Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodium‐Ion Storage
Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 21; pp. e2000447 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high‐rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g−1 at 0.02 A g−1), superior rate capability (145 mA h g−1 at 5.00 A g−1), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low‐potential plateau region (0.01−0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high‐potential plateau region (0.40−0.70 V), contributing to a fast capacitive storage.
Hard carbon nanosheets with centralized ultramicropores (≈0.5 nm), accessible functional CO/OH groups, and large graphitic layer spacings exhibit excellent sodium‐storage properties. The desodiation process from graphitic layers and CO/OH groups results in a new sodium‐storage characteristic with dual‐potential plateaus during the charge process, which favors a high output of 95%, realistic capacity, and rapidly capacitive sodium storage. |
---|---|
AbstractList | Hard carbon attracts considerable attention as an anode material for sodium-ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high-rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na
and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g
at 0.02 A g
), superior rate capability (145 mA h g
at 5.00 A g
), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na
from graphitic layers is manifested as the low-potential plateau region (0.01-0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high-potential plateau region (0.40-0.70 V), contributing to a fast capacitive storage. Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high‐rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g−1 at 0.02 A g−1), superior rate capability (145 mA h g−1 at 5.00 A g−1), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low‐potential plateau region (0.01−0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high‐potential plateau region (0.40−0.70 V), contributing to a fast capacitive storage. Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high‐rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g−1 at 0.02 A g−1), superior rate capability (145 mA h g−1 at 5.00 A g−1), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low‐potential plateau region (0.01−0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high‐potential plateau region (0.40−0.70 V), contributing to a fast capacitive storage. Hard carbon nanosheets with centralized ultramicropores (≈0.5 nm), accessible functional CO/OH groups, and large graphitic layer spacings exhibit excellent sodium‐storage properties. The desodiation process from graphitic layers and CO/OH groups results in a new sodium‐storage characteristic with dual‐potential plateaus during the charge process, which favors a high output of 95%, realistic capacity, and rapidly capacitive sodium storage. Hard carbon attracts considerable attention as an anode material for sodium-ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high-rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g-1 at 0.02 A g-1 ), superior rate capability (145 mA h g-1 at 5.00 A g-1 ), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low-potential plateau region (0.01-0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high-potential plateau region (0.40-0.70 V), contributing to a fast capacitive storage.Hard carbon attracts considerable attention as an anode material for sodium-ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high-rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g-1 at 0.02 A g-1 ), superior rate capability (145 mA h g-1 at 5.00 A g-1 ), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low-potential plateau region (0.01-0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high-potential plateau region (0.40-0.70 V), contributing to a fast capacitive storage. Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high‐rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na + and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g −1 at 0.02 A g −1 ), superior rate capability (145 mA h g −1 at 5.00 A g −1 ), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na + from graphitic layers is manifested as the low‐potential plateau region (0.01−0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high‐potential plateau region (0.40−0.70 V), contributing to a fast capacitive storage. |
Author | Xia, Ji‐Li Li, Wen‐Cui Guo, Li‐Ping Lu, An‐Hui Yan, Dong Dong, Xiao‐Ling |
Author_xml | – sequence: 1 givenname: Ji‐Li surname: Xia fullname: Xia, Ji‐Li organization: Dalian University of Technology – sequence: 2 givenname: Dong surname: Yan fullname: Yan, Dong organization: Dalian University of Technology – sequence: 3 givenname: Li‐Ping surname: Guo fullname: Guo, Li‐Ping organization: Dalian University of Technology – sequence: 4 givenname: Xiao‐Ling surname: Dong fullname: Dong, Xiao‐Ling organization: Dalian University of Technology – sequence: 5 givenname: Wen‐Cui surname: Li fullname: Li, Wen‐Cui organization: Dalian University of Technology – sequence: 6 givenname: An‐Hui orcidid: 0000-0003-1294-5928 surname: Lu fullname: Lu, An‐Hui email: anhuilu@dlut.edu.cn organization: Dalian University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32253798$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCliWyxIZNgu3xeMbLKNCmUvlRQ9aWx3MncTVjD_aMoux4BN6Dt-qT1CEtSJUQq3sX3zn36pwzdOK8A4ReUzKjhLD3uu70jBFGCOG8eIYmNGd0yonMT9CEyCyfSsHLU3QW421ipCDiBTrNGMuzQpYT9GupQ40XOlTe4c_a-bgFGCLe2WGL1842PnR43Q5Bd9YE3_sAEWtX47kxEKOtWsAXozOD9U63-DL4sY94tfU76zZ4aTdbfAO6tXGwJp3ptbHD_rfBauwhWB_wjR4Af4VwOKWdAZwWvPK1Hbu7Hz-v0l-rwQe9gZfoeaPbCK8e5jlaX3z8tlhOr79cXi3m11PDKSumRVFzrgtTSVGBoSyDUkiQVdkwWUBd0ibPCK0EkLwydcbqEkReN1xQzStWiuwcvTv69sF_HyEOqrPRQNtqB36MimVlwXJJeZ7Qt0_QWz-GlESiOBFMZIKzRL15oMaqg1r1wXY67NVjDQngRyBFHGOARqWY9CHTFLxtFSXq0LY6tK3-tJ1ksyeyR-d_CuRRsLMt7P9Dq_mHT_O_2nvekb_j |
CitedBy_id | crossref_primary_10_1002_aenm_202003854 crossref_primary_10_1002_smll_202102109 crossref_primary_10_1002_smll_202311197 crossref_primary_10_1016_j_cej_2021_131656 crossref_primary_10_1126_sciadv_abi7403 crossref_primary_10_1002_adma_202200479 crossref_primary_10_1016_j_jhazmat_2024_136289 crossref_primary_10_1016_j_cej_2024_155232 crossref_primary_10_1016_j_esci_2023_100181 crossref_primary_10_1016_j_electacta_2022_140017 crossref_primary_10_1016_j_est_2024_114056 crossref_primary_10_1002_adfm_202006875 crossref_primary_10_1016_j_cej_2022_138579 crossref_primary_10_1016_j_jechem_2022_06_006 crossref_primary_10_1016_j_jpowsour_2024_234652 crossref_primary_10_1021_acsami_4c04101 crossref_primary_10_1016_j_cej_2024_149344 crossref_primary_10_1016_j_nanoen_2021_106097 crossref_primary_10_1002_smll_202309783 crossref_primary_10_1007_s12598_024_02716_7 crossref_primary_10_1016_j_jpowsour_2024_234093 crossref_primary_10_1021_acsami_1c15524 crossref_primary_10_1021_acsami_1c15884 crossref_primary_10_1002_aenm_202301509 crossref_primary_10_1002_smll_202500645 crossref_primary_10_1016_j_est_2025_115684 crossref_primary_10_1002_aenm_202400125 crossref_primary_10_1002_smtd_202201508 crossref_primary_10_1016_j_renene_2022_03_023 crossref_primary_10_1002_cey2_482 crossref_primary_10_1016_j_ensm_2023_102805 crossref_primary_10_1021_acsnano_4c08979 crossref_primary_10_1016_j_ensm_2022_10_049 crossref_primary_10_1021_acsami_3c16588 crossref_primary_10_1016_j_apsusc_2024_159528 crossref_primary_10_1002_anie_202112382 crossref_primary_10_1016_j_cej_2021_130229 crossref_primary_10_1016_j_cej_2023_146212 crossref_primary_10_1002_smtd_202100580 crossref_primary_10_1016_j_carbon_2023_03_020 crossref_primary_10_1016_j_mattod_2022_07_013 crossref_primary_10_1039_D0TA04841K crossref_primary_10_1039_D1TA05755C crossref_primary_10_1016_j_jtice_2024_105399 crossref_primary_10_1016_j_jpowsour_2022_231292 crossref_primary_10_1016_j_est_2024_114995 crossref_primary_10_1016_j_jpowsour_2022_231169 crossref_primary_10_1021_acsnano_0c08818 crossref_primary_10_1021_jacs_2c06436 crossref_primary_10_1021_acsaem_2c04140 crossref_primary_10_1016_j_ensm_2024_103269 crossref_primary_10_1016_j_est_2023_110306 crossref_primary_10_1039_D4CC03346A crossref_primary_10_1016_j_cej_2021_133055 crossref_primary_10_1002_adfm_202006066 crossref_primary_10_1016_j_mtcomm_2024_109854 crossref_primary_10_1016_j_jpowsour_2023_233994 crossref_primary_10_1007_s40820_024_01560_9 crossref_primary_10_1016_j_carbon_2024_119200 crossref_primary_10_1016_j_jelechem_2023_117147 crossref_primary_10_1002_adma_202211461 crossref_primary_10_1002_aenm_202002981 crossref_primary_10_1021_acs_jpclett_2c01863 crossref_primary_10_1039_D5NJ00105F crossref_primary_10_1002_aenm_202303833 crossref_primary_10_1021_acsami_3c04965 crossref_primary_10_1002_aenm_202200715 crossref_primary_10_1016_j_carbon_2023_118756 crossref_primary_10_1007_s12274_023_5643_9 crossref_primary_10_1039_D1EE00370D crossref_primary_10_1016_j_jpowsour_2024_235151 crossref_primary_10_1002_anie_202318960 crossref_primary_10_1021_acsaem_1c02214 crossref_primary_10_1039_D0EE03916K crossref_primary_10_1002_advs_202003178 crossref_primary_10_1016_j_cej_2024_154103 crossref_primary_10_1016_j_ssi_2024_116586 crossref_primary_10_1002_smll_202105303 crossref_primary_10_1088_1361_6528_ad1441 crossref_primary_10_1002_adfm_202423530 crossref_primary_10_1016_j_ceramint_2022_08_185 crossref_primary_10_1016_j_jechem_2022_09_016 crossref_primary_10_1016_j_jpowsour_2021_229834 crossref_primary_10_1016_j_nanoen_2021_106184 crossref_primary_10_1088_1361_6528_acee85 crossref_primary_10_1016_j_ensm_2024_103645 crossref_primary_10_1021_acscentsci_3c00301 crossref_primary_10_1088_2515_7655_ac8dc1 crossref_primary_10_1016_j_carbon_2024_118929 crossref_primary_10_1021_acsaem_1c00167 crossref_primary_10_1016_j_carbon_2021_05_039 crossref_primary_10_1016_j_cej_2024_156878 crossref_primary_10_1002_pol_20230447 crossref_primary_10_1016_j_jcis_2024_03_086 crossref_primary_10_1016_j_micromeso_2022_111853 crossref_primary_10_1016_j_est_2023_108406 crossref_primary_10_1039_D1TA10439J crossref_primary_10_3390_batteries9110534 crossref_primary_10_1007_s40820_024_01351_2 crossref_primary_10_1016_S1872_5805_25_60953_X crossref_primary_10_1021_acsaem_4c00331 crossref_primary_10_1021_acsnano_0c10624 crossref_primary_10_1039_D3TA00898C crossref_primary_10_1016_j_cej_2023_144237 crossref_primary_10_3390_molecules27196516 crossref_primary_10_1002_aenm_202003911 crossref_primary_10_1016_j_apsusc_2024_160277 crossref_primary_10_1039_D1CC03961J crossref_primary_10_1073_pnas_2404013121 crossref_primary_10_1016_j_recm_2023_06_001 crossref_primary_10_1002_anie_202409906 crossref_primary_10_1002_smll_202301975 crossref_primary_10_1016_j_jpowsour_2024_235924 crossref_primary_10_1016_j_est_2023_110072 crossref_primary_10_1002_aenm_202202323 crossref_primary_10_1002_aenm_202303064 crossref_primary_10_1002_smll_202105568 crossref_primary_10_1016_j_pmatsci_2024_101401 crossref_primary_10_1002_cssc_202300493 crossref_primary_10_1002_smll_202006566 crossref_primary_10_1016_j_cej_2022_137628 crossref_primary_10_1016_j_ensm_2024_103627 crossref_primary_10_1016_j_cej_2023_147188 crossref_primary_10_1016_j_jelechem_2022_116526 crossref_primary_10_1016_j_jallcom_2022_164875 crossref_primary_10_1039_D3QI01296D crossref_primary_10_1016_j_jcis_2021_06_158 crossref_primary_10_1016_j_est_2024_114969 crossref_primary_10_1016_j_carbon_2024_118825 crossref_primary_10_1021_acssuschemeng_1c01885 crossref_primary_10_1002_cnl2_171 crossref_primary_10_1016_j_cej_2024_151055 crossref_primary_10_1039_D3CC03994C crossref_primary_10_1016_j_apsusc_2022_152759 crossref_primary_10_1016_j_jpowsour_2024_235358 crossref_primary_10_1002_adfm_202010882 crossref_primary_10_1002_smtd_202401072 crossref_primary_10_1016_j_ensm_2024_103614 crossref_primary_10_1016_j_jcis_2023_04_119 crossref_primary_10_1016_j_est_2023_108424 crossref_primary_10_1002_ange_202409906 crossref_primary_10_1016_j_jpowsour_2025_236505 crossref_primary_10_1002_adma_202300002 crossref_primary_10_1088_1361_6528_ac317d crossref_primary_10_1002_adma_202212186 crossref_primary_10_1002_adma_202404574 crossref_primary_10_1002_adma_202109282 crossref_primary_10_1016_j_ensm_2022_12_042 crossref_primary_10_1002_adfm_202408568 crossref_primary_10_1016_j_jpowsour_2024_235474 crossref_primary_10_1016_j_ssi_2024_116668 crossref_primary_10_1002_ente_202000730 crossref_primary_10_1002_smll_202405632 crossref_primary_10_1016_j_carbon_2020_11_004 crossref_primary_10_1039_D0QM01124J crossref_primary_10_1021_acsnano_4c01264 crossref_primary_10_1002_aenm_202303081 crossref_primary_10_1002_sus2_68 crossref_primary_10_1016_j_ceramint_2022_01_295 crossref_primary_10_1016_j_nanoen_2024_109920 crossref_primary_10_1002_ange_202112382 crossref_primary_10_1016_j_electacta_2020_137356 crossref_primary_10_1002_aenm_202300357 crossref_primary_10_1038_s41467_023_43963_z crossref_primary_10_1002_adfm_202421790 crossref_primary_10_1016_j_fuel_2025_134785 crossref_primary_10_1021_acs_chemmater_3c00563 crossref_primary_10_1021_acsnano_4c06281 crossref_primary_10_1002_adfm_202308392 crossref_primary_10_1016_j_cej_2023_147835 crossref_primary_10_1016_j_jmat_2022_06_004 crossref_primary_10_1016_j_jpowsour_2024_234496 crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1016_j_jelechem_2025_119060 crossref_primary_10_1016_j_scib_2025_03_042 crossref_primary_10_1002_adma_202104148 crossref_primary_10_1002_ange_202301396 crossref_primary_10_1002_adfm_202405174 crossref_primary_10_1080_1536383X_2022_2147929 crossref_primary_10_1016_j_matre_2024_100268 crossref_primary_10_1021_acs_energyfuels_4c00823 crossref_primary_10_1039_D1EE00166C crossref_primary_10_1016_j_ensm_2025_104008 crossref_primary_10_1021_acsaem_0c02943 crossref_primary_10_1002_ange_202318960 crossref_primary_10_3390_ma18051166 crossref_primary_10_1016_j_est_2024_115204 crossref_primary_10_1021_acsenergylett_1c00816 crossref_primary_10_1002_adfm_202417059 crossref_primary_10_1016_j_jpowsour_2022_232534 crossref_primary_10_1002_cssc_202402325 crossref_primary_10_1016_j_fuproc_2024_108159 crossref_primary_10_1021_acsami_1c02067 crossref_primary_10_1002_ente_202200612 crossref_primary_10_1016_j_mtener_2021_100673 crossref_primary_10_1021_acsami_1c06543 crossref_primary_10_1016_j_cej_2024_150708 crossref_primary_10_1021_acsami_1c14738 crossref_primary_10_1016_j_carbon_2024_119038 crossref_primary_10_1002_adma_202407274 crossref_primary_10_1002_adma_202412989 crossref_primary_10_1002_batt_202400117 crossref_primary_10_1016_S1872_5805_23_60713_9 crossref_primary_10_1021_acs_nanolett_2c02177 crossref_primary_10_1021_acs_cgd_2c01470 crossref_primary_10_1007_s12274_023_5793_9 crossref_primary_10_1016_j_carbon_2024_119165 crossref_primary_10_1039_D4TA08291E crossref_primary_10_1016_j_nanoen_2024_109459 crossref_primary_10_1002_adma_202407369 crossref_primary_10_1073_pnas_2111119118 crossref_primary_10_1016_j_apsusc_2024_161422 crossref_primary_10_1016_j_nxmate_2024_100327 crossref_primary_10_1039_D1EE03214C crossref_primary_10_15541_jim20240325 crossref_primary_10_1007_s11426_021_1074_8 crossref_primary_10_1016_j_cej_2024_156126 crossref_primary_10_1016_j_jpowsour_2021_230530 crossref_primary_10_1002_anie_202301396 crossref_primary_10_1002_cey2_713 crossref_primary_10_1039_D3SC04606K crossref_primary_10_1016_j_jcis_2024_11_067 crossref_primary_10_1016_j_jcis_2020_08_063 crossref_primary_10_1039_D4TA05219F crossref_primary_10_1016_j_carbon_2021_08_015 crossref_primary_10_1016_j_carbon_2024_119731 crossref_primary_10_1002_aenm_202101650 crossref_primary_10_1021_acsenergylett_1c01359 crossref_primary_10_1016_j_carbon_2021_08_019 crossref_primary_10_1016_j_carbpol_2025_123349 crossref_primary_10_1039_D3EW00821E crossref_primary_10_1039_D1SE01406D crossref_primary_10_1039_D4TA03284E crossref_primary_10_1016_j_electacta_2023_142641 crossref_primary_10_1016_j_cej_2024_156115 crossref_primary_10_1002_cnma_202200348 crossref_primary_10_1021_acsami_4c14597 crossref_primary_10_1021_acssensors_2c00961 crossref_primary_10_3390_batteries9040226 crossref_primary_10_1039_D3QI01497E crossref_primary_10_1002_adfm_202103115 crossref_primary_10_1007_s12598_021_01738_9 crossref_primary_10_1016_j_carbon_2024_119866 crossref_primary_10_1002_adfm_202405830 crossref_primary_10_1002_smll_202207224 crossref_primary_10_1016_j_carbon_2021_03_022 crossref_primary_10_1039_D4TA02060J crossref_primary_10_1002_adfm_202106980 crossref_primary_10_1002_adma_202418239 crossref_primary_10_1007_s12274_024_6546_0 crossref_primary_10_1016_j_jechem_2022_12_025 crossref_primary_10_3390_ma13143139 crossref_primary_10_1002_anie_202400012 crossref_primary_10_1021_acs_chemmater_2c00405 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1021_acs_energyfuels_1c01117 crossref_primary_10_1002_cnma_202400562 crossref_primary_10_1002_aenm_202304431 crossref_primary_10_1016_S1872_5805_22_60616_4 crossref_primary_10_1021_jacs_4c08920 crossref_primary_10_1002_ange_202400012 crossref_primary_10_1016_j_jcis_2024_06_080 crossref_primary_10_1021_acsanm_3c04634 crossref_primary_10_1016_j_xcrp_2024_101851 crossref_primary_10_1016_j_cej_2024_157663 crossref_primary_10_2139_ssrn_3885509 crossref_primary_10_1016_j_fuel_2021_122072 crossref_primary_10_1016_j_cej_2021_133257 crossref_primary_10_1007_s11581_020_03882_1 crossref_primary_10_1002_cssc_202301053 crossref_primary_10_1002_cey2_503 crossref_primary_10_1021_acsaem_3c01291 crossref_primary_10_20517_energymater_2023_117 crossref_primary_10_1002_smll_202301203 crossref_primary_10_1016_j_fuel_2024_133298 |
Cites_doi | 10.1016/j.nanoen.2019.103937 10.1002/smll.201802218 10.1002/adfm.201805371 10.1021/nl401995a 10.1002/aenm.201702434 10.1002/aenm.201501929 10.5714/CL.2015.16.2.116 10.1021/acs.nanolett.6b00942 10.1002/adfm.201100854 10.1002/aenm.201703159 10.1002/aenm.201703137 10.1021/acsnano.7b00557 10.1002/adma.201802035 10.1002/aenm.201800108 10.1021/acsenergylett.9b00748 10.1002/aenm.201901351 10.1007/s12274-017-1847-1 10.1021/jp074464w 10.1002/aenm.201703238 10.1002/adma.201503816 10.1021/acsnano.6b05566 10.1007/s40843-019-9418-8 10.1016/j.ensm.2015.12.004 10.1002/adma.201700606 10.1021/acsami.7b17893 10.1002/adma.201807770 10.1002/anie.201900005 10.1021/acsami.6b04752 10.1039/C6TA00950F 10.1038/s41467-019-08506-5 10.1016/j.nanoen.2015.06.017 10.1016/j.nanoen.2014.12.032 10.1021/nn300920e 10.1002/adfm.201903795 10.1039/C6EE03367A 10.1016/S0008-6223(99)00067-6 10.1039/C7EE01628J 10.1016/j.nanoen.2019.104038 10.1016/j.carbon.2015.12.066 10.1016/j.ensm.2018.02.002 10.1039/c3ee41444b 10.1002/smtd.201900763 10.1002/aenm.201801361 10.1002/aenm.201600659 10.1038/ncomms12122 10.1016/j.nanoen.2015.10.034 10.1007/s12274-017-1882-y 10.1021/acsaem.8b00354 10.1002/anie.201706652 10.1016/j.nanoen.2013.12.009 10.1002/aenm.201701847 10.1002/aenm.201602898 10.1002/smtd.201600063 10.1002/aenm.201700403 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202000447 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32253798 10_1002_adma_202000447 ADMA202000447 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Liao Ning Revitalization Talents Program funderid: XLYC1902045 – fundername: Cheung Kong Scholars Programme of China funderid: T2015036 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China funderid: 21776041; 21875028 – fundername: Liao Ning Revitalization Talents Program grantid: XLYC1902045 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China grantid: 21875028 – fundername: National Science Fund for the National Natural Science Foundation of China grantid: 21776041 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China grantid: 21776041 – fundername: National Science Fund for the National Natural Science Foundation of China grantid: 21875028 – fundername: Cheung Kong Scholars Programme of China grantid: T2015036 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4127-77d44a7cb96bec123e869e9b8f297ed81f5301b6e05bcd32d8e65df461a4b2863 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:09:34 EDT 2025 Fri Jul 25 05:37:01 EDT 2025 Wed Feb 19 02:30:00 EST 2025 Tue Jul 01 02:32:46 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Jan 22 16:35:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | dual potential plateaus anode sodium-ion batteries hard carbon ultramicropores |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4127-77d44a7cb96bec123e869e9b8f297ed81f5301b6e05bcd32d8e65df461a4b2863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1294-5928 |
PMID | 32253798 |
PQID | 2406263642 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2387259145 proquest_journals_2406263642 pubmed_primary_32253798 crossref_citationtrail_10_1002_adma_202000447 crossref_primary_10_1002_adma_202000447 wiley_primary_10_1002_adma_202000447_ADMA202000447 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 12 2017; 7 2018; 28 2019; 9 2017; 1 2019; 4 2015; 16 2016; 19 2019; 31 2019; 10 2019; 58 2016; 10 2017; 29 2016; 16 2013; 6 2016; 99 2016; 4 2016; 6 2018; 8 2016; 7 2020; 4 2015; 27 2014; 4 2019; 62 2016; 3 2019; 64 2013; 13 2018; 1 2019; 65 2017; 11 2017; 10 2007; 111 1999; 37 2017; 56 2019; 29 2011; 21 2018; 30 2012; 6 2018; 11 2018; 10 2016; 8 2018; 14 2018; 13 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 11 start-page: 5530 year: 2017 publication-title: ACS Nano – volume: 11 start-page: 2256 year: 2018 publication-title: Nano Res. – volume: 11 start-page: 2573 year: 2018 publication-title: Nano Res. – volume: 19 start-page: 279 year: 2016 publication-title: Nano Energy – volume: 99 start-page: 556 year: 2016 publication-title: Carbon – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 start-page: 224 year: 2015 publication-title: Nano Energy – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 370 year: 2017 publication-title: Energy Environ. Sci. – volume: 4 start-page: 6472 year: 2016 publication-title: J. Mater. Chem. A – volume: 16 start-page: 3321 year: 2016 publication-title: Nano Lett. – volume: 14 year: 2018 publication-title: Small – volume: 6 start-page: 4319 year: 2012 publication-title: ACS Nano – volume: 1 start-page: 2295 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 64 year: 2019 publication-title: Nano Energy – volume: 58 start-page: 4361 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 9353 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1757 year: 2017 publication-title: Energy Environ. Sci. – volume: 21 start-page: 3859 year: 2011 publication-title: Adv. Funct. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 13 start-page: 274 year: 2018 publication-title: Energy Storage Mater. – volume: 1 year: 2017 publication-title: Small Methods – volume: 37 start-page: 1901 year: 1999 publication-title: Carbon – volume: 111 year: 2007 publication-title: J. Phys. Chem. C – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 62 start-page: 1127 year: 2019 publication-title: Sci. China Mater. – volume: 4 start-page: 1565 year: 2019 publication-title: ACS Energy Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 16 start-page: 218 year: 2015 publication-title: Nano Energy – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 10 year: 2016 publication-title: ACS Nano – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 97 year: 2014 publication-title: Nano Energy – volume: 16 start-page: 116 year: 2015 publication-title: Carbon Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 2839 year: 2013 publication-title: Energy Environ. Sci. – volume: 3 start-page: 18 year: 2016 publication-title: Energy Storage Mater. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 27 start-page: 7861 year: 2015 publication-title: Adv. Mater. – volume: 13 start-page: 3909 year: 2013 publication-title: Nano Lett. – volume: 10 start-page: 725 year: 2019 publication-title: Nat. Commun. – ident: e_1_2_4_34_1 doi: 10.1016/j.nanoen.2019.103937 – ident: e_1_2_4_18_1 doi: 10.1002/smll.201802218 – ident: e_1_2_4_25_1 doi: 10.1002/adfm.201805371 – ident: e_1_2_4_32_1 doi: 10.1021/nl401995a – ident: e_1_2_4_13_1 doi: 10.1002/aenm.201702434 – ident: e_1_2_4_1_1 doi: 10.1002/aenm.201501929 – ident: e_1_2_4_33_1 doi: 10.5714/CL.2015.16.2.116 – ident: e_1_2_4_7_1 doi: 10.1021/acs.nanolett.6b00942 – ident: e_1_2_4_53_1 doi: 10.1002/adfm.201100854 – ident: e_1_2_4_17_1 doi: 10.1002/aenm.201703159 – ident: e_1_2_4_27_1 doi: 10.1002/aenm.201703137 – ident: e_1_2_4_5_1 doi: 10.1021/acsnano.7b00557 – ident: e_1_2_4_26_1 doi: 10.1002/adma.201802035 – ident: e_1_2_4_16_1 doi: 10.1002/aenm.201800108 – ident: e_1_2_4_4_1 doi: 10.1021/acsenergylett.9b00748 – ident: e_1_2_4_54_1 doi: 10.1002/aenm.201901351 – ident: e_1_2_4_24_1 doi: 10.1007/s12274-017-1847-1 – ident: e_1_2_4_45_1 doi: 10.1021/jp074464w – ident: e_1_2_4_15_1 doi: 10.1002/aenm.201703238 – ident: e_1_2_4_19_1 doi: 10.1002/adma.201503816 – ident: e_1_2_4_47_1 doi: 10.1021/acsnano.6b05566 – ident: e_1_2_4_29_1 doi: 10.1007/s40843-019-9418-8 – ident: e_1_2_4_28_1 doi: 10.1016/j.ensm.2015.12.004 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201700606 – ident: e_1_2_4_23_1 doi: 10.1021/acsami.7b17893 – ident: e_1_2_4_3_1 doi: 10.1002/adma.201807770 – ident: e_1_2_4_42_1 doi: 10.1002/anie.201900005 – ident: e_1_2_4_12_1 doi: 10.1021/acsami.6b04752 – ident: e_1_2_4_22_1 doi: 10.1039/C6TA00950F – ident: e_1_2_4_38_1 doi: 10.1038/s41467-019-08506-5 – ident: e_1_2_4_11_1 doi: 10.1016/j.nanoen.2015.06.017 – ident: e_1_2_4_43_1 doi: 10.1016/j.nanoen.2014.12.032 – ident: e_1_2_4_46_1 doi: 10.1021/nn300920e – ident: e_1_2_4_40_1 doi: 10.1002/adfm.201903795 – ident: e_1_2_4_37_1 doi: 10.1039/C6EE03367A – ident: e_1_2_4_51_1 doi: 10.1016/S0008-6223(99)00067-6 – ident: e_1_2_4_9_1 doi: 10.1039/C7EE01628J – ident: e_1_2_4_21_1 doi: 10.1016/j.nanoen.2019.104038 – ident: e_1_2_4_30_1 doi: 10.1016/j.carbon.2015.12.066 – ident: e_1_2_4_39_1 doi: 10.1016/j.ensm.2018.02.002 – ident: e_1_2_4_31_1 doi: 10.1039/c3ee41444b – ident: e_1_2_4_41_1 doi: 10.1002/smtd.201900763 – ident: e_1_2_4_36_1 doi: 10.1002/aenm.201801361 – ident: e_1_2_4_49_1 doi: 10.1002/aenm.201600659 – ident: e_1_2_4_48_1 doi: 10.1038/ncomms12122 – ident: e_1_2_4_35_1 doi: 10.1016/j.nanoen.2015.10.034 – ident: e_1_2_4_44_1 doi: 10.1007/s12274-017-1882-y – ident: e_1_2_4_50_1 doi: 10.1021/acsaem.8b00354 – ident: e_1_2_4_8_1 doi: 10.1002/anie.201706652 – ident: e_1_2_4_52_1 doi: 10.1016/j.nanoen.2013.12.009 – ident: e_1_2_4_6_1 doi: 10.1002/aenm.201701847 – ident: e_1_2_4_14_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_4_2_1 doi: 10.1002/smtd.201600063 – ident: e_1_2_4_20_1 doi: 10.1002/aenm.201700403 |
SSID | ssj0009606 |
Score | 2.688675 |
Snippet | Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have... Hard carbon attracts considerable attention as an anode material for sodium-ion batteries; however, their poor rate capability and low realistic capacity have... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000447 |
SubjectTerms | Accessibility anode Anodes Carbon Carbonyl groups Carbonyls dual potential plateaus Electrode materials Functional groups hard carbon Ion storage Materials science Nanosheets Nanostructure Rechargeable batteries Sodium-ion batteries ultramicropores |
Title | Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodium‐Ion Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000447 https://www.ncbi.nlm.nih.gov/pubmed/32253798 https://www.proquest.com/docview/2406263642 https://www.proquest.com/docview/2387259145 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG5kT3rw_Yiu0oLgKbubfiV9HFaHVViRGQf2FvoVd3FMZJIgePIn-D_8V_4SqzozmR1FBL0lpF-hq6q_qu7-ipBn3uS6cE6lXhuXCpOb1PhKpkEaLp1zPki8nHz6Rp0sxOszeXbpFv_ADzEG3FAzor1GBTe2PdyShhofeYNY3JPE6-R4YAtR0WzLH4XwPJLtcZlqJYoNa-MRO9ytvrsq_QY1d5FrXHqmN4jZDHo4cfLhoO_sgfvyC5_j__zVTXJ9jUvpZBCkW-RKqG-Ta5fYCu-Q77jLT4_NyjY1BavctOchdC3FUC4F7Irwly6W3QpT3GPyBfDkqak9ncSkjBd2GegUltEh-khj1Kul8_PmMzRP8cAJnQXkY4QhQDfgzIOHEBuY98jH3KzoDJAxfbu960Dhgc4bf9F__PH12ysY17wDmX4f7pLF9OW745N0neshdSJjOYB8L0BSnNUKpAqW01AoHbQtKqbz4IuskmCKrApH0jrPmS-Ckr4SKjPCskLxe2SvburwgNCK-8C81JZJLnxW6VBVhTbQBvd5HkRC0s1cl25NhI75OJblQOHMSpyEcpyEhDwfy38aKED-WHJ_Izrl2hS0JUImpjj4eQl5On4GJcadGVOHpocyvMjBD82ETMj9QeTGrtDiclCohLAoOH8ZQzl5cToZ3x7-S6VH5Co-D8c698let-rDY4BenX0S1esnYhop-g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcgAO_P8ECiwSiJPbeu31z4FD1BAltKlQ0ki9uevdMa1I7Sq2VcGJR-A9OPEqPAJPwqztOASEkJB64BYn6_Vkd2b2m_HstwDPtfTDQCnP0qFUlit9aUmdCAuFdIRSSqMwm5NH-95g6r45FIdr8HWxF6bmh2gTbsYyKn9tDNwkpLeWrKFSV8RBvHop6Td1lbv44ZyitvzVsEdT_ILz_uuDnYHVHCxgKdfmPiFK7ZJYKg49-gvkuzHwQgzjIOGhjzqwE0F6H3u4LWKlHa4D9IROXM-WbswDz6F-L8Flc4y4oevvjZeMVSYgqOj9HGGFnhsseCK3-daqvKvr4G_gdhUrV4td_wZ8WwxTXePyfrMs4k318RcGyf9qHG_C9QZ6s25tK7dgDdPbcO0nQsY78MUUMrAdOY-zlNHCk-XHiEXOTLaaETw3CJ9NZ8VcnppCRopdMGcy1axbnTt5Es-Q9Qkp1AlWViX2cjY5zs6pe2ZqatgYDeUkiUCPOZOKgqCqg0lpKKezORsT-Gdvl9s5GH1gk0yflKffP30eklyTgsz2Hd6F6YWM1j1YT7MUHwBLHI1cizDmwnG1nYSYJEEoqQ9H-z66HbAWyhWphuvdHDkyi2qWah6ZSY_aSe_Ay7b9Wc1y8seWGwtdjRpvl0cGFXLPoVC2A8_an8lPmZdPMsWspDZO4FOobbuiA_drHW8fZRYVh3xGB3ilqX-RIer2Rt326uG_3PQUrgwORnvR3nB_9xFcNd_XVawbsF7MS3xMSLOIn1S2zeDooo3gB9uBiAM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRA98P8TKGAkEKe0u47txAcOqy6rLqVVtctKvQXHntCq22S1yaqCE4_Ae3DhVXgFnoRxsptlQQgJqQdu-XGciT0z_sYZfybkmdWhioyRvlXa-FyH2tc2FT4IHQhjjAXhFifvH8jdEX99JI7WyNfFWpiaH6KZcHOWUflrZ-ATm24vSUO1rXiDWPVPMpynVe7Bh3MM2oqX_S728HPGeq_e7uz6830FfMPbLERAaTlKZRIl8QvQdUMkFagkSpkKwUbtVKDaJxJaIjE2YDYCKWzKZVvzhEUywHovkctctpTbLKI7WBJWuXigYvcLhK8kjxY0kS22vSrv6jD4G7ZdhcrVWNe7Tr4tWqlOcTndmpXJlvn4C4Hk_9SMN8i1OfCmndpSbpI1yG6RjZ_oGG-TLy6Nge7oaZJnFIedvDgGKAvq5qopgnOH7-loXE71mUtjxMgFCqozSzvVrpMnyRhoD3FCPb1Kq2m9gg6P83OsnrqMGjoARziJIuBrJtpgCFRVMJw5wul8SgcI_enhcjEHxQM6zO3J7Oz7p899lGtYotG-hztkdCGtdZesZ3kG9wlNAwvMCpUwEXDbThWkaaQ01hHYMATuEX-hW7GZM727DUfGcc1RzWLX6XHT6R550ZSf1Bwnfyy5uVDVeO7rithhQiYDDGQ98rS5jV7K_XrSGeQzLBNEIQbabS48cq9W8eZVbkgJ0GN4hFWK-hcZ4k53v9OcPfiXh56QK4fdXvymf7D3kFx1l-sU1k2yXk5n8AhhZpk8riybkncXbQM_AKrEhrI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hard+Carbon+Nanosheets+with+Uniform+Ultramicropores+and+Accessible+Functional+Groups+Showing+High+Realistic+Capacity+and+Superior+Rate+Performance+for+Sodium%E2%80%90Ion+Storage&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ji%E2%80%90Li+Xia&rft.au=Dong%2C+Yan&rft.au=Li%E2%80%90Ping+Guo&rft.au=Xiao%E2%80%90Ling+Dong&rft.date=2020-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=21&rft_id=info:doi/10.1002%2Fadma.202000447&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |