6f crossref_primary_10_1002_adma_202311256 crossref_primary_10_1007_s11581_023_04961_9 crossref_primary_10_3390_molecules28134921 crossref_primary_10_1039_D0TA08383F crossref_primary_10_1002_smll_202303165 crossref_primary_10_1021_acssuschemeng_3c02013 crossref_primary_10_1039_D3CC02610H crossref_primary_10_1002_adma_202108985 crossref_primary_10_1116_6_0000847 crossref_primary_10_1016_j_ensm_2021_02_011 crossref_primary_10_1016_j_jelechem_2021_115102 crossref_primary_10_1016_j_electacta_2022_141760 crossref_primary_10_1002_anie_202111215 crossref_primary_10_1002_bte2_20220042 crossref_primary_10_1002_smll_201902246 crossref_primary_10_1016_j_enrev_2024_100068 crossref_primary_10_1002_admi_202100188 crossref_primary_10_1016_j_pmatsci_2023_101128 crossref_primary_10_1016_j_matchemphys_2020_123243 crossref_primary_10_1080_02670836_2023_2228107 crossref_primary_10_3390_electronicmat4010003 crossref_primary_10_1002_cssc_202200479 crossref_primary_10_1021_acssuschemeng_3c02464 crossref_primary_10_1021_jacs_3c08224 crossref_primary_10_1039_D2NJ03999K crossref_primary_10_1002_celc_202001297 crossref_primary_10_1016_j_heliyon_2024_e30466 crossref_primary_10_1016_j_nanoen_2021_106475 crossref_primary_10_1016_j_carbon_2021_01_006 crossref_primary_10_1002_adfm_202108616 crossref_primary_10_1007_s10854_022_09233_2 crossref_primary_10_1002_aenm_202001128 crossref_primary_10_1007_s12274_023_5657_3 crossref_primary_10_1039_D1TA09040B crossref_primary_10_1021_acsaem_2c02918 crossref_primary_10_1002_aenm_202402720 crossref_primary_10_1016_j_enchem_2024_100133 crossref_primary_10_1002_smll_202402275 crossref_primary_10_1016_j_ces_2024_120522 crossref_primary_10_1016_j_matlet_2021_130507 crossref_primary_10_1002_smll_201906946 crossref_primary_10_1016_j_jcis_2021_04_110 crossref_primary_10_1021_acsami_1c04931 crossref_primary_10_1016_j_jallcom_2020_155888 crossref_primary_10_1007_s12598_024_02834_2 crossref_primary_10_1016_j_jpowsour_2023_232706 crossref_primary_10_1021_acsami_4c05027 crossref_primary_10_1016_j_ces_2022_117951 crossref_primary_10_1039_D3SC05593K crossref_primary_10_1021_acsmaterialslett_1c00043 crossref_primary_10_1016_j_cej_2019_122209 crossref_primary_10_1002_aenm_202000943 crossref_primary_10_1016_j_est_2024_110619 crossref_primary_10_1002_smll_202001607 crossref_primary_10_1016_j_jallcom_2021_160280 crossref_primary_10_1002_bte2_20230036 crossref_primary_10_1002_cssc_202300435 crossref_primary_10_1016_j_ssi_2024_116621 crossref_primary_10_1016_j_electacta_2021_138362 crossref_primary_10_1007_s11581_021_04250_3 crossref_primary_10_1002_cplu_202100272 crossref_primary_10_3390_polym15061450 crossref_primary_10_1039_D0TA12552K crossref_primary_10_1016_j_electacta_2020_136347 crossref_primary_10_1002_adfm_201907023 crossref_primary_10_1016_j_ceramint_2023_07_264 crossref_primary_10_1039_D2TA07910K crossref_primary_10_1016_j_est_2023_106625 crossref_primary_10_1002_smll_202306353 crossref_primary_10_1016_j_electacta_2023_143050 crossref_primary_10_1007_s12598_020_01452_y crossref_primary_10_1002_adfm_202202919 crossref_primary_10_3389_fphy_2019_00207 crossref_primary_10_1016_j_electacta_2022_140049 crossref_primary_10_1016_j_jechem_2020_10_047 crossref_primary_10_1038_s41560_023_01414_5 crossref_primary_10_1039_D4TA03284E crossref_primary_10_1039_D2EE00004K crossref_primary_10_1016_j_clay_2021_106265 crossref_primary_10_1016_j_fuel_2022_126862 crossref_primary_10_1016_j_mattod_2024_06_006 crossref_primary_10_20517_energymater_2023_61 crossref_primary_10_1002_adfm_202112179 crossref_primary_10_1016_j_ensm_2022_06_008 crossref_primary_10_1016_j_electacta_2019_135502 crossref_primary_10_1016_j_ensm_2024_103239 crossref_primary_10_1002_smll_202105713 crossref_primary_10_1007_s42250_024_00953_y crossref_primary_10_1007_s12209_022_00353_8 crossref_primary_10_1002_batt_202000294 crossref_primary_10_3390_nano12162837 crossref_primary_10_1016_j_jallcom_2023_169314 crossref_primary_10_1002_aenm_202000927 crossref_primary_10_1021_acsami_1c12062 crossref_primary_10_1021_acs_energyfuels_4c02769 crossref_primary_10_1016_j_ensm_2020_04_027 crossref_primary_10_1016_j_electacta_2020_136563 crossref_primary_10_1002_celc_202000205 crossref_primary_10_1016_j_jcis_2023_02_011 crossref_primary_10_1002_cnl2_106 crossref_primary_10_1039_C9CE01554J crossref_primary_10_1007_s10854_023_11633_x crossref_primary_10_1016_j_mtchem_2022_100866 crossref_primary_10_1016_j_ceramint_2024_08_369 crossref_primary_10_1016_j_jallcom_2021_159382 crossref_primary_10_1016_j_jelechem_2021_115533 crossref_primary_10_1016_j_electacta_2019_135293 crossref_primary_10_3390_molecules25041000 crossref_primary_10_1016_j_envc_2024_100966 crossref_primary_10_1016_j_jechem_2020_07_008 crossref_primary_10_1039_C9QM00674E crossref_primary_10_3390_batteries9010056 crossref_primary_10_1002_adfm_202005581 crossref_primary_10_1016_j_ensm_2022_07_027 crossref_primary_10_1039_D0TA03767B crossref_primary_10_1039_D2SE00475E crossref_primary_10_1038_s41467_022_31768_5 crossref_primary_10_1039_C9TA06870H crossref_primary_10_1016_j_jallcom_2020_156813 crossref_primary_10_1002_ente_202401800 crossref_primary_10_1002_smll_201902432 crossref_primary_10_1016_j_pnsc_2022_12_003 crossref_primary_10_1016_j_vacuum_2022_111476 crossref_primary_10_1039_D2CP01910H crossref_primary_10_1039_D3TA02329J crossref_primary_10_1002_eem2_12422 crossref_primary_10_1021_acsaem_3c01291 crossref_primary_10_1016_j_cclet_2019_09_050 crossref_primary_10_1016_j_jpcs_2021_110226 |
Cites_doi | 10.1002/aenm.201200803 10.1039/C4TA03948C 10.1039/C5EE02074C 10.1016/j.electacta.2018.11.064 10.1021/acs.nanolett.5b04514 10.1021/acsami.7b18226 10.1039/C7TA00690J 10.1016/j.electacta.2016.03.007 10.1149/2.0931501jes 10.1039/C4TA05451B 10.1021/nl203193q 10.1039/C7TA02515G 10.1002/ejic.201501172 10.1002/adma.201701968 10.1039/C7EE00524E 10.1016/j.jpowsour.2012.05.100 10.1002/aenm.201601973 10.1016/j.nanoen.2016.04.021 10.1002/aenm.201703036 10.1016/j.elecom.2013.05.012 10.1039/C7TA03687F 10.1016/j.nanoen.2016.02.024 10.1021/jp407322k 10.1002/aenm.201700403 10.1002/ange.201403734 10.1021/nl303305c 10.1038/ncomms8496 10.1021/acs.jpcc.5b11983 10.1002/anie.201209689 10.1039/C6EE01501H 10.1039/C5RA07583A 10.1002/aenm.201703217 10.1002/adma.201502018 10.1149/2.037211jes 10.1002/smll.201500144 10.1039/C7TA00880E 10.1039/C5TA04491J 10.1016/j.nanoen.2015.02.022 10.1038/nmat3309 10.1016/j.electacta.2014.12.160 10.1021/acs.chemmater.6b02096 10.1021/ja510347s 10.1039/C5EE00695C 10.1002/aenm.201703252 10.1039/c2jm33639a 10.1002/smll.201703116 10.1021/acs.nanolett.6b01805 10.1002/chem.201703044 10.1039/C5CC04422G 10.1021/acsenergylett.7b00623 10.1021/acs.chemmater.5b03920 10.1002/smtd.201800092 10.1039/C4TA06711H 10.1021/nl502812x 10.1002/adma.201604108 10.1002/adma.201605535 10.1002/adfm.201606232 10.1021/acsami.8b08297 10.1016/j.elecom.2011.08.038 10.1039/c3ee41379a 10.1002/aenm.201701912 10.1002/aenm.201702619 10.1021/cm401657c 10.1016/j.nanoen.2015.07.020 10.1002/aenm.201701847 10.1039/C5TA07696J 10.1039/C3EE42944J 10.1021/acs.nanolett.7b01366 10.1021/cm202076g 10.1002/anie.201206854 10.1021/ja512383b 10.1007/978-3-319-91488-6_2 10.1021/acsami.5b09811 10.1016/j.jpowsour.2015.03.087 10.1039/c3cc38839e 10.1016/j.electacta.2018.07.087 10.1016/j.electacta.2017.11.155 10.1016/j.nanoen.2015.10.034 10.1021/acsami.8b00478 10.1021/acs.chemmater.6b03403 10.1039/c3ee40811f 10.1021/acsnano.5b02787 10.1002/bkcs.10308 10.1016/j.ensm.2015.10.003 10.1021/nl404637q 10.1039/C5TA00277J 10.1021/ja3038646 10.1021/acsami.6b13830 10.1021/jacs.8b11388 10.1002/adma.201700214 10.1021/acsnano.5b00376 10.1021/nl400998t 10.1039/C3EE44004D 10.1039/C6RA11042H 10.1021/acs.chemmater.5b00616 10.1039/C5TA08869K 10.1038/ncomms5358 10.1016/j.elecom.2013.03.013 10.1002/advs.201600392 10.1002/smtd.201700216 10.1039/C4TA04428B 10.1021/acsami.7b00058 10.1016/j.materresbull.2016.10.019 10.1149/1.3607983 10.1021/cm4013816 10.1002/adfm.201600747 10.1002/aenm.201701785 10.1039/C6TA01111J 10.1002/aenm.201702582 10.1038/nmat2920 10.1016/j.jpowsour.2013.01.083 10.1002/aenm.201701189 10.1016/j.nanoen.2018.11.011 10.1021/acsnano.7b00557 10.1002/aenm.201502197 10.1149/2.018305jes 10.1016/j.jpowsour.2016.07.061 10.1039/C5EE01876E 10.1039/C2RA22050D 10.1002/aenm.201400458 10.1016/j.nanoen.2016.07.021 10.1016/j.nanoen.2017.12.038 10.1039/C8TA01627E 10.1016/j.electacta.2013.09.098 10.1039/c3ta11568b 10.1021/acsami.6b04736 10.1016/j.isci.2018.04.008 10.1149/1.1393348 10.1002/aenm.201200825 10.1039/C6DT03767D 10.1021/acs.nanolett.6b04044 10.1002/adfm.201402943 10.1039/c2cc17129e 10.1021/acsami.5b11848 10.1002/adma.201700431 10.1021/acsami.5b04691 10.1002/smll.201604181 10.1002/aenm.201601037 10.1088/1468-6996/15/4/043501 10.1016/j.jallcom.2016.05.335 10.1039/C7TA05680J 10.1021/cm501110v 10.1039/C7TA00727B 10.1039/C4TA02068E 10.1038/nnano.2015.194 10.1016/j.elecom.2012.02.020 10.1002/adma.201806092 10.1021/nl404165c 10.1021/acsami.5b11003 10.1016/j.elecom.2010.01.020 10.1039/C7EE00102A 10.1016/j.jpowsour.2013.10.091 10.1016/j.jpowsour.2016.01.082 10.1002/aenm.201703499 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201805427 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30773812 10_1002_smll_201805427 SMLL201805427 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Key Research Program of China funderid: 2016YFB0901500 – fundername: National Natural Science Foundation of China funderid: 21875171; 21673165; 21333007 – fundername: Fundamental Research Funds for the Central Universities funderid: 2042018kf0007 – fundername: Science and Technology Project of State Grid funderid: SGRIDGKJ[2017]841 – fundername: China Postdoctoral Science Foundation funderid: 2016M592383; 2017T100574 – fundername: National Natural Science Foundation of China grantid: 21673165 – fundername: National Natural Science Foundation of China grantid: 21333007 – fundername: China Postdoctoral Science Foundation grantid: 2017T100574 – fundername: Fundamental Research Funds for the Central Universities grantid: 2042018kf0007 – fundername: Science and Technology Project of State Grid grantid: SGRIDGKJ[2017]841 – fundername: National Natural Science Foundation of China grantid: 21875171 – fundername: National Key Research Program of China grantid: 2016YFB0901500 – fundername: China Postdoctoral Science Foundation grantid: 2016M592383 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4127-e332787d534a158fb6d938264f4a0b88bc6942d77d92f09b5b2cf49fb36e88de3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 08:06:18 EDT 2025 Fri Jul 25 12:04:44 EDT 2025 Wed Feb 19 02:36:23 EST 2025 Tue Jul 01 02:10:40 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Wed Jan 22 16:39:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | cathode materials anode materials sodium-ion batteries high power grid-scale energy storage |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4127-e332787d534a158fb6d938264f4a0b88bc6942d77d92f09b5b2cf49fb36e88de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3264-851X 0000-0001-6092-5652 0000-0002-6704-2542 0000-0002-8280-0866 0000-0003-0246-7926 0000-0002-1526-7336 |
PMID | 30773812 |
PQID | 2269897386 |
PQPubID | 1046358 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_2183189570 proquest_journals_2269897386 pubmed_primary_30773812 crossref_citationtrail_10_1002_smll_201805427 crossref_primary_10_1002_smll_201805427 wiley_primary_10_1002_smll_201805427_SMLL201805427 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 86 2013; 3 2013; 1 2018; 283 2014; 26 2012; 18 2016; 2016 2018; 45 2012; 12 2012; 11 2013; 6 2018; 6 2018; 8 2014; 249 2018; 3 2012; 134 2015; 137 2013; 52 2013; 117 2016; 310 2014; 15 2014; 14 2013; 113 2013; 234 2012; 22 2016; 46 2014; 126 2016; 19 2019; 31 2015; 51 2016; 327 2016; 685 2016; 16 2017; 258 2016; 4 2016; 6 2016; 2 2012; 48 2016; 28 2018; 10 2016; 27 2016; 26 2016; 8 2016; 24 2016; 9 2018; 14 2019; 296 2016; 22 2017; 5 2017; 7 2011; 158 2015; 36 2017; 1 2013; 25 2017; 2 2017; 4 2019; 56 2011; 11 2011; 10 2011; 13 2013; 160 2017; 9 2014; 5 2014; 4 2014; 2 2013; 13 2011; 23 2014; 7 2012; 217 2016; 196 2015; 162 2015; 13 2015; 6 2015; 5 2015; 16 2018; 140 2013; 49 2015; 3 2017; 27 2015; 11 2015; 285 2015; 10 2017; 23 2017; 29 2015; 9 2015; 8 2015; 7 2016; 120 2015; 25 2015; 27 2000; 147 2017; 17 2013; 34 2015; 155 2017; 11 2017; 10 2017; 13 2013; 31 2018 2012; 159 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 Jiang Y. (e_1_2_8_44_1) 2018; 8 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 8 start-page: 2238 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 145 year: 2013 publication-title: Electrochem. Commun. – volume: 13 start-page: 3093 year: 2013 publication-title: Nano Lett. – volume: 10 start-page: 10819 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2857 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 140 start-page: 18192 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1605535 year: 2017 publication-title: Adv. Mater. – volume: 48 start-page: 3321 year: 2012 publication-title: Chem. Commun. – volume: 36 start-page: 1625 year: 2015 publication-title: Bull. Korean Chem. Soc. – volume: 2 start-page: 12733 year: 2014 publication-title: J. Mater. Chem. A – volume: 13 start-page: 208 year: 2015 publication-title: Nano Energy – volume: 3 start-page: 22 year: 2015 publication-title: J. Mater. Chem. A – volume: 8 start-page: 19438 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 1806092 year: 2019 publication-title: Adv. Mater. – volume: 52 start-page: 1964 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 2005 year: 2017 publication-title: ACS Energy Lett. – volume: 6 start-page: 70277 year: 2016 publication-title: RSC Adv. – volume: 4 start-page: 1400458 year: 2014 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1700214 year: 2017 publication-title: Adv. Mater. – volume: 160 start-page: A3131 year: 2013 publication-title: J. Electrochem. Soc. – volume: 26 start-page: 5315 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1601037 year: 2016 publication-title: Adv. Energy Mater. – volume: 2 start-page: 19623 year: 2014 publication-title: J. Mater. Chem. A – volume: 137 start-page: 2658 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 200 year: 2013 publication-title: Electrochim. Acta – volume: 685 start-page: 344 year: 2016 publication-title: J. Alloys Compd. – volume: 49 start-page: 2750 year: 2013 publication-title: Chem. Commun. – volume: 8 start-page: 689 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 10369 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 258 start-page: 1035 year: 2017 publication-title: Electrochim. Acta – volume: 7 start-page: 1701189 year: 2017 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1702582 year: 2018 publication-title: Adv. Energy Mater. – volume: 120 start-page: 9007 year: 2016 publication-title: J. Phys. Chem. C – volume: 27 start-page: 3096 year: 2015 publication-title: Chem. Mater. – volume: 1 start-page: 7985 year: 2013 publication-title: J. Mater. Chem. A – volume: 22 start-page: 17421 year: 2012 publication-title: J. Mater. Chem. – volume: 5 start-page: 9528 year: 2017 publication-title: J. Mater. Chem. A – volume: 12 start-page: 463 year: 2010 publication-title: Electrochem. Commun. – volume: 5 start-page: 14365 year: 2017 publication-title: J. Mater. Chem. A – volume: 15 start-page: 043501 year: 2014 publication-title: Sci. Technol. Adv. Mater. – volume: 4 start-page: 1180 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 4882 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1601973 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 8752 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 start-page: 770 year: 2013 publication-title: Adv. Energy Mater. – volume: 10 start-page: 74 year: 2011 publication-title: Nat. Mater. – volume: 9 start-page: 3644 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 3614 year: 2013 publication-title: Chem. Mater. – volume: 16 start-page: 389 year: 2015 publication-title: Nano Energy – volume: 5 start-page: 6277 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1700403 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1600392 year: 2017 publication-title: Adv. Sci. – volume: 13 start-page: 1225 year: 2011 publication-title: Electrochem. Commun. – volume: 27 start-page: 5895 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 1701785 year: 2018 publication-title: Adv. Energy Mater. – volume: 3 start-page: 110 year: 2018 publication-title: iScience – volume: 159 start-page: A1801 year: 2012 publication-title: J. Electrochem. Soc. – volume: 16 start-page: 2240 year: 2016 publication-title: Nano Lett. – volume: 16 start-page: 4544 year: 2016 publication-title: Nano Lett. – volume: 3 start-page: 444 year: 2013 publication-title: Adv. Energy Mater. – volume: 13 start-page: 1604181 year: 2017 publication-title: Small – volume: 117 start-page: 18885 year: 2013 publication-title: J. Phys. Chem. C – volume: 34 start-page: 60 year: 2013 publication-title: Electrochem. Commun. – volume: 45 start-page: 136 year: 2018 publication-title: Nano Energy – volume: 27 start-page: 602 year: 2016 publication-title: Nano Energy – volume: 6 start-page: 2067 year: 2013 publication-title: Energy Environ. Sci. – volume: 11 start-page: 5421 year: 2011 publication-title: Nano Lett. – volume: 28 start-page: 6553 year: 2016 publication-title: Chem. Mater. – volume: 5 start-page: 18707 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 11689 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 1624 year: 2016 publication-title: J. Mater. Chem. A – volume: 12 start-page: 5897 year: 2012 publication-title: Nano Lett. – volume: 249 start-page: 367 year: 2014 publication-title: J. Power Sources – volume: 24 start-page: 130 year: 2016 publication-title: Nano Energy – start-page: 9 year: 2018 end-page: 22 – volume: 8 start-page: 3325 year: 2015 publication-title: Energy Environ. Sci. – volume: 17 start-page: 4713 year: 2017 publication-title: Nano Lett. – volume: 155 start-page: 23 year: 2015 publication-title: Electrochim. Acta – volume: 8 start-page: 1703217 year: 2018 publication-title: Adv. Energy Mater. – volume: 14 start-page: 1865 year: 2014 publication-title: Nano Lett. – volume: 3 start-page: 9578 year: 2015 publication-title: J. Mater. Chem. A – volume: 26 start-page: 3289 year: 2014 publication-title: Chem. Mater. – volume: 19 start-page: 279 year: 2016 publication-title: Nano Energy – volume: 217 start-page: 43 year: 2012 publication-title: J. Power Sources – volume: 137 start-page: 2548 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 4109 year: 2011 publication-title: Chem. Mater. – start-page: 1800092 year: 2018 publication-title: Small Methods – volume: 27 start-page: 1606232 year: 2017 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 55 year: 2016 publication-title: Dalton Trans. – volume: 51 start-page: 13120 year: 2015 publication-title: Chem. Commun. – volume: 5 start-page: 5502 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2314 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 1701847 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 start-page: 2361 year: 2013 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1701968 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 139 year: 2016 publication-title: Energy Storage Mater. – volume: 14 start-page: 1703116 year: 2018 publication-title: Small – volume: 7 start-page: 323 year: 2014 publication-title: Energy Environ. Sci. – volume: 27 start-page: 8138 year: 2015 publication-title: Chem. Mater. – volume: 10 start-page: 1222 year: 2017 publication-title: Energy Environ. Sci. – volume: 8 start-page: 2019 year: 2015 publication-title: Energy Environ. Sci. – volume: 9 start-page: 14758 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 327 start-page: 666 year: 2016 publication-title: J. Power Sources – volume: 285 start-page: 161 year: 2015 publication-title: J. Power Sources – volume: 6 start-page: 8815 year: 2018 publication-title: J. Mater. Chem. A – volume: 18 start-page: 66 year: 2012 publication-title: Electrochem. Commun. – volume: 6 start-page: 7496 year: 2015 publication-title: Nat. Commun. – volume: 8 start-page: 1703252 year: 2018 publication-title: Adv. Energy Mater. – volume: 52 start-page: 4633 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 512 year: 2012 publication-title: Nat. Mater. – volume: 29 start-page: 1700431 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 18718 year: 2015 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1703499 year: 2018 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1702619 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1643 year: 2014 publication-title: Energy Environ. Sci. – volume: 11 start-page: 5530 year: 2017 publication-title: ACS Nano – volume: 2016 start-page: 2051 year: 2016 publication-title: Eur. J. Inorg. Chem. – volume: 9 start-page: 3254 year: 2015 publication-title: ACS Nano – volume: 10 start-page: 980 year: 2015 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 800068 year: 2018 publication-title: Adv. Energy Mater. – volume: 8 start-page: 3531 year: 2015 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1700216 year: 2017 publication-title: Small Methods – volume: 16 start-page: 7836 year: 2016 publication-title: Nano Lett. – volume: 23 start-page: 12944 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 126 start-page: 10333 year: 2014 publication-title: Angew. Chem. – volume: 234 start-page: 48 year: 2013 publication-title: J. Power Sources – volume: 8 start-page: 1703036 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1604108 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 1502197 year: 2016 publication-title: Adv. Energy Mater. – volume: 56 start-page: 160 year: 2019 publication-title: Nano Energy – volume: 296 start-page: 345 year: 2019 publication-title: Electrochim. Acta – volume: 283 start-page: 1475 year: 2018 publication-title: Electrochim. Acta – volume: 5 start-page: 4358 year: 2014 publication-title: Nat. Commun. – volume: 147 start-page: 1271 year: 2000 publication-title: J. Electrochem. Soc. – volume: 196 start-page: 470 year: 2016 publication-title: Electrochim. Acta – volume: 310 start-page: 26 year: 2016 publication-title: J. Power Sources – volume: 22 start-page: 232 year: 2016 publication-title: Nano Energy – volume: 5 start-page: 50155 year: 2015 publication-title: RSC Adv. – volume: 14 start-page: 5873 year: 2014 publication-title: Nano Lett. – volume: 86 start-page: 194 year: 2017 publication-title: Mater. Res. Bull. – volume: 3 start-page: 4484 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1075 year: 2017 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1041 year: 2013 publication-title: RSC Adv. – volume: 162 start-page: A176 year: 2015 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 34108 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1255 year: 2014 publication-title: Nano Lett. – volume: 25 start-page: 3480 year: 2013 publication-title: Chem. Mater. – volume: 11 start-page: 3744 year: 2015 publication-title: Small – volume: 7 start-page: 17977 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 8930 year: 2016 publication-title: Chem. Mater. – volume: 3 start-page: 71 year: 2015 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1701912 year: 2018 publication-title: Adv. Energy Mater. – volume: 158 start-page: A1011 year: 2011 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 6610 year: 2015 publication-title: ACS Nano – volume: 25 start-page: 214 year: 2015 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_38_1 doi: 10.1002/aenm.201200803 – ident: e_1_2_8_52_1 doi: 10.1039/C4TA03948C – ident: e_1_2_8_137_1 doi: 10.1039/C5EE02074C – ident: e_1_2_8_78_1 doi: 10.1016/j.electacta.2018.11.064 – ident: e_1_2_8_112_1 doi: 10.1021/acs.nanolett.5b04514 – ident: e_1_2_8_21_1 doi: 10.1021/acsami.7b18226 – ident: e_1_2_8_119_1 doi: 10.1039/C7TA00690J – ident: e_1_2_8_149_1 doi: 10.1016/j.electacta.2016.03.007 – ident: e_1_2_8_63_1 doi: 10.1149/2.0931501jes – ident: e_1_2_8_86_1 doi: 10.1039/C4TA05451B – ident: e_1_2_8_148_1 doi: 10.1021/nl203193q – ident: e_1_2_8_82_1 doi: 10.1039/C7TA02515G – ident: e_1_2_8_145_1 doi: 10.1002/ejic.201501172 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201701968 – ident: e_1_2_8_139_1 doi: 10.1039/C7EE00524E – ident: e_1_2_8_5_1 doi: 10.1016/j.jpowsour.2012.05.100 – ident: e_1_2_8_135_1 doi: 10.1002/aenm.201601973 – ident: e_1_2_8_55_1 doi: 10.1016/j.nanoen.2016.04.021 – ident: e_1_2_8_141_1 doi: 10.1002/aenm.201703036 – ident: e_1_2_8_20_1 doi: 10.1016/j.elecom.2013.05.012 – ident: e_1_2_8_54_1 doi: 10.1039/C7TA03687F – ident: e_1_2_8_121_1 doi: 10.1016/j.nanoen.2016.02.024 – ident: e_1_2_8_132_1 doi: 10.1021/jp407322k – ident: e_1_2_8_84_1 doi: 10.1002/aenm.201700403 – ident: e_1_2_8_143_1 doi: 10.1002/ange.201403734 – ident: e_1_2_8_103_1 doi: 10.1021/nl303305c – ident: e_1_2_8_116_1 doi: 10.1038/ncomms8496 – ident: e_1_2_8_24_1 doi: 10.1021/acs.jpcc.5b11983 – ident: e_1_2_8_107_1 doi: 10.1002/anie.201209689 – ident: e_1_2_8_124_1 doi: 10.1039/C6EE01501H – ident: e_1_2_8_70_1 doi: 10.1039/C5RA07583A – ident: e_1_2_8_85_1 doi: 10.1002/aenm.201703217 – ident: e_1_2_8_42_1 doi: 10.1002/adma.201502018 – ident: e_1_2_8_115_1 doi: 10.1149/2.037211jes – ident: e_1_2_8_97_1 doi: 10.1002/smll.201500144 – ident: e_1_2_8_13_1 doi: 10.1039/C7TA00880E – ident: e_1_2_8_93_1 doi: 10.1039/C5TA04491J – ident: e_1_2_8_117_1 doi: 10.1016/j.nanoen.2015.02.022 – ident: e_1_2_8_9_1 doi: 10.1038/nmat3309 – ident: e_1_2_8_37_1 doi: 10.1016/j.electacta.2014.12.160 – ident: e_1_2_8_51_1 doi: 10.1021/acs.chemmater.6b02096 – ident: e_1_2_8_27_1 doi: 10.1021/ja510347s – ident: e_1_2_8_22_1 doi: 10.1039/C5EE00695C – ident: e_1_2_8_48_1 doi: 10.1002/aenm.201703252 – ident: e_1_2_8_60_1 doi: 10.1039/c2jm33639a – ident: e_1_2_8_1_1 doi: 10.1002/smll.201703116 – ident: e_1_2_8_92_1 doi: 10.1021/acs.nanolett.6b01805 – ident: e_1_2_8_152_1 doi: 10.1002/chem.201703044 – ident: e_1_2_8_67_1 doi: 10.1039/C5CC04422G – ident: e_1_2_8_154_1 doi: 10.1021/acsenergylett.7b00623 – ident: e_1_2_8_127_1 doi: 10.1021/acs.chemmater.5b03920 – ident: e_1_2_8_11_1 doi: 10.1002/smtd.201800092 – ident: e_1_2_8_77_1 doi: 10.1039/C4TA06711H – ident: e_1_2_8_131_1 doi: 10.1021/nl502812x – ident: e_1_2_8_88_1 doi: 10.1002/adma.201604108 – ident: e_1_2_8_68_1 doi: 10.1002/adma.201605535 – ident: e_1_2_8_105_1 doi: 10.1002/adfm.201606232 – ident: e_1_2_8_147_1 doi: 10.1021/acsami.8b08297 – ident: e_1_2_8_69_1 doi: 10.1016/j.elecom.2011.08.038 – ident: e_1_2_8_45_1 doi: 10.1039/c3ee41379a – ident: e_1_2_8_8_1 doi: 10.1002/aenm.201701912 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.201702619 – ident: e_1_2_8_64_1 doi: 10.1021/cm401657c – ident: e_1_2_8_129_1 doi: 10.1016/j.nanoen.2015.07.020 – ident: e_1_2_8_138_1 doi: 10.1002/aenm.201701847 – ident: e_1_2_8_79_1 doi: 10.1039/C5TA07696J – ident: e_1_2_8_126_1 doi: 10.1039/C3EE42944J – ident: e_1_2_8_156_1 doi: 10.1021/acs.nanolett.7b01366 – ident: e_1_2_8_90_1 doi: 10.1021/cm202076g – ident: e_1_2_8_30_1 doi: 10.1002/anie.201206854 – ident: e_1_2_8_32_1 doi: 10.1021/ja512383b – ident: e_1_2_8_25_1 doi: 10.1007/978-3-319-91488-6_2 – ident: e_1_2_8_94_1 doi: 10.1021/acsami.5b09811 – ident: e_1_2_8_3_1 doi: 10.1016/j.jpowsour.2015.03.087 – ident: e_1_2_8_146_1 doi: 10.1002/adma.201605535 – ident: e_1_2_8_31_1 doi: 10.1039/c3cc38839e – ident: e_1_2_8_155_1 doi: 10.1016/j.electacta.2018.07.087 – ident: e_1_2_8_4_1 doi: 10.1016/j.electacta.2017.11.155 – ident: e_1_2_8_87_1 doi: 10.1016/j.nanoen.2015.10.034 – ident: e_1_2_8_2_1 doi: 10.1021/acsami.8b00478 – ident: e_1_2_8_144_1 doi: 10.1021/acs.chemmater.6b03403 – ident: e_1_2_8_142_1 doi: 10.1039/c3ee40811f – ident: e_1_2_8_95_1 doi: 10.1021/acsnano.5b02787 – ident: e_1_2_8_128_1 doi: 10.1002/bkcs.10308 – ident: e_1_2_8_157_1 doi: 10.1016/j.ensm.2015.10.003 – ident: e_1_2_8_136_1 doi: 10.1021/nl404637q – ident: e_1_2_8_53_1 doi: 10.1039/C5TA00277J – ident: e_1_2_8_74_1 doi: 10.1021/ja3038646 – ident: e_1_2_8_6_1 doi: 10.1021/acsami.6b13830 – ident: e_1_2_8_56_1 doi: 10.1021/jacs.8b11388 – ident: e_1_2_8_104_1 doi: 10.1002/adma.201700214 – ident: e_1_2_8_109_1 doi: 10.1021/acsnano.5b00376 – ident: e_1_2_8_106_1 doi: 10.1021/nl400998t – ident: e_1_2_8_28_1 doi: 10.1039/C3EE44004D – ident: e_1_2_8_96_1 doi: 10.1039/C6RA11042H – ident: e_1_2_8_130_1 doi: 10.1021/acs.chemmater.5b00616 – ident: e_1_2_8_39_1 doi: 10.1039/C5TA08869K – ident: e_1_2_8_76_1 doi: 10.1038/ncomms5358 – ident: e_1_2_8_100_1 doi: 10.1016/j.elecom.2013.03.013 – ident: e_1_2_8_62_1 doi: 10.1002/advs.201600392 – ident: e_1_2_8_113_1 doi: 10.1002/smtd.201700216 – ident: e_1_2_8_140_1 doi: 10.1039/C4TA04428B – ident: e_1_2_8_10_1 doi: 10.1021/acsami.7b00058 – ident: e_1_2_8_34_1 doi: 10.1016/j.materresbull.2016.10.019 – ident: e_1_2_8_114_1 doi: 10.1149/1.3607983 – ident: e_1_2_8_73_1 doi: 10.1021/cm4013816 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.201600747 – ident: e_1_2_8_36_1 doi: 10.1002/aenm.201701785 – ident: e_1_2_8_59_1 doi: 10.1039/C6TA01111J – ident: e_1_2_8_122_1 doi: 10.1002/aenm.201702582 – ident: e_1_2_8_14_1 doi: 10.1038/nmat2920 – ident: e_1_2_8_101_1 doi: 10.1016/j.jpowsour.2013.01.083 – ident: e_1_2_8_151_1 doi: 10.1002/aenm.201701189 – ident: e_1_2_8_75_1 doi: 10.1016/j.nanoen.2018.11.011 – ident: e_1_2_8_108_1 doi: 10.1021/acsnano.7b00557 – ident: e_1_2_8_99_1 doi: 10.1002/aenm.201502197 – ident: e_1_2_8_19_1 doi: 10.1149/2.018305jes – ident: e_1_2_8_72_1 doi: 10.1016/j.jpowsour.2016.07.061 – ident: e_1_2_8_80_1 doi: 10.1039/C5EE01876E – ident: e_1_2_8_91_1 doi: 10.1039/C2RA22050D – ident: e_1_2_8_23_1 doi: 10.1002/aenm.201400458 – ident: e_1_2_8_7_1 doi: 10.1016/j.nanoen.2016.07.021 – ident: e_1_2_8_43_1 doi: 10.1016/j.nanoen.2017.12.038 – ident: e_1_2_8_40_1 doi: 10.1039/C8TA01627E – ident: e_1_2_8_12_1 doi: 10.1016/j.electacta.2013.09.098 – ident: e_1_2_8_41_1 doi: 10.1002/aenm.201200803 – ident: e_1_2_8_102_1 doi: 10.1039/c3ta11568b – ident: e_1_2_8_118_1 doi: 10.1021/acsami.6b04736 – ident: e_1_2_8_35_1 doi: 10.1016/j.isci.2018.04.008 – ident: e_1_2_8_83_1 doi: 10.1149/1.1393348 – ident: e_1_2_8_66_1 doi: 10.1002/aenm.201200825 – ident: e_1_2_8_81_1 doi: 10.1039/C6DT03767D – ident: e_1_2_8_50_1 doi: 10.1021/acs.nanolett.6b04044 – ident: e_1_2_8_120_1 doi: 10.1002/adfm.201402943 – ident: e_1_2_8_123_1 doi: 10.1039/c2cc17129e – ident: e_1_2_8_17_1 doi: 10.1021/acsami.5b11848 – ident: e_1_2_8_57_1 doi: 10.1002/adma.201700431 – ident: e_1_2_8_61_1 doi: 10.1021/acsami.5b04691 – ident: e_1_2_8_46_1 doi: 10.1002/smll.201604181 – ident: e_1_2_8_110_1 doi: 10.1002/aenm.201601037 – ident: e_1_2_8_16_1 doi: 10.1088/1468-6996/15/4/043501 – ident: e_1_2_8_33_1 doi: 10.1016/j.jallcom.2016.05.335 – ident: e_1_2_8_71_1 doi: 10.1039/C7TA05680J – ident: e_1_2_8_58_1 doi: 10.1021/cm501110v – ident: e_1_2_8_65_1 doi: 10.1039/C7TA00727B – ident: e_1_2_8_89_1 doi: 10.1039/C4TA02068E – ident: e_1_2_8_111_1 doi: 10.1038/nnano.2015.194 – volume: 8 start-page: 800068 year: 2018 ident: e_1_2_8_44_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_18_1 doi: 10.1016/j.elecom.2012.02.020 – ident: e_1_2_8_49_1 doi: 10.1002/adma.201806092 – ident: e_1_2_8_125_1 doi: 10.1021/nl404165c – ident: e_1_2_8_98_1 doi: 10.1021/acsami.5b11003 – ident: e_1_2_8_150_1 doi: 10.1016/j.elecom.2010.01.020 – ident: e_1_2_8_134_1 doi: 10.1039/C7EE00102A – ident: e_1_2_8_153_1 doi: 10.1016/j.jpowsour.2013.10.091 – ident: e_1_2_8_15_1 doi: 10.1016/j.jpowsour.2016.01.082 – ident: e_1_2_8_133_1 doi: 10.1002/aenm.201703499 |
SSID | ssj0031247 |
Score | 2.669306 |
SecondaryResourceType | review_article |
Snippet | The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in... The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1805427 |
SubjectTerms | anode materials Anodes Batteries cathode materials Diffusion rate Electric power distribution Electric vehicles Electrochemistry Electrode materials Energy storage Fossil fuels grid‐scale energy storage high power Lithium Lithium-ion batteries Markets Nanotechnology Rechargeable batteries Sodium-ion batteries Storage systems |
Title | Recent Progress in Rechargeable Sodium‐Ion Batteries: toward High‐Power Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201805427 https://www.ncbi.nlm.nih.gov/pubmed/30773812 https://www.proquest.com/docview/2269897386 https://www.proquest.com/docview/2183189570 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnapumTeJNRFFRER-wt5K0KYjaFXf34smf4G_0lzjT7tZdRQS9tU3Spkln5ksz8w3Ali20NrGUvuESFyhGC98mQvpCBFZqSg5bRbmeXyTHt-K0FbeGovhrfojmhxtJRqWvScCN7ex-koZ2Hh9o6yBUCDo4hZOTwxahoquGPypC41VlV0Gb5RPx1oC1MeC7o81HrdI3qDmKXCvTczQNZtDp2uPkfqfXtTvZyxc-x_-81QxM9XEp268_pFkYc-UcTA6xFc5DCyEmmih2SS5dqCDZXcnwElEtOQrAYtft_K73-P76dtIuWU3cievwPdatXHMZuZRg4SXlZWP7QxvnC3B7dHhzcOz3EzP4mQi59F0UcRT0PI6ECWNV2CTXEa5TRCFMYJWyWaIFz6XMNS8CbWPLs0LowkaJUyp30SKMl-3SLQPTBlcsnGd4h0zEsVJaKBs64zJUDzbPPfAHE5NmfdZySp7xkNZ8yzylEUubEfNgu6n_VPN1_FhzbTDPaV9uOymCUa00JUL1YLMpRomjbRRTunYP66AWDJWOZeDBUv19NI9CjYmNQ-4Br2b5lz6k1-dnZ83Zyl8arcIEHuvaJ3ENxrvPPbeOOKlrNypZ-ABbtQpl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQc-l8Ipa0rteopkDhObCNxQFC0W3YRKiDtLY0TR1oB2aq7qwpOPEJfpa_CI_RJOpM_2FZVpUoceoxjO449nvlsj78BeGNyrZNQSjfhEhcoiRauiYR0hfCM1BQctrzl2t-POsfiwyAczMH35i5MxQ_RbrjRzCj1NU1w2pBev2YNHZ-d0tmBrxB1cFn7Ve7Z86-4ahtvdndwiN9yvvv-aLvj1oEF3FT4XLo2CDgKahYGIvFDlZso0wHibJGLxDNKmTTSgmdSZprnnjah4WkudG6CyCqV2QDrvQMLFEac6Pp3PraMVQGayzKeC1pJl6i-Gp5Ij6_PtnfWDv4Gbmexcmnsdh_AVdNNlY_Lydp0YtbSi18YJP-rfnwI92vozbaqufII5mzxGBZvEDI-gQGiaLTC7IC81tAGsGHBMInYpCzdMWOHo2w4Pftx-a07KljFTTq04w02Kb2PGXnN4MsDCj3Htm74BjyF41v5tWcwX4wKuwxMJ7go4zzFGlIRhkppoYxvE5uiBjRZ5oDbSEKc1sTsFB_kNK4opXlMIxS3I-TAuzb_54qS5I85VxvBimvVNI4Rb2ulKdarA6_b16hU6KQoKexoinlQ0ftKh9JzYKkSyPZTaBSwsM8d4KVY_aUN8WG_12ufVv6l0Cu42znq9-Jed3_vOdzDdF25YK7C_OTL1L5AWDgxL8uJyODTbUvsT5LDZ34 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RkFB7KJT-pUBrJFBPgcRxYhuJA2K7YsuCVlCkvaVx7EirQhZ1d1W1Jx6BR-mr9BV4Esb5K0uFKlXi0GP8F8cez3yOx98ArKtMyiTk3E0oxw1KIpmrIsZdxjzFpQ0OW9xyPTyK9k_Zx37Yn4Gf9V2Ykh-i-eFmV0ahr-0Cv9DZ1m_S0NH5mT068AWCDsort8oD8_0bbtpGO50WzvAGpe0Pn_b23SqugJsyn3LXBAFFOdVhwBI_FJmKtAwQZrOMJZ4SQqWRZFRzriXNPKlCRdOMyUwFkRFCmwDbfQRzLPKkDRbROm4IqwK0lkU4FzSSrmX6qmkiPbo13d9pM_gHtp2GyoWtay_Ar3qUSheXL5uTsdpMf9whkPyfhnERnlbAm-yWK-UZzJh8CZ7comN8Dn3E0GiDSc_6rKEFIIOcYJLlkjL2hhk5GerB5Pz68qozzEnJTDowo20yLnyPifWZwcyeDTxHdm95BryA0wf5tJcwmw9z8xqITHBLRmmKLaQsDIWQTCjfJCZF_ae0dsCtBSFOK1p2Gx3kLC4JpWlsZyhuZsiB9035i5KQ5N6SK7VcxZViGsWItqWQNtKrA2tNNqoUe06U5GY4wTKo5n0hQ-458KqUx-ZVaBKwsk8doIVU_aUP8clht9s8vfmXSu9gvtdqx93O0cEyPMZkWfpfrsDs-OvErCImHKu3xTIk8PmhBfYG1pdmLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Rechargeable+Sodium%E2%80%90Ion+Batteries%3A+toward+High%E2%80%90Power+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Pu%2C+Xiangjun&rft.au=Wang%2C+Huiming&rft.au=Zhao%2C+Dong&rft.au=Yang%2C+Hanxi&rft.date=2019-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201805427&rft.externalDBID=10.1002%252Fsmll.201805427&rft.externalDocID=SMLL201805427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |