An Air Knife–Assisted Recrystallization Method for Ambient‐Process Planar Perovskite Solar Cells and Its Dim‐Light Harvesting

The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells t...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 8; pp. e1804465 - n/a
Main Authors Cheng, Rui, Chung, Chih‐Chun, Zhang, Hong, Zhou, Zhiwen, Zhai, Peng, Huang, Yu‐Ting, Lee, Hyeonseok, Feng, Shien‐Ping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air‐knife assisted recrystallization method is reported, based on a simple bath‐immersion to prepare high‐quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap‐state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath‐immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500–2000 lux dim‐light illumination respectively, which is among the highest performance of ambient‐process perovskite solar cells. An air knife–assisted recrystallization method is developed to fabricate high‐quality perovskite film in air under daily variable weather. The presented method is a root fabrication based on a bath‐immersion process, offering useful insights for fabricating highly efficient ambient‐process perovskite solar cells toward real production and paves a way for dim‐light harvesting and recycling.
AbstractList The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air‐knife assisted recrystallization method is reported, based on a simple bath‐immersion to prepare high‐quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap‐state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath‐immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500–2000 lux dim‐light illumination respectively, which is among the highest performance of ambient‐process perovskite solar cells.
The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air‐knife assisted recrystallization method is reported, based on a simple bath‐immersion to prepare high‐quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap‐state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath‐immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500–2000 lux dim‐light illumination respectively, which is among the highest performance of ambient‐process perovskite solar cells. An air knife–assisted recrystallization method is developed to fabricate high‐quality perovskite film in air under daily variable weather. The presented method is a root fabrication based on a bath‐immersion process, offering useful insights for fabricating highly efficient ambient‐process perovskite solar cells toward real production and paves a way for dim‐light harvesting and recycling.
The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air-knife assisted recrystallization method is reported, based on a simple bath-immersion to prepare high-quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap-state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath-immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500-2000 lux dim-light illumination respectively, which is among the highest performance of ambient-process perovskite solar cells.The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air-knife assisted recrystallization method is reported, based on a simple bath-immersion to prepare high-quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap-state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath-immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500-2000 lux dim-light illumination respectively, which is among the highest performance of ambient-process perovskite solar cells.
Author Cheng, Rui
Feng, Shien‐Ping
Zhai, Peng
Chung, Chih‐Chun
Huang, Yu‐Ting
Zhang, Hong
Zhou, Zhiwen
Lee, Hyeonseok
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0002-2457-4805
  surname: Cheng
  fullname: Cheng, Rui
  organization: The University of Hong Kong
– sequence: 2
  givenname: Chih‐Chun
  surname: Chung
  fullname: Chung, Chih‐Chun
  organization: The University of Hong Kong
– sequence: 3
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: The University of Hong Kong
– sequence: 4
  givenname: Zhiwen
  surname: Zhou
  fullname: Zhou, Zhiwen
  organization: The University of Hong Kong
– sequence: 5
  givenname: Peng
  surname: Zhai
  fullname: Zhai, Peng
  organization: Northwestern Polytechnical University
– sequence: 6
  givenname: Yu‐Ting
  surname: Huang
  fullname: Huang, Yu‐Ting
  organization: The University of Hong Kong
– sequence: 7
  givenname: Hyeonseok
  surname: Lee
  fullname: Lee, Hyeonseok
  organization: The University of Hong Kong
– sequence: 8
  givenname: Shien‐Ping
  orcidid: 0000-0002-3941-1363
  surname: Feng
  fullname: Feng, Shien‐Ping
  email: hpfeng@hku.hk
  organization: The University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30690887$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFDEYx4O02Be9epSAFy-7JpnMTHIc1peWTuli9TxkJ8-0qZmkJtnKeir4BYR-w34S0267QkE8JYTfL8_Lfw9tOe8AoVeUTCkh7F0crZ0yQgXhvCqfoV1a0WJSCSa3NndKdtBejBeEFJTx-jnaKUgliRD1LvrVONyYgI-cGeD2-qaJ0cQEGn-GPqxiUtaanyoZ7_AxpHOv8eADbsaFAZdur3_Pg-8hRjy3yqmA5xD8VfxmEuBTb_PDDKyNWDmND1PE782YndacnSd8oMIVxGTc2Qu0PSgb4eXDuY--fvzwZXYwaU8-Hc6adtJzysoJ02KoJM-D0loBF4rISghWaiA16WlNJQdN66IcBg2geCmlUmxYCK0qKuSi2Edv1_9eBv99mWt3o4l9blA58MvYMVpLzgrGZUbfPEEv_DK43F2mBOeCVDXP1OsHarkYQXeXwYwqrLrH9WZgugb64GMMMGwQSrq7_Lq7_LpNflngT4TepPv1p6CM_bcm19oPY2H1nyLd6XHb_nX_AMOGsuw
CitedBy_id crossref_primary_10_1016_j_xcrp_2020_100273
crossref_primary_10_1039_D3TC02736H
crossref_primary_10_1002_aenm_201901980
crossref_primary_10_1016_j_jpowsour_2020_228736
crossref_primary_10_1088_2515_7639_acc893
crossref_primary_10_1002_adem_202200964
crossref_primary_10_1039_D0RA02583F
crossref_primary_10_1002_adem_202200747
crossref_primary_10_1016_j_mtener_2021_100907
crossref_primary_10_1016_j_solener_2023_112057
crossref_primary_10_1016_j_jpowsour_2021_230073
crossref_primary_10_3389_fmats_2021_635224
crossref_primary_10_3390_nano9121666
crossref_primary_10_1002_smtd_202200624
crossref_primary_10_1002_solr_202200953
crossref_primary_10_1002_solr_202400849
crossref_primary_10_1002_er_5754
crossref_primary_10_1002_aesr_202100143
crossref_primary_10_1039_C9MH00325H
crossref_primary_10_1039_D0TA00978D
crossref_primary_10_1002_solr_202100386
crossref_primary_10_1016_j_mtphys_2021_100557
crossref_primary_10_1002_ese3_1084
crossref_primary_10_1002_advs_202003359
crossref_primary_10_1039_C9TA10040G
crossref_primary_10_1002_admi_202100743
crossref_primary_10_1002_adfm_201909755
crossref_primary_10_1039_D0DT03201H
crossref_primary_10_1080_09506608_2022_2077030
crossref_primary_10_1016_j_xcrp_2022_100827
crossref_primary_10_1002_adom_202301052
crossref_primary_10_1002_cssc_202202109
crossref_primary_10_1016_j_nanoen_2024_109932
crossref_primary_10_1002_smtd_202000744
crossref_primary_10_1016_j_jpowsour_2019_227584
crossref_primary_10_1039_D1TA03577K
crossref_primary_10_1039_D2TC02351B
Cites_doi 10.1021/acsami.7b12076
10.1039/C5EE01179E
10.1016/j.nanoen.2017.06.039
10.1039/C7TA00894E
10.1002/aenm.201700677
10.1021/acsami.6b06682
10.1039/C5TA00658A
10.1063/1.4895039
10.1038/nnano.2014.181
10.1021/acsami.7b05078
10.1038/nature12340
10.1002/adfm.201503448
10.1002/anie.201201656
10.1002/adma.201500048
10.1039/C6TA04097G
10.1039/C6TA06892H
10.1002/aenm.201700414
10.1038/ncomms11105
10.1039/C6SE00077K
10.1002/pssr.201600004
10.1039/C5NR04179A
10.1021/jacs.6b04924
10.1021/acsnano.7b04070
10.1002/adfm.201605654
10.1039/C4EE01724B
10.1016/j.solmat.2011.07.011
10.1021/jacs.5b04930
10.1016/j.apsusc.2017.02.135
10.1002/aenm.201501354
10.1002/aenm.201501890
10.1021/acs.nanolett.5b00843
10.1021/acs.nanolett.5b03556
10.1021/am5057807
10.1021/acsami.6b09978
10.1126/science.1254050
10.1002/aenm.201700210
10.1039/C5EE02194D
10.1038/srep39839
10.1016/j.nanoen.2018.03.081
10.1002/adma.201506049
10.1039/C5RA14587B
10.1002/adma.201605290
10.1002/solr.201700097
10.1021/ja809598r
10.1126/science.1228604
10.1126/science.aan2301
10.1002/anie.201405334
10.1039/C8EE00580J
10.1021/jacs.5b02651
10.1016/j.orgel.2017.03.017
10.1021/acsami.7b01864
10.1016/j.joule.2018.03.017
10.1038/nmat4014
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201804465
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30690887
10_1002_smll_201804465
SMLL201804465
Genre article
Journal Article
GrantInformation_xml – fundername: HKU‐Zhejiang Institute of Research and Innovation (HKU‐ZIRI)
– fundername: General Research Fund of the Research Grants Council of Hong Kong Special Administrative Region, China
  funderid: 17204516; 17206518
– fundername: Environment and Conservation Fund
  funderid: ECF 49/2017
– fundername: Seed Fund for Strategic Interdisciplinary Research Scheme at the University of Hong Kong
– fundername: HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI)
– fundername: General Research Fund of the Research Grants Council of Hong Kong Special Administrative Region, China
  grantid: 17206518
– fundername: General Research Fund of the Research Grants Council of Hong Kong Special Administrative Region, China
  grantid: 17204516
– fundername: Environment and Conservation Fund
  grantid: ECF 49/2017
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4125-2d8f69404417ae48a0968825de070c17194ed1735ffdeea4599aa2fb8da6189b3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 23:17:27 EDT 2025
Sun Jul 13 03:40:11 EDT 2025
Mon Jul 21 05:58:21 EDT 2025
Tue Jul 01 02:10:40 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:20:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords perovskites
dim lights
ambient process
air-knife
recrystallization
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4125-2d8f69404417ae48a0968825de070c17194ed1735ffdeea4599aa2fb8da6189b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3941-1363
0000-0002-2457-4805
PMID 30690887
PQID 2184480674
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2179423249
proquest_journals_2184480674
pubmed_primary_30690887
crossref_primary_10_1002_smll_201804465
crossref_citationtrail_10_1002_smll_201804465
wiley_primary_10_1002_smll_201804465_SMLL201804465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Feb
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 15
2017; 7
2017; 1
2015; 5
2015; 3
2017; 27
2017; 45
2016; 10
2017; 29
2009; 131
2015; 8
2017; 356
2015; 7
2017; 9
2018; 49
2012; 51
2016; 4
2017; 407
2016; 6
2018; 8
2016; 7
2015; 25
2015; 27
2018; 2
2014; 2
2015; 137
2017; 39
2017; 11
2011; 95
2018
2013; 499
2014; 13
2016; 138
2014; 9
2016; 28
2018; 11
2014; 7
2012; 338
2014; 345
2016; 8
2016; 9
2014; 53
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 407
  start-page: 427
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 30920
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 109
  year: 2018
  publication-title: Nano Energy
– volume: 15
  start-page: 8114
  year: 2015
  publication-title: Nano Lett.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 137
  start-page: 5810
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2242
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 138
  start-page: 9919
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 3424
  year: 2015
  publication-title: Adv. Mater.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 29
  start-page: 1605290
  year: 2017
  publication-title: Adv. Mater.
– volume: 137
  start-page: 8696
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 17018
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 39027
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 1605654
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 9176
  year: 2017
  publication-title: ACS Nano
– year: 2018
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 7
  start-page: 11105
  year: 2016
  publication-title: Nat. Commun.
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 8
  start-page: 21505
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 927
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 540
  year: 2017
  publication-title: Sustainable Energy Fuels
– volume: 2
  start-page: 091102
  year: 2014
  publication-title: APL Mater.
– volume: 8
  start-page: 6300
  year: 2016
  publication-title: Nanoscale
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 12
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 95
  start-page: 3256
  year: 2011
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 7
  start-page: 1700414
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1501354
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 39839
  year: 2017
  publication-title: Sci. Rep.
– volume: 5
  start-page: 13448
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 8808
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1700677
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 39
  start-page: 60
  year: 2017
  publication-title: Nano Energy
– volume: 25
  start-page: 7064
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2253
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 14023
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 381
  year: 2016
  publication-title: Phys. Status Solidi RRL
– volume: 7
  start-page: 3952
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1700210
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 27832
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2464
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 45
  start-page: 302
  year: 2017
  publication-title: Org. Electron.
– volume: 28
  start-page: 2964
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1700097
  year: 2017
  publication-title: Sol. RRL
– volume: 5
  start-page: 93957
  year: 2015
  publication-title: RSC Adv.
– volume: 53
  start-page: 9898
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 11700
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 11878
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1501890
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1108
  year: 2018
  publication-title: Joule
– volume: 15
  start-page: 3959
  year: 2015
  publication-title: Nano Lett.
– ident: e_1_2_5_25_1
  doi: 10.1021/acsami.7b12076
– ident: e_1_2_5_31_1
  doi: 10.1039/C5EE01179E
– ident: e_1_2_5_7_1
  doi: 10.1016/j.nanoen.2017.06.039
– ident: e_1_2_5_12_1
  doi: 10.1039/C7TA00894E
– ident: e_1_2_5_11_1
  doi: 10.1002/aenm.201700677
– ident: e_1_2_5_48_1
  doi: 10.1021/acsami.6b06682
– ident: e_1_2_5_16_1
  doi: 10.1039/C5TA00658A
– ident: e_1_2_5_33_1
  doi: 10.1063/1.4895039
– ident: e_1_2_5_23_1
  doi: 10.1038/nnano.2014.181
– ident: e_1_2_5_51_1
  doi: 10.1021/acsami.7b05078
– ident: e_1_2_5_6_1
  doi: 10.1038/nature12340
– ident: e_1_2_5_36_1
  doi: 10.1002/adfm.201503448
– ident: e_1_2_5_41_1
  doi: 10.1002/anie.201201656
– ident: e_1_2_5_32_1
  doi: 10.1002/adma.201500048
– ident: e_1_2_5_38_1
  doi: 10.1039/C6TA04097G
– ident: e_1_2_5_20_1
  doi: 10.1039/C6TA06892H
– ident: e_1_2_5_43_1
  doi: 10.1002/aenm.201700414
– ident: e_1_2_5_18_1
  doi: 10.1038/ncomms11105
– ident: e_1_2_5_4_1
– ident: e_1_2_5_47_1
  doi: 10.1039/C6SE00077K
– ident: e_1_2_5_9_1
  doi: 10.1002/pssr.201600004
– ident: e_1_2_5_50_1
  doi: 10.1039/C5NR04179A
– ident: e_1_2_5_27_1
  doi: 10.1021/jacs.6b04924
– ident: e_1_2_5_42_1
  doi: 10.1021/acsnano.7b04070
– ident: e_1_2_5_15_1
  doi: 10.1002/adfm.201605654
– ident: e_1_2_5_34_1
  doi: 10.1039/C4EE01724B
– ident: e_1_2_5_35_1
  doi: 10.1016/j.solmat.2011.07.011
– ident: e_1_2_5_14_1
  doi: 10.1021/jacs.5b04930
– ident: e_1_2_5_45_1
  doi: 10.1016/j.apsusc.2017.02.135
– ident: e_1_2_5_21_1
  doi: 10.1002/aenm.201501354
– ident: e_1_2_5_54_1
  doi: 10.1002/aenm.201501890
– ident: e_1_2_5_22_1
  doi: 10.1021/acs.nanolett.5b00843
– ident: e_1_2_5_29_1
  doi: 10.1021/acs.nanolett.5b03556
– ident: e_1_2_5_30_1
  doi: 10.1021/am5057807
– ident: e_1_2_5_52_1
  doi: 10.1021/acsami.6b09978
– ident: e_1_2_5_44_1
  doi: 10.1126/science.1254050
– ident: e_1_2_5_49_1
  doi: 10.1002/aenm.201700210
– ident: e_1_2_5_3_1
  doi: 10.1039/C5EE02194D
– ident: e_1_2_5_26_1
  doi: 10.1038/srep39839
– ident: e_1_2_5_19_1
  doi: 10.1016/j.nanoen.2018.03.081
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201506049
– ident: e_1_2_5_46_1
  doi: 10.1039/C5RA14587B
– ident: e_1_2_5_37_1
  doi: 10.1002/adma.201605290
– ident: e_1_2_5_8_1
  doi: 10.1002/solr.201700097
– ident: e_1_2_5_1_1
  doi: 10.1021/ja809598r
– ident: e_1_2_5_5_1
  doi: 10.1126/science.1228604
– ident: e_1_2_5_2_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_5_10_1
  doi: 10.1002/anie.201405334
– ident: e_1_2_5_39_1
  doi: 10.1039/C8EE00580J
– ident: e_1_2_5_24_1
  doi: 10.1021/jacs.5b02651
– ident: e_1_2_5_53_1
  doi: 10.1016/j.orgel.2017.03.017
– ident: e_1_2_5_17_1
  doi: 10.1021/acsami.7b01864
– ident: e_1_2_5_40_1
  doi: 10.1016/j.joule.2018.03.017
– ident: e_1_2_5_13_1
  doi: 10.1038/nmat4014
SSID ssj0031247
Score 2.4633594
Snippet The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1804465
SubjectTerms Air knives
air–knife
ambient process
Crystallization
dim lights
Domains
Energy conversion efficiency
Light
Morphology
Nanotechnology
Perovskites
Photovoltaic cells
Recrystallization
Relative humidity
Solar cells
Submerging
Title An Air Knife–Assisted Recrystallization Method for Ambient‐Process Planar Perovskite Solar Cells and Its Dim‐Light Harvesting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201804465
https://www.ncbi.nlm.nih.gov/pubmed/30690887
https://www.proquest.com/docview/2184480674
https://www.proquest.com/docview/2179423249
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnqm3T13HxgY9dEVfBW0mbVBa7XdnuCnoS_AOC_9Bf4kzbrbuKCHpradKmyUzmyyTzDcCWssIIgYXQ7Sh2dB66qHM8NnQ_psBHSQwi5IdsnDvH1_z0xr4ZiuIv-CEqhxtpRj5fk4KLMNv9JA3N2gltHRgebUlSlDkd2CJUdFnxR1lovPLsKmizdCLeGrA27pm7o9VHrdI3qDmKXHPTczQNYtDo4sTJ3U6_F-5ET1_4HP_zVzMwVeJSVisEaRbGVDoHk0NshfPwUktZrdVlZ3Qc5v35DUeWZEQygp6PiDKTpAzqZI08LzVDQMxq7ZBCLt-fX8uYBEZ5kkSXXahu5yEj5zFr0vqa7askyZhIJTvpZeyg1cY6dfIdMEpgRGwg6e0CXB8dXu0f62UOBz3iiJ10U3qx4_M9ynQmFPcELpkQ1NtS4VwTGa7hcyUN17LjWColuO37Qphx6EnhGJ4fWoswnnZStQzMjVxXScTXBJpkZAjbVo6J7zEthSBIaaAPxjCISoJzyrORBAU1sxlQ5wZV52qwXZW_L6g9fiy5NhCJoFTxLKC1MffQ2HMNNqvHqJy04yJS1elTGZzuCLP6GiwVolR9yiKOaJziNTBzgfilDUGzUa9Xdyt_qbQKE3jtF2fO12C81-2rdYRUvXAjV5sP8IAbUA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9gAcoOU30FIjgTilbRzn78Bh1W21281WiLZSb8GJHVSRzaLNLqicKvECSH2SvgqP0CdhJn90QQgJqQeOSWzHsmc8n8eebwBeaDtOEFhI00lS1xSxhzonUssMUgp8VMQgQn7I4b7bOxJ7x87xAlw0sTAVP0TrcCPNKNdrUnBySG_-ZA0tRhmdHVg-nUk29yoH-vQz7tqK1_0uTvFLznd3Drd7Zp1YwEwEGnSTKz91A7FF6bekFr5EHI9I01EaFSCxPNzYa2V5tpOmSmspnCCQkqexr6Rr-UFsY7s3YInSiBNdf_dty1hlo7ks87mglTSJ6qvhidzim_P9nbeDv4HbeaxcGrvdu_C9GabqjsuHjdk03ki-_MIg-V-N4zLcqaE361S6sgILOr8Ht68QMt6Hr52cdU4mbEA3fi7PzlF4SQ0UI3R9ikA6y-q4VTYsU28zxPysM4opqvTy7FsddsEoFZScsDd6Mv5UkH-cHZALgW3rLCuYzBXrTwvWPRlhnZDcI4xyNBHhSf7-ARxdyyg8hMV8nOvHwLzE87TCLQThQpVY0nG0y7EdbmvEedoAsxGaKKk53CmVSBZV7NM8osmM2sk04FVb_mPFXvLHkquNDEb1KlZEtP0XPuIZYcDz9jOuP3SoJHM9nlEZXNEJlgcGPKpkt_2VTTTYaMUM4KUE_qUP0cEwDNunJ_9SaR1u9g6HYRT29wdP4Ra-D6or9quwOJ3M9BoiyGn8rNRZBu-uW7h_AFqweDM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48FeggUJdCcQp7cZx_g4cVl1WXXa3qmgr9ZY6sYOqZrPVZhdUTpV4ASRehFfhFfokzOSPbhFCqtRDj0lsx7JnPJ_Hnm8AXms7ihFYSNOJE9cUkYc6JxLLDBIKfFTEIEJ-yOG2u7UvPhw4Bwvws46FKfkhGocbaUaxXpOCn6hk4w9paD5K6ejA8ulIsr5W2denX3DTlr_rdXCG33Defb-3uWVWeQXMWKA9N7nyEzcQLcq-JbXwJcJ4BJqO0ij_seXhvl4ry7OdJFFaS-EEgZQ8iXwlXcsPIhvbvQW3hdsKKFlE52NDWGWjtSzSuaCRNInpq6aJbPGN-f7Om8G_sO08VC5sXfcB_KpHqbzicrw-m0br8ddLBJI3aRgfwv0KeLN2qSmPYEFnj-HeBTrGJfjWzlj7aML6dN_n_OwHii4pgWKErU8RRqdpFbXKhkXibYaIn7VHEcWUnp99r4IuGCWCkhO2oyfjzzl5x9kuORDYpk7TnMlMsd40Z52jEdYZkHOEUYYmojvJPj2B_WsZhaewmI0zvQzMiz1PK9xAECpUsSUdR7sc2-G2RpSnDTBrmQnjisGdEomkYck9zUOazLCZTAPeNuVPSu6Sf5ZcqUUwrNawPKTNv_ARzQgD1prPuPrQkZLM9HhGZXA9J1AeGPCsFN3mVzaRYKMNM4AXAvifPoS7w8GgeXp-lUqrcGen0w0Hve3-C7iLr4Pyfv0KLE4nM_0S4eM0elVoLIPD65bt32NqduI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Air+Knife%E2%80%93Assisted+Recrystallization+Method+for+Ambient%E2%80%90Process+Planar+Perovskite+Solar+Cells+and+Its+Dim%E2%80%90Light+Harvesting&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cheng%2C+Rui&rft.au=Chung%2C+Chih%E2%80%90Chun&rft.au=Zhang%2C+Hong&rft.au=Zhou%2C+Zhiwen&rft.date=2019-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201804465&rft.externalDBID=10.1002%252Fsmll.201804465&rft.externalDocID=SMLL201804465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon