An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning

The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 7027 - 12
Main Authors Xiao, Hang, Li, Rong, Shi, Xiaoyang, Chen, Yan, Zhu, Liangliang, Chen, Xi, Wang, Lei
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 02.11.2023
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.
AbstractList The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.
The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.
Abstract The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.
The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.The lack of invertible and invariant crystal representations hinders the inverse design of crystals. Here the authors develop SLICES, an invertible and invariant representation, empowering property-driven inverse design of crystals using generative AI.
Abstract The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery.
The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. However, the design of elemental components and their structural arrangement in solid-state materials to achieve certain desired properties is still a long-standing challenge in physics, chemistry and biology. This is primarily due to, unlike molecular inverse design, the lack of an invertible crystal representation that satisfies translational, rotational, and permutational invariances. To address this issue, we have developed a simplified line-input crystal-encoding system (SLICES), which is a string-based crystal representation that satisfies both invertibility and invariances. The reconstruction routine of SLICES successfully reconstructed 94.95% of over 40,000 structurally and chemically diverse crystal structures, showcasing an unprecedented invertibility. Furthermore, by only encoding compositional and topological data, SLICES guarantees invariances. We demonstrate the application of SLICES in the inverse design of direct narrow-gap semiconductors for optoelectronic applications. As a string-based, invertible, and invariant crystal representation, SLICES shows promise as a useful tool for in silico materials discovery. The lack of invertible and invariant crystal representations hinders the inverse design of crystals. Here the authors develop SLICES, an invertible and invariant representation, empowering property-driven inverse design of crystals using generative AI.
ArticleNumber 7027
Author Li, Rong
Chen, Xi
Xiao, Hang
Shi, Xiaoyang
Zhu, Liangliang
Wang, Lei
Chen, Yan
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0000-0002-0565-6696
  surname: Xiao
  fullname: Xiao, Hang
  organization: School of Interdisciplinary Studies, Lingnan University, Tuen Mun, Hong Kong SAR, China
– sequence: 2
  givenname: Rong
  surname: Li
  fullname: Li, Rong
  organization: School of Chemical Engineering, Northwest University, Xi'an, 710069, China
– sequence: 3
  givenname: Xiaoyang
  surname: Shi
  fullname: Shi, Xiaoyang
  organization: Department of Environmental and Sustainable Engineering, State University of New York at Albany, Albany, NY, 12222, USA
– sequence: 4
  givenname: Yan
  surname: Chen
  fullname: Chen, Yan
  email: yanchen@xjtu.edu.cn
  organization: Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China. yanchen@xjtu.edu.cn
– sequence: 5
  givenname: Liangliang
  orcidid: 0000-0002-7964-150X
  surname: Zhu
  fullname: Zhu, Liangliang
  email: zhu.liangliang@nwu.edu.cn, zhu.liangliang@nwu.edu.cn
  organization: Shaanxi Institute of Energy and Chemical Engineering, Xi'an, 710069, China. zhu.liangliang@nwu.edu.cn
– sequence: 6
  givenname: Xi
  orcidid: 0000-0002-8911-4172
  surname: Chen
  fullname: Chen, Xi
  email: xichen@ln.edu.hk
  organization: School of Interdisciplinary Studies, Lingnan University, Tuen Mun, Hong Kong SAR, China. xichen@ln.edu.hk
– sequence: 7
  givenname: Lei
  orcidid: 0000-0002-1919-9107
  surname: Wang
  fullname: Wang, Lei
  email: leiwang@nju.edu.cn, leiwang@nju.edu.cn
  organization: Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China. leiwang@nju.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37919277$$D View this record in MEDLINE/PubMed
BookMark eNpdUk1vFSEUJabG1to_4MKQuHHhKF8DMyvTNH40aeJG14RhLiMvPHjCzEvqr5fp1KaVBdxwzzlwbs5LdBJTBIReU_KBEt59LIIKqRrCeCNYp0ijnqEzRgRtqGL85FF9ii5K2ZG6eE87IV6gU6562jOlztCfy4h9PEKe_RDg_Vqb7E2csc23ZTYBZzhkKBBnM_sUsUt5IxTAIxQ_RZwcLin4san4GfC-blUiFLwUHyc8QYRcyceVAAccwORYG6_Qc1dRcHF_nqOfXz7_uPrW3Hz_en11edNYQZlqrGmdki2VwhDDFCWWkL4XsjfjKJRte-KcGi20rZODHVydi6VKQXVulWOKn6PrTXdMZqcP2e9NvtXJeH13kfKkTbVvA2jCDPCO856MXDBJO044ZYPqFHXSmKFqfdq0Dsuwh_pqnLMJT0SfdqL_pad01JRIxgTvq8K7e4Wcfi9QZr33xUIIJkJaimZdJzknkrQV-vY_6C4tOdZZraiWd7JVoqLYhrI5lZLBPfyGEr1GRW9Rqea4vouKXmfy5rGPB8q_YPC_P968tA
CitedBy_id crossref_primary_10_1088_2053_1583_ad4661
crossref_primary_10_1016_j_matt_2024_05_042
Cites_doi 10.1021/acs.jcim.1c00600
10.48550/arXiv.1909.00949
10.1107/S0108767384000088
10.1016/j.matt.2019.08.017
10.1016/0927-0256(96)00008-0
10.5281/zenodo.8421021
10.1016/j.matt.2021.11.032
10.1021/acscentsci.0c00426
10.1107/S010876739101067X
10.1021/acs.inorgchem.0c02996
10.1016/j.actamat.2022.117898
10.1002/advs.202100566
10.1186/s13321-019-0393-0
10.1038/s41524-021-00526-4
10.1103/PhysRevLett.77.3865
10.1186/s13321-015-0068-4
10.1088/0953-8984/19/19/196208
10.6084/m9.figshare.22707946
10.21105/joss.01361
10.1007/s00894-021-04674-8
10.1524/zkri.1979.150.14.23
10.6084/m9.figshare.22707472
10.1021/ci00057a005
10.1039/C6CE00407E
10.1038/s43246-022-00315-6
10.1002/anie.202004239
10.1107/S0567739477000461
10.1038/nature25978
10.1016/j.matt.2021.02.015
10.1103/PhysRevLett.120.145301
10.1038/s43588-022-00391-1
10.1039/C9RA07755C
10.1039/C9NR10687A
10.1038/s41524-020-00440-1
10.1039/D0SC00594K
10.1021/acs.jcim.0c00464
10.1126/science.aat2663
10.1021/acscentsci.7b00492
10.1088/2515-7655/abe425
10.1063/1.4812323
10.1038/s41587-020-0418-2
10.1207/s15516709cog1402_1
10.1007/s10822-016-9938-8
10.1038/s41524-021-00650-1
10.1103/PhysRevB.54.11169
10.1016/j.commatsci.2012.10.028
10.1107/S0108767303012017
10.1007/978-1-4613-0163-9
10.1038/s43588-022-00349-3
10.1107/S0108767310042832
ContentType Journal Article
Copyright 2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-42870-7
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_02ae383390d34261830312b7871f6aab
10_1038_s41467_023_42870_7
37919277
Genre Journal Article
GrantInformation_xml – fundername: China Association for Science and Technology (China Association for Science & Technology)
  grantid: 2020QNRC001
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20220066
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12074173
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22203066
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12002271
– fundername: ;
– fundername: ;
  grantid: BK20220066
– fundername: ;
  grantid: 12074173; 22203066; 12002271
– fundername: ;
  grantid: 2020QNRC001
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NPM
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c4127-ca5f765164a0a2710c0099469add47c590ff7dce55f6bcbf414c177e723c7f273
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Fri Oct 04 13:07:50 EDT 2024
Tue Sep 17 21:29:32 EDT 2024
Fri Oct 04 21:56:30 EDT 2024
Thu Oct 03 19:23:40 EDT 2024
Fri Aug 23 02:41:59 EDT 2024
Wed Oct 09 10:27:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4127-ca5f765164a0a2710c0099469add47c590ff7dce55f6bcbf414c177e723c7f273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0565-6696
0000-0002-8911-4172
0000-0002-7964-150X
0000-0002-1919-9107
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622439/
PMID 37919277
PQID 2885386574
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_02ae383390d34261830312b7871f6aab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10622439
proquest_miscellaneous_2886330605
proquest_journals_2885386574
crossref_primary_10_1038_s41467_023_42870_7
pubmed_primary_37919277
PublicationCentury 2000
PublicationDate 20231102
PublicationDateYYYYMMDD 2023-11-02
PublicationDate_xml – month: 11
  year: 2023
  text: 20231102
  day: 2
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Nature communications
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group
Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Portfolio
References J Noh (42870_CR11) 2019; 11
CJ Court (42870_CR14) 2020; 60
42870_CR17
GGC Peterson (42870_CR42) 2021; 3
V Bagal (42870_CR51) 2022; 62
K Choudhary (42870_CR50) 2020; 6
NER Zimmermann (42870_CR32) 2020; 10
D Weininger (42870_CR8) 1988; 28
42870_CR23
F Tran (42870_CR41) 2007; 19
42870_CR24
WP Walters (42870_CR2) 2020; 38
T Xie (42870_CR21) 2018; 120
PG Boyd (42870_CR37) 2016; 18
C Chen (42870_CR28) 2022; 2
Q Yuan (42870_CR6) 2020; 12
S Spicher (42870_CR27) 2020; 59
B Sanchez-Lengeling (42870_CR1) 2018; 361
AS Rosen (42870_CR38) 2021; 4
Z Zhou (42870_CR4) 2017; 3
JP Perdew (42870_CR40) 1996; 77
G Brunner (42870_CR30) 1977; 33
K Choudhary (42870_CR45) 2021; 7
Y Zhao (42870_CR19) 2021; 8
MHS Segler (42870_CR5) 2018; 555
SR Heller (42870_CR9) 2015; 7
O Delgado-Friedrichs (42870_CR36) 2003; 59
J Noh (42870_CR12) 2019; 1
Y Bian (42870_CR3) 2021; 27
A Jain (42870_CR25) 2013; 1
SJ Chung (42870_CR29) 1984; 40
42870_CR7
J Arús-Pous (42870_CR43) 2019; 11
42870_CR46
42870_CR44
R Hoppe (42870_CR31) 1979; 150
G Kresse (42870_CR48) 1996; 54
T Long (42870_CR16) 2022; 231
Z Ren (42870_CR20) 2022; 5
G Kresse (42870_CR47) 1996; 6
JL Elman (42870_CR39) 1990; 14
H Pan (42870_CR34) 2021; 60
J-G Eon (42870_CR26) 2011; 67
SR Hall (42870_CR35) 1991; 47
DW Davies (42870_CR49) 2019; 4
SP Ong (42870_CR33) 2013; 68
S Kearnes (42870_CR10) 2016; 30
P Reiser (42870_CR22) 2022; 3
T Long (42870_CR15) 2021; 7
42870_CR56
42870_CR13
S Kim (42870_CR18) 2020; 6
42870_CR57
42870_CR52
42870_CR53
42870_CR54
42870_CR55
References_xml – volume: 62
  start-page: 2064
  year: 2022
  ident: 42870_CR51
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00600
  contributor:
    fullname: V Bagal
– ident: 42870_CR13
  doi: 10.48550/arXiv.1909.00949
– volume: 40
  start-page: 42
  year: 1984
  ident: 42870_CR29
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767384000088
  contributor:
    fullname: SJ Chung
– volume: 1
  start-page: 1370
  year: 2019
  ident: 42870_CR12
  publication-title: Matter
  doi: 10.1016/j.matt.2019.08.017
  contributor:
    fullname: J Noh
– volume: 6
  start-page: 15
  year: 1996
  ident: 42870_CR47
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: G Kresse
– ident: 42870_CR56
  doi: 10.5281/zenodo.8421021
– volume: 5
  start-page: 314
  year: 2022
  ident: 42870_CR20
  publication-title: Matter
  doi: 10.1016/j.matt.2021.11.032
  contributor:
    fullname: Z Ren
– volume: 6
  start-page: 1412
  year: 2020
  ident: 42870_CR18
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00426
  contributor:
    fullname: S Kim
– volume: 47
  start-page: 655
  year: 1991
  ident: 42870_CR35
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S010876739101067X
  contributor:
    fullname: SR Hall
– ident: 42870_CR24
– volume: 60
  start-page: 1590
  year: 2021
  ident: 42870_CR34
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c02996
  contributor:
    fullname: H Pan
– volume: 231
  start-page: 117898
  year: 2022
  ident: 42870_CR16
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117898
  contributor:
    fullname: T Long
– volume: 8
  start-page: 2100566
  year: 2021
  ident: 42870_CR19
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100566
  contributor:
    fullname: Y Zhao
– volume: 11
  year: 2019
  ident: 42870_CR43
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-019-0393-0
  contributor:
    fullname: J Arús-Pous
– ident: 42870_CR52
– volume: 7
  start-page: 66
  year: 2021
  ident: 42870_CR15
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-021-00526-4
  contributor:
    fullname: T Long
– volume: 77
  start-page: 3865
  year: 1996
  ident: 42870_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: JP Perdew
– volume: 7
  year: 2015
  ident: 42870_CR9
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-015-0068-4
  contributor:
    fullname: SR Heller
– volume: 19
  start-page: 196208
  year: 2007
  ident: 42870_CR41
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/19/19/196208
  contributor:
    fullname: F Tran
– ident: 42870_CR46
– ident: 42870_CR57
  doi: 10.6084/m9.figshare.22707946
– volume: 4
  start-page: 1361
  year: 2019
  ident: 42870_CR49
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01361
  contributor:
    fullname: DW Davies
– volume: 27
  start-page: 71
  year: 2021
  ident: 42870_CR3
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-021-04674-8
  contributor:
    fullname: Y Bian
– volume: 150
  start-page: 23
  year: 1979
  ident: 42870_CR31
  publication-title: Z. F.ür. Krist. - Cryst. Mater.
  doi: 10.1524/zkri.1979.150.14.23
  contributor:
    fullname: R Hoppe
– ident: 42870_CR55
  doi: 10.6084/m9.figshare.22707472
– volume: 28
  start-page: 31
  year: 1988
  ident: 42870_CR8
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00057a005
  contributor:
    fullname: D Weininger
– volume: 18
  start-page: 3777
  year: 2016
  ident: 42870_CR37
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00407E
  contributor:
    fullname: PG Boyd
– volume: 3
  start-page: 1
  year: 2022
  ident: 42870_CR22
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-022-00315-6
  contributor:
    fullname: P Reiser
– volume: 59
  start-page: 15665
  year: 2020
  ident: 42870_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202004239
  contributor:
    fullname: S Spicher
– volume: 33
  start-page: 226
  year: 1977
  ident: 42870_CR30
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0567739477000461
  contributor:
    fullname: G Brunner
– volume: 555
  start-page: 604
  year: 2018
  ident: 42870_CR5
  publication-title: Nature
  doi: 10.1038/nature25978
  contributor:
    fullname: MHS Segler
– volume: 4
  start-page: 1578
  year: 2021
  ident: 42870_CR38
  publication-title: Matter
  doi: 10.1016/j.matt.2021.02.015
  contributor:
    fullname: AS Rosen
– volume: 120
  start-page: 145301
  year: 2018
  ident: 42870_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.145301
  contributor:
    fullname: T Xie
– ident: 42870_CR7
  doi: 10.1038/s43588-022-00391-1
– ident: 42870_CR17
– volume: 10
  start-page: 6063
  year: 2020
  ident: 42870_CR32
  publication-title: RSC Adv.
  doi: 10.1039/C9RA07755C
  contributor:
    fullname: NER Zimmermann
– volume: 12
  start-page: 6744
  year: 2020
  ident: 42870_CR6
  publication-title: Nanoscale
  doi: 10.1039/C9NR10687A
  contributor:
    fullname: Q Yuan
– volume: 6
  start-page: 1
  year: 2020
  ident: 42870_CR50
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-020-00440-1
  contributor:
    fullname: K Choudhary
– volume: 11
  start-page: 4871
  year: 2019
  ident: 42870_CR11
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00594K
  contributor:
    fullname: J Noh
– volume: 60
  start-page: 4518
  year: 2020
  ident: 42870_CR14
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00464
  contributor:
    fullname: CJ Court
– volume: 361
  start-page: 360
  year: 2018
  ident: 42870_CR1
  publication-title: Science
  doi: 10.1126/science.aat2663
  contributor:
    fullname: B Sanchez-Lengeling
– ident: 42870_CR54
– volume: 3
  start-page: 1337
  year: 2017
  ident: 42870_CR4
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00492
  contributor:
    fullname: Z Zhou
– volume: 3
  start-page: 022002
  year: 2021
  ident: 42870_CR42
  publication-title: J. Phys. Energy
  doi: 10.1088/2515-7655/abe425
  contributor:
    fullname: GGC Peterson
– volume: 1
  start-page: 011002
  year: 2013
  ident: 42870_CR25
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
  contributor:
    fullname: A Jain
– volume: 38
  start-page: 143
  year: 2020
  ident: 42870_CR2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0418-2
  contributor:
    fullname: WP Walters
– volume: 14
  start-page: 179
  year: 1990
  ident: 42870_CR39
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
  contributor:
    fullname: JL Elman
– volume: 30
  start-page: 595
  year: 2016
  ident: 42870_CR10
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-016-9938-8
  contributor:
    fullname: S Kearnes
– volume: 7
  start-page: 1
  year: 2021
  ident: 42870_CR45
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-021-00650-1
  contributor:
    fullname: K Choudhary
– volume: 54
  start-page: 11169
  year: 1996
  ident: 42870_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: G Kresse
– volume: 68
  start-page: 314
  year: 2013
  ident: 42870_CR33
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.028
  contributor:
    fullname: SP Ong
– ident: 42870_CR23
– ident: 42870_CR44
– volume: 59
  start-page: 351
  year: 2003
  ident: 42870_CR36
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767303012017
  contributor:
    fullname: O Delgado-Friedrichs
– ident: 42870_CR53
  doi: 10.1007/978-1-4613-0163-9
– volume: 2
  start-page: 718
  year: 2022
  ident: 42870_CR28
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00349-3
  contributor:
    fullname: C Chen
– volume: 67
  start-page: 68
  year: 2011
  ident: 42870_CR26
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767310042832
  contributor:
    fullname: J-G Eon
SSID ssj0000391844
Score 2.4823508
Snippet The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for...
Abstract The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant...
Abstract The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7027
SubjectTerms Coding
Crystals
Deep learning
Informatics
Invariants
Inverse design
Optoelectronics
Representations
Solid state
Strings
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBG8abJukaY8qinjwpOAtJGmyLkhX3PWgv97JpLvsiuDFnkqTQpKZTL6PzIOQU17x3AhbMxfzDImqzVndNo4Z4b0xXuY2eVs8VHdP4v5ZPs-V-oo-YSk9cFq4i7w0HlgUUPOWR7hfg80tSgt6VoTKGIvWt5BzZAptMG-Auog-Sibn9cVYoE2AI4rh5R5TCycRJuz_DWX-dJacO31u18laDxvpZRruBlny3SZZSYUkP7fI12VHhx2WVrav_jy-AweGRaPu_RPw3yvF5JXTQKOOAlRNP4w9bdGJg44CBT0ctgxjjCgg2aScNLrGD-gA81NH4wg_-Dfal5sYbJOn25vH6zvWV1VgThSlYs7IoCoJNMnkpgSA4SJKBJYMlk4oJ5s8BAWzlTJU1tkA6-YKpbwquVMB0M4OWe5Gnd8jNAA6sNa3NshY9qow1hStQNQgAjwZOZuusH5LyTM0XnrzWid5aJCHRnlolZGrKIRZz5j4Gj-AOuheHfRf6pCRw6kIdb8bx7qsAZTUlVQiIyezZthH8XLEdH70gX0qDvwplxnZTRKfjYSrBoCwghHWC7qwMNTFlm74grm6gXEDSOLN_n9M7oCsxmr3GApZHpLlyfuHPwJMNLHHqP7fezQJog
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SlEIvJW36cJsGFXpLxNqWZMmnkJSGJYecEtibkGRpuxDsze7mkP76jmR7ky2lPhlbhrFmNPONNA-A76xiueFWURfrDPGqyalqakcN994YL3LbR1tcV9NbfjUTsz2YjrkwMaxy1IlJUTedi3vkk1KhYVGVkHxibNwFcJvJ2fKexv5R8Zx1aKbxAl4WJcIKlGw5k9vdllgHXXE-ZM3kTE3WPOkINFk0HfZRuWOZUgH_f6HOv4Mnn1mjywN4M8BIct7z_S3s-fYdvOobSz4ewu_zliza1GrZ3vnTeI8-MU4icatHxIN3JBWzHBOPWoLQtf9g7UmTgjpIFwjK5aKhKeeIILLthZXEUPk5mad61VFZ4gd-SYb2E_P3cHv58-bHlA5dFqjjRSmpMyLISqDbZHJTIuBwETWi14yaj0sn6jwEiX8rRKisswHnzRVSelkyJwOinw-w33at_wQkIFqw1jc2iNgGqzDWFA1PKIIHvDI4GWdYL_tiGjodgjOle35o5IdO_NAyg4vIhO3IWAg7PehWcz2sKxxvPDrZrM4bFr1BhSYZiUA1VITKGJvB0chCPazOtX6SpQy-bV_juoqHJab13UMaUzH0p3KRwcee41tKmKwRGEukUO3Iwg6pu2_axa9Uuxs9cARNrP78f7q-wOvY1z4lPZZHsL9ZPfiviH429jgJ9h8PKQaC
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1La9wwEB7ShJZcQtJXnKRFhd5atbYlWfYhhLQ0hEJ76kJuQpKl7cLiTXYTyObXZyTZS7ZsfTK2ZGTNQ9-HNDMAH1nFcs1NTW3IM8SrNqd121iquXNaO5GbdNrid3U54j-vxNUWDOWO-glcbKR2oZ7UaD79cn-zPEODP00h4_XXBY_mjqsPjft2VD6DnZIzHjT-Vw_3o2dmDRIa3sfObO66Cy-YbBD3SLm2VMWM_ptg6L-nKZ8sTxf7sNfjSnKeFOEAtlz3Ep6nSpPLV_Bw3pFJF2svm6n7HO6RJOOsEjtfIkCckpjdcohE6ghi2dRh4UgbT3mQmSeoqJOWxiAkglA3aS8JZ-fHZBwTWAfviR3cNenrUYxfw-jix5_vl7Qvu0AtL0pJrRZeVgJ5lM51iQjEBhiJNBpdIZdWNLn3Ev9WCF8ZazxOoS2kdLJkVnqEQ29gu5t17hCIR_hgjGuNF6EuVqGNLloeYQX3eGXwaZhhdZ2ya6i4K85qlUSjUDQqikbJDL4FIaxahszY8cFsPla9oWF77ZB1syZvWaCHNa7ROAj0S4WvtDYZnAwiVIO2qbJG1FJXQvIMPqxeo6GF3RPdudldbFMxJFi5yOBtkvhqJIPGZFCv6cLaUNffdJO_MZk3UnJEUaw5-u9Hj2E31LiPAZDlCWzfzu_cO0RCt-Z9VO9HJWwF0g
  priority: 102
  providerName: Scholars Portal
Title An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning
URI https://www.ncbi.nlm.nih.gov/pubmed/37919277
https://www.proquest.com/docview/2885386574/abstract/
https://www.proquest.com/docview/2886330605/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC10622439
https://doaj.org/article/02ae383390d34261830312b7871f6aab
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajsFexr7ntQsq9G1zY0effkxL0xJoKdsKeTOSLKWB1AlJ-9D99T3JdmjGnpoHJ9gSyLrT3e8Xne4AjqigmWZGpTbkGWKiylJVFTbVzDmtHc9ME21xJS5u2HjCJzsgurMwMWjfmtlxPb87rme3MbZyeWf7XZxY__ryFGkMeh5a9HdhV1L6jKNH-0sLpC2sPSGTUdVfs2gP0D2lcWMvDaX3qCwQ3Ui55ZBi3v7_gc1_YyafOaHRO3jbokcybEb5HnZc_QFeN_UkHz_C32FNZnWssGzm7mf4jVQY547Y1SPCwDmJOSy780Y1QcTadFg7UsVYDrLwBNVxVqXxqBFBQNvoKAkR8lMyjWmqg43EDm5J2qoT009wMzr7c3qRtsUVUsvygUyt5l4KjmxJZ3qAOMMGsIhkGQ0ek5YXmfcS35ZzL4w1HqfQ5lI6OaBWegQ9n2GvXtTuKxCPIMEYVxnPQ_WrXBudVyyCB-bxk8CPbobLZZNDo4x731SVjWhKFE0ZRVPKBE6CEDYtQ_7reGOxmpatFmB77ZBb0yKraCCBCj0xDgKtT-6F1iaBg06EZbso1-VAITZRgkuWwOHmMS6nsEeia7d4iG0ERRqV8QS-NBLfjKTTmATUli5sDXX7CWpwTNndaey3l3fdhzcI1kQTpnYAe_erB_cdAdG96eEqmEi8qtF5D14Nh-PfY_w-Obu6_tWLfzLg9ZKpXlwnT0lBEtE
link.rule.ids 230,315,733,786,790,870,891,2115,2236,12083,12792,21416,24346,27957,27958,31754,31755,33408,33409,33779,33780,43345,43635,43840,53827,53829,74102,74392,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJ8ReEN_LGGAk3sBaEttx8oS2aVOBUSG0SXuzbMculaaka7eH8ddzdtyOIkSeotiWLr7z3e_s8x3Ae1axXHNTUxvyDPGqzWndNpZq7pzWTuRmiLaYVONz_uVCXKQNt2UKq1zpxKio296GPfL9skbDUldC8k_zKxqqRoXT1VRC4z5scYauygi2Do8n33-sd1lC_vOa83RbJmf1_pJH3YCmisZDPio3LFJM3P8vtPl30OQfVujkMTxK8JEcDPx-Avdc9xQeDAUlb5_Br4OOzLpYYtlcuo_hHX1hnDxiF7eIAy9JTGK5unDUEYSsw4ClI20M5iC9JyiPs5bGu0YEEe0gpCSEyE_JNOapDkoSB7g5SWUnps_h_OT47GhMU3UFanlRSmq18LIS6C7pXJcINGxAi-gto8bj0oom917i3wrhK2ONx3mzhZROlsxKj6jnBYy6vnM7QDyiBGNca7wI5a8KbXTR8ogeuMcngw-rGVbzIYmGioffrFYDPxTyQ0V-KJnBYWDCumdIgB0_9IupSusJ-2uHzjVr8pYFL7BGU4xEoPopfKW1yWBvxUKVVuVS3clQBu_WzbiewiGJ7lx_E_tUDP2oXGTwcuD4mhImGwTEEimsN2Rhg9TNlm72M-bsRs8bwRJrdv9P11t4OD77dqpOP0--voLtUNs-Xnws92B0vbhxrxEBXZs3Scx_A3gzBxs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYgL4tkGWjASN7A2ie3YOaFCWcpDFQcq9WbZjr1dqUqW3fZQfj1jx7uwCJHTKnGkWc945pt4PB_AK9aw0nCrqIt9hnjTlVR1raOGe2-MF6Udqy1OmuNT_vlMnOX6p1Uuq1z7xOSou8HFb-STWmFgUY2QfBJyWcS3o-nbxQ8aGaTiTmum07gJtyLIjmwGavpx870ldkJXnOdzMyVTkxVPXgKDFk3bfVRuxabUwv9fuPPv8sk_4tH0PtzLQJIcjpp_ADd8_xBuj9SS14_g52FP5n0iW7YX_k38jVkxTiNxy2tEhBcktbNcHz3qCYLX8YWVJ10q6yBDIGiZ846mU0cEse1oriQWy8_ILHWsju4SX_ALkgkoZo_hdPrh-_tjmnkWqONVLakzIshGYOJkSlMj5HARN2LejL6PSyfaMgSJ_1aI0FhnA86bq6T0smZOBsQ_T2CnH3q_ByQgXrDWdzaISIRVGWuqjiccwQNeBbxez7BejO00dNoGZ0qP-tCoD530oWUB76ISNiNjK-x0Y1jOdF5ZON54TLNZW3Ys5oMKgzIKgY6oCo0xtoD9tQp1Xp8r_duaCni5eYwrK26XmN4PV2lMwzCjKkUBu6PGN5Iw2SI0liih2rKFLVG3n_Tz89S9G3NwhE2sffp_uV7AHbRv_fXTyZdncDeS3KcTkPU-7Fwur_wBQqFL-zzZ-C9GGQnq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+invertible%2C+invariant+crystal+representation+for+inverse+design+of+solid-state+materials+using+generative+deep+learning&rft.jtitle=Nature+communications&rft.au=Xiao%2C+Hang&rft.au=Li%2C+Rong&rft.au=Shi%2C+Xiaoyang&rft.au=Chen%2C+Yan&rft.date=2023-11-02&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7027&rft_id=info:doi/10.1038%2Fs41467-023-42870-7&rft_id=info%3Apmid%2F37919277&rft.externalDocID=37919277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon