A Dendrite‐Free Lithium/Carbon Nanotube Hybrid for Lithium‐Metal Batteries
Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, whic...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 4; pp. e2006702 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li‐metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super‐stable functions even at an ultrahigh current density of 40 mA cm−2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm−2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li‐S battery. This work provides valuable concepts in fabricating Li anodes toward Li‐metal batteries and beyond for their high‐level services.
A dendrite‐free Li/carbon nanotube (CNT) hybrid is fabricated by direct coating of molten Li on CNTs for Li‐metal batteries. Favorable thermodynamic and kinetic conditions are a powerful force to drive the rapid lift upward and infusion of molten Li into CNTs network. The obtained hybrid exhibits superstable function even at an ultrahigh current density. |
---|---|
AbstractList | Lithium (Li) metal is promising in the next-generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite-free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li-metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super-stable functions even at an ultrahigh current density of 40 mA cm-2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm-2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li-S battery. This work provides valuable concepts in fabricating Li anodes toward Li-metal batteries and beyond for their high-level services.Lithium (Li) metal is promising in the next-generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite-free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li-metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super-stable functions even at an ultrahigh current density of 40 mA cm-2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm-2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li-S battery. This work provides valuable concepts in fabricating Li anodes toward Li-metal batteries and beyond for their high-level services. Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li‐metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super‐stable functions even at an ultrahigh current density of 40 mA cm−2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm−2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li‐S battery. This work provides valuable concepts in fabricating Li anodes toward Li‐metal batteries and beyond for their high‐level services. Lithium (Li) metal is promising in the next-generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite-free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li-metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super-stable functions even at an ultrahigh current density of 40 mA cm for 2000 cycles with a stripping/plating capacity of 2 mAh cm in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li-S battery. This work provides valuable concepts in fabricating Li anodes toward Li-metal batteries and beyond for their high-level services. Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li‐metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super‐stable functions even at an ultrahigh current density of 40 mA cm−2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm−2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li‐S battery. This work provides valuable concepts in fabricating Li anodes toward Li‐metal batteries and beyond for their high‐level services. A dendrite‐free Li/carbon nanotube (CNT) hybrid is fabricated by direct coating of molten Li on CNTs for Li‐metal batteries. Favorable thermodynamic and kinetic conditions are a powerful force to drive the rapid lift upward and infusion of molten Li into CNTs network. The obtained hybrid exhibits superstable function even at an ultrahigh current density. Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li‐metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super‐stable functions even at an ultrahigh current density of 40 mA cm −2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm −2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li‐S battery. This work provides valuable concepts in fabricating Li anodes toward Li‐metal batteries and beyond for their high‐level services. |
Author | Guo, Wei Luo, Qin Li, Ye Sheng Yin, Yan Hong Lu, Zhong Xu Wu, Zi Ping Wang, Zhi Yong Liu, Xian Bin Xia, Bao Yu |
Author_xml | – sequence: 1 givenname: Zhi Yong surname: Wang fullname: Wang, Zhi Yong organization: Jiangxi University of Science and Technology (JXUST) – sequence: 2 givenname: Zhong Xu surname: Lu fullname: Lu, Zhong Xu organization: Jiangxi University of Science and Technology (JXUST) – sequence: 3 givenname: Wei surname: Guo fullname: Guo, Wei organization: Huazhong University of Science and Technology (HUST) – sequence: 4 givenname: Qin surname: Luo fullname: Luo, Qin organization: Jiangxi University of Science and Technology (JXUST) – sequence: 5 givenname: Yan Hong surname: Yin fullname: Yin, Yan Hong email: yinyanhong@jxust.edu.cn organization: Jiangxi University of Science and Technology (JXUST) – sequence: 6 givenname: Xian Bin surname: Liu fullname: Liu, Xian Bin organization: Jiangxi University of Science and Technology (JXUST) – sequence: 7 givenname: Ye Sheng surname: Li fullname: Li, Ye Sheng organization: Jiangxi University of Science and Technology (JXUST) – sequence: 8 givenname: Bao Yu surname: Xia fullname: Xia, Bao Yu email: byxia@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) – sequence: 9 givenname: Zi Ping orcidid: 0000-0003-4701-121X surname: Wu fullname: Wu, Zi Ping email: wuziping724@jxust.edu.cn organization: Jiangxi University of Science and Technology (JXUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33314412$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFq3DAQhkVJaTZprz0WQy-9eDOSLNk6bjdNU9ikl_ZsxtaYKthWKsmUvfUR-ox9kipskkKgFAYEw_fNiPlP2NHsZ2LsNYc1BxBnaCdcCxAAugbxjK24EryswKgjtgIjVWl01RyzkxhvAMBo0C_YsZSSVxUXK3a9Kc5ptsEl-v3z10UgKnYufXPLdLbF0Pm5uMbZp6Wj4nLfBWeLwYcHJBtXlHAs3mNKFBzFl-z5gGOkV_fvKft68eHL9rLcff74abvZlX3eKkotea07ZXvZK4mGrMJGIdmqQ931MvcHJIECBqy5MqahXCCtrrlualvLU_buMPc2-O8LxdROLvY0jjiTX2IrqjpfpxJaZfTtE_TGL2HOv8tUA9zoPDVTb-6ppZvItrfBTRj27cOlMrA-AH3wMQYaHhEO7V0U7V0U7WMUWaieCL1LmJyfU0A3_lszB-2HG2n_nyXt5vxq89f9Ax-unbg |
CitedBy_id | crossref_primary_10_1002_celc_202400209 crossref_primary_10_1007_s12274_022_5227_0 crossref_primary_10_1016_j_jelechem_2023_117826 crossref_primary_10_1002_adsu_202300061 crossref_primary_10_1007_s13726_022_01069_1 crossref_primary_10_1021_acsami_2c08117 crossref_primary_10_1039_D1QM01426A crossref_primary_10_1039_D2EE02115C crossref_primary_10_1016_j_cej_2023_142555 crossref_primary_10_1002_advs_202101111 crossref_primary_10_1002_batt_202400144 crossref_primary_10_1002_smll_202205709 crossref_primary_10_1021_acsami_2c13193 crossref_primary_10_1039_D3QM00029J crossref_primary_10_1038_s41467_021_27429_8 crossref_primary_10_1002_anie_202319600 crossref_primary_10_1002_eom2_12478 crossref_primary_10_1002_smll_202301754 crossref_primary_10_1007_s12274_021_3506_9 crossref_primary_10_1007_s12598_022_01994_3 crossref_primary_10_1021_acsami_1c15196 crossref_primary_10_1002_ppsc_202100020 crossref_primary_10_1021_acs_nanolett_1c03765 crossref_primary_10_1002_adfm_202110665 crossref_primary_10_1039_D2CP04032H crossref_primary_10_1002_adfm_202206405 crossref_primary_10_1002_advs_202309254 crossref_primary_10_1002_adfm_202315201 crossref_primary_10_1021_accountsmr_2c00261 crossref_primary_10_1002_smll_202301433 crossref_primary_10_1007_s41918_023_00185_7 crossref_primary_10_1016_j_jechem_2023_01_044 crossref_primary_10_1002_adma_202008654 crossref_primary_10_1093_nsr_nwae081 crossref_primary_10_1002_aenm_202402617 crossref_primary_10_1021_acsanm_2c02766 crossref_primary_10_1002_smll_202300734 crossref_primary_10_1016_j_est_2024_114620 crossref_primary_10_1002_adfm_202211180 crossref_primary_10_1002_anie_202106047 crossref_primary_10_1002_cey2_643 crossref_primary_10_1002_eem2_12368 crossref_primary_10_1002_eem2_12525 crossref_primary_10_1016_j_cej_2023_147304 crossref_primary_10_1039_D3NR04649D crossref_primary_10_1002_cnl2_147 crossref_primary_10_1002_cssc_202402517 crossref_primary_10_1016_j_nanoen_2023_108370 crossref_primary_10_1002_advs_202203321 crossref_primary_10_1016_j_carbon_2023_118616 crossref_primary_10_1002_advs_202200411 crossref_primary_10_1002_ange_202106047 crossref_primary_10_1002_adfm_202111133 crossref_primary_10_1002_ange_202403399 crossref_primary_10_1016_j_cej_2022_136256 crossref_primary_10_1002_aenm_202200584 crossref_primary_10_1021_acsami_2c18783 crossref_primary_10_1039_D1NR05681F crossref_primary_10_1002_smll_202006566 crossref_primary_10_1021_acs_jpcc_2c07797 crossref_primary_10_1002_aesr_202100160 crossref_primary_10_1016_j_cej_2022_140395 crossref_primary_10_1002_cey2_539 crossref_primary_10_1021_acsami_1c07792 crossref_primary_10_1039_D4TA07649D crossref_primary_10_1016_j_jcis_2021_11_059 crossref_primary_10_1002_adfm_202101420 crossref_primary_10_1021_acssuschemeng_2c01556 crossref_primary_10_1002_batt_202300303 crossref_primary_10_1007_s11426_022_1397_2 crossref_primary_10_1016_j_jechem_2022_10_023 crossref_primary_10_1016_S1872_5805_23_60762_0 crossref_primary_10_1007_s12598_022_02256_y crossref_primary_10_1002_adfm_202425698 crossref_primary_10_1002_aenm_202401157 crossref_primary_10_1002_smll_202105172 crossref_primary_10_1002_ange_202319600 crossref_primary_10_1039_D1TA04927E crossref_primary_10_1002_anie_202403399 crossref_primary_10_1016_j_jcis_2022_12_081 crossref_primary_10_1007_s42114_023_00769_3 crossref_primary_10_1016_j_cej_2022_135416 crossref_primary_10_3390_batteries8110246 crossref_primary_10_1002_cey2_147 crossref_primary_10_1039_D3TA01706K crossref_primary_10_1002_adfm_202301976 crossref_primary_10_1002_cssc_202400210 crossref_primary_10_1016_j_nanoen_2022_107677 crossref_primary_10_1002_adfm_202303319 crossref_primary_10_1016_j_jpowsour_2023_233515 crossref_primary_10_54227_elab_20220015 crossref_primary_10_1021_acsnano_2c01432 |
Cites_doi | 10.1002/adma.201403337 10.1002/anie.201814324 10.1039/D0TA02499F 10.1016/j.jpowsour.2019.02.033 10.1038/s41563-020-0729-1 10.1002/adfm.201806752 10.1002/admt.201900806 10.1038/nature11475 10.1021/acs.nanolett.8b04376 10.1002/adma.201800884 10.1038/35104644 10.1038/ncomms10992 10.1016/j.ensm.2020.04.022 10.1038/s41560-019-0390-6 10.1038/nnano.2017.16 10.1038/nnano.2016.32 10.1038/451652a 10.1002/adma.201902785 10.1039/C7TA08531A 10.1039/C3EE40795K 10.1126/science.aay8672 10.1039/C9TA07999H 10.1039/D0TC02087G 10.1002/adma.201902399 10.1016/j.joule.2018.03.008 10.1002/adma.201705711 10.1016/j.electacta.2013.02.101 10.1002/aenm.201800635 10.1002/adfm.202001285 10.1038/s41467-018-06126-z 10.1021/acsenergylett.9b00750 10.1038/s41467-019-08767-0 10.1002/aenm.201802349 10.1002/adma.201901310 10.1021/acsnano.6b06369 10.1021/ja3091438 10.1073/pnas.1518188113 10.1002/adma.201803869 10.1002/anie.201710806 10.1126/sciadv.aau5655 10.1126/science.1222453 10.1002/advs.201902643 10.1038/nenergy.2017.12 10.1021/jacs.7b10864 10.1039/C9CS00636B |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202006702 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33314412 10_1002_adma_202006702 ADMA202006702 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Department of Science and Technology of Jiangxi Province funderid: GJJ160596; 20194BCJ22012 – fundername: program for Excellent Young Talents – fundername: JXUST – fundername: National Natural Science Foundation of China funderid: 22075092; 51861009; 51202095 – fundername: National Natural Science Foundation of China grantid: 22075092 – fundername: National Natural Science Foundation of China grantid: 51202095 – fundername: Department of Science and Technology of Jiangxi Province grantid: GJJ160596 – fundername: National Natural Science Foundation of China grantid: 51861009 – fundername: Department of Science and Technology of Jiangxi Province grantid: 20194BCJ22012 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4122-63176b5dc3c53a9ed5a85aed4ba6bc3dc3fae2a20fa715998e98e03d671687d73 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 04:20:55 EDT 2025 Fri Jul 25 03:46:14 EDT 2025 Thu Apr 03 07:03:54 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Tue Jul 01 02:32:56 EDT 2025 Wed Jan 22 16:30:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Li-metal batteries dendrite-free batteries molten lithium carbon nanotubes undercooling |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4122-63176b5dc3c53a9ed5a85aed4ba6bc3dc3fae2a20fa715998e98e03d671687d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4701-121X |
PMID | 33314412 |
PQID | 2480196671 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2470024265 proquest_journals_2480196671 pubmed_primary_33314412 crossref_primary_10_1002_adma_202006702 crossref_citationtrail_10_1002_adma_202006702 wiley_primary_10_1002_adma_202006702_ADMA202006702 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2019; 4 2017; 2 2018; 140 2019; 5 2019; 31 2010 2019; 10 2019; 58 2016; 10 2014; 26 2019; 366 2019; 19 2012; 488 2020; 19 2016; 11 2020; 8 2020; 7 2018; 9 2020; 5 2016; 7 2018; 8 2018; 2 2020; 30 2013; 339 2019; 419 2013; 97 2017; 12 2016; 113 2020; 49 2013; 135 2019; 29 2018; 30 2008; 451 2014; 7 2001; 414 2018; 57 2020; 29 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 Hu G. X. (e_1_2_4_38_1) 2010 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 19 start-page: 494 year: 2019 publication-title: Nano Lett. – volume: 26 start-page: 7456 year: 2014 publication-title: Adv. Mater. – volume: 29 start-page: 332 year: 2020 publication-title: Energy Storage Mater. – volume: 97 start-page: 42 year: 2013 publication-title: Electrochim. Acta – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 19 start-page: 1339 year: 2020 publication-title: Nat. Mater. – volume: 140 start-page: 82 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 900 year: 2019 publication-title: Nat. Commun. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 419 start-page: 72 year: 2019 publication-title: J. Power Sources – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 339 start-page: 535 year: 2013 publication-title: Science – volume: 4 start-page: 1349 year: 2019 publication-title: ACS Energy Lett. – year: 2010 – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 113 start-page: 2862 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 57 start-page: 1505 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 9945 year: 2020 publication-title: J. Mater. Chem. C – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 9733 year: 2020 publication-title: J. Mater. Chem. A – volume: 10 year: 2016 publication-title: ACS Nano – volume: 58 start-page: 2437 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 49 start-page: 5407 year: 2020 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 3729 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 833 year: 2018 publication-title: Joule – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 366 start-page: 426 year: 2019 publication-title: Science – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 4 start-page: 551 year: 2019 publication-title: Nat. Energy – ident: e_1_2_4_45_1 doi: 10.1002/adma.201403337 – ident: e_1_2_4_27_1 doi: 10.1002/anie.201814324 – ident: e_1_2_4_18_1 doi: 10.1039/D0TA02499F – volume-title: Fundamentals of Materials Science (In Chinese) year: 2010 ident: e_1_2_4_38_1 – ident: e_1_2_4_39_1 doi: 10.1016/j.jpowsour.2019.02.033 – ident: e_1_2_4_44_1 doi: 10.1038/s41563-020-0729-1 – ident: e_1_2_4_22_1 doi: 10.1002/adfm.201806752 – ident: e_1_2_4_26_1 doi: 10.1002/admt.201900806 – ident: e_1_2_4_2_1 doi: 10.1038/nature11475 – ident: e_1_2_4_29_1 doi: 10.1021/acs.nanolett.8b04376 – ident: e_1_2_4_30_1 doi: 10.1002/adma.201800884 – ident: e_1_2_4_4_1 doi: 10.1038/35104644 – ident: e_1_2_4_34_1 doi: 10.1038/ncomms10992 – ident: e_1_2_4_31_1 doi: 10.1016/j.ensm.2020.04.022 – ident: e_1_2_4_10_1 doi: 10.1038/s41560-019-0390-6 – ident: e_1_2_4_5_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_4_32_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_4_3_1 doi: 10.1038/451652a – ident: e_1_2_4_11_1 doi: 10.1002/adma.201902785 – ident: e_1_2_4_28_1 doi: 10.1039/C7TA08531A – ident: e_1_2_4_6_1 doi: 10.1039/C3EE40795K – ident: e_1_2_4_8_1 doi: 10.1126/science.aay8672 – ident: e_1_2_4_16_1 doi: 10.1039/C9TA07999H – ident: e_1_2_4_35_1 doi: 10.1039/D0TC02087G – ident: e_1_2_4_41_1 doi: 10.1002/adma.201902399 – ident: e_1_2_4_9_1 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_4_15_1 doi: 10.1002/adma.201705711 – ident: e_1_2_4_42_1 doi: 10.1016/j.electacta.2013.02.101 – ident: e_1_2_4_40_1 doi: 10.1002/aenm.201800635 – ident: e_1_2_4_13_1 doi: 10.1002/adfm.202001285 – ident: e_1_2_4_19_1 doi: 10.1038/s41467-018-06126-z – ident: e_1_2_4_43_1 doi: 10.1021/acsenergylett.9b00750 – ident: e_1_2_4_21_1 doi: 10.1038/s41467-019-08767-0 – ident: e_1_2_4_36_1 doi: 10.1002/aenm.201802349 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201901310 – ident: e_1_2_4_46_1 doi: 10.1021/acsnano.6b06369 – ident: e_1_2_4_1_1 doi: 10.1021/ja3091438 – ident: e_1_2_4_33_1 doi: 10.1073/pnas.1518188113 – ident: e_1_2_4_20_1 doi: 10.1002/adma.201803869 – ident: e_1_2_4_14_1 doi: 10.1002/anie.201710806 – ident: e_1_2_4_25_1 doi: 10.1126/sciadv.aau5655 – ident: e_1_2_4_37_1 doi: 10.1126/science.1222453 – ident: e_1_2_4_24_1 doi: 10.1002/advs.201902643 – ident: e_1_2_4_12_1 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_4_17_1 doi: 10.1021/jacs.7b10864 – ident: e_1_2_4_7_1 doi: 10.1039/C9CS00636B |
SSID | ssj0009606 |
Score | 2.6414688 |
Snippet | Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling... Lithium (Li) metal is promising in the next-generation energy storage systems. However, its practical application is still hindered by the poor cycling... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2006702 |
SubjectTerms | Carbon nanotubes Current density Cycles dendrite‐free batteries Dendritic structure Energy storage Lithium batteries Li‐metal batteries Materials science molten lithium Storage batteries Storage systems undercooling |
Title | A Dendrite‐Free Lithium/Carbon Nanotube Hybrid for Lithium‐Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006702 https://www.ncbi.nlm.nih.gov/pubmed/33314412 https://www.proquest.com/docview/2480196671 https://www.proquest.com/docview/2470024265 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF6CT8mhr_ShxikqBHqSLe1Dj6NJakypfQgx-CZmtSNq2sjBlg7JqT-hvzG_pLOSJdstpdCCLkKz0mpnZ_eb2Z1vGbsQOgiMH6OnEtSe1Ao8m57pCZPFgZ-jjNDGO6azcDKXnxZqsZfF3_BDdAE3axn1eG0NHPRmuCMNBVPzBvE608QOwnbDlkVF1zv-KAvPa7I9obwklHHL2ujz4WHxw1npN6h5iFzrqWf8lEFb6WbHyddBVepB9vALn-P__NUz9mSLS91R05GesyMsXrCTPbbCUzYbuVdYmDWB1MfvP8ZrRPfzsvyyrG6Hl7DWq8KloXpVVhrdyb1NBHMJELciVGKKBPTdhtCT_POXbD7-eHM58bbHMXiZDMhlDQlqhFqZTGRKQIJGQawAjdQQ6oyUK3JADtzPISKQlMRIly9MSC5ZHJlIvGK9YlXgG-YGxmjFkzxXAiX4GUjCITqQgBAmxiQO81p1pNmWq9wemfEtbViWeWrbKe3ayWEfOvm7hqXjj5L9Vrvp1lo3KbccOuT3RYHD3nePyc7s4gkUuKqsTNTgGeWw102v6D4lhLB-Kb2c17r9Sx3S0dV01N29_ZdCZ-yY2801dSyoz3rlusJzQkelfldbwE-ihQZt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5bewUMBIIE7pJnacnwOHVZfVlu7uAbVSb8GOJ2IFZNFuoqqceARepa_SR-BJGOevLAghIfWAlEuUseN4Zjw_8XwGeC605xk3QkfGqB1fS-XY8kxHmDTy3Az9EG2-YzoLxkf-m2N5vAFnbS1MjQ_RJdysZlTrtVVwm5DuX6CGKlMBB_Gq1IQ3-yoP8PSEorbVq_0hsfgF56PXh3tjpzlYwEl9j4KvgIxmoKVJRSqFitFIFUmFxtcq0CkNU2QKueJupkIy93GEdLnCBBRcRKEJBfV7Ba7aY8QtXP_w7QVilQ0IKng_IZ048KMWJ9Ll_fXxrtvB35zbdV-5Mnajm3DeTlO9x-XDblno3fTLLwiS_9U83oKtxvVmg1pXbsMG5nfgxk-AjHdhNmBDzM2S_PDvX7-NlohsMi_ez8tP_T211IuckTVaFKVGNj61tW6MfP6WhFpMkWIZVmOWznF1D44u5YO2YTNf5PgAmGeMljzOMinQV26qfHK1tOcrVEFsTNwDp-V_kjZw7PZUkI9JDSTNE8uXpONLD1529J9rIJI_Uu604pQ0C9Iq4RYmiELb0OvBs-4xLSX2_5DKcVFamrB22WQP7tdi2L1KCGFDb-qcV8L0lzEkg-F00N09_JdGT-Ha-HA6SSb7s4NHcJ3bvURV6msHNotliY_JGSz0k0r9GLy7bDn9AfOWZWk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48H4sFAgSiFO6iR95HDisGlZb2l0hRKXegh1PxKolW-0mQuXET-Cn8Ff4C_wSxnmVBSEkpB6Qcokydhx7xvON4_kM8JRr3zdehK6MUbtCS-Xa9EyXmyzyvRxFiHa9YzoLJgfi1aE83ICvXS5Mww_RL7hZy6jna2vgJyYfnpGGKlPzBrE604S12yr38PQjBW2rF7sJjfAzxsYv3-5M3PZcATcTPsVeAfnMQEuT8UxyFaORKpIKjdAq0Bm1kucKmWJerkLy9nGEdHncBBRbRKEJOdV7AS6KwIvtYRHJmzPCKhsP1Ox-XLpxIKKOJtJjw_X2rrvB37DtOlSufd34GnzreqnZ4nK0XZV6O_v0C4Hk_9SN1-FqC7ydUWMpN2ADi5tw5Sc6xlswGzkJFmZJKPz75y_jJaKzPy_fz6sPwx211IvCIV-0KCuNzuTUZro5hPg7ESoxRYpknIaxdI6r23BwLh90BzaLRYH3wPGN0ZLFeS45CuVlShDQ0r5QqILYmHgAbjf8adaSsdszQY7ThkaapXZc0n5cBvC8lz9paEj-KLnVaVPaTkerlFmSIApsQ38AT_rHNJHYv0OqwEVlZcIGsMkB3G20sH8V59wG3lQ5q3XpL21IR8l01N_d_5dCj-HS62Sc7u_O9h7AZWY3EtXrXluwWS4rfEhIsNSPauNz4N15q-kPQXZkGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dendrite-Free+Lithium%2FCarbon+Nanotube+Hybrid+for+Lithium-Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Zhi+Yong&rft.au=Lu%2C+Zhong+Xu&rft.au=Guo%2C+Wei&rft.au=Luo%2C+Qin&rft.date=2021-01-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=4&rft.spage=e2006702&rft_id=info:doi/10.1002%2Fadma.202006702&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |