Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna-forest boundaries
The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation‐environment feedbacks, alternate stable states, and ultimately, the distribution of these two biomes. Multiple factors contribute to this difference in flammability, including microclimat...
Saved in:
Published in | Austral ecology Vol. 37; no. 6; pp. 634 - 643 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne, Australia
Blackwell Publishing Asia
01.09.2012
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation‐environment feedbacks, alternate stable states, and ultimately, the distribution of these two biomes. Multiple factors contribute to this difference in flammability, including microclimate, fuel amount and fuel type. To understand this transition in flammability, we studied fuel characteristics and microclimate across eight savanna–forest boundaries in south‐central Brazil. At each boundary, the environment was monitored for one week with automated measurements of near‐surface wind speed, air temperature, relative humidity and presence of dew. Manual measurements were performed to quantify fuel amounts and fuel moisture. These data were used to parameterize the fire behaviour model BehavePlus5 in order to simulate fire behaviour over the savanna–forest boundary. There were strong gradients across the boundary in all variables with the exception of total fuel load. During the day, savannas had higher wind speed and air temperature, and lower relative humidity and fuel moisture than forests. Although fuel loads were similar in savanna and forest, savanna was characterized by lower fuel bulk density, largely because of the presence of grasses. Based on these measurements, the fire behaviour model predicted savanna fires to be faster, more intense, and with greater flame lengths, relative to forest. A sensitivity analysis indicated that the primary cause of these differences was the low fuel bulk density characteristic of grassy fuels, with lesser contributions from wind speed, fuel moisture and total fuel load. These results indicate that the dominance of grassy fuels is the primary cause of the high flammability of savanna. |
---|---|
AbstractList | The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation-environment feedbacks, alternate stable states, and ultimately, the distribution of these two biomes. Multiple factors contribute to this difference in flammability, including microclimate, fuel amount and fuel type. To understand this transition in flammability, we studied fuel characteristics and microclimate across eight savanna-forest boundaries in south-central Brazil. At each boundary, the environment was monitored for one week with automated measurements of near-surface wind speed, air temperature, relative humidity and presence of dew. Manual measurements were performed to quantify fuel amounts and fuel moisture. These data were used to parameterize the fire behaviour model BehavePlus5 in order to simulate fire behaviour over the savanna-forest boundary. There were strong gradients across the boundary in all variables with the exception of total fuel load. During the day, savannas had higher wind speed and air temperature, and lower relative humidity and fuel moisture than forests. Although fuel loads were similar in savanna and forest, savanna was characterized by lower fuel bulk density, largely because of the presence of grasses. Based on these measurements, the fire behaviour model predicted savanna fires to be faster, more intense, and with greater flame lengths, relative to forest. A sensitivity analysis indicated that the primary cause of these differences was the low fuel bulk density characteristic of grassy fuels, with lesser contributions from wind speed, fuel moisture and total fuel load. These results indicate that the dominance of grassy fuels is the primary cause of the high flammability of savanna. The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation-environment feedbacks, alternate stable states, and ultimately, the distribution of these two biomes. Multiple factors contribute to this difference in flammability, including microclimate, fuel amount and fuel type. To understand this transition in flammability, we studied fuel characteristics and microclimate across eight savanna-forest boundaries in south-central Brazil. At each boundary, the environment was monitored for one week with automated measurements of near-surface wind speed, air temperature, relative humidity and presence of dew. Manual measurements were performed to quantify fuel amounts and fuel moisture. These data were used to parameterize the fire behaviour model BehavePlus5 in order to simulate fire behaviour over the savanna-forest boundary. There were strong gradients across the boundary in all variables with the exception of total fuel load. During the day, savannas had higher wind speed and air temperature, and lower relative humidity and fuel moisture than forests. Although fuel loads were similar in savanna and forest, savanna was characterized by lower fuel bulk density, largely because of the presence of grasses. Based on these measurements, the fire behaviour model predicted savanna fires to be faster, more intense, and with greater flame lengths, relative to forest. A sensitivity analysis indicated that the primary cause of these differences was the low fuel bulk density characteristic of grassy fuels, with lesser contributions from wind speed, fuel moisture and total fuel load. These results indicate that the dominance of grassy fuels is the primary cause of the high flammability of savanna. [PUBLICATION ABSTRACT] |
Author | HOFFMANN, WILLIAM A. GEIGER, ERIKA L. FRANCO, AUGUSTO C. GOTSCH, SYBIL G. MCKINLEY, KRISTEN L. JACONIS, SUSAN Y. |
Author_xml | – sequence: 1 givenname: WILLIAM A. surname: HOFFMANN fullname: HOFFMANN, WILLIAM A. organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu) – sequence: 2 givenname: SUSAN Y. surname: JACONIS fullname: JACONIS, SUSAN Y. organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu) – sequence: 3 givenname: KRISTEN L. surname: MCKINLEY fullname: MCKINLEY, KRISTEN L. organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu) – sequence: 4 givenname: ERIKA L. surname: GEIGER fullname: GEIGER, ERIKA L. organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu) – sequence: 5 givenname: SYBIL G. surname: GOTSCH fullname: GOTSCH, SYBIL G. organization: Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA (Email: wahoffma@ncsu.edu) – sequence: 6 givenname: AUGUSTO C. surname: FRANCO fullname: FRANCO, AUGUSTO C. organization: Departamento de Botânica, Universidade de Brasília, 70919-970 Brasília-DF, Brazil |
BookMark | eNqNkM9PHCEUx0mjSf3R_4GkFy8zhWGGHQ5qzMbVtlZ7qOmRsPBoWWdBgbHrf1-m2-zBk1x4ge_3-977HKI9HzwghCmpaTmfVjVt26YSQrC6IZTWpGFNW2_eoYPdx96u7rv36DClFSGk54IeILkYYUg4RLx2OgY9uLXKcI7vvYGYsvLG-V84_wZsonsuTzhYbF0EbAHMUumHhFXGST0r71VlQ4SU8TKM3qjoIB2jfauGBB_-30fofnH5Y35d3dxdfZ5f3FS6pU1bcWUp7YjooOO9NmCFZkZx3hDDgXVADBUzmPVCWK2NtY2lZtm1rRF98QvGjtDJNvcxhqexzCDXLmkYBuUhjElSUtYVnPSzIv34SroKY_RluqJiXUMp55Oq36oKlZQiWPkYC5v4UkRyIi9XcoIqJ8ByIi__kZebYj17ZdUuq-yCz1G54S0Bp9uAP26Alzc3lheX86kq_mrrdynDZudX8UGWzWad_Hl7Jb8sFpx9v_4mv7K_ZESudA |
CitedBy_id | crossref_primary_10_1071_BT21091 crossref_primary_10_1017_S0266467412000727 crossref_primary_10_1111_1365_2745_13906 crossref_primary_10_1016_j_jhydrol_2015_04_039 crossref_primary_10_1111_ele_12942 crossref_primary_10_1016_j_sajb_2015_06_003 crossref_primary_10_1111_aec_13202 crossref_primary_10_1111_jbi_12889 crossref_primary_10_1371_journal_pone_0191027 crossref_primary_10_1111_aec_12355 crossref_primary_10_1111_aec_12871 crossref_primary_10_1007_s11629_024_8897_0 crossref_primary_10_1071_BT12255 crossref_primary_10_1186_s13717_018_0150_8 crossref_primary_10_1890_12_1629_1 crossref_primary_10_1016_j_jenvman_2018_04_004 crossref_primary_10_1002_ece3_2734 crossref_primary_10_1007_s00442_021_04923_w crossref_primary_10_1071_WF16085 crossref_primary_10_1177_0959683618761540 crossref_primary_10_1016_j_foreco_2019_117518 crossref_primary_10_5194_bg_15_233_2018 crossref_primary_10_1111_gcb_12583 crossref_primary_10_1111_nph_19009 crossref_primary_10_1016_j_actao_2013_08_001 crossref_primary_10_1093_jpe_rty017 crossref_primary_10_1111_brv_12687 crossref_primary_10_1016_j_rse_2021_112764 crossref_primary_10_1016_j_ecoleng_2019_07_028 crossref_primary_10_1890_12_1019_1 crossref_primary_10_1111_aec_13175 crossref_primary_10_3389_ffgc_2018_00006 crossref_primary_10_1111_jvs_12195 crossref_primary_10_1016_j_rama_2022_04_001 crossref_primary_10_1111_aec_12008 crossref_primary_10_1111_geb_12739 crossref_primary_10_1016_j_foreco_2020_118850 crossref_primary_10_1371_journal_pone_0250183 crossref_primary_10_1007_s11258_015_0531_3 crossref_primary_10_1111_1365_2745_13851 crossref_primary_10_1111_j_1442_9993_2012_02410_x crossref_primary_10_1111_1365_2435_70032 crossref_primary_10_1111_jbi_14701 crossref_primary_10_1002_hyp_11047 crossref_primary_10_1016_j_foreco_2019_117804 crossref_primary_10_1007_s11258_016_0574_0 crossref_primary_10_7717_peerj_5114 crossref_primary_10_1007_s11258_019_00949_6 crossref_primary_10_3389_fclim_2022_941900 crossref_primary_10_1038_s41558_020_0707_2 crossref_primary_10_1177_0959683614551229 crossref_primary_10_3375_043_035_0203 crossref_primary_10_1007_s00468_013_0864_2 crossref_primary_10_1111_nph_12551 crossref_primary_10_1111_jbi_12745 crossref_primary_10_1515_mammalia_2023_0040 crossref_primary_10_1111_1365_2745_12950 crossref_primary_10_1590_1806_908820200000029 crossref_primary_10_1016_j_foreco_2020_118889 crossref_primary_10_1016_j_ecolmodel_2014_07_024 crossref_primary_10_1590_2175_7860201970060 crossref_primary_10_1007_s11104_013_1822_x crossref_primary_10_1007_s11258_013_0256_0 crossref_primary_10_1016_j_foreco_2019_05_016 crossref_primary_10_1007_s40626_014_0002_6 crossref_primary_10_1177_19400829231164936 crossref_primary_10_3390_fire4030034 crossref_primary_10_1111_j_1442_9993_2011_02350_x crossref_primary_10_1111_nph_16742 crossref_primary_10_1177_19400829251314110 crossref_primary_10_1111_btp_12943 crossref_primary_10_1111_aec_13156 crossref_primary_10_1016_j_jnc_2022_126261 crossref_primary_10_1146_annurev_environ_112420_015211 crossref_primary_10_1016_j_foreco_2018_02_032 crossref_primary_10_3390_rs15030696 crossref_primary_10_1016_j_ecolmodel_2013_05_022 crossref_primary_10_1111_jvs_13102 crossref_primary_10_1890_13_0503_1 crossref_primary_10_1029_2020GB006677 crossref_primary_10_1098_rstb_2015_0306 crossref_primary_10_1016_j_jenvman_2021_112508 crossref_primary_10_1098_rstb_2015_0308 crossref_primary_10_1016_j_actao_2020_103658 crossref_primary_10_1098_rstb_2015_0309 crossref_primary_10_1007_s00442_014_3071_y crossref_primary_10_1007_s11676_016_0219_0 crossref_primary_10_1093_ee_nvaa128 crossref_primary_10_1071_BT22139 crossref_primary_10_1016_j_ecofro_2024_11_001 crossref_primary_10_3389_ffgc_2020_507710 crossref_primary_10_1088_1748_9326_ad2820 crossref_primary_10_1016_j_tree_2014_02_004 crossref_primary_10_1016_j_sajb_2015_07_005 crossref_primary_10_1016_j_actao_2022_103862 crossref_primary_10_14483_2256201X_20277 crossref_primary_10_1111_1365_2745_13549 crossref_primary_10_1016_j_scitotenv_2015_02_081 crossref_primary_10_1016_j_flora_2017_12_009 crossref_primary_10_1111_1365_2745_13781 crossref_primary_10_1071_BT15283 crossref_primary_10_1007_s10980_022_01571_0 crossref_primary_10_1016_j_sajb_2015_05_005 crossref_primary_10_1002_ecs2_3347 crossref_primary_10_1111_1365_2664_13794 crossref_primary_10_1017_S0266467418000469 crossref_primary_10_1111_nph_20421 crossref_primary_10_1002_rse2_212 crossref_primary_10_1016_j_agrformet_2022_109289 crossref_primary_10_1098_rstb_2015_0170 crossref_primary_10_1007_s11258_024_01480_z crossref_primary_10_1016_j_actao_2015_11_007 crossref_primary_10_1186_s13717_017_0103_7 crossref_primary_10_1186_s42408_018_0005_9 crossref_primary_10_1111_jvs_12314 crossref_primary_10_1016_j_rsase_2025_101480 crossref_primary_10_1111_nph_14940 crossref_primary_10_1016_j_ecolind_2020_106151 crossref_primary_10_1111_nph_15117 crossref_primary_10_1111_jvs_12959 crossref_primary_10_5194_gmd_10_1175_2017 crossref_primary_10_1111_aec_13181 crossref_primary_10_4996_fireecology_140101016 crossref_primary_10_1016_j_apgeog_2024_103243 crossref_primary_10_1111_1365_2745_12118 crossref_primary_10_1111_jbi_12306 crossref_primary_10_1111_aec_12015 crossref_primary_10_1111_aec_12415 crossref_primary_10_1088_1748_9326_ac39be crossref_primary_10_1016_j_ecocom_2020_100827 crossref_primary_10_1002_eco_1587 crossref_primary_10_1016_j_ppees_2021_125630 crossref_primary_10_3390_cli5020042 crossref_primary_10_3390_f10050367 crossref_primary_10_1098_rspb_2024_1120 crossref_primary_10_4102_koedoe_v62i1_1576 crossref_primary_10_1111_ele_14236 crossref_primary_10_1007_s10531_019_01892_8 crossref_primary_10_3389_fcosc_2023_1150516 crossref_primary_10_1111_j_1461_0248_2012_01789_x crossref_primary_10_1007_s11258_015_0545_x crossref_primary_10_1111_aec_12420 crossref_primary_10_1111_aje_12391 crossref_primary_10_5194_bg_12_2927_2015 crossref_primary_10_3389_fpls_2014_00590 crossref_primary_10_1071_BT13232 crossref_primary_10_1088_1748_9326_aa9ead crossref_primary_10_1016_j_jag_2019_02_010 crossref_primary_10_1016_j_sajb_2015_05_019 crossref_primary_10_1111_avsc_12110 crossref_primary_10_3390_rs15112934 crossref_primary_10_1111_nph_13317 crossref_primary_10_1016_j_foreco_2019_05_047 |
Cites_doi | 10.1016/j.foreco.2009.07.024 10.1111/j.1365-2745.2009.01493.x 10.1023/A:1026164427792 10.1016/B978-012614440-6/50011-2 10.2307/2388278 10.1111/j.1366-9516.2004.00063.x 10.1007/s10980-008-9285-9 10.1038/38229 10.1890/1051-0761(1997)007[0713:FIASLR]2.0.CO;2 10.2307/3566060 10.1046/j.1365-2699.2003.00934.x 10.1590/S0100-84042011000100008 10.1139/X07-159 10.1071/WF07111 10.1890/08-0741.1 10.1111/j.1744-7429.2005.00058.x 10.1111/j.1472-4642.2010.00688.x 10.1111/j.1365-2745.2007.01323.x 10.1007/s10745-005-4143-8 10.1111/j.1365-2486.2008.01655.x 10.1046/j.1365-2745.2000.00435.x 10.1071/WF01026 10.1111/j.1744-7429.2000.tb00448.x 10.1890/05-0404 10.1098/rstb.2007.0013 10.1086/648458 10.1017/S0266467498000339 10.1177/030913330002400303 10.1007/BF00044647 10.1073/pnas.0903410106 10.2307/2388588 10.1071/WF07011 10.1126/science.284.5421.1832 10.1177/0309133308101383 10.1017/S0266467405003007 10.1017/S0266467498000212 10.2307/1940299 10.1111/j.1744-7429.1999.tb00112.x 10.1007/s002670010124 10.1111/j.1461-0248.2005.00767.x 10.1111/j.1365-2435.2006.01174.x 10.1111/j.1442-9993.1991.tb01486.x 10.1007/s00442-005-0129-x 10.1146/annurev.ecolsys.39.110707.173411 10.1071/WF07046 10.1111/j.1365-2745.2010.01700.x 10.1111/j.1469-8137.2010.03358.x 10.1046/j.1365-2486.2003.00577.x 10.1017/CBO9780511583490 10.2307/2388198 10.1016/S0065-2504(08)60149-X 10.25088/ComplexSystems.18.1.159 10.1007/s00442-009-1543-2 10.1016/S0378-1127(01)00511-4 |
ContentType | Journal Article |
Copyright | 2011 The Authors. Austral Ecology © 2011 Ecological Society of Australia 2012 Ecological Society of Australia |
Copyright_xml | – notice: 2011 The Authors. Austral Ecology © 2011 Ecological Society of Australia – notice: 2012 Ecological Society of Australia |
DBID | BSCLL AAYXX CITATION 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7ST SOI |
DOI | 10.1111/j.1442-9993.2011.02324.x |
DatabaseName | Istex CrossRef Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Technology Research Database Animal Behavior Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Ecology Abstracts CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1442-9993 |
EndPage | 643 |
ExternalDocumentID | 2746016351 10_1111_j_1442_9993_2011_02324_x AEC2324 ark_67375_WNG_JFF63PHM_K |
Genre | article Feature |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7ST SOI |
ID | FETCH-LOGICAL-c4124-6af115095e568cdef9c3da6620d6e35e0d197e7899fccdff2f1db544d98412933 |
IEDL.DBID | DR2 |
ISSN | 1442-9985 |
IngestDate | Tue Aug 05 11:14:37 EDT 2025 Wed Aug 13 10:35:14 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 03:47:33 EDT 2025 Wed Aug 20 07:26:22 EDT 2025 Wed Oct 30 09:51:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4124-6af115095e568cdef9c3da6620d6e35e0d197e7899fccdff2f1db544d98412933 |
Notes | ark:/67375/WNG-JFF63PHM-K istex:3E9CB9E196EDB4D03ABD8CCCBFA831033AEEC8C0 ArticleID:AEC2324 Present addresses: Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221‐0006, USA Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1035211667 |
PQPubID | 46239 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1069196087 proquest_journals_1035211667 crossref_primary_10_1111_j_1442_9993_2011_02324_x crossref_citationtrail_10_1111_j_1442_9993_2011_02324_x wiley_primary_10_1111_j_1442_9993_2011_02324_x_AEC2324 istex_primary_ark_67375_WNG_JFF63PHM_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09 September 2012 2012-09-00 20120901 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09 |
PublicationDecade | 2010 |
PublicationPlace | Melbourne, Australia |
PublicationPlace_xml | – name: Melbourne, Australia – name: Richmond |
PublicationTitle | Austral ecology |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Asia Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Asia – name: Blackwell Publishing Ltd |
References | Ripley B., Donald G., Osborne C. P., Abraham T. & Martin T. (2010) Experimental investigation of fire ecology in the C-3 and C-4 subspecies of Alloteropsis semialata. J. Ecol. 98, 1196-203. Nepstad D., Carvalho G., Barros A. C. et al. (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. For. Ecol. Manage. 154, 395-407. Fernandes P. M., Botelho H., Rego F. & Loureiro C. (2008) Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands. Can. J. For. Res. 38, 190-201. Wilson J. B. & Agnew A. D. Q. (1992) Positive-feedback switches in plant communities. Adv. Ecol. Rs 23, 263-335. Castro E. A. & Kauffman J. B. (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263-83. Warman L. & Moles A. T. (2009) Alternative stable states in Australia's Wet Tropics: a theoretical framework for the field data and a field-case for the theory. Landscape Ecol. 24, 1-13. Balch J. K., Nepstad D. C., Brando P. M. et al. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Glob. Chang. Biol. 14, 2276-87. Gignoux J., Lahoreau G., Julliard R. & Barot S. (2009) Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 97, 484-95. Cochrane M. A. & Schulze M. D. (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 2-16. Higgins S. I., Bond W. J. & Trollope W. S. W. (2000) Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J. Ecol. 88, 213-29. Uhl C., Kauffman J. B. & Cummings D. L. (1988) Fire in the Venezuelan Amazon. 2. Environmental-conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos 53, 176-84. Cochrane M. A., Alencar A., Schulze M. D. et al. (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284, 1832-5. Savadogo P., Zida D., Sawadogo L., Tiveau D., Tigabu M. & Oden P. C. (2007) Fuel and fire characteristics in savanna-woodland of West Africa in relation to grazing and dominant grass type. Int. J. Wildl. Fire 16, 531-9. Beckage B. & Ellingwood C. (2008) Fire feedbacks with vegetation and alternate stable states. Complex Syst. 18, 159-73. Beckage B., Platt W. J. & Gross L. J. (2009) Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. Am. Nat. 174, 805-18. Hennenberg K. J., Fischer F., Kouadio K. et al. (2006) Phytomass and fire occurrence along forest-savanna transects in the Comoe National Park, Ivory Coast. J. Trop. Ecol. 22, 303-11. Ray D., Nepstad D. & Moutinho P. (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664-78. Kauffman J. B. (1991) Survival by sprouting following fire in tropical forests of the Eastern Amazon. Biotropica 23, 219-24. Bowman D. M. J. & Fensham R. J. (1991) Response of a monsoon forest-savanna boundary to fire protection, Weipa, northern Australia. Aust. J. Ecol. 16, 111-8. Simon M. F., Grether R., Queiroz L. P., Skema C., Penningtone T. & Hughes C. E. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359-64. Uhl C. & Kauffman J. B. (1990) Deforestation, fire susceptibility and potential tree responses to fire in the eastern Amazon. Ecology 71, 437-49. Stott P. (2000) Combustion in tropical biomass fires: a critical review. Prog. Phys. Geog. 24, 355-77. Martins C. R., Hay J. D. V., Walter B. M. T., Proenca C. E. B. & Vivaldi L. J. (2011) Impact of invasion and management of molasses grass (Melinis minutiflora) on the native vegetation of the Brazilian Savanna. Rev. Bras. Bot. 34, 73-90. Ganteaume A., Lampin-Maillet C., Guijarro M. et al. (2009) Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildl. Fire 18, 951-69. Veldman J. W., Mostacedo B., Pena-Claros M. & Putz F. E. (2009) Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. For. Ecol. Manage. 258, 1643-9. Mistry J. & Berardi A. (2005) Assessing fire potential in a Brazilian Savanna nature reserve. Biotropica 37, 439-51. Plucinski M. P. & Anderson W. R. (2008) Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. Int. J. Wildl. Fire 17, 628-37. Hoffmann W. A., Lucatelli V. M. P., Silva F. J. et al. (2004) Impact of the invasive grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers. Distrib. 10, 99-103. Bond W. J. (2008) What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641-59. Ray D., Nepstad D. & Brando P. (2010) Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytol. 187, 720-32. Marsden-Smedley J. B., Catchpole W. R. & Pyrke A. (2001) Fire modelling in Tasmanian buttongrass moorlands. IV - Sustaining versus non-sustaining fires. Int. J. Wildl. Fire 10, 255-62. Biddulph J. & Kellman M. (1998) Fuels and fire at savanna gallery forest boundaries in southeastern Venezuela. J. Trop. Ecol. 14, 445-61. Furley P. A., Rees R. M., Ryan C. M. & Saiz G. (2008) Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Prog. Phys. Geog. 32, 611-34. Keeley J. E. & Rundel P. W. (2005) Fire and the Miocene expansion of C-4 grasslands. Ecol. Lett. 8, 683-90. Hoffmann W. A., Adasme R., Haridasan M. et al. (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil. Ecology 90, 1326-37. Fensham R. J., Fairfax R. J., Butler D. W. & Bowman D. M. J. (2003) Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest. J. Biogeogr. 30, 1405-14. Hoffmann W. A. (2000) Post-establishment seedling success in the Brazilian Cerrado: a comparison of savanna and forest species. Biotropica 32, 62-9. Gotsch S. G., Geiger E. L., Franco A. C., Goldstein G., Meinzer F. C. & Hoffmann W. A. (2010) Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia 163, 291-301. Setterfield S. A., Rossiter-Rachor N. A., Hutley L. B., Douglas M. M. & Williams R. J. (2010) Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854-61. Silva Matos D. M., Santos C. J. & Chevalier D. R. (2002) Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosyst. 6, 151-61. Barlow J. & Peres C. A. (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 1787-94. Alonso-Amelot M. E. & Rodulfo-Baechler S. (1996) Comparative spatial distribution, size, biomass and growth rate of two varieties of bracken fern (Pteridium aquilinum L. Kuhn) in a neotropical montane habitat. Vegetatio 125, 137-47. Holdsworth A. R. & Uhl C. (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol. Appl. 7, 713-25. Woods P. (1989) Effects of logging, drought and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica 21, 290-8. Bond W. J., Midgley G. F. & Woodward F. I. (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Chang. Biol. 9, 973-82. Ramos-Neto M. B. & Pivello V. R. (2000) Lightning fires in a Brazilian savanna national park: rethinking management strategies. Environ. Manage. 26, 675-84. Scarff F. R. & Westoby M. (2006) Leaf litter flammability in some semi-arid Australian woodlands. Funct. Ecol. 20, 745-52. Hoffmann W. A., da Silva E. R., Machado G. C. et al. (2005) Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145, 307-16. Osborne C. P. (2008) Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? J. Ecol. 96, 35-45. Bowman D. M. J. (2000) Australian Rainforests: Islands of Green in A Land of Fire. Cambridge University Press, Cambridge. Cerling T., Harris J. M., MacFadden B. J. et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153-8. Mistry J., Berardi A., Andrade V., Kraho T., Kraho P. & Leonardos O. (2005) Indigenous fire management in the Cerrado of Brazil: the case of the Kraho of Tocantins. Hum. Ecol. 33, 365-86. Uhl C. & Buschbacher R. (1985) A disturbing synergism between cattle ranching burning practices and selective tree harvesting in the eastern Amazon. Biotropica 17, 265-8. 2010; 98 1991; 16 2010; 16 2000; 88 2008; 38 2008; 39 2010; 187 1999; 284 2008; 32 1972 1997; 7 1997; 389 1985; 17 2006; 20 2009; 97 2001 2000 2005; 145 2006; 22 2009; 90 2003; 9 2005; 37 2005; 33 1998; 14 2009; 18 2001; 10 2009; 24 1989; 21 2000; 26 2000; 24 2008; 18 2002; 6 2008; 17 2008; 14 2008 2010; 163 1994 2011; 34 2009; 174 1992 2008; 96 1988; 53 1996; 125 2008; 363 2003; 30 2009; 258 1999 2007; 16 2004; 10 2001; 154 1991; 23 2000; 32 2005; 8 1999; 31 2005; 15 1992; 23 1990; 71 2009; 106 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_50_1 Beckage B. (e_1_2_6_6_1) 2008; 18 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 Hopkins B. (e_1_2_6_31_1) 1992 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Hoffmann W. A., Lucatelli V. M. P., Silva F. J. et al. (2004) Impact of the invasive grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers. Distrib. 10, 99-103. – reference: Beckage B. & Ellingwood C. (2008) Fire feedbacks with vegetation and alternate stable states. Complex Syst. 18, 159-73. – reference: Cochrane M. A., Alencar A., Schulze M. D. et al. (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284, 1832-5. – reference: Ray D., Nepstad D. & Moutinho P. (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664-78. – reference: Castro E. A. & Kauffman J. B. (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263-83. – reference: Mistry J., Berardi A., Andrade V., Kraho T., Kraho P. & Leonardos O. (2005) Indigenous fire management in the Cerrado of Brazil: the case of the Kraho of Tocantins. Hum. Ecol. 33, 365-86. – reference: Ramos-Neto M. B. & Pivello V. R. (2000) Lightning fires in a Brazilian savanna national park: rethinking management strategies. Environ. Manage. 26, 675-84. – reference: Setterfield S. A., Rossiter-Rachor N. A., Hutley L. B., Douglas M. M. & Williams R. J. (2010) Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854-61. – reference: Wilson J. B. & Agnew A. D. Q. (1992) Positive-feedback switches in plant communities. Adv. Ecol. Rs 23, 263-335. – reference: Nepstad D., Carvalho G., Barros A. C. et al. (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. For. Ecol. Manage. 154, 395-407. – reference: Balch J. K., Nepstad D. C., Brando P. M. et al. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Glob. Chang. Biol. 14, 2276-87. – reference: Holdsworth A. R. & Uhl C. (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol. Appl. 7, 713-25. – reference: Ganteaume A., Lampin-Maillet C., Guijarro M. et al. (2009) Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildl. Fire 18, 951-69. – reference: Silva Matos D. M., Santos C. J. & Chevalier D. R. (2002) Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosyst. 6, 151-61. – reference: Gotsch S. G., Geiger E. L., Franco A. C., Goldstein G., Meinzer F. C. & Hoffmann W. A. (2010) Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia 163, 291-301. – reference: Higgins S. I., Bond W. J. & Trollope W. S. W. (2000) Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J. Ecol. 88, 213-29. – reference: Marsden-Smedley J. B., Catchpole W. R. & Pyrke A. (2001) Fire modelling in Tasmanian buttongrass moorlands. IV - Sustaining versus non-sustaining fires. Int. J. Wildl. Fire 10, 255-62. – reference: Gignoux J., Lahoreau G., Julliard R. & Barot S. (2009) Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 97, 484-95. – reference: Hoffmann W. A., da Silva E. R., Machado G. C. et al. (2005) Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145, 307-16. – reference: Plucinski M. P. & Anderson W. R. (2008) Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. Int. J. Wildl. Fire 17, 628-37. – reference: Simon M. F., Grether R., Queiroz L. P., Skema C., Penningtone T. & Hughes C. E. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359-64. – reference: Bowman D. M. J. (2000) Australian Rainforests: Islands of Green in A Land of Fire. Cambridge University Press, Cambridge. – reference: Hoffmann W. A. (2000) Post-establishment seedling success in the Brazilian Cerrado: a comparison of savanna and forest species. Biotropica 32, 62-9. – reference: Ray D., Nepstad D. & Brando P. (2010) Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytol. 187, 720-32. – reference: Bowman D. M. J. & Fensham R. J. (1991) Response of a monsoon forest-savanna boundary to fire protection, Weipa, northern Australia. Aust. J. Ecol. 16, 111-8. – reference: Veldman J. W., Mostacedo B., Pena-Claros M. & Putz F. E. (2009) Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. For. Ecol. Manage. 258, 1643-9. – reference: Fensham R. J., Fairfax R. J., Butler D. W. & Bowman D. M. J. (2003) Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest. J. Biogeogr. 30, 1405-14. – reference: Hoffmann W. A., Adasme R., Haridasan M. et al. (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil. Ecology 90, 1326-37. – reference: Barlow J. & Peres C. A. (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 1787-94. – reference: Scarff F. R. & Westoby M. (2006) Leaf litter flammability in some semi-arid Australian woodlands. Funct. Ecol. 20, 745-52. – reference: Woods P. (1989) Effects of logging, drought and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica 21, 290-8. – reference: Warman L. & Moles A. T. (2009) Alternative stable states in Australia's Wet Tropics: a theoretical framework for the field data and a field-case for the theory. Landscape Ecol. 24, 1-13. – reference: Beckage B., Platt W. J. & Gross L. J. (2009) Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. Am. Nat. 174, 805-18. – reference: Uhl C. & Buschbacher R. (1985) A disturbing synergism between cattle ranching burning practices and selective tree harvesting in the eastern Amazon. Biotropica 17, 265-8. – reference: Hennenberg K. J., Fischer F., Kouadio K. et al. (2006) Phytomass and fire occurrence along forest-savanna transects in the Comoe National Park, Ivory Coast. J. Trop. Ecol. 22, 303-11. – reference: Ripley B., Donald G., Osborne C. P., Abraham T. & Martin T. (2010) Experimental investigation of fire ecology in the C-3 and C-4 subspecies of Alloteropsis semialata. J. Ecol. 98, 1196-203. – reference: Uhl C., Kauffman J. B. & Cummings D. L. (1988) Fire in the Venezuelan Amazon. 2. Environmental-conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos 53, 176-84. – reference: Alonso-Amelot M. E. & Rodulfo-Baechler S. (1996) Comparative spatial distribution, size, biomass and growth rate of two varieties of bracken fern (Pteridium aquilinum L. Kuhn) in a neotropical montane habitat. Vegetatio 125, 137-47. – reference: Martins C. R., Hay J. D. V., Walter B. M. T., Proenca C. E. B. & Vivaldi L. J. (2011) Impact of invasion and management of molasses grass (Melinis minutiflora) on the native vegetation of the Brazilian Savanna. Rev. Bras. Bot. 34, 73-90. – reference: Keeley J. E. & Rundel P. W. (2005) Fire and the Miocene expansion of C-4 grasslands. Ecol. Lett. 8, 683-90. – reference: Osborne C. P. (2008) Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? J. Ecol. 96, 35-45. – reference: Stott P. (2000) Combustion in tropical biomass fires: a critical review. Prog. Phys. Geog. 24, 355-77. – reference: Cochrane M. A. & Schulze M. D. (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 2-16. – reference: Uhl C. & Kauffman J. B. (1990) Deforestation, fire susceptibility and potential tree responses to fire in the eastern Amazon. Ecology 71, 437-49. – reference: Savadogo P., Zida D., Sawadogo L., Tiveau D., Tigabu M. & Oden P. C. (2007) Fuel and fire characteristics in savanna-woodland of West Africa in relation to grazing and dominant grass type. Int. J. Wildl. Fire 16, 531-9. – reference: Kauffman J. B. (1991) Survival by sprouting following fire in tropical forests of the Eastern Amazon. Biotropica 23, 219-24. – reference: Furley P. A., Rees R. M., Ryan C. M. & Saiz G. (2008) Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Prog. Phys. Geog. 32, 611-34. – reference: Cerling T., Harris J. M., MacFadden B. J. et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153-8. – reference: Mistry J. & Berardi A. (2005) Assessing fire potential in a Brazilian Savanna nature reserve. Biotropica 37, 439-51. – reference: Bond W. J. (2008) What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641-59. – reference: Biddulph J. & Kellman M. (1998) Fuels and fire at savanna gallery forest boundaries in southeastern Venezuela. J. Trop. Ecol. 14, 445-61. – reference: Bond W. J., Midgley G. F. & Woodward F. I. (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Chang. Biol. 9, 973-82. – reference: Fernandes P. M., Botelho H., Rego F. & Loureiro C. (2008) Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands. Can. J. For. Res. 38, 190-201. – volume: 125 start-page: 137 year: 1996 end-page: 47 article-title: Comparative spatial distribution, size, biomass and growth rate of two varieties of bracken fern ( L. Kuhn) in a neotropical montane habitat publication-title: Vegetatio – volume: 17 start-page: 265 year: 1985 end-page: 8 article-title: A disturbing synergism between cattle ranching burning practices and selective tree harvesting in the eastern Amazon publication-title: Biotropica – volume: 21 start-page: 290 year: 1989 end-page: 8 article-title: Effects of logging, drought and fire on structure and composition of tropical forests in Sabah, Malaysia publication-title: Biotropica – volume: 154 start-page: 395 year: 2001 end-page: 407 article-title: Road paving, fire regime feedbacks, and the future of Amazon forests publication-title: For. Ecol. Manage. – volume: 22 start-page: 303 year: 2006 end-page: 11 article-title: Phytomass and fire occurrence along forest‐savanna transects in the Comoe National Park, Ivory Coast publication-title: J. Trop. Ecol. – volume: 98 start-page: 1196 year: 2010 end-page: 203 article-title: Experimental investigation of fire ecology in the C‐3 and C‐4 subspecies of Alloteropsis semialata publication-title: J. Ecol. – start-page: 313 year: 1999 end-page: 73 – volume: 30 start-page: 1405 year: 2003 end-page: 14 article-title: Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest publication-title: J. Biogeogr. – year: 2001 – volume: 363 start-page: 1787 year: 2008 end-page: 94 article-title: Fire‐mediated dieback and compositional cascade in an Amazonian forest publication-title: Phil. Trans. R. Soc. Lond. B Biol. Sci. – volume: 39 start-page: 641 year: 2008 end-page: 59 article-title: What limits trees in C grasslands and savannas? publication-title: Annu. Rev. Ecol. Syst. – volume: 14 start-page: 445 year: 1998 end-page: 61 article-title: Fuels and fire at savanna gallery forest boundaries in southeastern Venezuela publication-title: J. Trop. Ecol. – volume: 7 start-page: 713 year: 1997 end-page: 25 article-title: Fire in Amazonian selectively logged rain forest and the potential for fire reduction publication-title: Ecol. Appl. – volume: 163 start-page: 291 year: 2010 end-page: 301 article-title: Allocation to leaf area and sapwood area affects water relations of co‐occurring savanna and forest trees publication-title: Oecologia – volume: 187 start-page: 720 year: 2010 end-page: 32 article-title: Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger publication-title: New Phytol. – volume: 34 start-page: 73 year: 2011 end-page: 90 article-title: Impact of invasion and management of molasses grass ( ) on the native vegetation of the Brazilian Savanna publication-title: Rev. Bras. Bot. – volume: 96 start-page: 35 year: 2008 end-page: 45 article-title: Atmosphere, ecology and evolution: what drove the Miocene expansion of C grasslands? publication-title: J. Ecol. – volume: 24 start-page: 355 year: 2000 end-page: 77 article-title: Combustion in tropical biomass fires: a critical review publication-title: Prog. Phys. Geog. – start-page: 21 year: 1992 end-page: 33 – year: 1994 – volume: 23 start-page: 263 year: 1992 end-page: 335 article-title: Positive‐feedback switches in plant communities publication-title: Adv. Ecol. Rs – volume: 88 start-page: 213 year: 2000 end-page: 29 article-title: Fire, resprouting and variability: a recipe for grass‐tree coexistence in savanna publication-title: J. Ecol. – volume: 145 start-page: 307 year: 2005 end-page: 16 article-title: Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna publication-title: Oecologia – volume: 71 start-page: 437 year: 1990 end-page: 49 article-title: Deforestation, fire susceptibility and potential tree responses to fire in the eastern Amazon publication-title: Ecology – volume: 37 start-page: 439 year: 2005 end-page: 51 article-title: Assessing fire potential in a Brazilian Savanna nature reserve publication-title: Biotropica – volume: 53 start-page: 176 year: 1988 end-page: 84 article-title: Fire in the Venezuelan Amazon. 2. Environmental‐conditions necessary for forest fires in the evergreen rainforest of Venezuela publication-title: Oikos – volume: 10 start-page: 99 year: 2004 end-page: 103 article-title: Impact of the invasive grass at the savanna–forest ecotone in the Brazilian Cerrado publication-title: Divers. Distrib. – volume: 97 start-page: 484 year: 2009 end-page: 95 article-title: Establishment and early persistence of tree seedlings in an annually burned savanna publication-title: J. Ecol. – year: 2008 – year: 1972 – volume: 16 start-page: 111 year: 1991 end-page: 8 article-title: Response of a monsoon forest‐savanna boundary to fire protection, Weipa, northern Australia publication-title: Aust. J. Ecol. – volume: 32 start-page: 62 year: 2000 end-page: 9 article-title: Post‐establishment seedling success in the Brazilian Cerrado: a comparison of savanna and forest species publication-title: Biotropica – volume: 14 start-page: 263 year: 1998 end-page: 83 article-title: Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire publication-title: J. Trop. Ecol. – volume: 32 start-page: 611 year: 2008 end-page: 34 article-title: Savanna burning and the assessment of long‐term fire experiments with particular reference to Zimbabwe publication-title: Prog. Phys. Geog. – volume: 18 start-page: 159 year: 2008 end-page: 73 article-title: Fire feedbacks with vegetation and alternate stable states publication-title: Complex Syst. – volume: 14 start-page: 2276 year: 2008 end-page: 87 article-title: Negative fire feedback in a transitional forest of southeastern Amazonia publication-title: Glob. Chang. Biol. – year: 2000 – volume: 284 start-page: 1832 year: 1999 end-page: 5 article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests publication-title: Science – volume: 31 start-page: 2 year: 1999 end-page: 16 article-title: Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition publication-title: Biotropica – volume: 33 start-page: 365 year: 2005 end-page: 86 article-title: Indigenous fire management in the Cerrado of Brazil: the case of the Kraho of Tocantins publication-title: Hum. Ecol. – volume: 17 start-page: 628 year: 2008 end-page: 37 article-title: Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation publication-title: Int. J. Wildl. Fire – volume: 16 start-page: 854 year: 2010 end-page: 61 article-title: Turning up the heat: the impacts of (gamba grass) invasion on fire behaviour in northern Australian savannas publication-title: Divers. Distrib. – volume: 90 start-page: 1326 year: 2009 end-page: 37 article-title: Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna–forest boundaries under frequent fire in central Brazil publication-title: Ecology – volume: 258 start-page: 1643 year: 2009 end-page: 9 article-title: Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest publication-title: For. Ecol. Manage. – volume: 9 start-page: 973 year: 2003 end-page: 82 article-title: The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas publication-title: Glob. Chang. Biol. – volume: 24 start-page: 1 year: 2009 end-page: 13 article-title: Alternative stable states in Australia's Wet Tropics: a theoretical framework for the field data and a field‐case for the theory publication-title: Landscape Ecol. – volume: 18 start-page: 951 year: 2009 end-page: 69 article-title: Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds publication-title: Int. J. Wildl. Fire – volume: 15 start-page: 1664 year: 2005 end-page: 78 article-title: Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape publication-title: Ecol. Appl. – volume: 10 start-page: 255 year: 2001 end-page: 62 article-title: Fire modelling in Tasmanian buttongrass moorlands. IV – Sustaining versus non‐sustaining fires publication-title: Int. J. Wildl. Fire – volume: 16 start-page: 531 year: 2007 end-page: 9 article-title: Fuel and fire characteristics in savanna‐woodland of West Africa in relation to grazing and dominant grass type publication-title: Int. J. Wildl. Fire – volume: 23 start-page: 219 year: 1991 end-page: 24 article-title: Survival by sprouting following fire in tropical forests of the Eastern Amazon publication-title: Biotropica – volume: 8 start-page: 683 year: 2005 end-page: 90 article-title: Fire and the Miocene expansion of C‐4 grasslands publication-title: Ecol. Lett. – volume: 174 start-page: 805 year: 2009 end-page: 18 article-title: Vegetation, fire, and feedbacks: a disturbance‐mediated model of savannas publication-title: Am. Nat. – volume: 389 start-page: 153 year: 1997 end-page: 8 article-title: Global vegetation change through the Miocene/Pliocene boundary publication-title: Nature – volume: 20 start-page: 745 year: 2006 end-page: 52 article-title: Leaf litter flammability in some semi‐arid Australian woodlands publication-title: Funct. Ecol. – volume: 38 start-page: 190 year: 2008 end-page: 201 article-title: Using fuel and weather variables to predict the sustainability of surface fire spread in maritime pine stands publication-title: Can. J. For. Res. – volume: 26 start-page: 675 year: 2000 end-page: 84 article-title: Lightning fires in a Brazilian savanna national park: rethinking management strategies publication-title: Environ. Manage. – volume: 6 start-page: 151 year: 2002 end-page: 61 article-title: Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil publication-title: Urban Ecosyst. – volume: 106 start-page: 20359 year: 2009 end-page: 64 article-title: Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire publication-title: Proc. Natl Acad. Sci. USA – ident: e_1_2_6_57_1 doi: 10.1016/j.foreco.2009.07.024 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-2745.2009.01493.x – ident: e_1_2_6_51_1 doi: 10.1023/A:1026164427792 – ident: e_1_2_6_40_1 – ident: e_1_2_6_47_1 doi: 10.1016/B978-012614440-6/50011-2 – ident: e_1_2_6_60_1 doi: 10.2307/2388278 – ident: e_1_2_6_27_1 doi: 10.1111/j.1366-9516.2004.00063.x – ident: e_1_2_6_58_1 doi: 10.1007/s10980-008-9285-9 – ident: e_1_2_6_15_1 doi: 10.1038/38229 – ident: e_1_2_6_30_1 doi: 10.1890/1051-0761(1997)007[0713:FIASLR]2.0.CO;2 – ident: e_1_2_6_56_1 doi: 10.2307/3566060 – ident: e_1_2_6_18_1 doi: 10.1046/j.1365-2699.2003.00934.x – ident: e_1_2_6_35_1 doi: 10.1590/S0100-84042011000100008 – ident: e_1_2_6_19_1 doi: 10.1139/X07-159 – ident: e_1_2_6_21_1 doi: 10.1071/WF07111 – ident: e_1_2_6_3_1 – ident: e_1_2_6_29_1 doi: 10.1890/08-0741.1 – ident: e_1_2_6_36_1 doi: 10.1111/j.1744-7429.2005.00058.x – ident: e_1_2_6_50_1 doi: 10.1111/j.1472-4642.2010.00688.x – ident: e_1_2_6_39_1 doi: 10.1111/j.1365-2745.2007.01323.x – ident: e_1_2_6_37_1 doi: 10.1007/s10745-005-4143-8 – ident: e_1_2_6_4_1 doi: 10.1111/j.1365-2486.2008.01655.x – ident: e_1_2_6_25_1 doi: 10.1046/j.1365-2745.2000.00435.x – ident: e_1_2_6_34_1 doi: 10.1071/WF01026 – ident: e_1_2_6_26_1 doi: 10.1111/j.1744-7429.2000.tb00448.x – ident: e_1_2_6_43_1 doi: 10.1890/05-0404 – ident: e_1_2_6_5_1 doi: 10.1098/rstb.2007.0013 – ident: e_1_2_6_7_1 doi: 10.1086/648458 – ident: e_1_2_6_9_1 doi: 10.1017/S0266467498000339 – ident: e_1_2_6_53_1 doi: 10.1177/030913330002400303 – ident: e_1_2_6_2_1 doi: 10.1007/BF00044647 – ident: e_1_2_6_52_1 doi: 10.1073/pnas.0903410106 – ident: e_1_2_6_54_1 doi: 10.2307/2388588 – ident: e_1_2_6_48_1 doi: 10.1071/WF07011 – ident: e_1_2_6_17_1 doi: 10.1126/science.284.5421.1832 – ident: e_1_2_6_20_1 doi: 10.1177/0309133308101383 – ident: e_1_2_6_24_1 doi: 10.1017/S0266467405003007 – ident: e_1_2_6_14_1 doi: 10.1017/S0266467498000212 – ident: e_1_2_6_55_1 doi: 10.2307/1940299 – ident: e_1_2_6_16_1 doi: 10.1111/j.1744-7429.1999.tb00112.x – ident: e_1_2_6_42_1 doi: 10.1007/s002670010124 – ident: e_1_2_6_33_1 doi: 10.1111/j.1461-0248.2005.00767.x – ident: e_1_2_6_49_1 doi: 10.1111/j.1365-2435.2006.01174.x – ident: e_1_2_6_13_1 doi: 10.1111/j.1442-9993.1991.tb01486.x – ident: e_1_2_6_28_1 doi: 10.1007/s00442-005-0129-x – ident: e_1_2_6_10_1 doi: 10.1146/annurev.ecolsys.39.110707.173411 – ident: e_1_2_6_41_1 doi: 10.1071/WF07046 – ident: e_1_2_6_45_1 doi: 10.1111/j.1365-2745.2010.01700.x – start-page: 21 volume-title: Nature and Dynamics of the Forest‐Savanna Boundaries year: 1992 ident: e_1_2_6_31_1 – ident: e_1_2_6_44_1 doi: 10.1111/j.1469-8137.2010.03358.x – ident: e_1_2_6_8_1 – ident: e_1_2_6_11_1 doi: 10.1046/j.1365-2486.2003.00577.x – ident: e_1_2_6_12_1 doi: 10.1017/CBO9780511583490 – ident: e_1_2_6_32_1 doi: 10.2307/2388198 – ident: e_1_2_6_46_1 – ident: e_1_2_6_59_1 doi: 10.1016/S0065-2504(08)60149-X – volume: 18 start-page: 159 year: 2008 ident: e_1_2_6_6_1 article-title: Fire feedbacks with vegetation and alternate stable states publication-title: Complex Syst. doi: 10.25088/ComplexSystems.18.1.159 – ident: e_1_2_6_23_1 doi: 10.1007/s00442-009-1543-2 – ident: e_1_2_6_38_1 doi: 10.1016/S0378-1127(01)00511-4 |
SSID | ssj0008691 |
Score | 2.433942 |
Snippet | The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation‐environment feedbacks, alternate stable... The higher flammability of tropical savanna, compared with forest, plays a critical role in mediating vegetation-environment feedbacks, alternate stable... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 634 |
SubjectTerms | Air temperature Boundaries C4 grass Cerrado fire behaviour fire intensity Flammability Forest & brush fires Forests Fuels Grasslands Microclimate positive feedback Relative humidity Savannahs Sensitivity analysis Terrestrial ecosystems Wind speed |
Title | Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna-forest boundaries |
URI | https://api.istex.fr/ark:/67375/WNG-JFF63PHM-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1442-9993.2011.02324.x https://www.proquest.com/docview/1035211667 https://www.proquest.com/docview/1069196087 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBL0_RBt3mgQujNy1qWZPsUQlhnSUgIpUtzE3pC2cRb9gFJTvkP-Yf9JZ2RvdvdkEMovRlZI-zxjOaTPPqGkH1mmZOGh6QoRS_hIWWJhrCW5MFDa6GtjFsXZ-dyMOQnl-KyzX_CszANP8Ryww09I87X6ODaTB85OWcJAJysZeJEcNBFPImpW4iPvv1lkipkLJ7XihRiPannyYHWItVLVPrNGgxdBbMxGlWbZLR4jyYJZdSdz0zX3j2iePw_L_qWvGlBKz1srGyLvPD1O_KqKWN5C1f9SH19-57oag6xlo4n9BoT_ezVTwDE_oAOV4_QUMCc1E1iQggdBxpg1qUBoqjB8_5Uz-hUA76v9e_7B4DUoAVqYvEnXNV_IMOq__1okLRFHBKLha0TqQOCzlJ4IQvrfCht5rSUrOekz4TvubTMfQ7LvmCtC4GF1BnBuSsLjlgk-0g26nHtPxEqpGWeBwatSITf0xz_I5cGWQy9MKJD8sUHU7ZlOMdCG1dqdaXDmUJVKlSliqpUNx2SLiV_NSwfz5D5Gm1iKaAnI8ySy4X6cX6sTqpKZheDM3XaITsLo1HtBDGF0QH5pqmUeYd8Wd4G18b_Nbr24zn2AaOFFWYBfWS0kGc_nDrsH-HV538V3CavoZk12XQ7ZGM2mftdgF8zsxcd6w9SgR66 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKK0Qv_CMWChgJuGW1cWwnOSBUtRu23e4Koa7ozTiOLaG2WbQ_YpcT78Dj8CqceBJmnOyyW3GokHrgFiV25HhmPN_Yk28IecEMK2TOXZCkohVwF7JAg1sLYmfhbqKN9FsXvb7sDPjhiTjZID8W_8JU_BDLDTe0DL9eo4HjhvQFK-csAIQT1VSciA6aszrDsmvnXyB-G78-2Adhv2Qsax_vdYK6xEBgsOxyILVDSJQKK2RiCutSExVaStYqpI2EbRVhGtsYghJnTOEcc2GRC86LNOHoKSN47zWyhQXFkbh___0f7qpE-nJ99RgTsZ5G9NeRr_nGLRTzbA34rsJn7_-yW-TnYuaqtJfT5nSSN83XC6SS_-nU3iY3a1xOdytDukM2bHmXXK8qdc7hqu3Zvef3iM6mACfocETPMZfRnH0CzG_f0MHqX0IUYDUtRj7nhQ4ddeBYqAOgkCOlAdUTOtYQwpT617fvEDXAtNPc17fCjYv7ZHAlX_qAbJbD0j4kVEjDLHcM7iLXf0tzPCpPcyRqtCIXDRIvNESZmsQda4mcqdVgjjOFolMoOuVFp2YNEi57fq6ITC7R55VXwmUHPTrFRMBYqA_9t-owy2T0rtNT3QbZWWipqtfAMbwdwH0YShk3yPPlY1i98EhKl3Y4xTZgJRBEJ9BGepW89ODUbnsPrx79a8dn5EbnuHekjg763cdkG5qwKnlwh2xORlP7BNDmJH_qrZqSj1et678B0fN82A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKKxAXKH9ioYCRgFtWiWM7yQGhqrth26WrCrGiN-M4toRadqv9EbuceAfehlfhxpMw42S3uxWHCqkHblFiR45nxvONPfmGkBfMsFIW3AVpJsKAu4gFGtxakDgLd1NtpN-6OOzJTp8fHIvjDfJz8S9MxQ-x3HBDy_DrNRr4WekuGDlnAQCcuGbiRHDQnNUJll07_wrh2_j1fgtk_ZKxvP1hrxPUFQYCg1WXA6kdIqJMWCFTU1qXmbjUUrKwlDYWNiyjLLEJxCTOmNI55qKyEJyXWcrRUcbw3mtki8sww7IRrffn1FWp9NX66jGmYj2L6K8jX3ONWyjl2RruXUXP3v3lt8mvxcRVWS8nzemkaJpvFzgl_8-Z3Sa3alROdyszukM27OAuuV7V6ZzDVdtze8_vEZ1PAUzQ4Yh-wUxGc_oZEL99Q_ur_whRANW0HPmMFzp01IFboQ5gQoGEBlRP6FhDADPQv7__gJgBZp0WvroVblvcJ_0r-dIHZHMwHNiHhAppmOWOwV1k-g81x4PyrECaRisK0SDJQkGUqSncsZLIqVoN5ThTKDqFolNedGrWINGy51lFY3KJPq-8Di476NEJpgEmQn3svVUHeS7jo86h6jbIzkJJVb0CjuHtAO2jSMqkQZ4vH8PahQdSemCHU2wDRgIhdAptpNfISw9O7bb38OrRv3Z8Rm4ctXL1br_XfUxuQgtWZQ7ukM3JaGqfANScFE-9TVPy6apV_Q-xaHuH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuels+or+microclimate%3F+Understanding+the+drivers+of+fire+feedbacks+at+savanna-forest+boundaries&rft.jtitle=Austral+ecology&rft.au=Hoffmann%2C+William+A&rft.au=Jaconis%2C+Susan+Y&rft.au=McKinley%2C+Kristen+L&rft.au=Geiger%2C+Erika+L&rft.date=2012-09-01&rft.issn=1442-9985&rft.eissn=1442-9993&rft.volume=37&rft.issue=6&rft.spage=634&rft.epage=643&rft_id=info:doi/10.1111%2Fj.1442-9993.2011.02324.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon |