Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna-forest boundaries

The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation‐environment feedbacks, alternate stable states, and ultimately, the distribution of these two biomes. Multiple factors contribute to this difference in flammability, including microclimat...

Full description

Saved in:
Bibliographic Details
Published inAustral ecology Vol. 37; no. 6; pp. 634 - 643
Main Authors HOFFMANN, WILLIAM A., JACONIS, SUSAN Y., MCKINLEY, KRISTEN L., GEIGER, ERIKA L., GOTSCH, SYBIL G., FRANCO, AUGUSTO C.
Format Journal Article
LanguageEnglish
Published Melbourne, Australia Blackwell Publishing Asia 01.09.2012
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation‐environment feedbacks, alternate stable states, and ultimately, the distribution of these two biomes. Multiple factors contribute to this difference in flammability, including microclimate, fuel amount and fuel type. To understand this transition in flammability, we studied fuel characteristics and microclimate across eight savanna–forest boundaries in south‐central Brazil. At each boundary, the environment was monitored for one week with automated measurements of near‐surface wind speed, air temperature, relative humidity and presence of dew. Manual measurements were performed to quantify fuel amounts and fuel moisture. These data were used to parameterize the fire behaviour model BehavePlus5 in order to simulate fire behaviour over the savanna–forest boundary. There were strong gradients across the boundary in all variables with the exception of total fuel load. During the day, savannas had higher wind speed and air temperature, and lower relative humidity and fuel moisture than forests. Although fuel loads were similar in savanna and forest, savanna was characterized by lower fuel bulk density, largely because of the presence of grasses. Based on these measurements, the fire behaviour model predicted savanna fires to be faster, more intense, and with greater flame lengths, relative to forest. A sensitivity analysis indicated that the primary cause of these differences was the low fuel bulk density characteristic of grassy fuels, with lesser contributions from wind speed, fuel moisture and total fuel load. These results indicate that the dominance of grassy fuels is the primary cause of the high flammability of savanna.
AbstractList The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation-environment feedbacks, alternate stable states, and ultimately, the distribution of these two biomes. Multiple factors contribute to this difference in flammability, including microclimate, fuel amount and fuel type. To understand this transition in flammability, we studied fuel characteristics and microclimate across eight savanna-forest boundaries in south-central Brazil. At each boundary, the environment was monitored for one week with automated measurements of near-surface wind speed, air temperature, relative humidity and presence of dew. Manual measurements were performed to quantify fuel amounts and fuel moisture. These data were used to parameterize the fire behaviour model BehavePlus5 in order to simulate fire behaviour over the savanna-forest boundary. There were strong gradients across the boundary in all variables with the exception of total fuel load. During the day, savannas had higher wind speed and air temperature, and lower relative humidity and fuel moisture than forests. Although fuel loads were similar in savanna and forest, savanna was characterized by lower fuel bulk density, largely because of the presence of grasses. Based on these measurements, the fire behaviour model predicted savanna fires to be faster, more intense, and with greater flame lengths, relative to forest. A sensitivity analysis indicated that the primary cause of these differences was the low fuel bulk density characteristic of grassy fuels, with lesser contributions from wind speed, fuel moisture and total fuel load. These results indicate that the dominance of grassy fuels is the primary cause of the high flammability of savanna.
The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation-environment feedbacks, alternate stable states, and ultimately, the distribution of these two biomes. Multiple factors contribute to this difference in flammability, including microclimate, fuel amount and fuel type. To understand this transition in flammability, we studied fuel characteristics and microclimate across eight savanna-forest boundaries in south-central Brazil. At each boundary, the environment was monitored for one week with automated measurements of near-surface wind speed, air temperature, relative humidity and presence of dew. Manual measurements were performed to quantify fuel amounts and fuel moisture. These data were used to parameterize the fire behaviour model BehavePlus5 in order to simulate fire behaviour over the savanna-forest boundary. There were strong gradients across the boundary in all variables with the exception of total fuel load. During the day, savannas had higher wind speed and air temperature, and lower relative humidity and fuel moisture than forests. Although fuel loads were similar in savanna and forest, savanna was characterized by lower fuel bulk density, largely because of the presence of grasses. Based on these measurements, the fire behaviour model predicted savanna fires to be faster, more intense, and with greater flame lengths, relative to forest. A sensitivity analysis indicated that the primary cause of these differences was the low fuel bulk density characteristic of grassy fuels, with lesser contributions from wind speed, fuel moisture and total fuel load. These results indicate that the dominance of grassy fuels is the primary cause of the high flammability of savanna. [PUBLICATION ABSTRACT]
Author HOFFMANN, WILLIAM A.
GEIGER, ERIKA L.
FRANCO, AUGUSTO C.
GOTSCH, SYBIL G.
MCKINLEY, KRISTEN L.
JACONIS, SUSAN Y.
Author_xml – sequence: 1
  givenname: WILLIAM A.
  surname: HOFFMANN
  fullname: HOFFMANN, WILLIAM A.
  organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu)
– sequence: 2
  givenname: SUSAN Y.
  surname: JACONIS
  fullname: JACONIS, SUSAN Y.
  organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu)
– sequence: 3
  givenname: KRISTEN L.
  surname: MCKINLEY
  fullname: MCKINLEY, KRISTEN L.
  organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu)
– sequence: 4
  givenname: ERIKA L.
  surname: GEIGER
  fullname: GEIGER, ERIKA L.
  organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu)
– sequence: 5
  givenname: SYBIL G.
  surname: GOTSCH
  fullname: GOTSCH, SYBIL G.
  organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu)
– sequence: 6
  givenname: AUGUSTO C.
  surname: FRANCO
  fullname: FRANCO, AUGUSTO C.
  organization: Departamento de Botânica, Universidade de Brasília, 70919-970 Brasília-DF, Brazil
BookMark eNqNkM9PHCEUx0mjSf3R_4GkFy8zhWGGHQ5qzMbVtlZ7qOmRsPBoWWdBgbHrf1-m2-zBk1x4ge_3-977HKI9HzwghCmpaTmfVjVt26YSQrC6IZTWpGFNW2_eoYPdx96u7rv36DClFSGk54IeILkYYUg4RLx2OgY9uLXKcI7vvYGYsvLG-V84_wZsonsuTzhYbF0EbAHMUumHhFXGST0r71VlQ4SU8TKM3qjoIB2jfauGBB_-30fofnH5Y35d3dxdfZ5f3FS6pU1bcWUp7YjooOO9NmCFZkZx3hDDgXVADBUzmPVCWK2NtY2lZtm1rRF98QvGjtDJNvcxhqexzCDXLmkYBuUhjElSUtYVnPSzIv34SroKY_RluqJiXUMp55Oq36oKlZQiWPkYC5v4UkRyIi9XcoIqJ8ByIi__kZebYj17ZdUuq-yCz1G54S0Bp9uAP26Alzc3lheX86kq_mrrdynDZudX8UGWzWad_Hl7Jb8sFpx9v_4mv7K_ZESudA
CitedBy_id crossref_primary_10_1071_BT21091
crossref_primary_10_1017_S0266467412000727
crossref_primary_10_1111_1365_2745_13906
crossref_primary_10_1016_j_jhydrol_2015_04_039
crossref_primary_10_1111_ele_12942
crossref_primary_10_1016_j_sajb_2015_06_003
crossref_primary_10_1111_aec_13202
crossref_primary_10_1111_jbi_12889
crossref_primary_10_1371_journal_pone_0191027
crossref_primary_10_1111_aec_12355
crossref_primary_10_1111_aec_12871
crossref_primary_10_1007_s11629_024_8897_0
crossref_primary_10_1071_BT12255
crossref_primary_10_1186_s13717_018_0150_8
crossref_primary_10_1890_12_1629_1
crossref_primary_10_1016_j_jenvman_2018_04_004
crossref_primary_10_1002_ece3_2734
crossref_primary_10_1007_s00442_021_04923_w
crossref_primary_10_1071_WF16085
crossref_primary_10_1177_0959683618761540
crossref_primary_10_1016_j_foreco_2019_117518
crossref_primary_10_5194_bg_15_233_2018
crossref_primary_10_1111_gcb_12583
crossref_primary_10_1111_nph_19009
crossref_primary_10_1016_j_actao_2013_08_001
crossref_primary_10_1093_jpe_rty017
crossref_primary_10_1111_brv_12687
crossref_primary_10_1016_j_rse_2021_112764
crossref_primary_10_1016_j_ecoleng_2019_07_028
crossref_primary_10_1890_12_1019_1
crossref_primary_10_1111_aec_13175
crossref_primary_10_3389_ffgc_2018_00006
crossref_primary_10_1111_jvs_12195
crossref_primary_10_1016_j_rama_2022_04_001
crossref_primary_10_1111_aec_12008
crossref_primary_10_1111_geb_12739
crossref_primary_10_1016_j_foreco_2020_118850
crossref_primary_10_1371_journal_pone_0250183
crossref_primary_10_1007_s11258_015_0531_3
crossref_primary_10_1111_1365_2745_13851
crossref_primary_10_1111_j_1442_9993_2012_02410_x
crossref_primary_10_1111_1365_2435_70032
crossref_primary_10_1111_jbi_14701
crossref_primary_10_1002_hyp_11047
crossref_primary_10_1016_j_foreco_2019_117804
crossref_primary_10_1007_s11258_016_0574_0
crossref_primary_10_7717_peerj_5114
crossref_primary_10_1007_s11258_019_00949_6
crossref_primary_10_3389_fclim_2022_941900
crossref_primary_10_1038_s41558_020_0707_2
crossref_primary_10_1177_0959683614551229
crossref_primary_10_3375_043_035_0203
crossref_primary_10_1007_s00468_013_0864_2
crossref_primary_10_1111_nph_12551
crossref_primary_10_1111_jbi_12745
crossref_primary_10_1515_mammalia_2023_0040
crossref_primary_10_1111_1365_2745_12950
crossref_primary_10_1590_1806_908820200000029
crossref_primary_10_1016_j_foreco_2020_118889
crossref_primary_10_1016_j_ecolmodel_2014_07_024
crossref_primary_10_1590_2175_7860201970060
crossref_primary_10_1007_s11104_013_1822_x
crossref_primary_10_1007_s11258_013_0256_0
crossref_primary_10_1016_j_foreco_2019_05_016
crossref_primary_10_1007_s40626_014_0002_6
crossref_primary_10_1177_19400829231164936
crossref_primary_10_3390_fire4030034
crossref_primary_10_1111_j_1442_9993_2011_02350_x
crossref_primary_10_1111_nph_16742
crossref_primary_10_1177_19400829251314110
crossref_primary_10_1111_btp_12943
crossref_primary_10_1111_aec_13156
crossref_primary_10_1016_j_jnc_2022_126261
crossref_primary_10_1146_annurev_environ_112420_015211
crossref_primary_10_1016_j_foreco_2018_02_032
crossref_primary_10_3390_rs15030696
crossref_primary_10_1016_j_ecolmodel_2013_05_022
crossref_primary_10_1111_jvs_13102
crossref_primary_10_1890_13_0503_1
crossref_primary_10_1029_2020GB006677
crossref_primary_10_1098_rstb_2015_0306
crossref_primary_10_1016_j_jenvman_2021_112508
crossref_primary_10_1098_rstb_2015_0308
crossref_primary_10_1016_j_actao_2020_103658
crossref_primary_10_1098_rstb_2015_0309
crossref_primary_10_1007_s00442_014_3071_y
crossref_primary_10_1007_s11676_016_0219_0
crossref_primary_10_1093_ee_nvaa128
crossref_primary_10_1071_BT22139
crossref_primary_10_1016_j_ecofro_2024_11_001
crossref_primary_10_3389_ffgc_2020_507710
crossref_primary_10_1088_1748_9326_ad2820
crossref_primary_10_1016_j_tree_2014_02_004
crossref_primary_10_1016_j_sajb_2015_07_005
crossref_primary_10_1016_j_actao_2022_103862
crossref_primary_10_14483_2256201X_20277
crossref_primary_10_1111_1365_2745_13549
crossref_primary_10_1016_j_scitotenv_2015_02_081
crossref_primary_10_1016_j_flora_2017_12_009
crossref_primary_10_1111_1365_2745_13781
crossref_primary_10_1071_BT15283
crossref_primary_10_1007_s10980_022_01571_0
crossref_primary_10_1016_j_sajb_2015_05_005
crossref_primary_10_1002_ecs2_3347
crossref_primary_10_1111_1365_2664_13794
crossref_primary_10_1017_S0266467418000469
crossref_primary_10_1111_nph_20421
crossref_primary_10_1002_rse2_212
crossref_primary_10_1016_j_agrformet_2022_109289
crossref_primary_10_1098_rstb_2015_0170
crossref_primary_10_1007_s11258_024_01480_z
crossref_primary_10_1016_j_actao_2015_11_007
crossref_primary_10_1186_s13717_017_0103_7
crossref_primary_10_1186_s42408_018_0005_9
crossref_primary_10_1111_jvs_12314
crossref_primary_10_1016_j_rsase_2025_101480
crossref_primary_10_1111_nph_14940
crossref_primary_10_1016_j_ecolind_2020_106151
crossref_primary_10_1111_nph_15117
crossref_primary_10_1111_jvs_12959
crossref_primary_10_5194_gmd_10_1175_2017
crossref_primary_10_1111_aec_13181
crossref_primary_10_4996_fireecology_140101016
crossref_primary_10_1016_j_apgeog_2024_103243
crossref_primary_10_1111_1365_2745_12118
crossref_primary_10_1111_jbi_12306
crossref_primary_10_1111_aec_12015
crossref_primary_10_1111_aec_12415
crossref_primary_10_1088_1748_9326_ac39be
crossref_primary_10_1016_j_ecocom_2020_100827
crossref_primary_10_1002_eco_1587
crossref_primary_10_1016_j_ppees_2021_125630
crossref_primary_10_3390_cli5020042
crossref_primary_10_3390_f10050367
crossref_primary_10_1098_rspb_2024_1120
crossref_primary_10_4102_koedoe_v62i1_1576
crossref_primary_10_1111_ele_14236
crossref_primary_10_1007_s10531_019_01892_8
crossref_primary_10_3389_fcosc_2023_1150516
crossref_primary_10_1111_j_1461_0248_2012_01789_x
crossref_primary_10_1007_s11258_015_0545_x
crossref_primary_10_1111_aec_12420
crossref_primary_10_1111_aje_12391
crossref_primary_10_5194_bg_12_2927_2015
crossref_primary_10_3389_fpls_2014_00590
crossref_primary_10_1071_BT13232
crossref_primary_10_1088_1748_9326_aa9ead
crossref_primary_10_1016_j_jag_2019_02_010
crossref_primary_10_1016_j_sajb_2015_05_019
crossref_primary_10_1111_avsc_12110
crossref_primary_10_3390_rs15112934
crossref_primary_10_1111_nph_13317
crossref_primary_10_1016_j_foreco_2019_05_047
Cites_doi 10.1016/j.foreco.2009.07.024
10.1111/j.1365-2745.2009.01493.x
10.1023/A:1026164427792
10.1016/B978-012614440-6/50011-2
10.2307/2388278
10.1111/j.1366-9516.2004.00063.x
10.1007/s10980-008-9285-9
10.1038/38229
10.1890/1051-0761(1997)007[0713:FIASLR]2.0.CO;2
10.2307/3566060
10.1046/j.1365-2699.2003.00934.x
10.1590/S0100-84042011000100008
10.1139/X07-159
10.1071/WF07111
10.1890/08-0741.1
10.1111/j.1744-7429.2005.00058.x
10.1111/j.1472-4642.2010.00688.x
10.1111/j.1365-2745.2007.01323.x
10.1007/s10745-005-4143-8
10.1111/j.1365-2486.2008.01655.x
10.1046/j.1365-2745.2000.00435.x
10.1071/WF01026
10.1111/j.1744-7429.2000.tb00448.x
10.1890/05-0404
10.1098/rstb.2007.0013
10.1086/648458
10.1017/S0266467498000339
10.1177/030913330002400303
10.1007/BF00044647
10.1073/pnas.0903410106
10.2307/2388588
10.1071/WF07011
10.1126/science.284.5421.1832
10.1177/0309133308101383
10.1017/S0266467405003007
10.1017/S0266467498000212
10.2307/1940299
10.1111/j.1744-7429.1999.tb00112.x
10.1007/s002670010124
10.1111/j.1461-0248.2005.00767.x
10.1111/j.1365-2435.2006.01174.x
10.1111/j.1442-9993.1991.tb01486.x
10.1007/s00442-005-0129-x
10.1146/annurev.ecolsys.39.110707.173411
10.1071/WF07046
10.1111/j.1365-2745.2010.01700.x
10.1111/j.1469-8137.2010.03358.x
10.1046/j.1365-2486.2003.00577.x
10.1017/CBO9780511583490
10.2307/2388198
10.1016/S0065-2504(08)60149-X
10.25088/ComplexSystems.18.1.159
10.1007/s00442-009-1543-2
10.1016/S0378-1127(01)00511-4
ContentType Journal Article
Copyright 2011 The Authors. Austral Ecology © 2011 Ecological Society of Australia
2012 Ecological Society of Australia
Copyright_xml – notice: 2011 The Authors. Austral Ecology © 2011 Ecological Society of Australia
– notice: 2012 Ecological Society of Australia
DBID BSCLL
AAYXX
CITATION
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7ST
SOI
DOI 10.1111/j.1442-9993.2011.02324.x
DatabaseName Istex
CrossRef
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Technology Research Database
Animal Behavior Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList Ecology Abstracts
CrossRef

Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1442-9993
EndPage 643
ExternalDocumentID 2746016351
10_1111_j_1442_9993_2011_02324_x
AEC2324
ark_67375_WNG_JFF63PHM_K
Genre article
Feature
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7ST
SOI
ID FETCH-LOGICAL-c4124-6af115095e568cdef9c3da6620d6e35e0d197e7899fccdff2f1db544d98412933
IEDL.DBID DR2
ISSN 1442-9985
IngestDate Tue Aug 05 11:14:37 EDT 2025
Wed Aug 13 10:35:14 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 03:47:33 EDT 2025
Wed Aug 20 07:26:22 EDT 2025
Wed Oct 30 09:51:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4124-6af115095e568cdef9c3da6620d6e35e0d197e7899fccdff2f1db544d98412933
Notes ark:/67375/WNG-JFF63PHM-K
istex:3E9CB9E196EDB4D03ABD8CCCBFA831033AEEC8C0
ArticleID:AEC2324
Present addresses: Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221‐0006, USA
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1035211667
PQPubID 46239
PageCount 10
ParticipantIDs proquest_miscellaneous_1069196087
proquest_journals_1035211667
crossref_primary_10_1111_j_1442_9993_2011_02324_x
crossref_citationtrail_10_1111_j_1442_9993_2011_02324_x
wiley_primary_10_1111_j_1442_9993_2011_02324_x_AEC2324
istex_primary_ark_67375_WNG_JFF63PHM_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09
September 2012
2012-09-00
20120901
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09
PublicationDecade 2010
PublicationPlace Melbourne, Australia
PublicationPlace_xml – name: Melbourne, Australia
– name: Richmond
PublicationTitle Austral ecology
PublicationYear 2012
Publisher Blackwell Publishing Asia
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Asia
– name: Blackwell Publishing Ltd
References Ripley B., Donald G., Osborne C. P., Abraham T. & Martin T. (2010) Experimental investigation of fire ecology in the C-3 and C-4 subspecies of Alloteropsis semialata. J. Ecol. 98, 1196-203.
Nepstad D., Carvalho G., Barros A. C. et al. (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. For. Ecol. Manage. 154, 395-407.
Fernandes P. M., Botelho H., Rego F. & Loureiro C. (2008) Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands. Can. J. For. Res. 38, 190-201.
Wilson J. B. & Agnew A. D. Q. (1992) Positive-feedback switches in plant communities. Adv. Ecol. Rs 23, 263-335.
Castro E. A. & Kauffman J. B. (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263-83.
Warman L. & Moles A. T. (2009) Alternative stable states in Australia's Wet Tropics: a theoretical framework for the field data and a field-case for the theory. Landscape Ecol. 24, 1-13.
Balch J. K., Nepstad D. C., Brando P. M. et al. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Glob. Chang. Biol. 14, 2276-87.
Gignoux J., Lahoreau G., Julliard R. & Barot S. (2009) Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 97, 484-95.
Cochrane M. A. & Schulze M. D. (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 2-16.
Higgins S. I., Bond W. J. & Trollope W. S. W. (2000) Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J. Ecol. 88, 213-29.
Uhl C., Kauffman J. B. & Cummings D. L. (1988) Fire in the Venezuelan Amazon. 2. Environmental-conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos 53, 176-84.
Cochrane M. A., Alencar A., Schulze M. D. et al. (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284, 1832-5.
Savadogo P., Zida D., Sawadogo L., Tiveau D., Tigabu M. & Oden P. C. (2007) Fuel and fire characteristics in savanna-woodland of West Africa in relation to grazing and dominant grass type. Int. J. Wildl. Fire 16, 531-9.
Beckage B. & Ellingwood C. (2008) Fire feedbacks with vegetation and alternate stable states. Complex Syst. 18, 159-73.
Beckage B., Platt W. J. & Gross L. J. (2009) Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. Am. Nat. 174, 805-18.
Hennenberg K. J., Fischer F., Kouadio K. et al. (2006) Phytomass and fire occurrence along forest-savanna transects in the Comoe National Park, Ivory Coast. J. Trop. Ecol. 22, 303-11.
Ray D., Nepstad D. & Moutinho P. (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664-78.
Kauffman J. B. (1991) Survival by sprouting following fire in tropical forests of the Eastern Amazon. Biotropica 23, 219-24.
Bowman D. M. J. & Fensham R. J. (1991) Response of a monsoon forest-savanna boundary to fire protection, Weipa, northern Australia. Aust. J. Ecol. 16, 111-8.
Simon M. F., Grether R., Queiroz L. P., Skema C., Penningtone T. & Hughes C. E. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359-64.
Uhl C. & Kauffman J. B. (1990) Deforestation, fire susceptibility and potential tree responses to fire in the eastern Amazon. Ecology 71, 437-49.
Stott P. (2000) Combustion in tropical biomass fires: a critical review. Prog. Phys. Geog. 24, 355-77.
Martins C. R., Hay J. D. V., Walter B. M. T., Proenca C. E. B. & Vivaldi L. J. (2011) Impact of invasion and management of molasses grass (Melinis minutiflora) on the native vegetation of the Brazilian Savanna. Rev. Bras. Bot. 34, 73-90.
Ganteaume A., Lampin-Maillet C., Guijarro M. et al. (2009) Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildl. Fire 18, 951-69.
Veldman J. W., Mostacedo B., Pena-Claros M. & Putz F. E. (2009) Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. For. Ecol. Manage. 258, 1643-9.
Mistry J. & Berardi A. (2005) Assessing fire potential in a Brazilian Savanna nature reserve. Biotropica 37, 439-51.
Plucinski M. P. & Anderson W. R. (2008) Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. Int. J. Wildl. Fire 17, 628-37.
Hoffmann W. A., Lucatelli V. M. P., Silva F. J. et al. (2004) Impact of the invasive grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers. Distrib. 10, 99-103.
Bond W. J. (2008) What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641-59.
Ray D., Nepstad D. & Brando P. (2010) Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytol. 187, 720-32.
Marsden-Smedley J. B., Catchpole W. R. & Pyrke A. (2001) Fire modelling in Tasmanian buttongrass moorlands. IV - Sustaining versus non-sustaining fires. Int. J. Wildl. Fire 10, 255-62.
Biddulph J. & Kellman M. (1998) Fuels and fire at savanna gallery forest boundaries in southeastern Venezuela. J. Trop. Ecol. 14, 445-61.
Furley P. A., Rees R. M., Ryan C. M. & Saiz G. (2008) Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Prog. Phys. Geog. 32, 611-34.
Keeley J. E. & Rundel P. W. (2005) Fire and the Miocene expansion of C-4 grasslands. Ecol. Lett. 8, 683-90.
Hoffmann W. A., Adasme R., Haridasan M. et al. (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil. Ecology 90, 1326-37.
Fensham R. J., Fairfax R. J., Butler D. W. & Bowman D. M. J. (2003) Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest. J. Biogeogr. 30, 1405-14.
Hoffmann W. A. (2000) Post-establishment seedling success in the Brazilian Cerrado: a comparison of savanna and forest species. Biotropica 32, 62-9.
Gotsch S. G., Geiger E. L., Franco A. C., Goldstein G., Meinzer F. C. & Hoffmann W. A. (2010) Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia 163, 291-301.
Setterfield S. A., Rossiter-Rachor N. A., Hutley L. B., Douglas M. M. & Williams R. J. (2010) Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854-61.
Silva Matos D. M., Santos C. J. & Chevalier D. R. (2002) Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosyst. 6, 151-61.
Barlow J. & Peres C. A. (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 1787-94.
Alonso-Amelot M. E. & Rodulfo-Baechler S. (1996) Comparative spatial distribution, size, biomass and growth rate of two varieties of bracken fern (Pteridium aquilinum L. Kuhn) in a neotropical montane habitat. Vegetatio 125, 137-47.
Holdsworth A. R. & Uhl C. (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol. Appl. 7, 713-25.
Woods P. (1989) Effects of logging, drought and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica 21, 290-8.
Bond W. J., Midgley G. F. & Woodward F. I. (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Chang. Biol. 9, 973-82.
Ramos-Neto M. B. & Pivello V. R. (2000) Lightning fires in a Brazilian savanna national park: rethinking management strategies. Environ. Manage. 26, 675-84.
Scarff F. R. & Westoby M. (2006) Leaf litter flammability in some semi-arid Australian woodlands. Funct. Ecol. 20, 745-52.
Hoffmann W. A., da Silva E. R., Machado G. C. et al. (2005) Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145, 307-16.
Osborne C. P. (2008) Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? J. Ecol. 96, 35-45.
Bowman D. M. J. (2000) Australian Rainforests: Islands of Green in A Land of Fire. Cambridge University Press, Cambridge.
Cerling T., Harris J. M., MacFadden B. J. et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153-8.
Mistry J., Berardi A., Andrade V., Kraho T., Kraho P. & Leonardos O. (2005) Indigenous fire management in the Cerrado of Brazil: the case of the Kraho of Tocantins. Hum. Ecol. 33, 365-86.
Uhl C. & Buschbacher R. (1985) A disturbing synergism between cattle ranching burning practices and selective tree harvesting in the eastern Amazon. Biotropica 17, 265-8.
2010; 98
1991; 16
2010; 16
2000; 88
2008; 38
2008; 39
2010; 187
1999; 284
2008; 32
1972
1997; 7
1997; 389
1985; 17
2006; 20
2009; 97
2001
2000
2005; 145
2006; 22
2009; 90
2003; 9
2005; 37
2005; 33
1998; 14
2009; 18
2001; 10
2009; 24
1989; 21
2000; 26
2000; 24
2008; 18
2002; 6
2008; 17
2008; 14
2008
2010; 163
1994
2011; 34
2009; 174
1992
2008; 96
1988; 53
1996; 125
2008; 363
2003; 30
2009; 258
1999
2007; 16
2004; 10
2001; 154
1991; 23
2000; 32
2005; 8
1999; 31
2005; 15
1992; 23
1990; 71
2009; 106
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_50_1
Beckage B. (e_1_2_6_6_1) 2008; 18
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
Hopkins B. (e_1_2_6_31_1) 1992
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Hoffmann W. A., Lucatelli V. M. P., Silva F. J. et al. (2004) Impact of the invasive grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers. Distrib. 10, 99-103.
– reference: Beckage B. & Ellingwood C. (2008) Fire feedbacks with vegetation and alternate stable states. Complex Syst. 18, 159-73.
– reference: Cochrane M. A., Alencar A., Schulze M. D. et al. (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284, 1832-5.
– reference: Ray D., Nepstad D. & Moutinho P. (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664-78.
– reference: Castro E. A. & Kauffman J. B. (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263-83.
– reference: Mistry J., Berardi A., Andrade V., Kraho T., Kraho P. & Leonardos O. (2005) Indigenous fire management in the Cerrado of Brazil: the case of the Kraho of Tocantins. Hum. Ecol. 33, 365-86.
– reference: Ramos-Neto M. B. & Pivello V. R. (2000) Lightning fires in a Brazilian savanna national park: rethinking management strategies. Environ. Manage. 26, 675-84.
– reference: Setterfield S. A., Rossiter-Rachor N. A., Hutley L. B., Douglas M. M. & Williams R. J. (2010) Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854-61.
– reference: Wilson J. B. & Agnew A. D. Q. (1992) Positive-feedback switches in plant communities. Adv. Ecol. Rs 23, 263-335.
– reference: Nepstad D., Carvalho G., Barros A. C. et al. (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. For. Ecol. Manage. 154, 395-407.
– reference: Balch J. K., Nepstad D. C., Brando P. M. et al. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Glob. Chang. Biol. 14, 2276-87.
– reference: Holdsworth A. R. & Uhl C. (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol. Appl. 7, 713-25.
– reference: Ganteaume A., Lampin-Maillet C., Guijarro M. et al. (2009) Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildl. Fire 18, 951-69.
– reference: Silva Matos D. M., Santos C. J. & Chevalier D. R. (2002) Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosyst. 6, 151-61.
– reference: Gotsch S. G., Geiger E. L., Franco A. C., Goldstein G., Meinzer F. C. & Hoffmann W. A. (2010) Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia 163, 291-301.
– reference: Higgins S. I., Bond W. J. & Trollope W. S. W. (2000) Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J. Ecol. 88, 213-29.
– reference: Marsden-Smedley J. B., Catchpole W. R. & Pyrke A. (2001) Fire modelling in Tasmanian buttongrass moorlands. IV - Sustaining versus non-sustaining fires. Int. J. Wildl. Fire 10, 255-62.
– reference: Gignoux J., Lahoreau G., Julliard R. & Barot S. (2009) Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 97, 484-95.
– reference: Hoffmann W. A., da Silva E. R., Machado G. C. et al. (2005) Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145, 307-16.
– reference: Plucinski M. P. & Anderson W. R. (2008) Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. Int. J. Wildl. Fire 17, 628-37.
– reference: Simon M. F., Grether R., Queiroz L. P., Skema C., Penningtone T. & Hughes C. E. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359-64.
– reference: Bowman D. M. J. (2000) Australian Rainforests: Islands of Green in A Land of Fire. Cambridge University Press, Cambridge.
– reference: Hoffmann W. A. (2000) Post-establishment seedling success in the Brazilian Cerrado: a comparison of savanna and forest species. Biotropica 32, 62-9.
– reference: Ray D., Nepstad D. & Brando P. (2010) Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytol. 187, 720-32.
– reference: Bowman D. M. J. & Fensham R. J. (1991) Response of a monsoon forest-savanna boundary to fire protection, Weipa, northern Australia. Aust. J. Ecol. 16, 111-8.
– reference: Veldman J. W., Mostacedo B., Pena-Claros M. & Putz F. E. (2009) Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. For. Ecol. Manage. 258, 1643-9.
– reference: Fensham R. J., Fairfax R. J., Butler D. W. & Bowman D. M. J. (2003) Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest. J. Biogeogr. 30, 1405-14.
– reference: Hoffmann W. A., Adasme R., Haridasan M. et al. (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil. Ecology 90, 1326-37.
– reference: Barlow J. & Peres C. A. (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 1787-94.
– reference: Scarff F. R. & Westoby M. (2006) Leaf litter flammability in some semi-arid Australian woodlands. Funct. Ecol. 20, 745-52.
– reference: Woods P. (1989) Effects of logging, drought and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica 21, 290-8.
– reference: Warman L. & Moles A. T. (2009) Alternative stable states in Australia's Wet Tropics: a theoretical framework for the field data and a field-case for the theory. Landscape Ecol. 24, 1-13.
– reference: Beckage B., Platt W. J. & Gross L. J. (2009) Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. Am. Nat. 174, 805-18.
– reference: Uhl C. & Buschbacher R. (1985) A disturbing synergism between cattle ranching burning practices and selective tree harvesting in the eastern Amazon. Biotropica 17, 265-8.
– reference: Hennenberg K. J., Fischer F., Kouadio K. et al. (2006) Phytomass and fire occurrence along forest-savanna transects in the Comoe National Park, Ivory Coast. J. Trop. Ecol. 22, 303-11.
– reference: Ripley B., Donald G., Osborne C. P., Abraham T. & Martin T. (2010) Experimental investigation of fire ecology in the C-3 and C-4 subspecies of Alloteropsis semialata. J. Ecol. 98, 1196-203.
– reference: Uhl C., Kauffman J. B. & Cummings D. L. (1988) Fire in the Venezuelan Amazon. 2. Environmental-conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos 53, 176-84.
– reference: Alonso-Amelot M. E. & Rodulfo-Baechler S. (1996) Comparative spatial distribution, size, biomass and growth rate of two varieties of bracken fern (Pteridium aquilinum L. Kuhn) in a neotropical montane habitat. Vegetatio 125, 137-47.
– reference: Martins C. R., Hay J. D. V., Walter B. M. T., Proenca C. E. B. & Vivaldi L. J. (2011) Impact of invasion and management of molasses grass (Melinis minutiflora) on the native vegetation of the Brazilian Savanna. Rev. Bras. Bot. 34, 73-90.
– reference: Keeley J. E. & Rundel P. W. (2005) Fire and the Miocene expansion of C-4 grasslands. Ecol. Lett. 8, 683-90.
– reference: Osborne C. P. (2008) Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? J. Ecol. 96, 35-45.
– reference: Stott P. (2000) Combustion in tropical biomass fires: a critical review. Prog. Phys. Geog. 24, 355-77.
– reference: Cochrane M. A. & Schulze M. D. (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 2-16.
– reference: Uhl C. & Kauffman J. B. (1990) Deforestation, fire susceptibility and potential tree responses to fire in the eastern Amazon. Ecology 71, 437-49.
– reference: Savadogo P., Zida D., Sawadogo L., Tiveau D., Tigabu M. & Oden P. C. (2007) Fuel and fire characteristics in savanna-woodland of West Africa in relation to grazing and dominant grass type. Int. J. Wildl. Fire 16, 531-9.
– reference: Kauffman J. B. (1991) Survival by sprouting following fire in tropical forests of the Eastern Amazon. Biotropica 23, 219-24.
– reference: Furley P. A., Rees R. M., Ryan C. M. & Saiz G. (2008) Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Prog. Phys. Geog. 32, 611-34.
– reference: Cerling T., Harris J. M., MacFadden B. J. et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153-8.
– reference: Mistry J. & Berardi A. (2005) Assessing fire potential in a Brazilian Savanna nature reserve. Biotropica 37, 439-51.
– reference: Bond W. J. (2008) What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641-59.
– reference: Biddulph J. & Kellman M. (1998) Fuels and fire at savanna gallery forest boundaries in southeastern Venezuela. J. Trop. Ecol. 14, 445-61.
– reference: Bond W. J., Midgley G. F. & Woodward F. I. (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Chang. Biol. 9, 973-82.
– reference: Fernandes P. M., Botelho H., Rego F. & Loureiro C. (2008) Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands. Can. J. For. Res. 38, 190-201.
– volume: 125
  start-page: 137
  year: 1996
  end-page: 47
  article-title: Comparative spatial distribution, size, biomass and growth rate of two varieties of bracken fern ( L. Kuhn) in a neotropical montane habitat
  publication-title: Vegetatio
– volume: 17
  start-page: 265
  year: 1985
  end-page: 8
  article-title: A disturbing synergism between cattle ranching burning practices and selective tree harvesting in the eastern Amazon
  publication-title: Biotropica
– volume: 21
  start-page: 290
  year: 1989
  end-page: 8
  article-title: Effects of logging, drought and fire on structure and composition of tropical forests in Sabah, Malaysia
  publication-title: Biotropica
– volume: 154
  start-page: 395
  year: 2001
  end-page: 407
  article-title: Road paving, fire regime feedbacks, and the future of Amazon forests
  publication-title: For. Ecol. Manage.
– volume: 22
  start-page: 303
  year: 2006
  end-page: 11
  article-title: Phytomass and fire occurrence along forest‐savanna transects in the Comoe National Park, Ivory Coast
  publication-title: J. Trop. Ecol.
– volume: 98
  start-page: 1196
  year: 2010
  end-page: 203
  article-title: Experimental investigation of fire ecology in the C‐3 and C‐4 subspecies of Alloteropsis semialata
  publication-title: J. Ecol.
– start-page: 313
  year: 1999
  end-page: 73
– volume: 30
  start-page: 1405
  year: 2003
  end-page: 14
  article-title: Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest
  publication-title: J. Biogeogr.
– year: 2001
– volume: 363
  start-page: 1787
  year: 2008
  end-page: 94
  article-title: Fire‐mediated dieback and compositional cascade in an Amazonian forest
  publication-title: Phil. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 39
  start-page: 641
  year: 2008
  end-page: 59
  article-title: What limits trees in C grasslands and savannas?
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 14
  start-page: 445
  year: 1998
  end-page: 61
  article-title: Fuels and fire at savanna gallery forest boundaries in southeastern Venezuela
  publication-title: J. Trop. Ecol.
– volume: 7
  start-page: 713
  year: 1997
  end-page: 25
  article-title: Fire in Amazonian selectively logged rain forest and the potential for fire reduction
  publication-title: Ecol. Appl.
– volume: 163
  start-page: 291
  year: 2010
  end-page: 301
  article-title: Allocation to leaf area and sapwood area affects water relations of co‐occurring savanna and forest trees
  publication-title: Oecologia
– volume: 187
  start-page: 720
  year: 2010
  end-page: 32
  article-title: Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger
  publication-title: New Phytol.
– volume: 34
  start-page: 73
  year: 2011
  end-page: 90
  article-title: Impact of invasion and management of molasses grass ( ) on the native vegetation of the Brazilian Savanna
  publication-title: Rev. Bras. Bot.
– volume: 96
  start-page: 35
  year: 2008
  end-page: 45
  article-title: Atmosphere, ecology and evolution: what drove the Miocene expansion of C grasslands?
  publication-title: J. Ecol.
– volume: 24
  start-page: 355
  year: 2000
  end-page: 77
  article-title: Combustion in tropical biomass fires: a critical review
  publication-title: Prog. Phys. Geog.
– start-page: 21
  year: 1992
  end-page: 33
– year: 1994
– volume: 23
  start-page: 263
  year: 1992
  end-page: 335
  article-title: Positive‐feedback switches in plant communities
  publication-title: Adv. Ecol. Rs
– volume: 88
  start-page: 213
  year: 2000
  end-page: 29
  article-title: Fire, resprouting and variability: a recipe for grass‐tree coexistence in savanna
  publication-title: J. Ecol.
– volume: 145
  start-page: 307
  year: 2005
  end-page: 16
  article-title: Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna
  publication-title: Oecologia
– volume: 71
  start-page: 437
  year: 1990
  end-page: 49
  article-title: Deforestation, fire susceptibility and potential tree responses to fire in the eastern Amazon
  publication-title: Ecology
– volume: 37
  start-page: 439
  year: 2005
  end-page: 51
  article-title: Assessing fire potential in a Brazilian Savanna nature reserve
  publication-title: Biotropica
– volume: 53
  start-page: 176
  year: 1988
  end-page: 84
  article-title: Fire in the Venezuelan Amazon. 2. Environmental‐conditions necessary for forest fires in the evergreen rainforest of Venezuela
  publication-title: Oikos
– volume: 10
  start-page: 99
  year: 2004
  end-page: 103
  article-title: Impact of the invasive grass at the savanna–forest ecotone in the Brazilian Cerrado
  publication-title: Divers. Distrib.
– volume: 97
  start-page: 484
  year: 2009
  end-page: 95
  article-title: Establishment and early persistence of tree seedlings in an annually burned savanna
  publication-title: J. Ecol.
– year: 2008
– year: 1972
– volume: 16
  start-page: 111
  year: 1991
  end-page: 8
  article-title: Response of a monsoon forest‐savanna boundary to fire protection, Weipa, northern Australia
  publication-title: Aust. J. Ecol.
– volume: 32
  start-page: 62
  year: 2000
  end-page: 9
  article-title: Post‐establishment seedling success in the Brazilian Cerrado: a comparison of savanna and forest species
  publication-title: Biotropica
– volume: 14
  start-page: 263
  year: 1998
  end-page: 83
  article-title: Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire
  publication-title: J. Trop. Ecol.
– volume: 32
  start-page: 611
  year: 2008
  end-page: 34
  article-title: Savanna burning and the assessment of long‐term fire experiments with particular reference to Zimbabwe
  publication-title: Prog. Phys. Geog.
– volume: 18
  start-page: 159
  year: 2008
  end-page: 73
  article-title: Fire feedbacks with vegetation and alternate stable states
  publication-title: Complex Syst.
– volume: 14
  start-page: 2276
  year: 2008
  end-page: 87
  article-title: Negative fire feedback in a transitional forest of southeastern Amazonia
  publication-title: Glob. Chang. Biol.
– year: 2000
– volume: 284
  start-page: 1832
  year: 1999
  end-page: 5
  article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests
  publication-title: Science
– volume: 31
  start-page: 2
  year: 1999
  end-page: 16
  article-title: Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition
  publication-title: Biotropica
– volume: 33
  start-page: 365
  year: 2005
  end-page: 86
  article-title: Indigenous fire management in the Cerrado of Brazil: the case of the Kraho of Tocantins
  publication-title: Hum. Ecol.
– volume: 17
  start-page: 628
  year: 2008
  end-page: 37
  article-title: Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation
  publication-title: Int. J. Wildl. Fire
– volume: 16
  start-page: 854
  year: 2010
  end-page: 61
  article-title: Turning up the heat: the impacts of (gamba grass) invasion on fire behaviour in northern Australian savannas
  publication-title: Divers. Distrib.
– volume: 90
  start-page: 1326
  year: 2009
  end-page: 37
  article-title: Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna–forest boundaries under frequent fire in central Brazil
  publication-title: Ecology
– volume: 258
  start-page: 1643
  year: 2009
  end-page: 9
  article-title: Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest
  publication-title: For. Ecol. Manage.
– volume: 9
  start-page: 973
  year: 2003
  end-page: 82
  article-title: The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas
  publication-title: Glob. Chang. Biol.
– volume: 24
  start-page: 1
  year: 2009
  end-page: 13
  article-title: Alternative stable states in Australia's Wet Tropics: a theoretical framework for the field data and a field‐case for the theory
  publication-title: Landscape Ecol.
– volume: 18
  start-page: 951
  year: 2009
  end-page: 69
  article-title: Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds
  publication-title: Int. J. Wildl. Fire
– volume: 15
  start-page: 1664
  year: 2005
  end-page: 78
  article-title: Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape
  publication-title: Ecol. Appl.
– volume: 10
  start-page: 255
  year: 2001
  end-page: 62
  article-title: Fire modelling in Tasmanian buttongrass moorlands. IV – Sustaining versus non‐sustaining fires
  publication-title: Int. J. Wildl. Fire
– volume: 16
  start-page: 531
  year: 2007
  end-page: 9
  article-title: Fuel and fire characteristics in savanna‐woodland of West Africa in relation to grazing and dominant grass type
  publication-title: Int. J. Wildl. Fire
– volume: 23
  start-page: 219
  year: 1991
  end-page: 24
  article-title: Survival by sprouting following fire in tropical forests of the Eastern Amazon
  publication-title: Biotropica
– volume: 8
  start-page: 683
  year: 2005
  end-page: 90
  article-title: Fire and the Miocene expansion of C‐4 grasslands
  publication-title: Ecol. Lett.
– volume: 174
  start-page: 805
  year: 2009
  end-page: 18
  article-title: Vegetation, fire, and feedbacks: a disturbance‐mediated model of savannas
  publication-title: Am. Nat.
– volume: 389
  start-page: 153
  year: 1997
  end-page: 8
  article-title: Global vegetation change through the Miocene/Pliocene boundary
  publication-title: Nature
– volume: 20
  start-page: 745
  year: 2006
  end-page: 52
  article-title: Leaf litter flammability in some semi‐arid Australian woodlands
  publication-title: Funct. Ecol.
– volume: 38
  start-page: 190
  year: 2008
  end-page: 201
  article-title: Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands
  publication-title: Can. J. For. Res.
– volume: 26
  start-page: 675
  year: 2000
  end-page: 84
  article-title: Lightning fires in a Brazilian savanna national park: rethinking management strategies
  publication-title: Environ. Manage.
– volume: 6
  start-page: 151
  year: 2002
  end-page: 61
  article-title: Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil
  publication-title: Urban Ecosyst.
– volume: 106
  start-page: 20359
  year: 2009
  end-page: 64
  article-title: Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire
  publication-title: Proc. Natl Acad. Sci. USA
– ident: e_1_2_6_57_1
  doi: 10.1016/j.foreco.2009.07.024
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-2745.2009.01493.x
– ident: e_1_2_6_51_1
  doi: 10.1023/A:1026164427792
– ident: e_1_2_6_40_1
– ident: e_1_2_6_47_1
  doi: 10.1016/B978-012614440-6/50011-2
– ident: e_1_2_6_60_1
  doi: 10.2307/2388278
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1366-9516.2004.00063.x
– ident: e_1_2_6_58_1
  doi: 10.1007/s10980-008-9285-9
– ident: e_1_2_6_15_1
  doi: 10.1038/38229
– ident: e_1_2_6_30_1
  doi: 10.1890/1051-0761(1997)007[0713:FIASLR]2.0.CO;2
– ident: e_1_2_6_56_1
  doi: 10.2307/3566060
– ident: e_1_2_6_18_1
  doi: 10.1046/j.1365-2699.2003.00934.x
– ident: e_1_2_6_35_1
  doi: 10.1590/S0100-84042011000100008
– ident: e_1_2_6_19_1
  doi: 10.1139/X07-159
– ident: e_1_2_6_21_1
  doi: 10.1071/WF07111
– ident: e_1_2_6_3_1
– ident: e_1_2_6_29_1
  doi: 10.1890/08-0741.1
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1744-7429.2005.00058.x
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1472-4642.2010.00688.x
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1365-2745.2007.01323.x
– ident: e_1_2_6_37_1
  doi: 10.1007/s10745-005-4143-8
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-2486.2008.01655.x
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1365-2745.2000.00435.x
– ident: e_1_2_6_34_1
  doi: 10.1071/WF01026
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1744-7429.2000.tb00448.x
– ident: e_1_2_6_43_1
  doi: 10.1890/05-0404
– ident: e_1_2_6_5_1
  doi: 10.1098/rstb.2007.0013
– ident: e_1_2_6_7_1
  doi: 10.1086/648458
– ident: e_1_2_6_9_1
  doi: 10.1017/S0266467498000339
– ident: e_1_2_6_53_1
  doi: 10.1177/030913330002400303
– ident: e_1_2_6_2_1
  doi: 10.1007/BF00044647
– ident: e_1_2_6_52_1
  doi: 10.1073/pnas.0903410106
– ident: e_1_2_6_54_1
  doi: 10.2307/2388588
– ident: e_1_2_6_48_1
  doi: 10.1071/WF07011
– ident: e_1_2_6_17_1
  doi: 10.1126/science.284.5421.1832
– ident: e_1_2_6_20_1
  doi: 10.1177/0309133308101383
– ident: e_1_2_6_24_1
  doi: 10.1017/S0266467405003007
– ident: e_1_2_6_14_1
  doi: 10.1017/S0266467498000212
– ident: e_1_2_6_55_1
  doi: 10.2307/1940299
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1744-7429.1999.tb00112.x
– ident: e_1_2_6_42_1
  doi: 10.1007/s002670010124
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1461-0248.2005.00767.x
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1365-2435.2006.01174.x
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1442-9993.1991.tb01486.x
– ident: e_1_2_6_28_1
  doi: 10.1007/s00442-005-0129-x
– ident: e_1_2_6_10_1
  doi: 10.1146/annurev.ecolsys.39.110707.173411
– ident: e_1_2_6_41_1
  doi: 10.1071/WF07046
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1365-2745.2010.01700.x
– start-page: 21
  volume-title: Nature and Dynamics of the Forest‐Savanna Boundaries
  year: 1992
  ident: e_1_2_6_31_1
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1469-8137.2010.03358.x
– ident: e_1_2_6_8_1
– ident: e_1_2_6_11_1
  doi: 10.1046/j.1365-2486.2003.00577.x
– ident: e_1_2_6_12_1
  doi: 10.1017/CBO9780511583490
– ident: e_1_2_6_32_1
  doi: 10.2307/2388198
– ident: e_1_2_6_46_1
– ident: e_1_2_6_59_1
  doi: 10.1016/S0065-2504(08)60149-X
– volume: 18
  start-page: 159
  year: 2008
  ident: e_1_2_6_6_1
  article-title: Fire feedbacks with vegetation and alternate stable states
  publication-title: Complex Syst.
  doi: 10.25088/ComplexSystems.18.1.159
– ident: e_1_2_6_23_1
  doi: 10.1007/s00442-009-1543-2
– ident: e_1_2_6_38_1
  doi: 10.1016/S0378-1127(01)00511-4
SSID ssj0008691
Score 2.433942
Snippet The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation‐environment feedbacks, alternate stable...
The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation-environment feedbacks, alternate stable...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 634
SubjectTerms Air temperature
Boundaries
C4 grass
Cerrado
fire behaviour
fire intensity
Flammability
Forest & brush fires
Forests
Fuels
Grasslands
Microclimate
positive feedback
Relative humidity
Savannahs
Sensitivity analysis
Terrestrial ecosystems
Wind speed
Title Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna-forest boundaries
URI https://api.istex.fr/ark:/67375/WNG-JFF63PHM-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1442-9993.2011.02324.x
https://www.proquest.com/docview/1035211667
https://www.proquest.com/docview/1069196087
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBL0_RBt3mgQujNy1qWZPsUQlhnSUgIpUtzE3pC2cRb9gFJTvkP-Yf9JZ2RvdvdkEMovRlZI-zxjOaTPPqGkH1mmZOGh6QoRS_hIWWJhrCW5MFDa6GtjFsXZ-dyMOQnl-KyzX_CszANP8Ryww09I87X6ODaTB85OWcJAJysZeJEcNBFPImpW4iPvv1lkipkLJ7XihRiPannyYHWItVLVPrNGgxdBbMxGlWbZLR4jyYJZdSdz0zX3j2iePw_L_qWvGlBKz1srGyLvPD1O_KqKWN5C1f9SH19-57oag6xlo4n9BoT_ezVTwDE_oAOV4_QUMCc1E1iQggdBxpg1qUBoqjB8_5Uz-hUA76v9e_7B4DUoAVqYvEnXNV_IMOq__1okLRFHBKLha0TqQOCzlJ4IQvrfCht5rSUrOekz4TvubTMfQ7LvmCtC4GF1BnBuSsLjlgk-0g26nHtPxEqpGWeBwatSITf0xz_I5cGWQy9MKJD8sUHU7ZlOMdCG1dqdaXDmUJVKlSliqpUNx2SLiV_NSwfz5D5Gm1iKaAnI8ySy4X6cX6sTqpKZheDM3XaITsLo1HtBDGF0QH5pqmUeYd8Wd4G18b_Nbr24zn2AaOFFWYBfWS0kGc_nDrsH-HV538V3CavoZk12XQ7ZGM2mftdgF8zsxcd6w9SgR66
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKK0Qv_CMWChgJuGW1cWwnOSBUtRu23e4Koa7ozTiOLaG2WbQ_YpcT78Dj8CqceBJmnOyyW3GokHrgFiV25HhmPN_Yk28IecEMK2TOXZCkohVwF7JAg1sLYmfhbqKN9FsXvb7sDPjhiTjZID8W_8JU_BDLDTe0DL9eo4HjhvQFK-csAIQT1VSciA6aszrDsmvnXyB-G78-2Adhv2Qsax_vdYK6xEBgsOxyILVDSJQKK2RiCutSExVaStYqpI2EbRVhGtsYghJnTOEcc2GRC86LNOHoKSN47zWyhQXFkbh___0f7qpE-nJ99RgTsZ5G9NeRr_nGLRTzbA34rsJn7_-yW-TnYuaqtJfT5nSSN83XC6SS_-nU3iY3a1xOdytDukM2bHmXXK8qdc7hqu3Zvef3iM6mACfocETPMZfRnH0CzG_f0MHqX0IUYDUtRj7nhQ4ddeBYqAOgkCOlAdUTOtYQwpT617fvEDXAtNPc17fCjYv7ZHAlX_qAbJbD0j4kVEjDLHcM7iLXf0tzPCpPcyRqtCIXDRIvNESZmsQda4mcqdVgjjOFolMoOuVFp2YNEi57fq6ITC7R55VXwmUHPTrFRMBYqA_9t-owy2T0rtNT3QbZWWipqtfAMbwdwH0YShk3yPPlY1i98EhKl3Y4xTZgJRBEJ9BGepW89ODUbnsPrx79a8dn5EbnuHekjg763cdkG5qwKnlwh2xORlP7BNDmJH_qrZqSj1et678B0fN82A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKKxAXKH9ioYCRgFtWiWM7yQGhqrth26WrCrGiN-M4toRadqv9EbuceAfehlfhxpMw42S3uxWHCqkHblFiR45nxvONPfmGkBfMsFIW3AVpJsKAu4gFGtxakDgLd1NtpN-6OOzJTp8fHIvjDfJz8S9MxQ-x3HBDy_DrNRr4WekuGDlnAQCcuGbiRHDQnNUJll07_wrh2_j1fgtk_ZKxvP1hrxPUFQYCg1WXA6kdIqJMWCFTU1qXmbjUUrKwlDYWNiyjLLEJxCTOmNI55qKyEJyXWcrRUcbw3mtki8sww7IRrffn1FWp9NX66jGmYj2L6K8jX3ONWyjl2RruXUXP3v3lt8mvxcRVWS8nzemkaJpvFzgl_8-Z3Sa3alROdyszukM27OAuuV7V6ZzDVdtze8_vEZ1PAUzQ4Yh-wUxGc_oZEL99Q_ur_whRANW0HPmMFzp01IFboQ5gQoGEBlRP6FhDADPQv7__gJgBZp0WvroVblvcJ_0r-dIHZHMwHNiHhAppmOWOwV1k-g81x4PyrECaRisK0SDJQkGUqSncsZLIqVoN5ThTKDqFolNedGrWINGy51lFY3KJPq-8Di476NEJpgEmQn3svVUHeS7jo86h6jbIzkJJVb0CjuHtAO2jSMqkQZ4vH8PahQdSemCHU2wDRgIhdAptpNfISw9O7bb38OrRv3Z8Rm4ctXL1br_XfUxuQgtWZQ7ukM3JaGqfANScFE-9TVPy6apV_Q-xaHuH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuels+or+microclimate%3F+Understanding+the+drivers+of+fire+feedbacks+at+savanna-forest+boundaries&rft.jtitle=Austral+ecology&rft.au=Hoffmann%2C+William+A&rft.au=Jaconis%2C+Susan+Y&rft.au=McKinley%2C+Kristen+L&rft.au=Geiger%2C+Erika+L&rft.date=2012-09-01&rft.issn=1442-9985&rft.eissn=1442-9993&rft.volume=37&rft.issue=6&rft.spage=634&rft.epage=643&rft_id=info:doi/10.1111%2Fj.1442-9993.2011.02324.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon