Integral Solutions to Schlesinger Equations

It is shown that Schlesinger equations for isomonodromic deformations of Fuchsian systems of order p on the Riemann spheres with upper triangular monodromy are reduced to multidimensional linear homogeneous ( p = 2) and inhomogeneous (≥ 3) Pfaffian systems. For components of the solutions to the mul...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 208; no. 2; pp. 229 - 239
Main Author Leksin, V. P.
Format Journal Article
LanguageEnglish
Published New York Springer US 02.07.2015
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is shown that Schlesinger equations for isomonodromic deformations of Fuchsian systems of order p on the Riemann spheres with upper triangular monodromy are reduced to multidimensional linear homogeneous ( p = 2) and inhomogeneous (≥ 3) Pfaffian systems. For components of the solutions to the multidimensional linear Pfaffian systems ( p = 2) we obtain integral representations of hypergeometric type and expressions in quadratures close to the hypergeometric Schlesinger equations describing deformations of upper triangular Fuchsian systems of order p = 3.
AbstractList It is shown that Schlesinger equations for isomonodromic deformations of Fuchsian systems of order p on the Riemann spheres with upper triangular monodromy are reduced to multidimensional linear homogeneous ( p = 2) and inhomogeneous (≥ 3) Pfaffian systems. For components of the solutions to the multidimensional linear Pfaffian systems ( p = 2) we obtain integral representations of hypergeometric type and expressions in quadratures close to the hypergeometric Schlesinger equations describing deformations of upper triangular Fuchsian systems of order p = 3.
It is shown that Schlesinger equations for isomonodromic deformations of Fuchsian systems of order p on the Riemann spheres with upper triangular monodromy are reduced to multidimensional linear homogeneous (p = 2) and inhomogeneous ([greater than or equal to] 3) Pfaffian systems. For components of the solutions to the multidimensional linear Pfaffian systems (p = 2) we obtain integral representations of hypergeometric type and expressions in quadratures close to the hypergeometric Schlesinger equations describing deformations of upper triangular Fuchsian systems of order p = 3. Bibliography: 11 titles.
Audience Academic
Author Leksin, V. P.
Author_xml – sequence: 1
  givenname: V. P.
  surname: Leksin
  fullname: Leksin, V. P.
  email: lexin_vp@mail.ru
  organization: Moscow State Region Institute of Social Studies and Humanities
BookMark eNp9kUFLwzAUx4MouE0_gLeBJ5HMJC9p0uMYUwcDwek5xDSpHV2rSQv67c2sl8GQHBLyfr8H7_3H6LRpG4fQFSUzSoi8i5TkQmFCBWacEwwnaESFBKxkLk7Tm0iGASQ_R-MYtyQ5mYIRul01nSuDqaebtu67qm3itGunG_teu1g1pQvT5WdvfgsX6MybOrrLv3uCXu-XL4tHvH56WC3ma2w5ZYC5zBxQpnghmVA5kIwayZjPvBeZKXJlCvBOOWGNMqlkPQECbwYkyT0YAxN0PfQtTe101fi2C8buqmj1nIsMeGorE4WPUKVrXJomLcdX6fuAnx3h0yncrrJHhZsDITGd--pK08eoV5vnQ5YOrA1tjMF5_RGqnQnfmhK9D0gPAekUkN4HpCE5bHBiYveb1tu2D03a7D_SDwhikSk
CitedBy_id crossref_primary_10_1080_14029251_2017_1375692
Cites_doi 10.1134/S0081543812060132
10.1023/A:1020763318762
10.1090/cbms/098
10.1090/conm/078/975088
10.4153/CMB-2001-006-3
10.1016/0167-2789(81)90013-0
10.1515/crll.1905.129.287
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
COPYRIGHT 2015 Springer
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: COPYRIGHT 2015 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-015-2440-3
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 239
ExternalDocumentID A456342587
10_1007_s10958_015_2440_3
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c4123-476e31284d725893061a722f6ff56ad98ad3fe8e5ca8a1a7cf0303ba3709f3aa3
IEDL.DBID AGYKE
ISSN 1072-3374
IngestDate Thu Feb 22 23:55:37 EST 2024
Fri Feb 02 05:08:55 EST 2024
Tue Nov 12 22:48:00 EST 2024
Thu Aug 01 20:03:38 EDT 2024
Thu Sep 12 20:01:29 EDT 2024
Sat Dec 16 12:07:56 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fundamental Matrix
Monodromy Matrix
Holomorphic Vector Bundle
Riemann Sphere
Vector Bundle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4123-476e31284d725893061a722f6ff56ad98ad3fe8e5ca8a1a7cf0303ba3709f3aa3
PageCount 11
ParticipantIDs gale_infotracmisc_A456342587
gale_infotracgeneralonefile_A456342587
gale_infotracacademiconefile_A456342587
gale_incontextgauss_ISR_A456342587
crossref_primary_10_1007_s10958_015_2440_3
springer_journals_10_1007_s10958_015_2440_3
PublicationCentury 2000
PublicationDate 20150702
PublicationDateYYYYMMDD 2015-07-02
PublicationDate_xml – month: 07
  year: 2015
  text: 20150702
  day: 02
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2015
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References BolibrukhAAInverse Monodromy Problems in Analytic Theory of Differential Equations [in Russian]2009MoscowMTcNMO
A. Varchenko, Special Functions, KZ Type Equations, and Representation Theory, Am. Math. Soc., Providence, RI (2003).
JimboMMiwaTUenoKMonodromy preserving deformations of linear differential equations with rational coefficients. I. General theory and τ -functionPhysica D198123063521194.3416763067410.1016/0167-2789(81)90013-0
MalekS“Fuchsian systems with reducible monodromy are meromorphically equivalent to reducible Fuchsian systems”, [in Russian]Tr. Mat. Inst. Steklova20022364814901931047
MalekSOn the reducibility of the Schlesinger equationsJ. Dyn. Contr. Syst.2002845055271020.34086193189610.1023/A:1020763318762
V. P. Leksin, “Multidimensional Jordan–Pochhammer systems and their applications” [in Russian], Tr. Mat. Inst. Steklova278, 138–147 (2012); English transl.: 278, 130–138 (2012).
I. V. Vyugin and R. R. Gontsov, “On the question of solvability of Fuchsian systems by quadratures” [in Russian], Usp. Mat. Nauk67, No. 3, 183–184 (2012); English transl.Russ. Math. Surv.67, No. 3, 585–587 (2012).
SchlesingerLÜber die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären PunkteJ. Reine Angew. Math.19051292872941580670
KohnoTLinear representations of braid groups and classical Yang–Baxter equationsContemp. Math.198878339363975088
KapovichMMillsonJQuantization of bending deformations of polygons in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{E} $$\end{document}3, hypergeometric integrals and the Gassner representationCanad. Math. Bull.20014436601008.53073181604810.4153/CMB-2001-006-3
MalgrangeBSur les déformations isomonodromiques. I. Singularités régulièresProgr. Math.198337401426728431
2440_CR11
T Kohno (2440_CR9) 1988; 78
S Malek (2440_CR8) 2002; 8
AA Bolibrukh (2440_CR3) 2009
2440_CR1
M Jimbo (2440_CR5) 1981; 2
2440_CR7
S Malek (2440_CR6) 2002; 236
B Malgrange (2440_CR4) 1983; 37
M Kapovich (2440_CR10) 2001; 44
L Schlesinger (2440_CR2) 1905; 129
References_xml – ident: 2440_CR1
  doi: 10.1134/S0081543812060132
– volume: 8
  start-page: 505
  issue: 4
  year: 2002
  ident: 2440_CR8
  publication-title: J. Dyn. Contr. Syst.
  doi: 10.1023/A:1020763318762
  contributor:
    fullname: S Malek
– ident: 2440_CR11
  doi: 10.1090/cbms/098
– volume: 78
  start-page: 339
  year: 1988
  ident: 2440_CR9
  publication-title: Contemp. Math.
  doi: 10.1090/conm/078/975088
  contributor:
    fullname: T Kohno
– ident: 2440_CR7
– volume-title: Inverse Monodromy Problems in Analytic Theory of Differential Equations [in Russian]
  year: 2009
  ident: 2440_CR3
  contributor:
    fullname: AA Bolibrukh
– volume: 236
  start-page: 481
  year: 2002
  ident: 2440_CR6
  publication-title: Tr. Mat. Inst. Steklova
  contributor:
    fullname: S Malek
– volume: 44
  start-page: 36
  year: 2001
  ident: 2440_CR10
  publication-title: Canad. Math. Bull.
  doi: 10.4153/CMB-2001-006-3
  contributor:
    fullname: M Kapovich
– volume: 37
  start-page: 401
  year: 1983
  ident: 2440_CR4
  publication-title: Progr. Math.
  contributor:
    fullname: B Malgrange
– volume: 2
  start-page: 306
  year: 1981
  ident: 2440_CR5
  publication-title: Physica D
  doi: 10.1016/0167-2789(81)90013-0
  contributor:
    fullname: M Jimbo
– volume: 129
  start-page: 287
  year: 1905
  ident: 2440_CR2
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1905.129.287
  contributor:
    fullname: L Schlesinger
SSID ssj0007683
Score 2.0394967
Snippet It is shown that Schlesinger equations for isomonodromic deformations of Fuchsian systems of order p on the Riemann spheres with upper triangular monodromy are...
It is shown that Schlesinger equations for isomonodromic deformations of Fuchsian systems of order p on the Riemann spheres with upper triangular monodromy are...
SourceID gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 229
SubjectTerms Mathematics
Mathematics and Statistics
Title Integral Solutions to Schlesinger Equations
URI https://link.springer.com/article/10.1007/s10958-015-2440-3
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVGWKkIIJFCqYmc9BmjZVA6USnCyHMcuUlEKTXrh6xlngwg4cM4oicfjmadZngEOpVTU9rkwz1SHm5YbWWaIYddE5BqGQmrCdp2H7N8710Pr9sl-mgNSpS7icbusSGaO-tusm2_rvivbJLoeSedhoZg7XQiunu-6lf9FAJ231bvEpNS1ylrmby-pRaPSJ9crolmg6a3kw39Jxk-o-0vG7VkatsXHT_bGf6xhFZYL3GkEuaGswZyM12GpX5G2JhuQZQdHU5SqcmVGOjEG4uVVJtlnjO57zgyebMKw1328uDaLuxRMYaGScBccSXUsilxiI0bBMM5dQpSjlO3wyPd4RJX0pC24x_GRUHj6acip2_EV5ZxuQSOexHIbjFAJxCCevtmPWg6XHrd85XYi6kUc8Q5pwkmpU_aWU2awL3JkrQGGGmBaA4w24UBrnWkqilj3uoz4LEnYzeCBBYjtKLoUz23CcSGkJumUC16MDuD_aPaqmuRRTXKUc3f_JrhXE8RDJWqPT8sdZMWhTv5exM6_pHdhkWgT0DlisgeNdDqT-4hs0rCFpnx-ed5rFSbdgvkhCT4BfXDt9g
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGK16iKioARqsrvZPRaxtNr2YFvoLWSzST3IVrvt_3dmH9WFevCcj5BMHvMxM_lCyI0xlnuh0vTRNhV1RezSCNwuBeYaRdqgYDvGIfsDvzN2XybepHjHnZbV7mVKMrupfz12Cz0svPIow4Qk3yRbKK-Ogvlj1lpdv8Cf86p6wSjnwi1Tmeu6qDij8kquJkQzP9PeJ3sFQXRa-YoekA2THJLd_kpdNT0iWRhvOgfUKqjlLGbOUL9_mDTr1Hn-yiW802Mybj-Pnjq0-PSAahe8CJjLNxydRiyYB2QC_K0SjFnfWs9XcRiomFsTGE-rQEGTtnBMeaS4aIaWK8VPSC2ZJeaUOJHVQBYC_IKPu74ygXJDK5oxD2IFxITVyX05e_mZa1vIHxVjNJUEU0k0leR1co32kagZkWBRylQt01R2h2-yBSSMw9kPRJ3cFSA7W8yVVkWNP4wHZaYqyNsKcpqLbK8DNipA2P260vxQrpcsTl_69yTO_oW-ItudUb8ne93B6znZYbhvMLDLGqS2mC_NBdCRRXSZbb9vaFXSrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46QfRB_InTqUVEQSmbSdu0j0M3NnVDnIO9hWuazAfp5tr9_17WdlqYDz7nIySXH_dxd_lCyJVSmrkBSPteN8B2eOTYIbpdG5lrGEplBNtNHLLX9zpD52nkjvJ_TpOi2r1ISWZvGoxKU5zWp5Gu_3r4FrimCMu1qUlOsnWygZ6ImZq-IW0ur2Lk0lmFPac2Y9wp0pqruig5puJ6LidHFz6nvUt2crJoNbPV3SNrKt4n272l0mpyQBYhvfEMUcsAl5VOrIH8-FTJolOr9ZXJeSeHZNhuvT907PwDBFs66FHQdJ5ixoFEnLpILND3AqdUe1q7HkSBDxHTyleuBB-wSWo8siwExhuBZgDsiFTiSayOiRVqicTBN9_xMccD5YMTaN6ImB8BkhRaJbfF7MU007kQP4rGxlQCTSWMqQSrkktjH2H0I2JToDKGeZKI7uBNNJGQMbwHfF4lNzlIT9IZSMjr_XE8RnKqhLwuIceZ4PYqYK0ExJMgS813xXqJ_CQmf0_i5F_oC7L5-tgWL93-8ynZombbmBgvrZFKOpurM2QmaXi-2H3f_pHW8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integral+solutions+to+Schlesinger+equations&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Leksin%2C+V.P&rft.date=2015-07-02&rft.pub=Springer&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=208&rft.issue=2&rft.spage=229&rft_id=info:doi/10.1007%2Fs10958-015-2440-3&rft.externalDBID=ISR&rft.externalDocID=A456342587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon