Breaking linkage between mating compatibility factors: Tetrapolarity in Microbotryum
Linkage of genes determining separate self-incompatibility mechanisms is a general expectation of sexual eukaryotes that helps to resolve conflicts between reproductive assurance and recombination. However, in some organisms, multiple loci are required to be heterozygous in offspring while segregati...
Saved in:
Published in | Evolution Vol. 69; no. 10; pp. 2561 - 2572 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.10.2015
Society for the Study of Evolution Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Linkage of genes determining separate self-incompatibility mechanisms is a general expectation of sexual eukaryotes that helps to resolve conflicts between reproductive assurance and recombination. However, in some organisms, multiple loci are required to be heterozygous in offspring while segregating independently in meiosis. This condition, termed "tetrapolarity" in basidiomycete fungi, originated in the ancestor to that phylum, and there have been multiple reports of subsequent transitions to "bipolarity" (i.e., linkage of separate mating factors). In the genus Microbotryum, we present the first report of the breaking of linkage between two haploid self-incompatibility factors and derivation of a tetrapolar breeding system. This breaking of linkage is associated with major alteration of genome structure, with the compatibility factors residing on separate mating-type chromosome pairs, reduced in size but retaining the structural dimorphism characteristic for regions of recombination suppression. The challenge to reproductive assurance from unlinked compatibility factors may be overcome by the automictic mating system in Microbotryum (i.e., mating among products of the same meiosis). As a curious outcome, this linkage transition and its effects upon outcrossing compatibility rates may reinforce automixis as a mating system. These observations contribute to understanding mating systems and linkage as fundamental principles of sexual life cycles, with potential impacts on conventional wisdom regarding mating-type evolution. |
---|---|
AbstractList | Linkage of genes determining separate self‐incompatibility mechanisms is a general expectation of sexual eukaryotes that helps to resolve conflicts between reproductive assurance and recombination. However, in some organisms, multiple loci are required to be heterozygous in offspring while segregating independently in meiosis. This condition, termed “tetrapolarity” in basidiomycete fungi, originated in the ancestor to that phylum, and there have been multiple reports of subsequent transitions to “bipolarity” (i.e., linkage of separate mating factors). In the genus Microbotryum, we present the first report of the breaking of linkage between two haploid self‐incompatibility factors and derivation of a tetrapolar breeding system. This breaking of linkage is associated with major alteration of genome structure, with the compatibility factors residing on separate mating‐type chromosome pairs, reduced in size but retaining the structural dimorphism characteristic for regions of recombination suppression. The challenge to reproductive assurance from unlinked compatibility factors may be overcome by the automictic mating system in Microbotryum (i.e., mating among products of the same meiosis). As a curious outcome, this linkage transition and its effects upon outcrossing compatibility rates may reinforce automixis as a mating system. These observations contribute to understanding mating systems and linkage as fundamental principles of sexual life cycles, with potential impacts on conventional wisdom regarding mating‐type evolution. |
Author | Hwang, Mindy Scott, Molly Hood, Michael E. |
Author_xml | – sequence: 1 givenname: Michael E. surname: Hood fullname: Hood, Michael E. email: mhood@amherst.edu organization: Department of Biology, Amherst College, Massachusetts, 01002, Amherst – sequence: 2 givenname: Molly surname: Scott fullname: Scott, Molly organization: Department of Biology, Amherst College, Massachusetts, 01002, Amherst – sequence: 3 givenname: Mindy surname: Hwang fullname: Hwang, Mindy organization: Department of Biology, Amherst College, Massachusetts, 01002, Amherst |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26339889$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFAz8AFKkXLmnH3zE3-sFC1dIDCxwtJ5lU3k3ixUko--_xdtsiccKy5NH7PjMazxyQvT70SMhrCsc0nRP8FY4p00o-IzMqZZFLJdQemQFQkfOCwT45GIYlABhJzQuyzxTnpijMjCxOI7qV72-z1vcrd4tZieMdYp91btzKVejWKSp968dN1rhqDHF4ny1wjG4dWhe3su-za1_FUIYxbqbuJXneuHbAVw_vIfn28WJx9im_upl_PvtwlVeCMpmzWgIK7RBKpMYpp0pZgzI1q7VMnWrXaOUkq4qGgwEOgA0mtTIAPBn8kLzb1V3H8HPCYbSdHypsW9djmAZLtVCFFpqy_0AZE-lSkdCjf9BlmGKfPrKl0jglgE7U2wdqKjus7Tr6zsWNfRxtAk52wJ1vcfPkU7Dbndm0M3u_M3vx_eY-SBlvdhnLIQ35b0WhQWhNk5_vfD-M-PvJd3FlleZa2h9f5vbrwlyfX57OLed_APpXol4 |
CitedBy_id | crossref_primary_10_1073_pnas_1701658114 crossref_primary_10_1101_gr_242578_118 crossref_primary_10_1128_microbiolspec_FUNK_0046_2016 crossref_primary_10_1371_journal_pgen_1011207 crossref_primary_10_1371_journal_pone_0165656 crossref_primary_10_1038_s41467_018_04380_9 crossref_primary_10_1111_mec_14805 crossref_primary_10_1111_nph_17039 crossref_primary_10_1186_s12862_020_01689_2 crossref_primary_10_1146_annurev_phyto_082718_095947 |
ContentType | Journal Article |
Copyright | Copyrightc 2015 Society for the Study of Evolution 2015 The Author(s). © 2015 The Society for the Study of Evolution. 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution. Copyright Wiley Subscription Services, Inc. Oct 2015 |
Copyright_xml | – notice: Copyrightc 2015 Society for the Study of Evolution – notice: 2015 The Author(s). © 2015 The Society for the Study of Evolution. – notice: 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution. – notice: Copyright Wiley Subscription Services, Inc. Oct 2015 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/evo.12765 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Animal Behavior Abstracts Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1558-5646 |
EndPage | 2572 |
ExternalDocumentID | 3841285431 26339889 EVO12765 24704771 ark_67375_WNG_ST9MDJBG_3 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | --- --Z -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29G 2AX 31~ 33P 3O- 3SF 4.4 41~ 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AAONW AAPSS AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABBHK ABCQN ABCUV ABDPE ABEJV ABEML ABJNI ABLJU ABMNT ABPLY ABPPZ ABPTD ABPVW ABTLG ABWJO ABXSQ ABXVV ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACFRR ACGFO ACGFS ACGOD ACIPB ACIWK ACKIV ACNCT ACPOU ACPRK ACSCC ACSTJ ACUFI ACUTJ ACXBN ACXQS ACZBC ADACV ADBBV ADEOM ADHSS ADIPN ADIZJ ADKYN ADMGS ADOZA ADQBN ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEPYG AEQDE AEUPB AEUQT AFAZZ AFBPY AFFDN AFFIJ AFGKR AFGWE AFNWH AFPWT AFRAH AFYAG AFZJQ AGMDO AGUYK AHXOZ AI. AIAGR AILXY AIURR AIWBW AJAOE AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD AQVQM ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F D0L D0S DC7 DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FAC FAL FAS FD6 FEDTE FJD FJW G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HQ2 HTVGU HVGLF HZ~ IAG IAO IEA IEP IOF IPSME ITC IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NHB NQS O66 O9- OBOKY OIG OJZSN OK1 OVD OWPYF P-O P2P P2W P2X P4D PQ0 PQQKQ Q.N Q11 Q5J QB0 QN7 R.K RBO ROL ROX RWL RX1 RXW SA0 SJN SUPJJ TAE TCN TEORI TN5 UB1 UBC UHB UQL V8K VH1 VJK VQA W8V W99 WBKPD WH7 WHG WIH WIK WNSPC WOHZO WQJ WRC WYISQ XG1 XOL XSW YXE YYP YZZ ZCA ZCG ZZTAW ~02 ~IA ~KM ~WT AAJUZ ABCVL ABHUG ABWRO ABXZS ACXME ADAWD ADDAD ADZLD AEDJY AESBF AFDAS AFVGU AGJLS BFHJK CWIXF DWIUU G8K CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4125-2d50e47ae0be19a6a6b5d069d2d759517af76a52c8f3090300efe17ac90036a53 |
IEDL.DBID | DR2 |
ISSN | 0014-3820 |
IngestDate | Fri Oct 25 01:56:10 EDT 2024 Fri Oct 25 09:32:42 EDT 2024 Thu Oct 10 14:39:55 EDT 2024 Tue Oct 15 23:50:26 EDT 2024 Sat Aug 24 00:53:21 EDT 2024 Fri Feb 02 07:05:13 EST 2024 Wed Oct 30 09:54:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | self-incompatibility bipolarity mating type sex chromosomes Automixis |
Language | English |
License | 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4125-2d50e47ae0be19a6a6b5d069d2d759517af76a52c8f3090300efe17ac90036a53 |
Notes | ark:/67375/WNG-ST9MDJBG-3 ArticleID:EVO12765 istex:1C472BEBE1021D3B01B7734FA97AAF0061BA6A30 Figure S1. Meiosis and automixis (intratetrad mating) in Microbotryum saponariae. Figure S2. Germination by Microbotryum and formation of the linear meiotic tetrad. Figure S3. An example of a quantitative PCR profile for the nine chromosome-specific DNA samples taken from the a2 electrophoretic karyotype of Microbotryum lagerheimii for amplification of the mating type pheromone receptor (PR) locus. Figure S4. Electrophoretic karyotypes of Microbotryum species showing the position of identified chromosomes carrying the mating type pheromone receptor (PR) locus. Figure S5. Mating type homeodomain (HD) allele-specific PCR products from the four haploids in a linear meiotic tetrad of Microbotryum saponariae. Table S1. Microbotryum collection details. Table S2. Crossing matrix design for testing mating type HD compatibility in Microbotryum saponariae. Table S3. Optical map data for mating-type chromosomes of Microbotryum saponariae. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26339889 |
PQID | 1723825007 |
PQPubID | 42232 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1746874712 proquest_miscellaneous_1722422414 proquest_journals_1723825007 pubmed_primary_26339889 wiley_primary_10_1111_evo_12765_EVO12765 jstor_primary_24704771 istex_primary_ark_67375_WNG_ST9MDJBG_3 |
PublicationCentury | 2000 |
PublicationDate | 2015-10 20151001 October 2015 2015-Oct |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: St. Louis |
PublicationTitle | Evolution |
PublicationTitleAlternate | Evolution |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Society for the Study of Evolution Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Society for the Study of Evolution – name: Oxford University Press |
References | Rice, W. R. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735-742. Uyenoyama, M. K. 2005. Evolution under tight linkage to mating type. New Phytol. 165:63-70. Abràmoff, M. D., P. J. Magalhães, and S. J. Ram. 2004. Image processing with Image. J. Biophotonics Int. 11:36-43. Merino, S. T., M. A. Nelson, D. J. Jacobson, and D. O. Natvig. 1996. Pseudohomothallism and evolution of the mating-type chromosome in Neurospora tetrasperma. Genetics 143:789-799. Hsueh, Y. P., J. A. Fraser, and J. Heitman. 2008. Transitions in sexuality: recapitulation of an ancestral tri-and tetrapolar mating system in Cryptococcus neoformans. Eukaryot. Cell 7:1847-1855. Hood, M. E., and J. Antonovics. 2000. Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbotryum violaceum ( = Ustilago violacea). Heredity 85:231-241. Fontanillas, E., M. E. Hood, H. Badouin, E. Petit, V. Barbe, J. Gouzy, D. M. de Vienne, G. Aguileta, J. Poulain, P. Wincker, et al. 2015. Degeneration of the non-recombining regions in the mating-type chromosomes of the anther-smut fungi. Mol. Biol. Evol. 32:928-943. Hood, M. E., E. Petit, and T. Giraud. 2013. Extensive divergence between mating type chromosomes of the anther-smut fungus. Genetics 193:309-315. Sandrock, C., B. E. Schirrmeister, and C. Vorburger. 2011. Evolution of reproductive mode variation and host associations in a sexual-asexual complex of aphid parasitoids. BMC Evol. Biol. 11:348. Schäfer, A. M., M. Kemler, R. Bauer, and D. Begerow, 2010. The illustrated life cycle of Microbotryum on the host plant Silene latifolia. Botany 88:875-885. James, T. Y., M. Lee, and L. T. van Diepen. 2011. A single mating-type locus composed of homeodomain genes promotes nuclear migration and heterokaryosis in the white-rot fungus Phanerochaete chrysosporium. Eukaryot. Cell 10:249-261. Koltin, Y. 1978. Genetic structure of incompatibility factors-the ABC of sex. Genetics and morphogenesis in the basidiomycetes. Pp. 31-54. Academic Press, New York. James, T. Y., P. Srivilai, U. Kües, and R. Vilgalys. 2006. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172:1877-1891. Nei, M. 1969. Linkage modification and sex difference in recombination. Genetics 63:681-699. Zakharov, I. A. 1986. Some principles of the gene localization in eukaryotic chromosomes. Formulation of the problem and analysis of nonrandom localization of the mating-type loci in some fungi. Genetika 22:2620-2624. Kokontis, J., and M. Ruddat 1986. Promotion of hyphal growth in Ustilago violacea by host factors from Silene alba. Arch. Microbiol. 144:302-306. Hood, M. E. 2004. Mating within the meiotic tetrad and the maintenance of genomic heterozygosity. Genetics 166:1751-1759. Johnson, L., J. Antonovics, and M. E. Hood. 2005. The evolution of intratetrad mating rates. Evolution 59:2525-2532. Whittle, C. A., A. Votintseva, K. Ridout, and D. A. Filatov. 2015. Recent and massive expansion of the mating-type-specific region in the smut fungus Microbotryum. Genetics 114. 199:809-816. doi:10.1534/genetics.114.171702 Petit, E., T. Giraud, D. M. de Vienne, M. A. Coelho, G. Aguileta, J. Amselem, J. Kreplak, J. Poulain, F. Gavory, P. Wincker, et al. 2012. Linkage to the mating-type locus across the genus Microbotryum: insights into non-recombining chromosomes. Evolution 66:3519-3533. Hoekstra, R. F. 1982. On the asymmetry of sex: evolution of mating types in isogamous populations. J. Theor. Biol. 98:427-451. Kües, U., T. Y. James, and J. Heitman. 2011. Mating type in basidiomycetes: unipolar, bipolar, and tetrapolar patterns of sexuality. Mycota 14:97-160. Bakkeren, G., and J. W. Kronstad. 1994. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Proc. Natl. Acad. Sci. 91:7085-7089. Lewis, K. R., and B. John. 1963. Chromosome marker. Little and Brown, Boston , MA. Felsenstein, J. 1974. The evolutionary advantage of recombination. Genetics 78:737-756. Coelho, M. A., J. P. Sampaio, and P. Gonçalves. 2010. A deviation from the bipolar-tetrapolar mating paradigm in an early diverged basidiomycete. PLoS Genet. 6:e1001052. Billiard, S., M. López-Villavicencio, M. E. Hood, and T. Giraud. 2012. Sex, outcrossing and mating types? Unsolved questions in fungi and beyond. J. Evol. Biol. 25:1020-1038. Devier, B., G. Aguileta, M. E. Hood, and T. Giraud. 2009. Ancient trans-specific polymorphism at pheromone receptor genes in basidiomycetes. Genetics 181:209-223. Billiard, S., M. Lopez-Villavicencio, B. Devier, M. E. Hood, C. Fairhead, and T. Giraud. 2011. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biological Reviews 86:421-442. Neal, P. R., and G. J. Anderson. 2005. Are 'mating systems''breeding systems' of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Syst. Evol. 250:173-185. Le Gac, M., M. E. Hood, E. Fournier, and T. Giraud. 2007. Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61:15-26. Thomas, A., J. Shykoff, O. Jonot, and T. Giraud. 2003. Sex-ratio bias in populations of the phytopathogenic fungus Microbotryum violaceum from several host species. Int. J. Plant Sci. 164:641-647. Vuilleumier, S., N. Alcala, and H. Niculita-Hirzel. 2013. Transitions from reproductive systems governed by two self-incompatible loci to one in fungi. Evolution 67:501-516. Findley, K., S. Sun, J. A. Fraser, Y. P. Hsueh, A. F. Averette, W. Li, F. S. Dietrich, and J. Heitman. 2012. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex. PLoS Genet. 8:e1002528. Hood, M. E. 2002. Dimorphic mating-type chromosomes in the fungus Microbotryum violaceum. Genetics 160:457-461. Nieuwenhuis, B. P. S., S. Billiard, S. Vuilleumier, E. Petit, M. E. Hood, and T. Giraud. 2013. Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity 111:445-455. Giraud, T., R. Yockteng, M. López-Villavicencio, G. Refrégier, and M. E. Hood. 2008. The mating system of the anther smut fungus, Microbotryum violaceum: selfing under heterothallism. Eukaryot. Cell 7:765-775. Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50:913-925. Moriyama, Y., and S. Kawano. 2010. Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold Physarum polycephalum. J. Plant Res. 123:139-148. Kniep, H. 1919. Untersuchungen uber den Antherenbrand (Ustilago violacea Pers.). Ein Beitrag zum Sexualitatsproblem. Z. Bot. 11:257-284. Charlesworth, D., and B. Charlesworth. 1979. The evolutionary genetics of sexual systems in flowering plants. Proc. R. Soc. B. 205:513-530. Hoekstra, R. F. 1984. Evolution of gamete motility differences II. Interaction with the evolution of anisogamy. J. Theor. Biol. 107:71-83. Kirby, G. C. 1984. Breeding systems and heterozygosity in populations of tetrad-forming fungi. Heredity 52:35-41. Saumitou-Laprade, P., P. Vernet, C. Vassiliadis, Y. Hoareau, G. de Magny, B. Dommée, and J. Lepart. 2010. A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327:1648-1650. Gioti, A., B. Nystedt, W. Li, J. Xu, A. Andersson, A. F. Averette, K. Münch, X. Wang, C. Kappauf, J. M. Kingsbury, et al. 2013. Genomic insights into the atopic eczema-associated skin commensal yeast Malassezia sympodialis. MBio 4:e005712 Badouin, H., M. E. Hood, J. Gouzy, G. Aguileta, S. Siguenza, M. H. Perlin, C. A. Cuomo, A. Branca, and T. Giraud. 2015. Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-dioicae. Genetics. 200:1275-1284. Freeman, A. B., K. K. Duong, T. L. Shi, C. F. Hughes, and M. H. Perlin. 2002. Isolates of Microbotryum violaceum from North American host species are phylogenetically distinct from their European host-derived counterparts. Mol. Phylogenet. Evol. 23:158-170. Yockteng, R., S. Marthey, H. Chiapello, A. Gendrault, M. E. Hood, F. Rodolphe, P. Wincker, C. Dossat, and T. Giraud, 2007. Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity gene. BMC Genomics 8:272. Mogie, M. 1986. Automixis: its distribution and status. Biol. J. Linn. Soc. 28:321-329. Antonovics, J., and J. Y. Abrams. 2004. Intratetrad mating and the evolution of linkage relationships. Evolution 58:702-709. Chung, E., E. Petit, J. Antonovics, A. B. Pedersen, and M. E. Hood. 2012. Variation in resistance to multiple pathogen species: anther smuts of Silene uniflora. Ecol. Evol. 2:2304-2314. Moczek, A. P., T. E. Cruickshank, and A. Shelby. 2006. When ontogeny reveals what phylogeny hides: gain and loss of horns during development and evolution of horned beetles. Evolution 60:2329-2341. Bills, G., J. W. Spatafora, and M. Blackwell. 2005. Phylogeny of the fungal kingdom and fungal-like eukaryotes. Handbook of Industrial Mycology Pp. 27-48 in Zhiqiang An, eds. CRC Press, Boca Raton, FL. Hood, M. E., J. I. Mena-Alí, A. K. Gibson, B. Oxelman, T. Giraud, R. Yockyeng, M. T. K. Arroyo, F. Conti, A. Pedersen, P. Gladieux, et al. 2010. Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae. New Phytol. 187:217-229. Poon, N. H., J. Martin, and A. W. Day. 1974. Conjugation in Ustilago violacea. I. Morphology. Can. J. Microbiol. 20:187-191. Barrett, S. C. H. 2008. Major evolutionary transitions in flowering plant reproduction: an overview. Int. J. Plant Sci. 169:1-5. Maynard Smith, J., and E. Szathmáry. 1995. The major transitions in evolution. Oxford Univ. Press, Oxford , U.K. Zakharov, I. A. 2005. Intratetrad mating and its genetic and evolutionary consequences. Russ J Genet 41:402-411. Bakkeren, G., J. Kämper, 2004; 166 2001; 50 2013; 4 2005; 250 2013; 67 1982; 98 2000; 85 2015; 32 2010; 187 2008; 7 2011; 11 2011; 10 1996; 143 2006; 172 2011; 14 1978 2006; 60 1984; 52 1986; 144 2007; 8 2013; 111 2007; 61 2012; 25 2013; 193 2012; 66 2010; 6 2003; 164 1974; 78 2010; 327 2009; 181 2015; 200 1984; 107 1979; 205 1919; 11 2010; 123 2005; 41 1995 2005 2008; 169 2004; 11 2010; 88 2012; 2 2002; 160 1974; 20 2005; 165 1984; 38 1986; 22 2004; 58 2002; 23 1969; 63 2015; 199 2011; 86 1986; 28 2008; 45 1963 1883 2014 2005; 59 1994; 91 2012; 8 |
References_xml | – volume: 50 start-page: 913 year: 2001 end-page: 925 article-title: A likelihood approach to estimating phylogeny from discrete morphological character data publication-title: Syst. Biol. – volume: 11 start-page: 36 year: 2004 end-page: 43 article-title: Image processing with Image. J publication-title: Biophotonics Int. – volume: 144 start-page: 302 year: 1986 end-page: 306 article-title: Promotion of hyphal growth in by host factors from Silene alba publication-title: Arch. Microbiol. – volume: 88 start-page: 875 year: 2010 end-page: 885 article-title: The illustrated life cycle of Microbotryum on the host plant publication-title: Botany – volume: 67 start-page: 501 year: 2013 end-page: 516 article-title: Transitions from reproductive systems governed by two self‐incompatible loci to one in fungi publication-title: Evolution – volume: 250 start-page: 173 year: 2005 end-page: 185 article-title: Are ‘mating systems’‘breeding systems’ of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? publication-title: Plant Syst. Evol. – volume: 181 start-page: 209 year: 2009 end-page: 223 article-title: Ancient trans‐specific polymorphism at pheromone receptor genes in basidiomycetes publication-title: Genetics – volume: 32 start-page: 928 year: 2015 end-page: 943 article-title: Degeneration of the non‐recombining regions in the mating‐type chromosomes of the anther‐smut fungi publication-title: Mol. Biol. Evol. – volume: 63 start-page: 681 year: 1969 end-page: 699 article-title: Linkage modification and sex difference in recombination publication-title: Genetics – volume: 193 start-page: 309 year: 2013 end-page: 315 article-title: Extensive divergence between mating type chromosomes of the anther‐smut fungus publication-title: Genetics – volume: 165 start-page: 63 year: 2005 end-page: 70 article-title: Evolution under tight linkage to mating type publication-title: New Phytol. – volume: 8 start-page: 272 year: 2007 article-title: Expressed sequences tags of the anther smut fungus, , identify mating and pathogenicity gene publication-title: BMC Genomics – volume: 172 start-page: 1877 year: 2006 end-page: 1891 article-title: Evolution of the bipolar mating system of the mushroom from its tetrapolar ancestors involves loss of mating‐type‐specific pheromone receptor function publication-title: Genetics – volume: 160 start-page: 457 year: 2002 end-page: 461 article-title: Dimorphic mating‐type chromosomes in the fungus publication-title: Genetics – volume: 28 start-page: 321 year: 1986 end-page: 329 article-title: Automixis: its distribution and status publication-title: Biol. J. Linn. Soc. – volume: 169 start-page: 1 year: 2008 end-page: 5 article-title: Major evolutionary transitions in flowering plant reproduction: an overview publication-title: Int. J. Plant Sci. – volume: 205 start-page: 513 year: 1979 end-page: 530 article-title: The evolutionary genetics of sexual systems in flowering plants publication-title: Proc. R. Soc. B. – year: 2014 article-title: Mesquite: a modular system for evolutionary analysis, Version 3.01 – volume: 85 start-page: 231 year: 2000 end-page: 241 article-title: Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in ( = ) publication-title: Heredity – volume: 25 start-page: 1020 year: 2012 end-page: 1038 article-title: Sex, outcrossing and mating types? Unsolved questions in fungi and beyond publication-title: J. Evol. Biol. – start-page: 31 year: 1978 end-page: 54 – volume: 164 start-page: 641 year: 2003 end-page: 647 article-title: Sex‐ratio bias in populations of the phytopathogenic fungus from several host species publication-title: Int. J. Plant Sci. – volume: 52 start-page: 35 year: 1984 end-page: 41 article-title: Breeding systems and heterozygosity in populations of tetrad‐forming fungi publication-title: Heredity – volume: 327 start-page: 1648 year: 2010 end-page: 1650 article-title: A self‐incompatibility system explains high male frequencies in an androdioecious plant publication-title: Science – volume: 199 start-page: 809 year: 2015 end-page: 816 article-title: Recent and massive expansion of the mating‐type‐specific region in the smut fungus publication-title: Genetics 114 – volume: 59 start-page: 2525 year: 2005 end-page: 2532 article-title: The evolution of intratetrad mating rates publication-title: Evolution – volume: 60 start-page: 2329 year: 2006 end-page: 2341 article-title: When ontogeny reveals what phylogeny hides: gain and loss of horns during development and evolution of horned beetles publication-title: Evolution – volume: 2 start-page: 2304 year: 2012 end-page: 2314 article-title: Variation in resistance to multiple pathogen species: anther smuts of publication-title: Ecol. Evol. – volume: 11 start-page: 348 year: 2011 article-title: Evolution of reproductive mode variation and host associations in a sexual‐asexual complex of aphid parasitoids publication-title: BMC Evol. Biol. – volume: 22 start-page: 2620 year: 1986 end-page: 2624 article-title: Some principles of the gene localization in eukaryotic chromosomes. Formulation of the problem and analysis of nonrandom localization of the mating‐type loci in some fungi publication-title: Genetika – start-page: 27 year: 2005 end-page: 48 article-title: Phylogeny of the fungal kingdom and fungal‐like eukaryotes publication-title: Handbook of Industrial Mycology – volume: 58 start-page: 702 year: 2004 end-page: 709 article-title: Intratetrad mating and the evolution of linkage relationships publication-title: Evolution – volume: 7 start-page: 765 year: 2008 end-page: 775 article-title: The mating system of the anther smut fungus, : selfing under heterothallism publication-title: Eukaryot. Cell – volume: 10 start-page: 249 year: 2011 end-page: 261 article-title: A single mating‐type locus composed of homeodomain genes promotes nuclear migration and heterokaryosis in the white‐rot fungus publication-title: Eukaryot. Cell – volume: 7 start-page: 1847 year: 2008 end-page: 1855 article-title: Transitions in sexuality: recapitulation of an ancestral tri‐and tetrapolar mating system in publication-title: Eukaryot. Cell – volume: 111 start-page: 445 year: 2013 end-page: 455 article-title: Evolution of uni‐ and bifactorial sexual compatibility systems in fungi publication-title: Heredity – volume: 61 start-page: 15 year: 2007 end-page: 26 article-title: Phylogenetic evidence of host‐specific cryptic species in the anther smut fungus publication-title: Evolution – volume: 200 start-page: 1275 year: 2015 end-page: 1284 article-title: Chaos of rearrangements in the mating‐type chromosomes of the anther‐smut fungus publication-title: Genetics – volume: 14 start-page: 97 year: 2011 end-page: 160 article-title: Mating type in basidiomycetes: unipolar, bipolar, and tetrapolar patterns of sexuality publication-title: Mycota – volume: 4 start-page: e005712 year: 2013 article-title: Genomic insights into the atopic eczema‐associated skin commensal yeast publication-title: MBio – volume: 6 start-page: e1001052 year: 2010 article-title: A deviation from the bipolar‐tetrapolar mating paradigm in an early diverged basidiomycete publication-title: PLoS Genet. – volume: 143 start-page: 789 year: 1996 end-page: 799 article-title: Pseudohomothallism and evolution of the mating‐type chromosome in publication-title: Genetics – volume: 20 start-page: 187 year: 1974 end-page: 191 article-title: Conjugation in . I. Morphology publication-title: Can. J. Microbiol. – volume: 23 start-page: 158 year: 2002 end-page: 170 article-title: Isolates of from North American host species are phylogenetically distinct from their European host‐derived counterparts publication-title: Mol. Phylogenet. Evol. – volume: 45 start-page: S15 year: 2008 end-page: S21 article-title: Sex in smut fungi: structure, function and evolution of mating‐type complexes publication-title: Fungal Genet. Biol. – volume: 11 start-page: 257 year: 1919 end-page: 284 article-title: Untersuchungen uber den Antherenbrand ( Pers.). Ein Beitrag zum Sexualitatsproblem publication-title: Z. Bot. – year: 1883 – volume: 107 start-page: 71 year: 1984 end-page: 83 article-title: Evolution of gamete motility differences II. Interaction with the evolution of anisogamy publication-title: J. Theor. Biol. – volume: 91 start-page: 7085 year: 1994 end-page: 7089 article-title: Linkage of mating‐type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi publication-title: Proc. Natl. Acad. Sci. – volume: 187 start-page: 217 year: 2010 end-page: 229 article-title: Distribution of the anther‐smut pathogen on species of the Caryophyllaceae publication-title: New Phytol. – volume: 166 start-page: 1751 year: 2004 end-page: 1759 article-title: Mating within the meiotic tetrad and the maintenance of genomic heterozygosity publication-title: Genetics – volume: 66 start-page: 3519 year: 2012 end-page: 3533 article-title: Linkage to the mating‐type locus across the genus : insights into non‐recombining chromosomes publication-title: Evolution – year: 1963 – volume: 86 start-page: 421 year: 2011 end-page: 442 article-title: Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types publication-title: Biological Reviews – volume: 123 start-page: 139 year: 2010 end-page: 148 article-title: Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold publication-title: J. Plant Res. – year: 1995 – volume: 98 start-page: 427 year: 1982 end-page: 451 article-title: On the asymmetry of sex: evolution of mating types in isogamous populations publication-title: J. Theor. Biol. – volume: 41 start-page: 402 year: 2005 end-page: 411 article-title: Intratetrad mating and its genetic and evolutionary consequences publication-title: Russ J Genet – volume: 8 start-page: e1002528 year: 2012 article-title: Discovery of a modified tetrapolar sexual cycle in and the evolution of MAT in the species complex publication-title: PLoS Genet. – volume: 38 start-page: 735 year: 1984 end-page: 742 article-title: Sex chromosomes and the evolution of sexual dimorphism publication-title: Evolution – volume: 78 start-page: 737 year: 1974 end-page: 756 article-title: The evolutionary advantage of recombination publication-title: Genetics |
SSID | ssj0009519 |
Score | 2.2706535 |
Snippet | Linkage of genes determining separate self-incompatibility mechanisms is a general expectation of sexual eukaryotes that helps to resolve conflicts between... Linkage of genes determining separate self‐incompatibility mechanisms is a general expectation of sexual eukaryotes that helps to resolve conflicts between... |
SourceID | proquest pubmed wiley jstor istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2561 |
SubjectTerms | Alleles Automixis Basidiomycetes Basidiomycota Basidiomycota - genetics Biological Evolution Biological taxonomies bipolarity Breeding Chromosomes Chromosomes, Fungal - genetics Eukaryotes Evolution Fungi Genes Genes, Mating Type, Fungal Genetic Linkage Genetic loci Genome, Fungal Haploidy Life cycles mating type Meiosis Phylogeny self-incompatibility sex chromosomes |
Title | Breaking linkage between mating compatibility factors: Tetrapolarity in Microbotryum |
URI | https://api.istex.fr/ark:/67375/WNG-ST9MDJBG-3/fulltext.pdf https://www.jstor.org/stable/24704771 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fevo.12765 https://www.ncbi.nlm.nih.gov/pubmed/26339889 https://www.proquest.com/docview/1723825007 https://search.proquest.com/docview/1722422414 https://search.proquest.com/docview/1746874712 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KQfDF72pslQil-JIju9mPRJ-s_aJwFfSqfRCWTbKBUpor11zx_Oud2U1iFRHxLexOINnZ2f3N7G9nALZ1USNKrsskd1YkoqhsYnOb4mIo8qyuhOY-3jE9UUen4vhMnq3B2-EuTMgPMQbcyDL8ek0GbsvrW0bubuYTxrWiC-Ys00Tn2vvIbyXcZQH6MpFkuM31WYWIxTO-iYCUxvLbwEX8E8r8FbT6XefgPnwdvjeQTS4my66cVN9_S-X4nz_0AO71aDR-F6bPQ1hz7SO4E-pTrh7DbBchJcXSYzrnxZUn7mldMeFcbPYM9i4QbFdxX7vnTTxz3cJekdNMzedtPCXaXznvFqvl5RM4PdifvT9K-jIMSSUQ_iS8lqkT2rq0dKywyqpS1qlCJdda4jBr22hlJa_yJqOoT5q6xmFrRUFS7Mg2YL2dt-4ZxFnmeMMahtuiE0LyUjQyZ6qRrpE1usQR7HiFmKuQasPYxQUxz7Q0X04OzadZMd073j00KLjhNTYKcqFToTWLYGtQoemt8dowqqyGWC_VEbwau9GO6HDEtm6-9DKIVhDPiL_JCJWTF88jeBqmx88PUFlW5HkRwWuv5LFj8LJQvcar1-x__uAfnv-76CbcRaQmA4twC9a7xdK9QDTUlS_9tP8B33sDdA |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgguvEsDBYKEEJesYsePBPVC6WMp3UWCtPSCLCdxpKoiWy1ZxPLrO7aTtCCEELfInkiOx2N_M_4yA_BCZhWi5KqIUqNZxLJSRzrVMW6GLE2qkknq4h2TqRgfsYMTfrICW_2_MD4_xBBws5bh9mtr4DYgfcXKzffZiFAp-DVYQ3NPbP2CnY_0Sspd4sEvYVGCB12XV8jyeIZXEZLa2fzRsxH_hDN_ha3u3Nm7DV_6EXu6ydlo0Raj8udvyRz_95PuwK0OkIZv_Aq6CyumuQfXfYnK5X3ItxFV2nB6aK96cfMJO2ZXaKEuNjsSe-s5tsuwK9_zOsxNO9fn1m-2zadNOLHMv2LWzpeLrw_gaG83fzuOukoMUckQAUW04rFhUpu4MCTTQouCV7FAPVeS4zxLXUuhOS3TOrGBnzg2tcHW0sZJsSNZh9Vm1pgNCJPE0JrUBE9GwxinBat5SkTNTc0r9IoDeOk0os59tg2l52eWfCa5-jzdV5_ybLJzsL2vUHDdqWwQpEzGTEoSwGavQ9UZ5DdFbHE1hHuxDOD50I2mZO9HdGNmCyeDgAUhDfubDBOpdeRpAA_9-rgcgEiSLE2zAF45LQ8dvaOF6lVOvWr3-IN7ePTvos_gxjifHKrDd9P3j-EmAjfuSYWbsNrOF-YJgqO2eOps4AIMngeO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXyqs0UCBICHHJynH8SOiJst2Wwi4ItqUHJMtJbKmqyK6WLGL76zt2HhSEEOIW2RPJ8Xjsb8ZfZgCeyaxElFzmUWo0i1hW6EinmuBmyNKkLJikPt4xnoiDI3Z4wk_WYKf7F6bJD9EH3Jxl-P3aGfi8tJeM3HyfDWIqBb8CV5lIiONzDT_SSxl34wb7xixK8Jxr0wo5Gk__KiJSN5k_OjLin2Dmr6jVHzujDfjSDbhhm5wNlnU-KM5_y-X4n190C262cDR81ayf27BmqjtwrSlQuboL013ElC6YHrqLXtx6wpbXFTqgi82ewl43DNtV2BbveRlOTb3Qc-c1u-bTKhw73l8-qxer5dd7cDTam74-iNo6DFHBEP9EtOTEMKkNyU2caaFFzksiUMul5DjNUlspNKdFahMX9iHEWIOthYuSYkeyCevVrDJbECaJoTa2MZ6LhjFOc2Z5GgvLjeUl-sQBPPcKUfMm14bSizNHPZNcfZ7sq0_TbDw83N1XKLjpNdYLUiYJkzIOYLtToWrN8ZuKXWk1BHtEBvC070ZDcrcjujKzpZdBuIKAhv1NhonUufE0gPvN8vg5AJEkWZpmAbzwSu47OjcL1au8etXe8Xv_8ODfRZ_A9Q_DkXr3ZvL2IdxA1MYbRuE2rNeLpXmEyKjOH3sLuADw2QY9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+linkage+between+mating+compatibility+factors%3A+Tetrapolarity+in+Microbotryum&rft.jtitle=Evolution&rft.au=Hood%2C+Michael+E&rft.au=Scott%2C+Molly&rft.au=Hwang%2C+Mindy&rft.date=2015-10-01&rft.pub=Oxford+University+Press&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=69&rft.issue=10&rft.spage=2561&rft_id=info:doi/10.1111%2Fevo.12765&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3841285431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon |