Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodium‐Ion Storage

Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 21; pp. e2000447 - n/a
Main Authors Xia, Ji‐Li, Yan, Dong, Guo, Li‐Ping, Dong, Xiao‐Ling, Li, Wen‐Cui, Lu, An‐Hui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high‐rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g−1 at 0.02 A g−1), superior rate capability (145 mA h g−1 at 5.00 A g−1), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low‐potential plateau region (0.01−0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high‐potential plateau region (0.40−0.70 V), contributing to a fast capacitive storage. Hard carbon nanosheets with centralized ultramicropores (≈0.5 nm), accessible functional CO/OH groups, and large graphitic layer spacings exhibit excellent sodium‐storage properties. The desodiation process from graphitic layers and CO/OH groups results in a new sodium‐storage characteristic with dual‐potential plateaus during the charge process, which favors a high output of 95%, realistic capacity, and rapidly capacitive sodium storage.
AbstractList Hard carbon attracts considerable attention as an anode material for sodium-ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high-rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g at 0.02 A g ), superior rate capability (145 mA h g at 5.00 A g ), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na from graphitic layers is manifested as the low-potential plateau region (0.01-0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high-potential plateau region (0.40-0.70 V), contributing to a fast capacitive storage.
Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high‐rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g−1 at 0.02 A g−1), superior rate capability (145 mA h g−1 at 5.00 A g−1), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low‐potential plateau region (0.01−0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high‐potential plateau region (0.40−0.70 V), contributing to a fast capacitive storage.
Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high‐rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g−1 at 0.02 A g−1), superior rate capability (145 mA h g−1 at 5.00 A g−1), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low‐potential plateau region (0.01−0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high‐potential plateau region (0.40−0.70 V), contributing to a fast capacitive storage. Hard carbon nanosheets with centralized ultramicropores (≈0.5 nm), accessible functional CO/OH groups, and large graphitic layer spacings exhibit excellent sodium‐storage properties. The desodiation process from graphitic layers and CO/OH groups results in a new sodium‐storage characteristic with dual‐potential plateaus during the charge process, which favors a high output of 95%, realistic capacity, and rapidly capacitive sodium storage.
Hard carbon attracts considerable attention as an anode material for sodium-ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high-rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g-1 at 0.02 A g-1 ), superior rate capability (145 mA h g-1 at 5.00 A g-1 ), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low-potential plateau region (0.01-0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high-potential plateau region (0.40-0.70 V), contributing to a fast capacitive storage.Hard carbon attracts considerable attention as an anode material for sodium-ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high-rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na+ and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g-1 at 0.02 A g-1 ), superior rate capability (145 mA h g-1 at 5.00 A g-1 ), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na+ from graphitic layers is manifested as the low-potential plateau region (0.01-0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high-potential plateau region (0.40-0.70 V), contributing to a fast capacitive storage.
Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have motivated intense research effort toward exploiting nanostructured carbons in order to boost their comprehensive performance. Ultramicropores are considered essential for attaining high‐rate capacity as well as initial Coulombic efficiency by allowing the rapid diffusion of Na + and inhibiting the contact of the electrolyte with the inner carbon surfaces. Herein, hard carbon nanosheets with centralized ultramicropores (≈0.5 nm) and easily accessible carbonyl groups (CO)/hydroxy groups (OH) are synthesized via interfacial assembly and carbonization strategies, delivering a large capacity (318 mA h g −1 at 0.02 A g −1 ), superior rate capability (145 mA h g −1 at 5.00 A g −1 ), and approximately 95% of reversible capacity below 1.00 V. Notably, a new charge model favoring fast capacitive sodium storage with dual potential plateaus is proposed. That is, the deintercalation of Na + from graphitic layers is manifested as the low‐potential plateau region (0.01−0.10 V), contributing to stable insertion capacity; meanwhile, the surface desodiation process of the CO and OH groups corresponds to the high‐potential plateau region (0.40−0.70 V), contributing to a fast capacitive storage.
Author Xia, Ji‐Li
Li, Wen‐Cui
Guo, Li‐Ping
Lu, An‐Hui
Yan, Dong
Dong, Xiao‐Ling
Author_xml – sequence: 1
  givenname: Ji‐Li
  surname: Xia
  fullname: Xia, Ji‐Li
  organization: Dalian University of Technology
– sequence: 2
  givenname: Dong
  surname: Yan
  fullname: Yan, Dong
  organization: Dalian University of Technology
– sequence: 3
  givenname: Li‐Ping
  surname: Guo
  fullname: Guo, Li‐Ping
  organization: Dalian University of Technology
– sequence: 4
  givenname: Xiao‐Ling
  surname: Dong
  fullname: Dong, Xiao‐Ling
  organization: Dalian University of Technology
– sequence: 5
  givenname: Wen‐Cui
  surname: Li
  fullname: Li, Wen‐Cui
  organization: Dalian University of Technology
– sequence: 6
  givenname: An‐Hui
  orcidid: 0000-0003-1294-5928
  surname: Lu
  fullname: Lu, An‐Hui
  email: anhuilu@dlut.edu.cn
  organization: Dalian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32253798$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCliWyxIZNgu3xeMbLKNCmUvlRQ9aWx3MncTVjD_aMoux4BN6Dt-qT1CEtSJUQq3sX3zn36pwzdOK8A4ReUzKjhLD3uu70jBFGCOG8eIYmNGd0yonMT9CEyCyfSsHLU3QW421ipCDiBTrNGMuzQpYT9GupQ40XOlTe4c_a-bgFGCLe2WGL1842PnR43Q5Bd9YE3_sAEWtX47kxEKOtWsAXozOD9U63-DL4sY94tfU76zZ4aTdbfAO6tXGwJp3ptbHD_rfBauwhWB_wjR4Af4VwOKWdAZwWvPK1Hbu7Hz-v0l-rwQe9gZfoeaPbCK8e5jlaX3z8tlhOr79cXi3m11PDKSumRVFzrgtTSVGBoSyDUkiQVdkwWUBd0ibPCK0EkLwydcbqEkReN1xQzStWiuwcvTv69sF_HyEOqrPRQNtqB36MimVlwXJJeZ7Qt0_QWz-GlESiOBFMZIKzRL15oMaqg1r1wXY67NVjDQngRyBFHGOARqWY9CHTFLxtFSXq0LY6tK3-tJ1ksyeyR-d_CuRRsLMt7P9Dq_mHT_O_2nvekb_j
CitedBy_id crossref_primary_10_1002_aenm_202003854
crossref_primary_10_1002_smll_202102109
crossref_primary_10_1002_smll_202311197
crossref_primary_10_1016_j_cej_2021_131656
crossref_primary_10_1126_sciadv_abi7403
crossref_primary_10_1002_adma_202200479
crossref_primary_10_1016_j_jhazmat_2024_136289
crossref_primary_10_1016_j_cej_2024_155232
crossref_primary_10_1016_j_esci_2023_100181
crossref_primary_10_1016_j_electacta_2022_140017
crossref_primary_10_1016_j_est_2024_114056
crossref_primary_10_1002_adfm_202006875
crossref_primary_10_1016_j_cej_2022_138579
crossref_primary_10_1016_j_jechem_2022_06_006
crossref_primary_10_1016_j_jpowsour_2024_234652
crossref_primary_10_1021_acsami_4c04101
crossref_primary_10_1016_j_cej_2024_149344
crossref_primary_10_1016_j_nanoen_2021_106097
crossref_primary_10_1002_smll_202309783
crossref_primary_10_1007_s12598_024_02716_7
crossref_primary_10_1016_j_jpowsour_2024_234093
crossref_primary_10_1021_acsami_1c15524
crossref_primary_10_1021_acsami_1c15884
crossref_primary_10_1002_aenm_202301509
crossref_primary_10_1002_smll_202500645
crossref_primary_10_1016_j_est_2025_115684
crossref_primary_10_1002_aenm_202400125
crossref_primary_10_1002_smtd_202201508
crossref_primary_10_1016_j_renene_2022_03_023
crossref_primary_10_1002_cey2_482
crossref_primary_10_1016_j_ensm_2023_102805
crossref_primary_10_1021_acsnano_4c08979
crossref_primary_10_1016_j_ensm_2022_10_049
crossref_primary_10_1021_acsami_3c16588
crossref_primary_10_1016_j_apsusc_2024_159528
crossref_primary_10_1002_anie_202112382
crossref_primary_10_1016_j_cej_2021_130229
crossref_primary_10_1016_j_cej_2023_146212
crossref_primary_10_1002_smtd_202100580
crossref_primary_10_1016_j_carbon_2023_03_020
crossref_primary_10_1016_j_mattod_2022_07_013
crossref_primary_10_1039_D0TA04841K
crossref_primary_10_1039_D1TA05755C
crossref_primary_10_1016_j_jtice_2024_105399
crossref_primary_10_1016_j_jpowsour_2022_231292
crossref_primary_10_1016_j_est_2024_114995
crossref_primary_10_1016_j_jpowsour_2022_231169
crossref_primary_10_1021_acsnano_0c08818
crossref_primary_10_1021_jacs_2c06436
crossref_primary_10_1021_acsaem_2c04140
crossref_primary_10_1016_j_ensm_2024_103269
crossref_primary_10_1016_j_est_2023_110306
crossref_primary_10_1039_D4CC03346A
crossref_primary_10_1016_j_cej_2021_133055
crossref_primary_10_1002_adfm_202006066
crossref_primary_10_1016_j_mtcomm_2024_109854
crossref_primary_10_1016_j_jpowsour_2023_233994
crossref_primary_10_1007_s40820_024_01560_9
crossref_primary_10_1016_j_carbon_2024_119200
crossref_primary_10_1016_j_jelechem_2023_117147
crossref_primary_10_1002_adma_202211461
crossref_primary_10_1002_aenm_202002981
crossref_primary_10_1021_acs_jpclett_2c01863
crossref_primary_10_1039_D5NJ00105F
crossref_primary_10_1002_aenm_202303833
crossref_primary_10_1021_acsami_3c04965
crossref_primary_10_1002_aenm_202200715
crossref_primary_10_1016_j_carbon_2023_118756
crossref_primary_10_1007_s12274_023_5643_9
crossref_primary_10_1039_D1EE00370D
crossref_primary_10_1016_j_jpowsour_2024_235151
crossref_primary_10_1002_anie_202318960
crossref_primary_10_1021_acsaem_1c02214
crossref_primary_10_1039_D0EE03916K
crossref_primary_10_1002_advs_202003178
crossref_primary_10_1016_j_cej_2024_154103
crossref_primary_10_1016_j_ssi_2024_116586
crossref_primary_10_1002_smll_202105303
crossref_primary_10_1088_1361_6528_ad1441
crossref_primary_10_1002_adfm_202423530
crossref_primary_10_1016_j_ceramint_2022_08_185
crossref_primary_10_1016_j_jechem_2022_09_016
crossref_primary_10_1016_j_jpowsour_2021_229834
crossref_primary_10_1016_j_nanoen_2021_106184
crossref_primary_10_1088_1361_6528_acee85
crossref_primary_10_1016_j_ensm_2024_103645
crossref_primary_10_1021_acscentsci_3c00301
crossref_primary_10_1088_2515_7655_ac8dc1
crossref_primary_10_1016_j_carbon_2024_118929
crossref_primary_10_1021_acsaem_1c00167
crossref_primary_10_1016_j_carbon_2021_05_039
crossref_primary_10_1016_j_cej_2024_156878
crossref_primary_10_1002_pol_20230447
crossref_primary_10_1016_j_jcis_2024_03_086
crossref_primary_10_1016_j_micromeso_2022_111853
crossref_primary_10_1016_j_est_2023_108406
crossref_primary_10_1039_D1TA10439J
crossref_primary_10_3390_batteries9110534
crossref_primary_10_1007_s40820_024_01351_2
crossref_primary_10_1016_S1872_5805_25_60953_X
crossref_primary_10_1021_acsaem_4c00331
crossref_primary_10_1021_acsnano_0c10624
crossref_primary_10_1039_D3TA00898C
crossref_primary_10_1016_j_cej_2023_144237
crossref_primary_10_3390_molecules27196516
crossref_primary_10_1002_aenm_202003911
crossref_primary_10_1016_j_apsusc_2024_160277
crossref_primary_10_1039_D1CC03961J
crossref_primary_10_1073_pnas_2404013121
crossref_primary_10_1016_j_recm_2023_06_001
crossref_primary_10_1002_anie_202409906
crossref_primary_10_1002_smll_202301975
crossref_primary_10_1016_j_jpowsour_2024_235924
crossref_primary_10_1016_j_est_2023_110072
crossref_primary_10_1002_aenm_202202323
crossref_primary_10_1002_aenm_202303064
crossref_primary_10_1002_smll_202105568
crossref_primary_10_1016_j_pmatsci_2024_101401
crossref_primary_10_1002_cssc_202300493
crossref_primary_10_1002_smll_202006566
crossref_primary_10_1016_j_cej_2022_137628
crossref_primary_10_1016_j_ensm_2024_103627
crossref_primary_10_1016_j_cej_2023_147188
crossref_primary_10_1016_j_jelechem_2022_116526
crossref_primary_10_1016_j_jallcom_2022_164875
crossref_primary_10_1039_D3QI01296D
crossref_primary_10_1016_j_jcis_2021_06_158
crossref_primary_10_1016_j_est_2024_114969
crossref_primary_10_1016_j_carbon_2024_118825
crossref_primary_10_1021_acssuschemeng_1c01885
crossref_primary_10_1002_cnl2_171
crossref_primary_10_1016_j_cej_2024_151055
crossref_primary_10_1039_D3CC03994C
crossref_primary_10_1016_j_apsusc_2022_152759
crossref_primary_10_1016_j_jpowsour_2024_235358
crossref_primary_10_1002_adfm_202010882
crossref_primary_10_1002_smtd_202401072
crossref_primary_10_1016_j_ensm_2024_103614
crossref_primary_10_1016_j_jcis_2023_04_119
crossref_primary_10_1016_j_est_2023_108424
crossref_primary_10_1002_ange_202409906
crossref_primary_10_1016_j_jpowsour_2025_236505
crossref_primary_10_1002_adma_202300002
crossref_primary_10_1088_1361_6528_ac317d
crossref_primary_10_1002_adma_202212186
crossref_primary_10_1002_adma_202404574
crossref_primary_10_1002_adma_202109282
crossref_primary_10_1016_j_ensm_2022_12_042
crossref_primary_10_1002_adfm_202408568
crossref_primary_10_1016_j_jpowsour_2024_235474
crossref_primary_10_1016_j_ssi_2024_116668
crossref_primary_10_1002_ente_202000730
crossref_primary_10_1002_smll_202405632
crossref_primary_10_1016_j_carbon_2020_11_004
crossref_primary_10_1039_D0QM01124J
crossref_primary_10_1021_acsnano_4c01264
crossref_primary_10_1002_aenm_202303081
crossref_primary_10_1002_sus2_68
crossref_primary_10_1016_j_ceramint_2022_01_295
crossref_primary_10_1016_j_nanoen_2024_109920
crossref_primary_10_1002_ange_202112382
crossref_primary_10_1016_j_electacta_2020_137356
crossref_primary_10_1002_aenm_202300357
crossref_primary_10_1038_s41467_023_43963_z
crossref_primary_10_1002_adfm_202421790
crossref_primary_10_1016_j_fuel_2025_134785
crossref_primary_10_1021_acs_chemmater_3c00563
crossref_primary_10_1021_acsnano_4c06281
crossref_primary_10_1002_adfm_202308392
crossref_primary_10_1016_j_cej_2023_147835
crossref_primary_10_1016_j_jmat_2022_06_004
crossref_primary_10_1016_j_jpowsour_2024_234496
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1016_j_jelechem_2025_119060
crossref_primary_10_1016_j_scib_2025_03_042
crossref_primary_10_1002_adma_202104148
crossref_primary_10_1002_ange_202301396
crossref_primary_10_1002_adfm_202405174
crossref_primary_10_1080_1536383X_2022_2147929
crossref_primary_10_1016_j_matre_2024_100268
crossref_primary_10_1021_acs_energyfuels_4c00823
crossref_primary_10_1039_D1EE00166C
crossref_primary_10_1016_j_ensm_2025_104008
crossref_primary_10_1021_acsaem_0c02943
crossref_primary_10_1002_ange_202318960
crossref_primary_10_3390_ma18051166
crossref_primary_10_1016_j_est_2024_115204
crossref_primary_10_1021_acsenergylett_1c00816
crossref_primary_10_1002_adfm_202417059
crossref_primary_10_1016_j_jpowsour_2022_232534
crossref_primary_10_1002_cssc_202402325
crossref_primary_10_1016_j_fuproc_2024_108159
crossref_primary_10_1021_acsami_1c02067
crossref_primary_10_1002_ente_202200612
crossref_primary_10_1016_j_mtener_2021_100673
crossref_primary_10_1021_acsami_1c06543
crossref_primary_10_1016_j_cej_2024_150708
crossref_primary_10_1021_acsami_1c14738
crossref_primary_10_1016_j_carbon_2024_119038
crossref_primary_10_1002_adma_202407274
crossref_primary_10_1002_adma_202412989
crossref_primary_10_1002_batt_202400117
crossref_primary_10_1016_S1872_5805_23_60713_9
crossref_primary_10_1021_acs_nanolett_2c02177
crossref_primary_10_1021_acs_cgd_2c01470
crossref_primary_10_1007_s12274_023_5793_9
crossref_primary_10_1016_j_carbon_2024_119165
crossref_primary_10_1039_D4TA08291E
crossref_primary_10_1016_j_nanoen_2024_109459
crossref_primary_10_1002_adma_202407369
crossref_primary_10_1073_pnas_2111119118
crossref_primary_10_1016_j_apsusc_2024_161422
crossref_primary_10_1016_j_nxmate_2024_100327
crossref_primary_10_1039_D1EE03214C
crossref_primary_10_15541_jim20240325
crossref_primary_10_1007_s11426_021_1074_8
crossref_primary_10_1016_j_cej_2024_156126
crossref_primary_10_1016_j_jpowsour_2021_230530
crossref_primary_10_1002_anie_202301396
crossref_primary_10_1002_cey2_713
crossref_primary_10_1039_D3SC04606K
crossref_primary_10_1016_j_jcis_2024_11_067
crossref_primary_10_1016_j_jcis_2020_08_063
crossref_primary_10_1039_D4TA05219F
crossref_primary_10_1016_j_carbon_2021_08_015
crossref_primary_10_1016_j_carbon_2024_119731
crossref_primary_10_1002_aenm_202101650
crossref_primary_10_1021_acsenergylett_1c01359
crossref_primary_10_1016_j_carbon_2021_08_019
crossref_primary_10_1016_j_carbpol_2025_123349
crossref_primary_10_1039_D3EW00821E
crossref_primary_10_1039_D1SE01406D
crossref_primary_10_1039_D4TA03284E
crossref_primary_10_1016_j_electacta_2023_142641
crossref_primary_10_1016_j_cej_2024_156115
crossref_primary_10_1002_cnma_202200348
crossref_primary_10_1021_acsami_4c14597
crossref_primary_10_1021_acssensors_2c00961
crossref_primary_10_3390_batteries9040226
crossref_primary_10_1039_D3QI01497E
crossref_primary_10_1002_adfm_202103115
crossref_primary_10_1007_s12598_021_01738_9
crossref_primary_10_1016_j_carbon_2024_119866
crossref_primary_10_1002_adfm_202405830
crossref_primary_10_1002_smll_202207224
crossref_primary_10_1016_j_carbon_2021_03_022
crossref_primary_10_1039_D4TA02060J
crossref_primary_10_1002_adfm_202106980
crossref_primary_10_1002_adma_202418239
crossref_primary_10_1007_s12274_024_6546_0
crossref_primary_10_1016_j_jechem_2022_12_025
crossref_primary_10_3390_ma13143139
crossref_primary_10_1002_anie_202400012
crossref_primary_10_1021_acs_chemmater_2c00405
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1021_acs_energyfuels_1c01117
crossref_primary_10_1002_cnma_202400562
crossref_primary_10_1002_aenm_202304431
crossref_primary_10_1016_S1872_5805_22_60616_4
crossref_primary_10_1021_jacs_4c08920
crossref_primary_10_1002_ange_202400012
crossref_primary_10_1016_j_jcis_2024_06_080
crossref_primary_10_1021_acsanm_3c04634
crossref_primary_10_1016_j_xcrp_2024_101851
crossref_primary_10_1016_j_cej_2024_157663
crossref_primary_10_2139_ssrn_3885509
crossref_primary_10_1016_j_fuel_2021_122072
crossref_primary_10_1016_j_cej_2021_133257
crossref_primary_10_1007_s11581_020_03882_1
crossref_primary_10_1002_cssc_202301053
crossref_primary_10_1002_cey2_503
crossref_primary_10_1021_acsaem_3c01291
crossref_primary_10_20517_energymater_2023_117
crossref_primary_10_1002_smll_202301203
crossref_primary_10_1016_j_fuel_2024_133298
Cites_doi 10.1016/j.nanoen.2019.103937
10.1002/smll.201802218
10.1002/adfm.201805371
10.1021/nl401995a
10.1002/aenm.201702434
10.1002/aenm.201501929
10.5714/CL.2015.16.2.116
10.1021/acs.nanolett.6b00942
10.1002/adfm.201100854
10.1002/aenm.201703159
10.1002/aenm.201703137
10.1021/acsnano.7b00557
10.1002/adma.201802035
10.1002/aenm.201800108
10.1021/acsenergylett.9b00748
10.1002/aenm.201901351
10.1007/s12274-017-1847-1
10.1021/jp074464w
10.1002/aenm.201703238
10.1002/adma.201503816
10.1021/acsnano.6b05566
10.1007/s40843-019-9418-8
10.1016/j.ensm.2015.12.004
10.1002/adma.201700606
10.1021/acsami.7b17893
10.1002/adma.201807770
10.1002/anie.201900005
10.1021/acsami.6b04752
10.1039/C6TA00950F
10.1038/s41467-019-08506-5
10.1016/j.nanoen.2015.06.017
10.1016/j.nanoen.2014.12.032
10.1021/nn300920e
10.1002/adfm.201903795
10.1039/C6EE03367A
10.1016/S0008-6223(99)00067-6
10.1039/C7EE01628J
10.1016/j.nanoen.2019.104038
10.1016/j.carbon.2015.12.066
10.1016/j.ensm.2018.02.002
10.1039/c3ee41444b
10.1002/smtd.201900763
10.1002/aenm.201801361
10.1002/aenm.201600659
10.1038/ncomms12122
10.1016/j.nanoen.2015.10.034
10.1007/s12274-017-1882-y
10.1021/acsaem.8b00354
10.1002/anie.201706652
10.1016/j.nanoen.2013.12.009
10.1002/aenm.201701847
10.1002/aenm.201602898
10.1002/smtd.201600063
10.1002/aenm.201700403
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202000447
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32253798
10_1002_adma_202000447
ADMA202000447
Genre article
Journal Article
GrantInformation_xml – fundername: Liao Ning Revitalization Talents Program
  funderid: XLYC1902045
– fundername: Cheung Kong Scholars Programme of China
  funderid: T2015036
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  funderid: 21776041; 21875028
– fundername: Liao Ning Revitalization Talents Program
  grantid: XLYC1902045
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  grantid: 21875028
– fundername: National Science Fund for the National Natural Science Foundation of China
  grantid: 21776041
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  grantid: 21776041
– fundername: National Science Fund for the National Natural Science Foundation of China
  grantid: 21875028
– fundername: Cheung Kong Scholars Programme of China
  grantid: T2015036
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4127-77d44a7cb96bec123e869e9b8f297ed81f5301b6e05bcd32d8e65df461a4b2863
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:09:34 EDT 2025
Fri Jul 25 05:37:01 EDT 2025
Wed Feb 19 02:30:00 EST 2025
Tue Jul 01 02:32:46 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Jan 22 16:35:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords dual potential plateaus
anode
sodium-ion batteries
hard carbon
ultramicropores
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4127-77d44a7cb96bec123e869e9b8f297ed81f5301b6e05bcd32d8e65df461a4b2863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1294-5928
PMID 32253798
PQID 2406263642
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2387259145
proquest_journals_2406263642
pubmed_primary_32253798
crossref_citationtrail_10_1002_adma_202000447
crossref_primary_10_1002_adma_202000447
wiley_primary_10_1002_adma_202000447_ADMA202000447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 12
2017; 7
2018; 28
2019; 9
2017; 1
2019; 4
2015; 16
2016; 19
2019; 31
2019; 10
2019; 58
2016; 10
2017; 29
2016; 16
2013; 6
2016; 99
2016; 4
2016; 6
2018; 8
2016; 7
2020; 4
2015; 27
2014; 4
2019; 62
2016; 3
2019; 64
2013; 13
2018; 1
2019; 65
2017; 11
2017; 10
2007; 111
1999; 37
2017; 56
2019; 29
2011; 21
2018; 30
2012; 6
2018; 11
2018; 10
2016; 8
2018; 14
2018; 13
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 11
  start-page: 5530
  year: 2017
  publication-title: ACS Nano
– volume: 11
  start-page: 2256
  year: 2018
  publication-title: Nano Res.
– volume: 11
  start-page: 2573
  year: 2018
  publication-title: Nano Res.
– volume: 19
  start-page: 279
  year: 2016
  publication-title: Nano Energy
– volume: 99
  start-page: 556
  year: 2016
  publication-title: Carbon
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  start-page: 224
  year: 2015
  publication-title: Nano Energy
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 370
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 6472
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 3321
  year: 2016
  publication-title: Nano Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 6
  start-page: 4319
  year: 2012
  publication-title: ACS Nano
– volume: 1
  start-page: 2295
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 58
  start-page: 4361
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 9353
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 1757
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 3859
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 13
  start-page: 274
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 37
  start-page: 1901
  year: 1999
  publication-title: Carbon
– volume: 111
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 62
  start-page: 1127
  year: 2019
  publication-title: Sci. China Mater.
– volume: 4
  start-page: 1565
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 16
  start-page: 218
  year: 2015
  publication-title: Nano Energy
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 97
  year: 2014
  publication-title: Nano Energy
– volume: 16
  start-page: 116
  year: 2015
  publication-title: Carbon Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2839
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 18
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 27
  start-page: 7861
  year: 2015
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3909
  year: 2013
  publication-title: Nano Lett.
– volume: 10
  start-page: 725
  year: 2019
  publication-title: Nat. Commun.
– ident: e_1_2_4_34_1
  doi: 10.1016/j.nanoen.2019.103937
– ident: e_1_2_4_18_1
  doi: 10.1002/smll.201802218
– ident: e_1_2_4_25_1
  doi: 10.1002/adfm.201805371
– ident: e_1_2_4_32_1
  doi: 10.1021/nl401995a
– ident: e_1_2_4_13_1
  doi: 10.1002/aenm.201702434
– ident: e_1_2_4_1_1
  doi: 10.1002/aenm.201501929
– ident: e_1_2_4_33_1
  doi: 10.5714/CL.2015.16.2.116
– ident: e_1_2_4_7_1
  doi: 10.1021/acs.nanolett.6b00942
– ident: e_1_2_4_53_1
  doi: 10.1002/adfm.201100854
– ident: e_1_2_4_17_1
  doi: 10.1002/aenm.201703159
– ident: e_1_2_4_27_1
  doi: 10.1002/aenm.201703137
– ident: e_1_2_4_5_1
  doi: 10.1021/acsnano.7b00557
– ident: e_1_2_4_26_1
  doi: 10.1002/adma.201802035
– ident: e_1_2_4_16_1
  doi: 10.1002/aenm.201800108
– ident: e_1_2_4_4_1
  doi: 10.1021/acsenergylett.9b00748
– ident: e_1_2_4_54_1
  doi: 10.1002/aenm.201901351
– ident: e_1_2_4_24_1
  doi: 10.1007/s12274-017-1847-1
– ident: e_1_2_4_45_1
  doi: 10.1021/jp074464w
– ident: e_1_2_4_15_1
  doi: 10.1002/aenm.201703238
– ident: e_1_2_4_19_1
  doi: 10.1002/adma.201503816
– ident: e_1_2_4_47_1
  doi: 10.1021/acsnano.6b05566
– ident: e_1_2_4_29_1
  doi: 10.1007/s40843-019-9418-8
– ident: e_1_2_4_28_1
  doi: 10.1016/j.ensm.2015.12.004
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201700606
– ident: e_1_2_4_23_1
  doi: 10.1021/acsami.7b17893
– ident: e_1_2_4_3_1
  doi: 10.1002/adma.201807770
– ident: e_1_2_4_42_1
  doi: 10.1002/anie.201900005
– ident: e_1_2_4_12_1
  doi: 10.1021/acsami.6b04752
– ident: e_1_2_4_22_1
  doi: 10.1039/C6TA00950F
– ident: e_1_2_4_38_1
  doi: 10.1038/s41467-019-08506-5
– ident: e_1_2_4_11_1
  doi: 10.1016/j.nanoen.2015.06.017
– ident: e_1_2_4_43_1
  doi: 10.1016/j.nanoen.2014.12.032
– ident: e_1_2_4_46_1
  doi: 10.1021/nn300920e
– ident: e_1_2_4_40_1
  doi: 10.1002/adfm.201903795
– ident: e_1_2_4_37_1
  doi: 10.1039/C6EE03367A
– ident: e_1_2_4_51_1
  doi: 10.1016/S0008-6223(99)00067-6
– ident: e_1_2_4_9_1
  doi: 10.1039/C7EE01628J
– ident: e_1_2_4_21_1
  doi: 10.1016/j.nanoen.2019.104038
– ident: e_1_2_4_30_1
  doi: 10.1016/j.carbon.2015.12.066
– ident: e_1_2_4_39_1
  doi: 10.1016/j.ensm.2018.02.002
– ident: e_1_2_4_31_1
  doi: 10.1039/c3ee41444b
– ident: e_1_2_4_41_1
  doi: 10.1002/smtd.201900763
– ident: e_1_2_4_36_1
  doi: 10.1002/aenm.201801361
– ident: e_1_2_4_49_1
  doi: 10.1002/aenm.201600659
– ident: e_1_2_4_48_1
  doi: 10.1038/ncomms12122
– ident: e_1_2_4_35_1
  doi: 10.1016/j.nanoen.2015.10.034
– ident: e_1_2_4_44_1
  doi: 10.1007/s12274-017-1882-y
– ident: e_1_2_4_50_1
  doi: 10.1021/acsaem.8b00354
– ident: e_1_2_4_8_1
  doi: 10.1002/anie.201706652
– ident: e_1_2_4_52_1
  doi: 10.1016/j.nanoen.2013.12.009
– ident: e_1_2_4_6_1
  doi: 10.1002/aenm.201701847
– ident: e_1_2_4_14_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_4_2_1
  doi: 10.1002/smtd.201600063
– ident: e_1_2_4_20_1
  doi: 10.1002/aenm.201700403
SSID ssj0009606
Score 2.688675
Snippet Hard carbon attracts considerable attention as an anode material for sodium‐ion batteries; however, their poor rate capability and low realistic capacity have...
Hard carbon attracts considerable attention as an anode material for sodium-ion batteries; however, their poor rate capability and low realistic capacity have...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000447
SubjectTerms Accessibility
anode
Anodes
Carbon
Carbonyl groups
Carbonyls
dual potential plateaus
Electrode materials
Functional groups
hard carbon
Ion storage
Materials science
Nanosheets
Nanostructure
Rechargeable batteries
Sodium-ion batteries
ultramicropores
Title Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodium‐Ion Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000447
https://www.ncbi.nlm.nih.gov/pubmed/32253798
https://www.proquest.com/docview/2406263642
https://www.proquest.com/docview/2387259145
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG5kT3rw_Yiu0oLgKbubfiV9HFaHVViRGQf2FvoVd3FMZJIgePIn-D_8V_4SqzozmR1FBL0lpF-hq6q_qu7-ipBn3uS6cE6lXhuXCpOb1PhKpkEaLp1zPki8nHz6Rp0sxOszeXbpFv_ADzEG3FAzor1GBTe2PdyShhofeYNY3JPE6-R4YAtR0WzLH4XwPJLtcZlqJYoNa-MRO9ytvrsq_QY1d5FrXHqmN4jZDHo4cfLhoO_sgfvyC5_j__zVTXJ9jUvpZBCkW-RKqG-Ta5fYCu-Q77jLT4_NyjY1BavctOchdC3FUC4F7Irwly6W3QpT3GPyBfDkqak9ncSkjBd2GegUltEh-khj1Kul8_PmMzRP8cAJnQXkY4QhQDfgzIOHEBuY98jH3KzoDJAxfbu960Dhgc4bf9F__PH12ysY17wDmX4f7pLF9OW745N0neshdSJjOYB8L0BSnNUKpAqW01AoHbQtKqbz4IuskmCKrApH0jrPmS-Ckr4SKjPCskLxe2SvburwgNCK-8C81JZJLnxW6VBVhTbQBvd5HkRC0s1cl25NhI75OJblQOHMSpyEcpyEhDwfy38aKED-WHJ_Izrl2hS0JUImpjj4eQl5On4GJcadGVOHpocyvMjBD82ETMj9QeTGrtDiclCohLAoOH8ZQzl5cToZ3x7-S6VH5Co-D8c698let-rDY4BenX0S1esnYhop-g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcgAO_P8ECiwSiJPbeu31z4FD1BAltKlQ0ki9uevdMa1I7Sq2VcGJR-A9OPEqPAJPwqztOASEkJB64BYn6_Vkd2b2m_HstwDPtfTDQCnP0qFUlit9aUmdCAuFdIRSSqMwm5NH-95g6r45FIdr8HWxF6bmh2gTbsYyKn9tDNwkpLeWrKFSV8RBvHop6Td1lbv44ZyitvzVsEdT_ILz_uuDnYHVHCxgKdfmPiFK7ZJYKg49-gvkuzHwQgzjIOGhjzqwE0F6H3u4LWKlHa4D9IROXM-WbswDz6F-L8Flc4y4oevvjZeMVSYgqOj9HGGFnhsseCK3-daqvKvr4G_gdhUrV4td_wZ8WwxTXePyfrMs4k318RcGyf9qHG_C9QZ6s25tK7dgDdPbcO0nQsY78MUUMrAdOY-zlNHCk-XHiEXOTLaaETw3CJ9NZ8VcnppCRopdMGcy1axbnTt5Es-Q9Qkp1AlWViX2cjY5zs6pe2ZqatgYDeUkiUCPOZOKgqCqg0lpKKezORsT-Gdvl9s5GH1gk0yflKffP30eklyTgsz2Hd6F6YWM1j1YT7MUHwBLHI1cizDmwnG1nYSYJEEoqQ9H-z66HbAWyhWphuvdHDkyi2qWah6ZSY_aSe_Ay7b9Wc1y8seWGwtdjRpvl0cGFXLPoVC2A8_an8lPmZdPMsWspDZO4FOobbuiA_drHW8fZRYVh3xGB3ilqX-RIer2Rt326uG_3PQUrgwORnvR3nB_9xFcNd_XVawbsF7MS3xMSLOIn1S2zeDooo3gB9uBiAM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRA98P8TKGAkEKe0u47txAcOqy6rLqVVtctKvQXHntCq22S1yaqCE4_Ae3DhVXgFnoRxsptlQQgJqQdu-XGciT0z_sYZfybkmdWhioyRvlXa-FyH2tc2FT4IHQhjjAXhFifvH8jdEX99JI7WyNfFWpiaH6KZcHOWUflrZ-ATm24vSUO1rXiDWPVPMpynVe7Bh3MM2oqX_S728HPGeq_e7uz6830FfMPbLERAaTlKZRIl8QvQdUMkFagkSpkKwUbtVKDaJxJaIjE2YDYCKWzKZVvzhEUywHovkctctpTbLKI7WBJWuXigYvcLhK8kjxY0kS22vSrv6jD4G7ZdhcrVWNe7Tr4tWqlOcTndmpXJlvn4C4Hk_9SMN8i1OfCmndpSbpI1yG6RjZ_oGG-TLy6Nge7oaZJnFIedvDgGKAvq5qopgnOH7-loXE71mUtjxMgFCqozSzvVrpMnyRhoD3FCPb1Kq2m9gg6P83OsnrqMGjoARziJIuBrJtpgCFRVMJw5wul8SgcI_enhcjEHxQM6zO3J7Oz7p899lGtYotG-hztkdCGtdZesZ3kG9wlNAwvMCpUwEXDbThWkaaQ01hHYMATuEX-hW7GZM727DUfGcc1RzWLX6XHT6R550ZSf1Bwnfyy5uVDVeO7rithhQiYDDGQ98rS5jV7K_XrSGeQzLBNEIQbabS48cq9W8eZVbkgJ0GN4hFWK-hcZ4k53v9OcPfiXh56QK4fdXvymf7D3kFx1l-sU1k2yXk5n8AhhZpk8riybkncXbQM_AKrEhrI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hard+Carbon+Nanosheets+with+Uniform+Ultramicropores+and+Accessible+Functional+Groups+Showing+High+Realistic+Capacity+and+Superior+Rate+Performance+for+Sodium%E2%80%90Ion+Storage&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ji%E2%80%90Li+Xia&rft.au=Dong%2C+Yan&rft.au=Li%E2%80%90Ping+Guo&rft.au=Xiao%E2%80%90Ling+Dong&rft.date=2020-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=21&rft_id=info:doi/10.1002%2Fadma.202000447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon