An Air Knife–Assisted Recrystallization Method for Ambient‐Process Planar Perovskite Solar Cells and Its Dim‐Light Harvesting
The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells t...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 8; pp. e1804465 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air‐knife assisted recrystallization method is reported, based on a simple bath‐immersion to prepare high‐quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap‐state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath‐immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500–2000 lux dim‐light illumination respectively, which is among the highest performance of ambient‐process perovskite solar cells.
An air knife–assisted recrystallization method is developed to fabricate high‐quality perovskite film in air under daily variable weather. The presented method is a root fabrication based on a bath‐immersion process, offering useful insights for fabricating highly efficient ambient‐process perovskite solar cells toward real production and paves a way for dim‐light harvesting and recycling. |
---|---|
AbstractList | The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air‐knife assisted recrystallization method is reported, based on a simple bath‐immersion to prepare high‐quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap‐state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath‐immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500–2000 lux dim‐light illumination respectively, which is among the highest performance of ambient‐process perovskite solar cells. The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air‐knife assisted recrystallization method is reported, based on a simple bath‐immersion to prepare high‐quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap‐state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath‐immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500–2000 lux dim‐light illumination respectively, which is among the highest performance of ambient‐process perovskite solar cells. An air knife–assisted recrystallization method is developed to fabricate high‐quality perovskite film in air under daily variable weather. The presented method is a root fabrication based on a bath‐immersion process, offering useful insights for fabricating highly efficient ambient‐process perovskite solar cells toward real production and paves a way for dim‐light harvesting and recycling. The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air-knife assisted recrystallization method is reported, based on a simple bath-immersion to prepare high-quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap-state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath-immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500-2000 lux dim-light illumination respectively, which is among the highest performance of ambient-process perovskite solar cells.The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air-knife assisted recrystallization method is reported, based on a simple bath-immersion to prepare high-quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap-state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath-immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500-2000 lux dim-light illumination respectively, which is among the highest performance of ambient-process perovskite solar cells. |
Author | Cheng, Rui Feng, Shien‐Ping Zhai, Peng Chung, Chih‐Chun Huang, Yu‐Ting Zhang, Hong Zhou, Zhiwen Lee, Hyeonseok |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0002-2457-4805 surname: Cheng fullname: Cheng, Rui organization: The University of Hong Kong – sequence: 2 givenname: Chih‐Chun surname: Chung fullname: Chung, Chih‐Chun organization: The University of Hong Kong – sequence: 3 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: The University of Hong Kong – sequence: 4 givenname: Zhiwen surname: Zhou fullname: Zhou, Zhiwen organization: The University of Hong Kong – sequence: 5 givenname: Peng surname: Zhai fullname: Zhai, Peng organization: Northwestern Polytechnical University – sequence: 6 givenname: Yu‐Ting surname: Huang fullname: Huang, Yu‐Ting organization: The University of Hong Kong – sequence: 7 givenname: Hyeonseok surname: Lee fullname: Lee, Hyeonseok organization: The University of Hong Kong – sequence: 8 givenname: Shien‐Ping orcidid: 0000-0002-3941-1363 surname: Feng fullname: Feng, Shien‐Ping email: hpfeng@hku.hk organization: The University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30690887$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFDEYx4O02Be9epSAFy-7JpnMTHIc1peWTuli9TxkJ8-0qZmkJtnKeir4BYR-w34S0267QkE8JYTfL8_Lfw9tOe8AoVeUTCkh7F0crZ0yQgXhvCqfoV1a0WJSCSa3NndKdtBejBeEFJTx-jnaKUgliRD1LvrVONyYgI-cGeD2-qaJ0cQEGn-GPqxiUtaanyoZ7_AxpHOv8eADbsaFAZdur3_Pg-8hRjy3yqmA5xD8VfxmEuBTb_PDDKyNWDmND1PE782YndacnSd8oMIVxGTc2Qu0PSgb4eXDuY--fvzwZXYwaU8-Hc6adtJzysoJ02KoJM-D0loBF4rISghWaiA16WlNJQdN66IcBg2geCmlUmxYCK0qKuSi2Edv1_9eBv99mWt3o4l9blA58MvYMVpLzgrGZUbfPEEv_DK43F2mBOeCVDXP1OsHarkYQXeXwYwqrLrH9WZgugb64GMMMGwQSrq7_Lq7_LpNflngT4TepPv1p6CM_bcm19oPY2H1nyLd6XHb_nX_AMOGsuw |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2020_100273 crossref_primary_10_1039_D3TC02736H crossref_primary_10_1002_aenm_201901980 crossref_primary_10_1016_j_jpowsour_2020_228736 crossref_primary_10_1088_2515_7639_acc893 crossref_primary_10_1002_adem_202200964 crossref_primary_10_1039_D0RA02583F crossref_primary_10_1002_adem_202200747 crossref_primary_10_1016_j_mtener_2021_100907 crossref_primary_10_1016_j_solener_2023_112057 crossref_primary_10_1016_j_jpowsour_2021_230073 crossref_primary_10_3389_fmats_2021_635224 crossref_primary_10_3390_nano9121666 crossref_primary_10_1002_smtd_202200624 crossref_primary_10_1002_solr_202200953 crossref_primary_10_1002_solr_202400849 crossref_primary_10_1002_er_5754 crossref_primary_10_1002_aesr_202100143 crossref_primary_10_1039_C9MH00325H crossref_primary_10_1039_D0TA00978D crossref_primary_10_1002_solr_202100386 crossref_primary_10_1016_j_mtphys_2021_100557 crossref_primary_10_1002_ese3_1084 crossref_primary_10_1002_advs_202003359 crossref_primary_10_1039_C9TA10040G crossref_primary_10_1002_admi_202100743 crossref_primary_10_1002_adfm_201909755 crossref_primary_10_1039_D0DT03201H crossref_primary_10_1080_09506608_2022_2077030 crossref_primary_10_1016_j_xcrp_2022_100827 crossref_primary_10_1002_adom_202301052 crossref_primary_10_1002_cssc_202202109 crossref_primary_10_1016_j_nanoen_2024_109932 crossref_primary_10_1002_smtd_202000744 crossref_primary_10_1016_j_jpowsour_2019_227584 crossref_primary_10_1039_D1TA03577K crossref_primary_10_1039_D2TC02351B |
Cites_doi | 10.1021/acsami.7b12076 10.1039/C5EE01179E 10.1016/j.nanoen.2017.06.039 10.1039/C7TA00894E 10.1002/aenm.201700677 10.1021/acsami.6b06682 10.1039/C5TA00658A 10.1063/1.4895039 10.1038/nnano.2014.181 10.1021/acsami.7b05078 10.1038/nature12340 10.1002/adfm.201503448 10.1002/anie.201201656 10.1002/adma.201500048 10.1039/C6TA04097G 10.1039/C6TA06892H 10.1002/aenm.201700414 10.1038/ncomms11105 10.1039/C6SE00077K 10.1002/pssr.201600004 10.1039/C5NR04179A 10.1021/jacs.6b04924 10.1021/acsnano.7b04070 10.1002/adfm.201605654 10.1039/C4EE01724B 10.1016/j.solmat.2011.07.011 10.1021/jacs.5b04930 10.1016/j.apsusc.2017.02.135 10.1002/aenm.201501354 10.1002/aenm.201501890 10.1021/acs.nanolett.5b00843 10.1021/acs.nanolett.5b03556 10.1021/am5057807 10.1021/acsami.6b09978 10.1126/science.1254050 10.1002/aenm.201700210 10.1039/C5EE02194D 10.1038/srep39839 10.1016/j.nanoen.2018.03.081 10.1002/adma.201506049 10.1039/C5RA14587B 10.1002/adma.201605290 10.1002/solr.201700097 10.1021/ja809598r 10.1126/science.1228604 10.1126/science.aan2301 10.1002/anie.201405334 10.1039/C8EE00580J 10.1021/jacs.5b02651 10.1016/j.orgel.2017.03.017 10.1021/acsami.7b01864 10.1016/j.joule.2018.03.017 10.1038/nmat4014 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201804465 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30690887 10_1002_smll_201804465 SMLL201804465 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: HKU‐Zhejiang Institute of Research and Innovation (HKU‐ZIRI) – fundername: General Research Fund of the Research Grants Council of Hong Kong Special Administrative Region, China funderid: 17204516; 17206518 – fundername: Environment and Conservation Fund funderid: ECF 49/2017 – fundername: Seed Fund for Strategic Interdisciplinary Research Scheme at the University of Hong Kong – fundername: HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI) – fundername: General Research Fund of the Research Grants Council of Hong Kong Special Administrative Region, China grantid: 17206518 – fundername: General Research Fund of the Research Grants Council of Hong Kong Special Administrative Region, China grantid: 17204516 – fundername: Environment and Conservation Fund grantid: ECF 49/2017 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4125-2d8f69404417ae48a0968825de070c17194ed1735ffdeea4599aa2fb8da6189b3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 23:17:27 EDT 2025 Sun Jul 13 03:40:11 EDT 2025 Mon Jul 21 05:58:21 EDT 2025 Tue Jul 01 02:10:40 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Jan 22 16:20:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | perovskites dim lights ambient process air-knife recrystallization |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4125-2d8f69404417ae48a0968825de070c17194ed1735ffdeea4599aa2fb8da6189b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3941-1363 0000-0002-2457-4805 |
PMID | 30690887 |
PQID | 2184480674 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2179423249 proquest_journals_2184480674 pubmed_primary_30690887 crossref_primary_10_1002_smll_201804465 crossref_citationtrail_10_1002_smll_201804465 wiley_primary_10_1002_smll_201804465_SMLL201804465 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Feb |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-Feb |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 15 2017; 7 2017; 1 2015; 5 2015; 3 2017; 27 2017; 45 2016; 10 2017; 29 2009; 131 2015; 8 2017; 356 2015; 7 2017; 9 2018; 49 2012; 51 2016; 4 2017; 407 2016; 6 2018; 8 2016; 7 2015; 25 2015; 27 2018; 2 2014; 2 2015; 137 2017; 39 2017; 11 2011; 95 2018 2013; 499 2014; 13 2016; 138 2014; 9 2016; 28 2018; 11 2014; 7 2012; 338 2014; 345 2016; 8 2016; 9 2014; 53 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 407 start-page: 427 year: 2017 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 30920 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 109 year: 2018 publication-title: Nano Energy – volume: 15 start-page: 8114 year: 2015 publication-title: Nano Lett. – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 137 start-page: 5810 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2242 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 138 start-page: 9919 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3424 year: 2015 publication-title: Adv. Mater. – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 29 start-page: 1605290 year: 2017 publication-title: Adv. Mater. – volume: 137 start-page: 8696 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 17018 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 39027 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 1605654 year: 2017 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 9176 year: 2017 publication-title: ACS Nano – year: 2018 – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 7 start-page: 11105 year: 2016 publication-title: Nat. Commun. – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 8 start-page: 21505 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 927 year: 2014 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 540 year: 2017 publication-title: Sustainable Energy Fuels – volume: 2 start-page: 091102 year: 2014 publication-title: APL Mater. – volume: 8 start-page: 6300 year: 2016 publication-title: Nanoscale – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 12 year: 2016 publication-title: Energy Environ. Sci. – volume: 95 start-page: 3256 year: 2011 publication-title: Sol. Energy Mater. Sol. Cells – volume: 7 start-page: 1700414 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1501354 year: 2015 publication-title: Adv. Energy Mater. – volume: 7 start-page: 39839 year: 2017 publication-title: Sci. Rep. – volume: 5 start-page: 13448 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 start-page: 8808 year: 2015 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1700677 year: 2018 publication-title: Adv. Energy Mater. – volume: 39 start-page: 60 year: 2017 publication-title: Nano Energy – volume: 25 start-page: 7064 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2253 year: 2018 publication-title: Energy Environ. Sci. – volume: 9 start-page: 14023 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 381 year: 2016 publication-title: Phys. Status Solidi RRL – volume: 7 start-page: 3952 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1700210 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 27832 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2464 year: 2015 publication-title: Energy Environ. Sci. – volume: 45 start-page: 302 year: 2017 publication-title: Org. Electron. – volume: 28 start-page: 2964 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 1700097 year: 2017 publication-title: Sol. RRL – volume: 5 start-page: 93957 year: 2015 publication-title: RSC Adv. – volume: 53 start-page: 9898 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 11700 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 11878 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1501890 year: 2016 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1108 year: 2018 publication-title: Joule – volume: 15 start-page: 3959 year: 2015 publication-title: Nano Lett. – ident: e_1_2_5_25_1 doi: 10.1021/acsami.7b12076 – ident: e_1_2_5_31_1 doi: 10.1039/C5EE01179E – ident: e_1_2_5_7_1 doi: 10.1016/j.nanoen.2017.06.039 – ident: e_1_2_5_12_1 doi: 10.1039/C7TA00894E – ident: e_1_2_5_11_1 doi: 10.1002/aenm.201700677 – ident: e_1_2_5_48_1 doi: 10.1021/acsami.6b06682 – ident: e_1_2_5_16_1 doi: 10.1039/C5TA00658A – ident: e_1_2_5_33_1 doi: 10.1063/1.4895039 – ident: e_1_2_5_23_1 doi: 10.1038/nnano.2014.181 – ident: e_1_2_5_51_1 doi: 10.1021/acsami.7b05078 – ident: e_1_2_5_6_1 doi: 10.1038/nature12340 – ident: e_1_2_5_36_1 doi: 10.1002/adfm.201503448 – ident: e_1_2_5_41_1 doi: 10.1002/anie.201201656 – ident: e_1_2_5_32_1 doi: 10.1002/adma.201500048 – ident: e_1_2_5_38_1 doi: 10.1039/C6TA04097G – ident: e_1_2_5_20_1 doi: 10.1039/C6TA06892H – ident: e_1_2_5_43_1 doi: 10.1002/aenm.201700414 – ident: e_1_2_5_18_1 doi: 10.1038/ncomms11105 – ident: e_1_2_5_4_1 – ident: e_1_2_5_47_1 doi: 10.1039/C6SE00077K – ident: e_1_2_5_9_1 doi: 10.1002/pssr.201600004 – ident: e_1_2_5_50_1 doi: 10.1039/C5NR04179A – ident: e_1_2_5_27_1 doi: 10.1021/jacs.6b04924 – ident: e_1_2_5_42_1 doi: 10.1021/acsnano.7b04070 – ident: e_1_2_5_15_1 doi: 10.1002/adfm.201605654 – ident: e_1_2_5_34_1 doi: 10.1039/C4EE01724B – ident: e_1_2_5_35_1 doi: 10.1016/j.solmat.2011.07.011 – ident: e_1_2_5_14_1 doi: 10.1021/jacs.5b04930 – ident: e_1_2_5_45_1 doi: 10.1016/j.apsusc.2017.02.135 – ident: e_1_2_5_21_1 doi: 10.1002/aenm.201501354 – ident: e_1_2_5_54_1 doi: 10.1002/aenm.201501890 – ident: e_1_2_5_22_1 doi: 10.1021/acs.nanolett.5b00843 – ident: e_1_2_5_29_1 doi: 10.1021/acs.nanolett.5b03556 – ident: e_1_2_5_30_1 doi: 10.1021/am5057807 – ident: e_1_2_5_52_1 doi: 10.1021/acsami.6b09978 – ident: e_1_2_5_44_1 doi: 10.1126/science.1254050 – ident: e_1_2_5_49_1 doi: 10.1002/aenm.201700210 – ident: e_1_2_5_3_1 doi: 10.1039/C5EE02194D – ident: e_1_2_5_26_1 doi: 10.1038/srep39839 – ident: e_1_2_5_19_1 doi: 10.1016/j.nanoen.2018.03.081 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201506049 – ident: e_1_2_5_46_1 doi: 10.1039/C5RA14587B – ident: e_1_2_5_37_1 doi: 10.1002/adma.201605290 – ident: e_1_2_5_8_1 doi: 10.1002/solr.201700097 – ident: e_1_2_5_1_1 doi: 10.1021/ja809598r – ident: e_1_2_5_5_1 doi: 10.1126/science.1228604 – ident: e_1_2_5_2_1 doi: 10.1126/science.aan2301 – ident: e_1_2_5_10_1 doi: 10.1002/anie.201405334 – ident: e_1_2_5_39_1 doi: 10.1039/C8EE00580J – ident: e_1_2_5_24_1 doi: 10.1021/jacs.5b02651 – ident: e_1_2_5_53_1 doi: 10.1016/j.orgel.2017.03.017 – ident: e_1_2_5_17_1 doi: 10.1021/acsami.7b01864 – ident: e_1_2_5_40_1 doi: 10.1016/j.joule.2018.03.017 – ident: e_1_2_5_13_1 doi: 10.1038/nmat4014 |
SSID | ssj0031247 |
Score | 2.4633594 |
Snippet | The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1804465 |
SubjectTerms | Air knives air–knife ambient process Crystallization dim lights Domains Energy conversion efficiency Light Morphology Nanotechnology Perovskites Photovoltaic cells Recrystallization Relative humidity Solar cells Submerging |
Title | An Air Knife–Assisted Recrystallization Method for Ambient‐Process Planar Perovskite Solar Cells and Its Dim‐Light Harvesting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201804465 https://www.ncbi.nlm.nih.gov/pubmed/30690887 https://www.proquest.com/docview/2184480674 https://www.proquest.com/docview/2179423249 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnqm3T13HxgY9dEVfBW0mbVBa7XdnuCnoS_AOC_9Bf4kzbrbuKCHpradKmyUzmyyTzDcCWssIIgYXQ7Sh2dB66qHM8NnQ_psBHSQwi5IdsnDvH1_z0xr4ZiuIv-CEqhxtpRj5fk4KLMNv9JA3N2gltHRgebUlSlDkd2CJUdFnxR1lovPLsKmizdCLeGrA27pm7o9VHrdI3qDmKXHPTczQNYtDo4sTJ3U6_F-5ET1_4HP_zVzMwVeJSVisEaRbGVDoHk0NshfPwUktZrdVlZ3Qc5v35DUeWZEQygp6PiDKTpAzqZI08LzVDQMxq7ZBCLt-fX8uYBEZ5kkSXXahu5yEj5zFr0vqa7askyZhIJTvpZeyg1cY6dfIdMEpgRGwg6e0CXB8dXu0f62UOBz3iiJ10U3qx4_M9ynQmFPcELpkQ1NtS4VwTGa7hcyUN17LjWColuO37Qphx6EnhGJ4fWoswnnZStQzMjVxXScTXBJpkZAjbVo6J7zEthSBIaaAPxjCISoJzyrORBAU1sxlQ5wZV52qwXZW_L6g9fiy5NhCJoFTxLKC1MffQ2HMNNqvHqJy04yJS1elTGZzuCLP6GiwVolR9yiKOaJziNTBzgfilDUGzUa9Xdyt_qbQKE3jtF2fO12C81-2rdYRUvXAjV5sP8IAbUA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9gAcoOU30FIjgTilbRzn78Bh1W21281WiLZSb8GJHVSRzaLNLqicKvECSH2SvgqP0CdhJn90QQgJqQeOSWzHsmc8n8eebwBeaDtOEFhI00lS1xSxhzonUssMUgp8VMQgQn7I4b7bOxJ7x87xAlw0sTAVP0TrcCPNKNdrUnBySG_-ZA0tRhmdHVg-nUk29yoH-vQz7tqK1_0uTvFLznd3Drd7Zp1YwEwEGnSTKz91A7FF6bekFr5EHI9I01EaFSCxPNzYa2V5tpOmSmspnCCQkqexr6Rr-UFsY7s3YInSiBNdf_dty1hlo7ks87mglTSJ6qvhidzim_P9nbeDv4HbeaxcGrvdu_C9GabqjsuHjdk03ki-_MIg-V-N4zLcqaE361S6sgILOr8Ht68QMt6Hr52cdU4mbEA3fi7PzlF4SQ0UI3R9ikA6y-q4VTYsU28zxPysM4opqvTy7FsddsEoFZScsDd6Mv5UkH-cHZALgW3rLCuYzBXrTwvWPRlhnZDcI4xyNBHhSf7-ARxdyyg8hMV8nOvHwLzE87TCLQThQpVY0nG0y7EdbmvEedoAsxGaKKk53CmVSBZV7NM8osmM2sk04FVb_mPFXvLHkquNDEb1KlZEtP0XPuIZYcDz9jOuP3SoJHM9nlEZXNEJlgcGPKpkt_2VTTTYaMUM4KUE_qUP0cEwDNunJ_9SaR1u9g6HYRT29wdP4Ra-D6or9quwOJ3M9BoiyGn8rNRZBu-uW7h_AFqweDM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48FeggUJdCcQp7cZx_g4cVl1WXXa3qmgr9ZY6sYOqZrPVZhdUTpV4ASRehFfhFfokzOSPbhFCqtRDj0lsx7JnPJ_Hnm8AXms7ihFYSNOJE9cUkYc6JxLLDBIKfFTEIEJ-yOG2u7UvPhw4Bwvws46FKfkhGocbaUaxXpOCn6hk4w9paD5K6ejA8ulIsr5W2denX3DTlr_rdXCG33Defb-3uWVWeQXMWKA9N7nyEzcQLcq-JbXwJcJ4BJqO0ij_seXhvl4ry7OdJFFaS-EEgZQ8iXwlXcsPIhvbvQW3hdsKKFlE52NDWGWjtSzSuaCRNInpq6aJbPGN-f7Om8G_sO08VC5sXfcB_KpHqbzicrw-m0br8ddLBJI3aRgfwv0KeLN2qSmPYEFnj-HeBTrGJfjWzlj7aML6dN_n_OwHii4pgWKErU8RRqdpFbXKhkXibYaIn7VHEcWUnp99r4IuGCWCkhO2oyfjzzl5x9kuORDYpk7TnMlMsd40Z52jEdYZkHOEUYYmojvJPj2B_WsZhaewmI0zvQzMiz1PK9xAECpUsSUdR7sc2-G2RpSnDTBrmQnjisGdEomkYck9zUOazLCZTAPeNuVPSu6Sf5ZcqUUwrNawPKTNv_ARzQgD1prPuPrQkZLM9HhGZXA9J1AeGPCsFN3mVzaRYKMNM4AXAvifPoS7w8GgeXp-lUqrcGen0w0Hve3-C7iLr4Pyfv0KLE4nM_0S4eM0elVoLIPD65bt32NqduI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Air+Knife%E2%80%93Assisted+Recrystallization+Method+for+Ambient%E2%80%90Process+Planar+Perovskite+Solar+Cells+and+Its+Dim%E2%80%90Light+Harvesting&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cheng%2C+Rui&rft.au=Chung%2C+Chih%E2%80%90Chun&rft.au=Zhang%2C+Hong&rft.au=Zhou%2C+Zhiwen&rft.date=2019-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201804465&rft.externalDBID=10.1002%252Fsmll.201804465&rft.externalDocID=SMLL201804465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |