Recent Progress in Rechargeable Sodium‐Ion Batteries: toward High‐Power Applications

The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 32; pp. e1805427 - n/a
Main Authors Pu, Xiangjun, Wang, Huiming, Zhao, Dong, Yang, Hanxi, Ai, Xinping, Cao, Shunan, Chen, Zhongxue, Cao, Yuliang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future. The sodium‐ion battery (SIB) is an ideal choice for large‐scale energy storage, and high pulse‐power capability is essentially required for its applications. The recent progress of high‐power SIBs including cathodes, anode materials, electrolytes, and aqueous systems is reviewed. Special attention is given on understanding the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, and strategies to promote the rate performance.
AbstractList The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na + diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.
The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future. The sodium‐ion battery (SIB) is an ideal choice for large‐scale energy storage, and high pulse‐power capability is essentially required for its applications. The recent progress of high‐power SIBs including cathodes, anode materials, electrolytes, and aqueous systems is reviewed. Special attention is given on understanding the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, and strategies to promote the rate performance.
The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium-ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid-scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium-ion battery (SIB) is regarded as an ideal battery choice for grid-scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse-power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high-power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium-ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid-scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium-ion battery (SIB) is regarded as an ideal battery choice for grid-scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse-power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high-power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.
The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium-ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid-scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium-ion battery (SIB) is regarded as an ideal battery choice for grid-scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse-power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high-power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.
The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.
Author Pu, Xiangjun
Cao, Yuliang
Cao, Shunan
Wang, Huiming
Zhao, Dong
Yang, Hanxi
Chen, Zhongxue
Ai, Xinping
Author_xml – sequence: 1
  givenname: Xiangjun
  orcidid: 0000-0003-0246-7926
  surname: Pu
  fullname: Pu, Xiangjun
  organization: Wuhan University
– sequence: 2
  givenname: Huiming
  surname: Wang
  fullname: Wang, Huiming
  organization: Wuhan University
– sequence: 3
  givenname: Dong
  surname: Zhao
  fullname: Zhao, Dong
  organization: Wuhan University
– sequence: 4
  givenname: Hanxi
  orcidid: 0000-0002-6704-2542
  surname: Yang
  fullname: Yang, Hanxi
  organization: Wuhan University
– sequence: 5
  givenname: Xinping
  orcidid: 0000-0002-8280-0866
  surname: Ai
  fullname: Ai, Xinping
  organization: Wuhan University
– sequence: 6
  givenname: Shunan
  orcidid: 0000-0002-3264-851X
  surname: Cao
  fullname: Cao, Shunan
  organization: Wuhan University
– sequence: 7
  givenname: Zhongxue
  orcidid: 0000-0002-1526-7336
  surname: Chen
  fullname: Chen, Zhongxue
  email: zxchen_pmc@whu.edu.cn
  organization: Wuhan University
– sequence: 8
  givenname: Yuliang
  orcidid: 0000-0001-6092-5652
  surname: Cao
  fullname: Cao, Yuliang
  email: ylcao@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30773812$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoMo3rcupeDGzYy5tUncqXgZGFG8gLuQtqdjJG3GpGVw5yP4jD6J1fECgrjKIef7Dsn519Bi4xtAaIvgIcGY7sXauSHFROKUU7GAVklG2CCTVC1-1wSvoLUYHzBmhHKxjFYYFoJJQlfR3RUU0LTJZfCTADEmtkn6q3sTJmByB8m1L21Xvz6_jHyTHJq2hWAh7ietn5lQJmd2ct83L_0MQnIwnTpbmNb6Jm6gpcq4CJuf5zq6PTm-OTobjC9OR0cH40HBCRUDYIwKKcqUcUNSWeVZqZikGa-4wbmUeZEpTkshSkUrrPI0p0XFVZWzDKQsga2j3fncafCPHcRW1zYW4JxpwHdRUyIZkSoVuEd3fqEPvgtN_zpNaaak6neS9dT2J9XlNZR6GmxtwpP-2lkP8DlQBB9jgEoXtv34dBuMdZpg_R6Nfo9Gf0fTa8Nf2tfkPwU1F2bWwdM_tL4-H49_3DcyV6Jh
CitedBy_id crossref_primary_10_1016_j_jssc_2021_122440
crossref_primary_10_1039_D0TA06533A
crossref_primary_10_3390_ma16134871
crossref_primary_10_1002_sstr_202100001
crossref_primary_10_1016_j_nanoen_2024_109880
crossref_primary_10_1016_j_rser_2023_114167
crossref_primary_10_1039_D4NR02220C
crossref_primary_10_1016_j_nanoen_2019_104295
crossref_primary_10_1016_j_jpowsour_2021_229907
crossref_primary_10_1021_acsaem_1c03192
crossref_primary_10_1002_aenm_202103461
crossref_primary_10_1016_j_nanoen_2019_05_030
crossref_primary_10_1039_D3SC02382F
crossref_primary_10_1002_ange_202111215
crossref_primary_10_3390_batteries11020061
crossref_primary_10_1016_j_electacta_2021_137905
crossref_primary_10_1021_acsanm_2c04860
crossref_primary_10_3390_en15155659
crossref_primary_10_1016_j_matchemphys_2021_124456
crossref_primary_10_1002_aenm_202400367
crossref_primary_10_1002_adma_202000338
crossref_primary_10_1016_j_memsci_2023_122266
crossref_primary_10_3390_batteries9020116
crossref_primary_10_1021_acsami_1c02216
crossref_primary_10_1002_ente_202101024
crossref_primary_10_1021_acsaem_9b01101
crossref_primary_10_3866_PKU_WHXB202303041
crossref_primary_10_1016_j_apsusc_2023_156775
crossref_primary_10_1002_smtd_202100580
crossref_primary_10_1016_j_cej_2024_150316
crossref_primary_10_1016_j_jechem_2025_01_015
crossref_primary_10_1016_j_surfin_2023_103787
crossref_primary_10_1021_acsami_0c12052
crossref_primary_10_1016_j_nanoen_2020_104728
crossref_primary_10_1016_j_mser_2023_100737
crossref_primary_10_1016_j_enrev_2023_100066
crossref_primary_10_1021_acs_energyfuels_0c03138
crossref_primary_10_1016_j_mattod_2023_06_013
crossref_primary_10_1039_C9TA12770D
crossref_primary_10_1007_s40820_020_0381_y
crossref_primary_10_1002_adfm_202419997
crossref_primary_10_1016_j_electacta_2021_139675
crossref_primary_10_1002_aesr_202200030
crossref_primary_10_1016_j_jallcom_2021_161388
crossref_primary_10_1021_acsami_9b12041
crossref_primary_10_1016_j_electacta_2024_144262
crossref_primary_10_1002_batt_202400076
crossref_primary_10_3390_ma13163453
crossref_primary_10_1016_j_susmat_2024_e01052
crossref_primary_10_1016_j_est_2023_110306
crossref_primary_10_1039_C9CC04136B
crossref_primary_10_1016_j_elecom_2020_106897
crossref_primary_10_1021_acssuschemeng_9b05098
crossref_primary_10_1002_smll_201906669
crossref_primary_10_1002_adfm_202009458
crossref_primary_10_1039_D0RA05468B
crossref_primary_10_3389_fenrg_2022_847818
crossref_primary_10_1016_j_apsusc_2022_153529
crossref_primary_10_1016_j_electacta_2020_136532
crossref_primary_10_1016_j_cej_2022_141097
crossref_primary_10_1002_aenm_202200959
crossref_primary_10_1002_aenm_202200715
crossref_primary_10_1002_aenm_202403164
crossref_primary_10_1002_smtd_202300699
crossref_primary_10_1039_D1TA01626A
crossref_primary_10_1016_j_est_2025_115994
crossref_primary_10_1002_smtd_202400865
crossref_primary_10_1021_acs_energyfuels_4c05539
crossref_primary_10_1016_j_apsusc_2024_161270
crossref_primary_10_1016_j_jelechem_2024_118289
crossref_primary_10_1002_ange_202104167
crossref_primary_10_1016_j_jmst_2021_11_034
crossref_primary_10_1021_acsami_0c11375
crossref_primary_10_1007_s11581_024_05424_5
crossref_primary_10_1016_j_ceramint_2022_12_105
crossref_primary_10_1016_S1003_6326_22_65792_3
crossref_primary_10_1002_eem2_12131
crossref_primary_10_1016_j_ensm_2019_09_036
crossref_primary_10_1002_adfm_202210725
crossref_primary_10_1016_j_ensm_2024_103645
crossref_primary_10_1021_acsnano_0c06250
crossref_primary_10_1134_S107042721910001X
crossref_primary_10_1016_j_est_2024_112407
crossref_primary_10_1007_s11581_023_05119_3
crossref_primary_10_1007_s41918_024_00226_9
crossref_primary_10_1021_acs_nanolett_4c01912
crossref_primary_10_1016_j_carbon_2020_12_083
crossref_primary_10_1016_j_cej_2024_149432
crossref_primary_10_1002_cey2_449
crossref_primary_10_1007_s12633_023_02522_3
crossref_primary_10_1016_j_nanoen_2024_109557
crossref_primary_10_1002_adma_202108304
crossref_primary_10_1002_aenm_202003256
crossref_primary_10_1016_j_jpcs_2025_112623
crossref_primary_10_1002_smll_202400709
crossref_primary_10_1039_D2NR00128D
crossref_primary_10_1002_smtd_202400642
crossref_primary_10_1002_ange_202317439
crossref_primary_10_1016_j_ensm_2024_103511
crossref_primary_10_1002_smll_202307275
crossref_primary_10_1016_j_cej_2020_126963
crossref_primary_10_1039_D4MH01218F
crossref_primary_10_1021_acsomega_2c03322
crossref_primary_10_1039_D2NR00172A
crossref_primary_10_1016_j_ceramint_2020_10_025
crossref_primary_10_1007_s40843_021_1780_x
crossref_primary_10_1016_j_cej_2024_153471
crossref_primary_10_1016_j_jpcs_2021_110511
crossref_primary_10_1016_j_jcis_2023_12_170
crossref_primary_10_1080_01411594_2022_2110098
crossref_primary_10_1007_s12598_023_02351_8
crossref_primary_10_1016_j_jece_2021_106319
crossref_primary_10_1021_acsami_9b12984
crossref_primary_10_1039_D3TA07300A
crossref_primary_10_1039_D3SC06956G
crossref_primary_10_1016_j_jechem_2021_02_027
crossref_primary_10_1021_acsami_3c01687
crossref_primary_10_1039_D1TA06760E
crossref_primary_10_1002_smtd_202100372
crossref_primary_10_1007_s12598_021_01893_z
crossref_primary_10_1016_j_ensm_2021_07_008
crossref_primary_10_1021_acsami_1c22817
crossref_primary_10_1016_j_jpowsour_2024_235000
crossref_primary_10_1039_D2DT01171A
crossref_primary_10_1016_j_diamond_2023_109903
crossref_primary_10_1002_adfm_202400779
crossref_primary_10_1021_acsaem_1c03414
crossref_primary_10_1016_j_est_2023_108781
crossref_primary_10_1002_cey2_222
crossref_primary_10_1021_acs_jpcc_1c01639
crossref_primary_10_1039_D4SC08518C
crossref_primary_10_1002_anie_202104167
crossref_primary_10_1002_adfm_202315498
crossref_primary_10_1016_j_jpowsour_2021_230922
crossref_primary_10_1002_aenm_202202939
crossref_primary_10_1039_D0TA06614A
crossref_primary_10_1002_eom2_12393
crossref_primary_10_1016_j_ceja_2022_100292
crossref_primary_10_1002_adma_202202137
crossref_primary_10_1002_sstr_202100082
crossref_primary_10_1021_acsaem_3c01910
crossref_primary_10_1016_j_ssi_2024_116545
crossref_primary_10_1016_j_jelechem_2019_113694
crossref_primary_10_1016_j_jcis_2021_06_081
crossref_primary_10_1039_D3QI00173C
crossref_primary_10_3390_nano10122336
crossref_primary_10_1016_j_jics_2022_100424
crossref_primary_10_1149_1945_7111_ac47eb
crossref_primary_10_3390_polym15061496
crossref_primary_10_1016_j_ceramint_2022_01_295
crossref_primary_10_1021_acs_nanolett_2c04465
crossref_primary_10_1016_j_electacta_2020_137356
crossref_primary_10_1016_j_jpowsour_2023_233329
crossref_primary_10_1016_j_electacta_2021_139139
crossref_primary_10_1002_wene_400
crossref_primary_10_1016_j_ensm_2023_103063
crossref_primary_10_1039_D3CC06123J
crossref_primary_10_1021_acsami_0c04481
crossref_primary_10_1002_anie_202317439
crossref_primary_10_1021_acsami_4c12929
crossref_primary_10_1016_j_jallcom_2022_166631
crossref_primary_10_1039_D1CC06898A
crossref_primary_10_1002_celc_202000797
crossref_primary_10_1016_j_electacta_2021_137982
crossref_primary_10_1149_1945_7111_ac7e6f
crossref_primary_10_1002_adma_202311256
crossref_primary_10_1007_s11581_023_04961_9
crossref_primary_10_3390_molecules28134921
crossref_primary_10_1039_D0TA08383F
crossref_primary_10_1002_smll_202303165
crossref_primary_10_1021_acssuschemeng_3c02013
crossref_primary_10_1039_D3CC02610H
crossref_primary_10_1002_adma_202108985
crossref_primary_10_1116_6_0000847
crossref_primary_10_1016_j_ensm_2021_02_011
crossref_primary_10_1016_j_jelechem_2021_115102
crossref_primary_10_1016_j_electacta_2022_141760
crossref_primary_10_1002_anie_202111215
crossref_primary_10_1002_bte2_20220042
crossref_primary_10_1002_smll_201902246
crossref_primary_10_1016_j_enrev_2024_100068
crossref_primary_10_1002_admi_202100188
crossref_primary_10_1016_j_pmatsci_2023_101128
crossref_primary_10_1016_j_matchemphys_2020_123243
crossref_primary_10_1080_02670836_2023_2228107
crossref_primary_10_3390_electronicmat4010003
crossref_primary_10_1002_cssc_202200479
crossref_primary_10_1021_acssuschemeng_3c02464
crossref_primary_10_1021_jacs_3c08224
crossref_primary_10_1039_D2NJ03999K
crossref_primary_10_1002_celc_202001297
crossref_primary_10_1016_j_heliyon_2024_e30466
crossref_primary_10_1016_j_nanoen_2021_106475
crossref_primary_10_1016_j_carbon_2021_01_006
crossref_primary_10_1002_adfm_202108616
crossref_primary_10_1007_s10854_022_09233_2
crossref_primary_10_1002_aenm_202001128
crossref_primary_10_1007_s12274_023_5657_3
crossref_primary_10_1039_D1TA09040B
crossref_primary_10_1021_acsaem_2c02918
crossref_primary_10_1002_aenm_202402720
crossref_primary_10_1016_j_enchem_2024_100133
crossref_primary_10_1002_smll_202402275
crossref_primary_10_1016_j_ces_2024_120522
crossref_primary_10_1016_j_matlet_2021_130507
crossref_primary_10_1002_smll_201906946
crossref_primary_10_1016_j_jcis_2021_04_110
crossref_primary_10_1021_acsami_1c04931
crossref_primary_10_1016_j_jallcom_2020_155888
crossref_primary_10_1007_s12598_024_02834_2
crossref_primary_10_1016_j_jpowsour_2023_232706
crossref_primary_10_1021_acsami_4c05027
crossref_primary_10_1016_j_ces_2022_117951
crossref_primary_10_1039_D3SC05593K
crossref_primary_10_1021_acsmaterialslett_1c00043
crossref_primary_10_1016_j_cej_2019_122209
crossref_primary_10_1002_aenm_202000943
crossref_primary_10_1016_j_est_2024_110619
crossref_primary_10_1002_smll_202001607
crossref_primary_10_1016_j_jallcom_2021_160280
crossref_primary_10_1002_bte2_20230036
crossref_primary_10_1002_cssc_202300435
crossref_primary_10_1016_j_ssi_2024_116621
crossref_primary_10_1016_j_electacta_2021_138362
crossref_primary_10_1007_s11581_021_04250_3
crossref_primary_10_1002_cplu_202100272
crossref_primary_10_3390_polym15061450
crossref_primary_10_1039_D0TA12552K
crossref_primary_10_1016_j_electacta_2020_136347
crossref_primary_10_1002_adfm_201907023
crossref_primary_10_1016_j_ceramint_2023_07_264
crossref_primary_10_1039_D2TA07910K
crossref_primary_10_1016_j_est_2023_106625
crossref_primary_10_1002_smll_202306353
crossref_primary_10_1016_j_electacta_2023_143050
crossref_primary_10_1007_s12598_020_01452_y
crossref_primary_10_1002_adfm_202202919
crossref_primary_10_3389_fphy_2019_00207
crossref_primary_10_1016_j_electacta_2022_140049
crossref_primary_10_1016_j_jechem_2020_10_047
crossref_primary_10_1038_s41560_023_01414_5
crossref_primary_10_1039_D4TA03284E
crossref_primary_10_1039_D2EE00004K
crossref_primary_10_1016_j_clay_2021_106265
crossref_primary_10_1016_j_fuel_2022_126862
crossref_primary_10_1016_j_mattod_2024_06_006
crossref_primary_10_20517_energymater_2023_61
crossref_primary_10_1002_adfm_202112179
crossref_primary_10_1016_j_ensm_2022_06_008
crossref_primary_10_1016_j_electacta_2019_135502
crossref_primary_10_1016_j_ensm_2024_103239
crossref_primary_10_1002_smll_202105713
crossref_primary_10_1007_s42250_024_00953_y
crossref_primary_10_1007_s12209_022_00353_8
crossref_primary_10_1002_batt_202000294
crossref_primary_10_3390_nano12162837
crossref_primary_10_1016_j_jallcom_2023_169314
crossref_primary_10_1002_aenm_202000927
crossref_primary_10_1021_acsami_1c12062
crossref_primary_10_1021_acs_energyfuels_4c02769
crossref_primary_10_1016_j_ensm_2020_04_027
crossref_primary_10_1016_j_electacta_2020_136563
crossref_primary_10_1002_celc_202000205
crossref_primary_10_1016_j_jcis_2023_02_011
crossref_primary_10_1002_cnl2_106
crossref_primary_10_1039_C9CE01554J
crossref_primary_10_1007_s10854_023_11633_x
crossref_primary_10_1016_j_mtchem_2022_100866
crossref_primary_10_1016_j_ceramint_2024_08_369
crossref_primary_10_1016_j_jallcom_2021_159382
crossref_primary_10_1016_j_jelechem_2021_115533
crossref_primary_10_1016_j_electacta_2019_135293
crossref_primary_10_3390_molecules25041000
crossref_primary_10_1016_j_envc_2024_100966
crossref_primary_10_1016_j_jechem_2020_07_008
crossref_primary_10_1039_C9QM00674E
crossref_primary_10_3390_batteries9010056
crossref_primary_10_1002_adfm_202005581
crossref_primary_10_1016_j_ensm_2022_07_027
crossref_primary_10_1039_D0TA03767B
crossref_primary_10_1039_D2SE00475E
crossref_primary_10_1038_s41467_022_31768_5
crossref_primary_10_1039_C9TA06870H
crossref_primary_10_1016_j_jallcom_2020_156813
crossref_primary_10_1002_ente_202401800
crossref_primary_10_1002_smll_201902432
crossref_primary_10_1016_j_pnsc_2022_12_003
crossref_primary_10_1016_j_vacuum_2022_111476
crossref_primary_10_1039_D2CP01910H
crossref_primary_10_1039_D3TA02329J
crossref_primary_10_1002_eem2_12422
crossref_primary_10_1021_acsaem_3c01291
crossref_primary_10_1016_j_cclet_2019_09_050
crossref_primary_10_1016_j_jpcs_2021_110226
Cites_doi 10.1002/aenm.201200803
10.1039/C4TA03948C
10.1039/C5EE02074C
10.1016/j.electacta.2018.11.064
10.1021/acs.nanolett.5b04514
10.1021/acsami.7b18226
10.1039/C7TA00690J
10.1016/j.electacta.2016.03.007
10.1149/2.0931501jes
10.1039/C4TA05451B
10.1021/nl203193q
10.1039/C7TA02515G
10.1002/ejic.201501172
10.1002/adma.201701968
10.1039/C7EE00524E
10.1016/j.jpowsour.2012.05.100
10.1002/aenm.201601973
10.1016/j.nanoen.2016.04.021
10.1002/aenm.201703036
10.1016/j.elecom.2013.05.012
10.1039/C7TA03687F
10.1016/j.nanoen.2016.02.024
10.1021/jp407322k
10.1002/aenm.201700403
10.1002/ange.201403734
10.1021/nl303305c
10.1038/ncomms8496
10.1021/acs.jpcc.5b11983
10.1002/anie.201209689
10.1039/C6EE01501H
10.1039/C5RA07583A
10.1002/aenm.201703217
10.1002/adma.201502018
10.1149/2.037211jes
10.1002/smll.201500144
10.1039/C7TA00880E
10.1039/C5TA04491J
10.1016/j.nanoen.2015.02.022
10.1038/nmat3309
10.1016/j.electacta.2014.12.160
10.1021/acs.chemmater.6b02096
10.1021/ja510347s
10.1039/C5EE00695C
10.1002/aenm.201703252
10.1039/c2jm33639a
10.1002/smll.201703116
10.1021/acs.nanolett.6b01805
10.1002/chem.201703044
10.1039/C5CC04422G
10.1021/acsenergylett.7b00623
10.1021/acs.chemmater.5b03920
10.1002/smtd.201800092
10.1039/C4TA06711H
10.1021/nl502812x
10.1002/adma.201604108
10.1002/adma.201605535
10.1002/adfm.201606232
10.1021/acsami.8b08297
10.1016/j.elecom.2011.08.038
10.1039/c3ee41379a
10.1002/aenm.201701912
10.1002/aenm.201702619
10.1021/cm401657c
10.1016/j.nanoen.2015.07.020
10.1002/aenm.201701847
10.1039/C5TA07696J
10.1039/C3EE42944J
10.1021/acs.nanolett.7b01366
10.1021/cm202076g
10.1002/anie.201206854
10.1021/ja512383b
10.1007/978-3-319-91488-6_2
10.1021/acsami.5b09811
10.1016/j.jpowsour.2015.03.087
10.1039/c3cc38839e
10.1016/j.electacta.2018.07.087
10.1016/j.electacta.2017.11.155
10.1016/j.nanoen.2015.10.034
10.1021/acsami.8b00478
10.1021/acs.chemmater.6b03403
10.1039/c3ee40811f
10.1021/acsnano.5b02787
10.1002/bkcs.10308
10.1016/j.ensm.2015.10.003
10.1021/nl404637q
10.1039/C5TA00277J
10.1021/ja3038646
10.1021/acsami.6b13830
10.1021/jacs.8b11388
10.1002/adma.201700214
10.1021/acsnano.5b00376
10.1021/nl400998t
10.1039/C3EE44004D
10.1039/C6RA11042H
10.1021/acs.chemmater.5b00616
10.1039/C5TA08869K
10.1038/ncomms5358
10.1016/j.elecom.2013.03.013
10.1002/advs.201600392
10.1002/smtd.201700216
10.1039/C4TA04428B
10.1021/acsami.7b00058
10.1016/j.materresbull.2016.10.019
10.1149/1.3607983
10.1021/cm4013816
10.1002/adfm.201600747
10.1002/aenm.201701785
10.1039/C6TA01111J
10.1002/aenm.201702582
10.1038/nmat2920
10.1016/j.jpowsour.2013.01.083
10.1002/aenm.201701189
10.1016/j.nanoen.2018.11.011
10.1021/acsnano.7b00557
10.1002/aenm.201502197
10.1149/2.018305jes
10.1016/j.jpowsour.2016.07.061
10.1039/C5EE01876E
10.1039/C2RA22050D
10.1002/aenm.201400458
10.1016/j.nanoen.2016.07.021
10.1016/j.nanoen.2017.12.038
10.1039/C8TA01627E
10.1016/j.electacta.2013.09.098
10.1039/c3ta11568b
10.1021/acsami.6b04736
10.1016/j.isci.2018.04.008
10.1149/1.1393348
10.1002/aenm.201200825
10.1039/C6DT03767D
10.1021/acs.nanolett.6b04044
10.1002/adfm.201402943
10.1039/c2cc17129e
10.1021/acsami.5b11848
10.1002/adma.201700431
10.1021/acsami.5b04691
10.1002/smll.201604181
10.1002/aenm.201601037
10.1088/1468-6996/15/4/043501
10.1016/j.jallcom.2016.05.335
10.1039/C7TA05680J
10.1021/cm501110v
10.1039/C7TA00727B
10.1039/C4TA02068E
10.1038/nnano.2015.194
10.1016/j.elecom.2012.02.020
10.1002/adma.201806092
10.1021/nl404165c
10.1021/acsami.5b11003
10.1016/j.elecom.2010.01.020
10.1039/C7EE00102A
10.1016/j.jpowsour.2013.10.091
10.1016/j.jpowsour.2016.01.082
10.1002/aenm.201703499
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201805427
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30773812
10_1002_smll_201805427
SMLL201805427
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Key Research Program of China
  funderid: 2016YFB0901500
– fundername: National Natural Science Foundation of China
  funderid: 21875171; 21673165; 21333007
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2042018kf0007
– fundername: Science and Technology Project of State Grid
  funderid: SGRIDGKJ[2017]841
– fundername: China Postdoctoral Science Foundation
  funderid: 2016M592383; 2017T100574
– fundername: National Natural Science Foundation of China
  grantid: 21673165
– fundername: National Natural Science Foundation of China
  grantid: 21333007
– fundername: China Postdoctoral Science Foundation
  grantid: 2017T100574
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2042018kf0007
– fundername: Science and Technology Project of State Grid
  grantid: SGRIDGKJ[2017]841
– fundername: National Natural Science Foundation of China
  grantid: 21875171
– fundername: National Key Research Program of China
  grantid: 2016YFB0901500
– fundername: China Postdoctoral Science Foundation
  grantid: 2016M592383
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4127-e332787d534a158fb6d938264f4a0b88bc6942d77d92f09b5b2cf49fb36e88de3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 08:06:18 EDT 2025
Fri Jul 25 12:04:44 EDT 2025
Wed Feb 19 02:36:23 EST 2025
Tue Jul 01 02:10:40 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Wed Jan 22 16:39:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords cathode materials
anode materials
sodium-ion batteries
high power
grid-scale energy storage
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4127-e332787d534a158fb6d938264f4a0b88bc6942d77d92f09b5b2cf49fb36e88de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3264-851X
0000-0001-6092-5652
0000-0002-6704-2542
0000-0002-8280-0866
0000-0003-0246-7926
0000-0002-1526-7336
PMID 30773812
PQID 2269897386
PQPubID 1046358
PageCount 33
ParticipantIDs proquest_miscellaneous_2183189570
proquest_journals_2269897386
pubmed_primary_30773812
crossref_citationtrail_10_1002_smll_201805427
crossref_primary_10_1002_smll_201805427
wiley_primary_10_1002_smll_201805427_SMLL201805427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2017; 86
2013; 3
2013; 1
2018; 283
2014; 26
2012; 18
2016; 2016
2018; 45
2012; 12
2012; 11
2013; 6
2018; 6
2018; 8
2014; 249
2018; 3
2012; 134
2015; 137
2013; 52
2013; 117
2016; 310
2014; 15
2014; 14
2013; 113
2013; 234
2012; 22
2016; 46
2014; 126
2016; 19
2019; 31
2015; 51
2016; 327
2016; 685
2016; 16
2017; 258
2016; 4
2016; 6
2016; 2
2012; 48
2016; 28
2018; 10
2016; 27
2016; 26
2016; 8
2016; 24
2016; 9
2018; 14
2019; 296
2016; 22
2017; 5
2017; 7
2011; 158
2015; 36
2017; 1
2013; 25
2017; 2
2017; 4
2019; 56
2011; 11
2011; 10
2011; 13
2013; 160
2017; 9
2014; 5
2014; 4
2014; 2
2013; 13
2011; 23
2014; 7
2012; 217
2016; 196
2015; 162
2015; 13
2015; 6
2015; 5
2015; 16
2018; 140
2013; 49
2015; 3
2017; 27
2015; 11
2015; 285
2015; 10
2017; 23
2017; 29
2015; 9
2015; 8
2015; 7
2016; 120
2015; 25
2015; 27
2000; 147
2017; 17
2013; 34
2015; 155
2017; 11
2017; 10
2017; 13
2013; 31
2018
2012; 159
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
Jiang Y. (e_1_2_8_44_1) 2018; 8
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 8
  start-page: 2238
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 145
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 13
  start-page: 3093
  year: 2013
  publication-title: Nano Lett.
– volume: 10
  start-page: 10819
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2857
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  start-page: 18192
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1605535
  year: 2017
  publication-title: Adv. Mater.
– volume: 48
  start-page: 3321
  year: 2012
  publication-title: Chem. Commun.
– volume: 36
  start-page: 1625
  year: 2015
  publication-title: Bull. Korean Chem. Soc.
– volume: 2
  start-page: 12733
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 208
  year: 2015
  publication-title: Nano Energy
– volume: 3
  start-page: 22
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 19438
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 1806092
  year: 2019
  publication-title: Adv. Mater.
– volume: 52
  start-page: 1964
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 2005
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 70277
  year: 2016
  publication-title: RSC Adv.
– volume: 4
  start-page: 1400458
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1700214
  year: 2017
  publication-title: Adv. Mater.
– volume: 160
  start-page: A3131
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 26
  start-page: 5315
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1601037
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 19623
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 2658
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 200
  year: 2013
  publication-title: Electrochim. Acta
– volume: 685
  start-page: 344
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 49
  start-page: 2750
  year: 2013
  publication-title: Chem. Commun.
– volume: 8
  start-page: 689
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 10369
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 258
  start-page: 1035
  year: 2017
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 1701189
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1702582
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 120
  start-page: 9007
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 3096
  year: 2015
  publication-title: Chem. Mater.
– volume: 1
  start-page: 7985
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 17421
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 9528
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 463
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 5
  start-page: 14365
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 043501
  year: 2014
  publication-title: Sci. Technol. Adv. Mater.
– volume: 4
  start-page: 1180
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 4882
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1601973
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 8752
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 770
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 74
  year: 2011
  publication-title: Nat. Mater.
– volume: 9
  start-page: 3644
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 3614
  year: 2013
  publication-title: Chem. Mater.
– volume: 16
  start-page: 389
  year: 2015
  publication-title: Nano Energy
– volume: 5
  start-page: 6277
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1700403
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1600392
  year: 2017
  publication-title: Adv. Sci.
– volume: 13
  start-page: 1225
  year: 2011
  publication-title: Electrochem. Commun.
– volume: 27
  start-page: 5895
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1701785
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 110
  year: 2018
  publication-title: iScience
– volume: 159
  start-page: A1801
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 16
  start-page: 2240
  year: 2016
  publication-title: Nano Lett.
– volume: 16
  start-page: 4544
  year: 2016
  publication-title: Nano Lett.
– volume: 3
  start-page: 444
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 1604181
  year: 2017
  publication-title: Small
– volume: 117
  start-page: 18885
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 34
  start-page: 60
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 45
  start-page: 136
  year: 2018
  publication-title: Nano Energy
– volume: 27
  start-page: 602
  year: 2016
  publication-title: Nano Energy
– volume: 6
  start-page: 2067
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 5421
  year: 2011
  publication-title: Nano Lett.
– volume: 28
  start-page: 6553
  year: 2016
  publication-title: Chem. Mater.
– volume: 5
  start-page: 18707
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 11689
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 1624
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 5897
  year: 2012
  publication-title: Nano Lett.
– volume: 249
  start-page: 367
  year: 2014
  publication-title: J. Power Sources
– volume: 24
  start-page: 130
  year: 2016
  publication-title: Nano Energy
– start-page: 9
  year: 2018
  end-page: 22
– volume: 8
  start-page: 3325
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 4713
  year: 2017
  publication-title: Nano Lett.
– volume: 155
  start-page: 23
  year: 2015
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1703217
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 1865
  year: 2014
  publication-title: Nano Lett.
– volume: 3
  start-page: 9578
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 3289
  year: 2014
  publication-title: Chem. Mater.
– volume: 19
  start-page: 279
  year: 2016
  publication-title: Nano Energy
– volume: 217
  start-page: 43
  year: 2012
  publication-title: J. Power Sources
– volume: 137
  start-page: 2548
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 4109
  year: 2011
  publication-title: Chem. Mater.
– start-page: 1800092
  year: 2018
  publication-title: Small Methods
– volume: 27
  start-page: 1606232
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 55
  year: 2016
  publication-title: Dalton Trans.
– volume: 51
  start-page: 13120
  year: 2015
  publication-title: Chem. Commun.
– volume: 5
  start-page: 5502
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2314
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1701847
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 2361
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1701968
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 139
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 14
  start-page: 1703116
  year: 2018
  publication-title: Small
– volume: 7
  start-page: 323
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 8138
  year: 2015
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1222
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2019
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 14758
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 327
  start-page: 666
  year: 2016
  publication-title: J. Power Sources
– volume: 285
  start-page: 161
  year: 2015
  publication-title: J. Power Sources
– volume: 6
  start-page: 8815
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 66
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 7496
  year: 2015
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1703252
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 4633
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 512
  year: 2012
  publication-title: Nat. Mater.
– volume: 29
  start-page: 1700431
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 18718
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1703499
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1702619
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1643
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 5530
  year: 2017
  publication-title: ACS Nano
– volume: 2016
  start-page: 2051
  year: 2016
  publication-title: Eur. J. Inorg. Chem.
– volume: 9
  start-page: 3254
  year: 2015
  publication-title: ACS Nano
– volume: 10
  start-page: 980
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 800068
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 3531
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1700216
  year: 2017
  publication-title: Small Methods
– volume: 16
  start-page: 7836
  year: 2016
  publication-title: Nano Lett.
– volume: 23
  start-page: 12944
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 126
  start-page: 10333
  year: 2014
  publication-title: Angew. Chem.
– volume: 234
  start-page: 48
  year: 2013
  publication-title: J. Power Sources
– volume: 8
  start-page: 1703036
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1604108
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1502197
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 160
  year: 2019
  publication-title: Nano Energy
– volume: 296
  start-page: 345
  year: 2019
  publication-title: Electrochim. Acta
– volume: 283
  start-page: 1475
  year: 2018
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 4358
  year: 2014
  publication-title: Nat. Commun.
– volume: 147
  start-page: 1271
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 196
  start-page: 470
  year: 2016
  publication-title: Electrochim. Acta
– volume: 310
  start-page: 26
  year: 2016
  publication-title: J. Power Sources
– volume: 22
  start-page: 232
  year: 2016
  publication-title: Nano Energy
– volume: 5
  start-page: 50155
  year: 2015
  publication-title: RSC Adv.
– volume: 14
  start-page: 5873
  year: 2014
  publication-title: Nano Lett.
– volume: 86
  start-page: 194
  year: 2017
  publication-title: Mater. Res. Bull.
– volume: 3
  start-page: 4484
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1075
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1041
  year: 2013
  publication-title: RSC Adv.
– volume: 162
  start-page: A176
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 34108
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1255
  year: 2014
  publication-title: Nano Lett.
– volume: 25
  start-page: 3480
  year: 2013
  publication-title: Chem. Mater.
– volume: 11
  start-page: 3744
  year: 2015
  publication-title: Small
– volume: 7
  start-page: 17977
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 8930
  year: 2016
  publication-title: Chem. Mater.
– volume: 3
  start-page: 71
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1701912
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 158
  start-page: A1011
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 6610
  year: 2015
  publication-title: ACS Nano
– volume: 25
  start-page: 214
  year: 2015
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_38_1
  doi: 10.1002/aenm.201200803
– ident: e_1_2_8_52_1
  doi: 10.1039/C4TA03948C
– ident: e_1_2_8_137_1
  doi: 10.1039/C5EE02074C
– ident: e_1_2_8_78_1
  doi: 10.1016/j.electacta.2018.11.064
– ident: e_1_2_8_112_1
  doi: 10.1021/acs.nanolett.5b04514
– ident: e_1_2_8_21_1
  doi: 10.1021/acsami.7b18226
– ident: e_1_2_8_119_1
  doi: 10.1039/C7TA00690J
– ident: e_1_2_8_149_1
  doi: 10.1016/j.electacta.2016.03.007
– ident: e_1_2_8_63_1
  doi: 10.1149/2.0931501jes
– ident: e_1_2_8_86_1
  doi: 10.1039/C4TA05451B
– ident: e_1_2_8_148_1
  doi: 10.1021/nl203193q
– ident: e_1_2_8_82_1
  doi: 10.1039/C7TA02515G
– ident: e_1_2_8_145_1
  doi: 10.1002/ejic.201501172
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201701968
– ident: e_1_2_8_139_1
  doi: 10.1039/C7EE00524E
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jpowsour.2012.05.100
– ident: e_1_2_8_135_1
  doi: 10.1002/aenm.201601973
– ident: e_1_2_8_55_1
  doi: 10.1016/j.nanoen.2016.04.021
– ident: e_1_2_8_141_1
  doi: 10.1002/aenm.201703036
– ident: e_1_2_8_20_1
  doi: 10.1016/j.elecom.2013.05.012
– ident: e_1_2_8_54_1
  doi: 10.1039/C7TA03687F
– ident: e_1_2_8_121_1
  doi: 10.1016/j.nanoen.2016.02.024
– ident: e_1_2_8_132_1
  doi: 10.1021/jp407322k
– ident: e_1_2_8_84_1
  doi: 10.1002/aenm.201700403
– ident: e_1_2_8_143_1
  doi: 10.1002/ange.201403734
– ident: e_1_2_8_103_1
  doi: 10.1021/nl303305c
– ident: e_1_2_8_116_1
  doi: 10.1038/ncomms8496
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.jpcc.5b11983
– ident: e_1_2_8_107_1
  doi: 10.1002/anie.201209689
– ident: e_1_2_8_124_1
  doi: 10.1039/C6EE01501H
– ident: e_1_2_8_70_1
  doi: 10.1039/C5RA07583A
– ident: e_1_2_8_85_1
  doi: 10.1002/aenm.201703217
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.201502018
– ident: e_1_2_8_115_1
  doi: 10.1149/2.037211jes
– ident: e_1_2_8_97_1
  doi: 10.1002/smll.201500144
– ident: e_1_2_8_13_1
  doi: 10.1039/C7TA00880E
– ident: e_1_2_8_93_1
  doi: 10.1039/C5TA04491J
– ident: e_1_2_8_117_1
  doi: 10.1016/j.nanoen.2015.02.022
– ident: e_1_2_8_9_1
  doi: 10.1038/nmat3309
– ident: e_1_2_8_37_1
  doi: 10.1016/j.electacta.2014.12.160
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.chemmater.6b02096
– ident: e_1_2_8_27_1
  doi: 10.1021/ja510347s
– ident: e_1_2_8_22_1
  doi: 10.1039/C5EE00695C
– ident: e_1_2_8_48_1
  doi: 10.1002/aenm.201703252
– ident: e_1_2_8_60_1
  doi: 10.1039/c2jm33639a
– ident: e_1_2_8_1_1
  doi: 10.1002/smll.201703116
– ident: e_1_2_8_92_1
  doi: 10.1021/acs.nanolett.6b01805
– ident: e_1_2_8_152_1
  doi: 10.1002/chem.201703044
– ident: e_1_2_8_67_1
  doi: 10.1039/C5CC04422G
– ident: e_1_2_8_154_1
  doi: 10.1021/acsenergylett.7b00623
– ident: e_1_2_8_127_1
  doi: 10.1021/acs.chemmater.5b03920
– ident: e_1_2_8_11_1
  doi: 10.1002/smtd.201800092
– ident: e_1_2_8_77_1
  doi: 10.1039/C4TA06711H
– ident: e_1_2_8_131_1
  doi: 10.1021/nl502812x
– ident: e_1_2_8_88_1
  doi: 10.1002/adma.201604108
– ident: e_1_2_8_68_1
  doi: 10.1002/adma.201605535
– ident: e_1_2_8_105_1
  doi: 10.1002/adfm.201606232
– ident: e_1_2_8_147_1
  doi: 10.1021/acsami.8b08297
– ident: e_1_2_8_69_1
  doi: 10.1016/j.elecom.2011.08.038
– ident: e_1_2_8_45_1
  doi: 10.1039/c3ee41379a
– ident: e_1_2_8_8_1
  doi: 10.1002/aenm.201701912
– ident: e_1_2_8_26_1
  doi: 10.1002/aenm.201702619
– ident: e_1_2_8_64_1
  doi: 10.1021/cm401657c
– ident: e_1_2_8_129_1
  doi: 10.1016/j.nanoen.2015.07.020
– ident: e_1_2_8_138_1
  doi: 10.1002/aenm.201701847
– ident: e_1_2_8_79_1
  doi: 10.1039/C5TA07696J
– ident: e_1_2_8_126_1
  doi: 10.1039/C3EE42944J
– ident: e_1_2_8_156_1
  doi: 10.1021/acs.nanolett.7b01366
– ident: e_1_2_8_90_1
  doi: 10.1021/cm202076g
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201206854
– ident: e_1_2_8_32_1
  doi: 10.1021/ja512383b
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-319-91488-6_2
– ident: e_1_2_8_94_1
  doi: 10.1021/acsami.5b09811
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jpowsour.2015.03.087
– ident: e_1_2_8_146_1
  doi: 10.1002/adma.201605535
– ident: e_1_2_8_31_1
  doi: 10.1039/c3cc38839e
– ident: e_1_2_8_155_1
  doi: 10.1016/j.electacta.2018.07.087
– ident: e_1_2_8_4_1
  doi: 10.1016/j.electacta.2017.11.155
– ident: e_1_2_8_87_1
  doi: 10.1016/j.nanoen.2015.10.034
– ident: e_1_2_8_2_1
  doi: 10.1021/acsami.8b00478
– ident: e_1_2_8_144_1
  doi: 10.1021/acs.chemmater.6b03403
– ident: e_1_2_8_142_1
  doi: 10.1039/c3ee40811f
– ident: e_1_2_8_95_1
  doi: 10.1021/acsnano.5b02787
– ident: e_1_2_8_128_1
  doi: 10.1002/bkcs.10308
– ident: e_1_2_8_157_1
  doi: 10.1016/j.ensm.2015.10.003
– ident: e_1_2_8_136_1
  doi: 10.1021/nl404637q
– ident: e_1_2_8_53_1
  doi: 10.1039/C5TA00277J
– ident: e_1_2_8_74_1
  doi: 10.1021/ja3038646
– ident: e_1_2_8_6_1
  doi: 10.1021/acsami.6b13830
– ident: e_1_2_8_56_1
  doi: 10.1021/jacs.8b11388
– ident: e_1_2_8_104_1
  doi: 10.1002/adma.201700214
– ident: e_1_2_8_109_1
  doi: 10.1021/acsnano.5b00376
– ident: e_1_2_8_106_1
  doi: 10.1021/nl400998t
– ident: e_1_2_8_28_1
  doi: 10.1039/C3EE44004D
– ident: e_1_2_8_96_1
  doi: 10.1039/C6RA11042H
– ident: e_1_2_8_130_1
  doi: 10.1021/acs.chemmater.5b00616
– ident: e_1_2_8_39_1
  doi: 10.1039/C5TA08869K
– ident: e_1_2_8_76_1
  doi: 10.1038/ncomms5358
– ident: e_1_2_8_100_1
  doi: 10.1016/j.elecom.2013.03.013
– ident: e_1_2_8_62_1
  doi: 10.1002/advs.201600392
– ident: e_1_2_8_113_1
  doi: 10.1002/smtd.201700216
– ident: e_1_2_8_140_1
  doi: 10.1039/C4TA04428B
– ident: e_1_2_8_10_1
  doi: 10.1021/acsami.7b00058
– ident: e_1_2_8_34_1
  doi: 10.1016/j.materresbull.2016.10.019
– ident: e_1_2_8_114_1
  doi: 10.1149/1.3607983
– ident: e_1_2_8_73_1
  doi: 10.1021/cm4013816
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.201600747
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.201701785
– ident: e_1_2_8_59_1
  doi: 10.1039/C6TA01111J
– ident: e_1_2_8_122_1
  doi: 10.1002/aenm.201702582
– ident: e_1_2_8_14_1
  doi: 10.1038/nmat2920
– ident: e_1_2_8_101_1
  doi: 10.1016/j.jpowsour.2013.01.083
– ident: e_1_2_8_151_1
  doi: 10.1002/aenm.201701189
– ident: e_1_2_8_75_1
  doi: 10.1016/j.nanoen.2018.11.011
– ident: e_1_2_8_108_1
  doi: 10.1021/acsnano.7b00557
– ident: e_1_2_8_99_1
  doi: 10.1002/aenm.201502197
– ident: e_1_2_8_19_1
  doi: 10.1149/2.018305jes
– ident: e_1_2_8_72_1
  doi: 10.1016/j.jpowsour.2016.07.061
– ident: e_1_2_8_80_1
  doi: 10.1039/C5EE01876E
– ident: e_1_2_8_91_1
  doi: 10.1039/C2RA22050D
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.201400458
– ident: e_1_2_8_7_1
  doi: 10.1016/j.nanoen.2016.07.021
– ident: e_1_2_8_43_1
  doi: 10.1016/j.nanoen.2017.12.038
– ident: e_1_2_8_40_1
  doi: 10.1039/C8TA01627E
– ident: e_1_2_8_12_1
  doi: 10.1016/j.electacta.2013.09.098
– ident: e_1_2_8_41_1
  doi: 10.1002/aenm.201200803
– ident: e_1_2_8_102_1
  doi: 10.1039/c3ta11568b
– ident: e_1_2_8_118_1
  doi: 10.1021/acsami.6b04736
– ident: e_1_2_8_35_1
  doi: 10.1016/j.isci.2018.04.008
– ident: e_1_2_8_83_1
  doi: 10.1149/1.1393348
– ident: e_1_2_8_66_1
  doi: 10.1002/aenm.201200825
– ident: e_1_2_8_81_1
  doi: 10.1039/C6DT03767D
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.nanolett.6b04044
– ident: e_1_2_8_120_1
  doi: 10.1002/adfm.201402943
– ident: e_1_2_8_123_1
  doi: 10.1039/c2cc17129e
– ident: e_1_2_8_17_1
  doi: 10.1021/acsami.5b11848
– ident: e_1_2_8_57_1
  doi: 10.1002/adma.201700431
– ident: e_1_2_8_61_1
  doi: 10.1021/acsami.5b04691
– ident: e_1_2_8_46_1
  doi: 10.1002/smll.201604181
– ident: e_1_2_8_110_1
  doi: 10.1002/aenm.201601037
– ident: e_1_2_8_16_1
  doi: 10.1088/1468-6996/15/4/043501
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jallcom.2016.05.335
– ident: e_1_2_8_71_1
  doi: 10.1039/C7TA05680J
– ident: e_1_2_8_58_1
  doi: 10.1021/cm501110v
– ident: e_1_2_8_65_1
  doi: 10.1039/C7TA00727B
– ident: e_1_2_8_89_1
  doi: 10.1039/C4TA02068E
– ident: e_1_2_8_111_1
  doi: 10.1038/nnano.2015.194
– volume: 8
  start-page: 800068
  year: 2018
  ident: e_1_2_8_44_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_18_1
  doi: 10.1016/j.elecom.2012.02.020
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201806092
– ident: e_1_2_8_125_1
  doi: 10.1021/nl404165c
– ident: e_1_2_8_98_1
  doi: 10.1021/acsami.5b11003
– ident: e_1_2_8_150_1
  doi: 10.1016/j.elecom.2010.01.020
– ident: e_1_2_8_134_1
  doi: 10.1039/C7EE00102A
– ident: e_1_2_8_153_1
  doi: 10.1016/j.jpowsour.2013.10.091
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jpowsour.2016.01.082
– ident: e_1_2_8_133_1
  doi: 10.1002/aenm.201703499
SSID ssj0031247
Score 2.669306
SecondaryResourceType review_article
Snippet The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in...
The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1805427
SubjectTerms anode materials
Anodes
Batteries
cathode materials
Diffusion rate
Electric power distribution
Electric vehicles
Electrochemistry
Electrode materials
Energy storage
Fossil fuels
grid‐scale energy storage
high power
Lithium
Lithium-ion batteries
Markets
Nanotechnology
Rechargeable batteries
Sodium-ion batteries
Storage systems
Title Recent Progress in Rechargeable Sodium‐Ion Batteries: toward High‐Power Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201805427
https://www.ncbi.nlm.nih.gov/pubmed/30773812
https://www.proquest.com/docview/2269897386
https://www.proquest.com/docview/2183189570
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnapumTeJNRFFRER-wt5K0KYjaFXf34smf4G_0lzjT7tZdRQS9tU3Spkln5ksz8w3Ali20NrGUvuESFyhGC98mQvpCBFZqSg5bRbmeXyTHt-K0FbeGovhrfojmhxtJRqWvScCN7ex-koZ2Hh9o6yBUCDo4hZOTwxahoquGPypC41VlV0Gb5RPx1oC1MeC7o81HrdI3qDmKXCvTczQNZtDp2uPkfqfXtTvZyxc-x_-81QxM9XEp268_pFkYc-UcTA6xFc5DCyEmmih2SS5dqCDZXcnwElEtOQrAYtft_K73-P76dtIuWU3cievwPdatXHMZuZRg4SXlZWP7QxvnC3B7dHhzcOz3EzP4mQi59F0UcRT0PI6ECWNV2CTXEa5TRCFMYJWyWaIFz6XMNS8CbWPLs0LowkaJUyp30SKMl-3SLQPTBlcsnGd4h0zEsVJaKBs64zJUDzbPPfAHE5NmfdZySp7xkNZ8yzylEUubEfNgu6n_VPN1_FhzbTDPaV9uOymCUa00JUL1YLMpRomjbRRTunYP66AWDJWOZeDBUv19NI9CjYmNQ-4Br2b5lz6k1-dnZ83Zyl8arcIEHuvaJ3ENxrvPPbeOOKlrNypZ-ABbtQpl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQc-l8Ipa0rteopkDhObCNxQFC0W3YRKiDtLY0TR1oB2aq7qwpOPEJfpa_CI_RJOpM_2FZVpUoceoxjO449nvlsj78BeGNyrZNQSjfhEhcoiRauiYR0hfCM1BQctrzl2t-POsfiwyAczMH35i5MxQ_RbrjRzCj1NU1w2pBev2YNHZ-d0tmBrxB1cFn7Ve7Z86-4ahtvdndwiN9yvvv-aLvj1oEF3FT4XLo2CDgKahYGIvFDlZso0wHibJGLxDNKmTTSgmdSZprnnjah4WkudG6CyCqV2QDrvQMLFEac6Pp3PraMVQGayzKeC1pJl6i-Gp5Ij6_PtnfWDv4Gbmexcmnsdh_AVdNNlY_Lydp0YtbSi18YJP-rfnwI92vozbaqufII5mzxGBZvEDI-gQGiaLTC7IC81tAGsGHBMInYpCzdMWOHo2w4Pftx-a07KljFTTq04w02Kb2PGXnN4MsDCj3Htm74BjyF41v5tWcwX4wKuwxMJ7go4zzFGlIRhkppoYxvE5uiBjRZ5oDbSEKc1sTsFB_kNK4opXlMIxS3I-TAuzb_54qS5I85VxvBimvVNI4Rb2ulKdarA6_b16hU6KQoKexoinlQ0ftKh9JzYKkSyPZTaBSwsM8d4KVY_aUN8WG_12ufVv6l0Cu42znq9-Jed3_vOdzDdF25YK7C_OTL1L5AWDgxL8uJyODTbUvsT5LDZ34
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RkFB7KJT-pUBrJFBPgcRxYhuJA2K7YsuCVlCkvaVx7EirQhZ1d1W1Jx6BR-mr9BV4Esb5K0uFKlXi0GP8F8cez3yOx98ArKtMyiTk3E0oxw1KIpmrIsZdxjzFpQ0OW9xyPTyK9k_Zx37Yn4Gf9V2Ykh-i-eFmV0ahr-0Cv9DZ1m_S0NH5mT068AWCDsort8oD8_0bbtpGO50WzvAGpe0Pn_b23SqugJsyn3LXBAFFOdVhwBI_FJmKtAwQZrOMJZ4SQqWRZFRzriXNPKlCRdOMyUwFkRFCmwDbfQRzLPKkDRbROm4IqwK0lkU4FzSSrmX6qmkiPbo13d9pM_gHtp2GyoWtay_Ar3qUSheXL5uTsdpMf9whkPyfhnERnlbAm-yWK-UZzJh8CZ7comN8Dn3E0GiDSc_6rKEFIIOcYJLlkjL2hhk5GerB5Pz68qozzEnJTDowo20yLnyPifWZwcyeDTxHdm95BryA0wf5tJcwmw9z8xqITHBLRmmKLaQsDIWQTCjfJCZF_ae0dsCtBSFOK1p2Gx3kLC4JpWlsZyhuZsiB9035i5KQ5N6SK7VcxZViGsWItqWQNtKrA2tNNqoUe06U5GY4wTKo5n0hQ-458KqUx-ZVaBKwsk8doIVU_aUP8clht9s8vfmXSu9gvtdqx93O0cEyPMZkWfpfrsDs-OvErCImHKu3xTIk8PmhBfYG1pdmLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Rechargeable+Sodium%E2%80%90Ion+Batteries%3A+toward+High%E2%80%90Power+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Pu%2C+Xiangjun&rft.au=Wang%2C+Huiming&rft.au=Zhao%2C+Dong&rft.au=Yang%2C+Hanxi&rft.date=2019-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201805427&rft.externalDBID=10.1002%252Fsmll.201805427&rft.externalDocID=SMLL201805427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon