A Dendrite‐Free Lithium/Carbon Nanotube Hybrid for Lithium‐Metal Batteries

Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, whic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 4; pp. e2006702 - n/a
Main Authors Wang, Zhi Yong, Lu, Zhong Xu, Guo, Wei, Luo, Qin, Yin, Yan Hong, Liu, Xian Bin, Li, Ye Sheng, Xia, Bao Yu, Wu, Zi Ping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li‐metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super‐stable functions even at an ultrahigh current density of 40 mA cm−2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm−2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li‐S battery. This work provides valuable concepts in fabricating Li anodes toward Li‐metal batteries and beyond for their high‐level services. A dendrite‐free Li/carbon nanotube (CNT) hybrid is fabricated by direct coating of molten Li on CNTs for Li‐metal batteries. Favorable thermodynamic and kinetic conditions are a powerful force to drive the rapid lift upward and infusion of molten Li into CNTs network. The obtained hybrid exhibits superstable function even at an ultrahigh current density.
AbstractList Lithium (Li) metal is promising in the next-generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite-free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li-metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super-stable functions even at an ultrahigh current density of 40 mA cm-2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm-2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li-S battery. This work provides valuable concepts in fabricating Li anodes toward Li-metal batteries and beyond for their high-level services.Lithium (Li) metal is promising in the next-generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite-free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li-metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super-stable functions even at an ultrahigh current density of 40 mA cm-2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm-2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li-S battery. This work provides valuable concepts in fabricating Li anodes toward Li-metal batteries and beyond for their high-level services.
Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li‐metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super‐stable functions even at an ultrahigh current density of 40 mA cm−2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm−2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li‐S battery. This work provides valuable concepts in fabricating Li anodes toward Li‐metal batteries and beyond for their high‐level services.
Lithium (Li) metal is promising in the next-generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite-free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li-metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super-stable functions even at an ultrahigh current density of 40 mA cm for 2000 cycles with a stripping/plating capacity of 2 mAh cm in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li-S battery. This work provides valuable concepts in fabricating Li anodes toward Li-metal batteries and beyond for their high-level services.
Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li‐metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super‐stable functions even at an ultrahigh current density of 40 mA cm−2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm−2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li‐S battery. This work provides valuable concepts in fabricating Li anodes toward Li‐metal batteries and beyond for their high‐level services. A dendrite‐free Li/carbon nanotube (CNT) hybrid is fabricated by direct coating of molten Li on CNTs for Li‐metal batteries. Favorable thermodynamic and kinetic conditions are a powerful force to drive the rapid lift upward and infusion of molten Li into CNTs network. The obtained hybrid exhibits superstable function even at an ultrahigh current density.
Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling performance and serious safety issues for the consequence of dendritic Li. Herein, a dendrite‐free Li/carbon nanotube (CNT) hybrid is proposed, which is fabricated by direct coating molten Li on CNTs, for Li‐metal batteries. The favorable thermodynamic and kinetic conditions are the powerful force to drive the rapid lift upwards and infusion of molten Li into CNTs network, which is the key to form a uniform metallic layer in Li/CNTs hybrid. The obtained hybrid indicates super‐stable functions even at an ultrahigh current density of 40 mA cm −2 for 2000 cycles with a stripping/plating capacity of 2 mAh cm −2 in symmetric cells. Subsequently, this hybrid also demonstrates a significantly decreased resistance, excellent cycling stability at high current density and flexibility in the full Li‐S battery. This work provides valuable concepts in fabricating Li anodes toward Li‐metal batteries and beyond for their high‐level services.
Author Guo, Wei
Luo, Qin
Li, Ye Sheng
Yin, Yan Hong
Lu, Zhong Xu
Wu, Zi Ping
Wang, Zhi Yong
Liu, Xian Bin
Xia, Bao Yu
Author_xml – sequence: 1
  givenname: Zhi Yong
  surname: Wang
  fullname: Wang, Zhi Yong
  organization: Jiangxi University of Science and Technology (JXUST)
– sequence: 2
  givenname: Zhong Xu
  surname: Lu
  fullname: Lu, Zhong Xu
  organization: Jiangxi University of Science and Technology (JXUST)
– sequence: 3
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 4
  givenname: Qin
  surname: Luo
  fullname: Luo, Qin
  organization: Jiangxi University of Science and Technology (JXUST)
– sequence: 5
  givenname: Yan Hong
  surname: Yin
  fullname: Yin, Yan Hong
  email: yinyanhong@jxust.edu.cn
  organization: Jiangxi University of Science and Technology (JXUST)
– sequence: 6
  givenname: Xian Bin
  surname: Liu
  fullname: Liu, Xian Bin
  organization: Jiangxi University of Science and Technology (JXUST)
– sequence: 7
  givenname: Ye Sheng
  surname: Li
  fullname: Li, Ye Sheng
  organization: Jiangxi University of Science and Technology (JXUST)
– sequence: 8
  givenname: Bao Yu
  surname: Xia
  fullname: Xia, Bao Yu
  email: byxia@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 9
  givenname: Zi Ping
  orcidid: 0000-0003-4701-121X
  surname: Wu
  fullname: Wu, Zi Ping
  email: wuziping724@jxust.edu.cn
  organization: Jiangxi University of Science and Technology (JXUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33314412$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFq3DAQhkVJaTZprz0WQy-9eDOSLNk6bjdNU9ikl_ZsxtaYKthWKsmUvfUR-ox9kipskkKgFAYEw_fNiPlP2NHsZ2LsNYc1BxBnaCdcCxAAugbxjK24EryswKgjtgIjVWl01RyzkxhvAMBo0C_YsZSSVxUXK3a9Kc5ptsEl-v3z10UgKnYufXPLdLbF0Pm5uMbZp6Wj4nLfBWeLwYcHJBtXlHAs3mNKFBzFl-z5gGOkV_fvKft68eHL9rLcff74abvZlX3eKkotea07ZXvZK4mGrMJGIdmqQ931MvcHJIECBqy5MqahXCCtrrlualvLU_buMPc2-O8LxdROLvY0jjiTX2IrqjpfpxJaZfTtE_TGL2HOv8tUA9zoPDVTb-6ppZvItrfBTRj27cOlMrA-AH3wMQYaHhEO7V0U7V0U7WMUWaieCL1LmJyfU0A3_lszB-2HG2n_nyXt5vxq89f9Ax-unbg
CitedBy_id crossref_primary_10_1002_celc_202400209
crossref_primary_10_1007_s12274_022_5227_0
crossref_primary_10_1016_j_jelechem_2023_117826
crossref_primary_10_1002_adsu_202300061
crossref_primary_10_1007_s13726_022_01069_1
crossref_primary_10_1021_acsami_2c08117
crossref_primary_10_1039_D1QM01426A
crossref_primary_10_1039_D2EE02115C
crossref_primary_10_1016_j_cej_2023_142555
crossref_primary_10_1002_advs_202101111
crossref_primary_10_1002_batt_202400144
crossref_primary_10_1002_smll_202205709
crossref_primary_10_1021_acsami_2c13193
crossref_primary_10_1039_D3QM00029J
crossref_primary_10_1038_s41467_021_27429_8
crossref_primary_10_1002_anie_202319600
crossref_primary_10_1002_eom2_12478
crossref_primary_10_1002_smll_202301754
crossref_primary_10_1007_s12274_021_3506_9
crossref_primary_10_1007_s12598_022_01994_3
crossref_primary_10_1021_acsami_1c15196
crossref_primary_10_1002_ppsc_202100020
crossref_primary_10_1021_acs_nanolett_1c03765
crossref_primary_10_1002_adfm_202110665
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_1002_adfm_202206405
crossref_primary_10_1002_advs_202309254
crossref_primary_10_1002_adfm_202315201
crossref_primary_10_1021_accountsmr_2c00261
crossref_primary_10_1002_smll_202301433
crossref_primary_10_1007_s41918_023_00185_7
crossref_primary_10_1016_j_jechem_2023_01_044
crossref_primary_10_1002_adma_202008654
crossref_primary_10_1093_nsr_nwae081
crossref_primary_10_1002_aenm_202402617
crossref_primary_10_1021_acsanm_2c02766
crossref_primary_10_1002_smll_202300734
crossref_primary_10_1016_j_est_2024_114620
crossref_primary_10_1002_adfm_202211180
crossref_primary_10_1002_anie_202106047
crossref_primary_10_1002_cey2_643
crossref_primary_10_1002_eem2_12368
crossref_primary_10_1002_eem2_12525
crossref_primary_10_1016_j_cej_2023_147304
crossref_primary_10_1039_D3NR04649D
crossref_primary_10_1002_cnl2_147
crossref_primary_10_1002_cssc_202402517
crossref_primary_10_1016_j_nanoen_2023_108370
crossref_primary_10_1002_advs_202203321
crossref_primary_10_1016_j_carbon_2023_118616
crossref_primary_10_1002_advs_202200411
crossref_primary_10_1002_ange_202106047
crossref_primary_10_1002_adfm_202111133
crossref_primary_10_1002_ange_202403399
crossref_primary_10_1016_j_cej_2022_136256
crossref_primary_10_1002_aenm_202200584
crossref_primary_10_1021_acsami_2c18783
crossref_primary_10_1039_D1NR05681F
crossref_primary_10_1002_smll_202006566
crossref_primary_10_1021_acs_jpcc_2c07797
crossref_primary_10_1002_aesr_202100160
crossref_primary_10_1016_j_cej_2022_140395
crossref_primary_10_1002_cey2_539
crossref_primary_10_1021_acsami_1c07792
crossref_primary_10_1039_D4TA07649D
crossref_primary_10_1016_j_jcis_2021_11_059
crossref_primary_10_1002_adfm_202101420
crossref_primary_10_1021_acssuschemeng_2c01556
crossref_primary_10_1002_batt_202300303
crossref_primary_10_1007_s11426_022_1397_2
crossref_primary_10_1016_j_jechem_2022_10_023
crossref_primary_10_1016_S1872_5805_23_60762_0
crossref_primary_10_1007_s12598_022_02256_y
crossref_primary_10_1002_adfm_202425698
crossref_primary_10_1002_aenm_202401157
crossref_primary_10_1002_smll_202105172
crossref_primary_10_1002_ange_202319600
crossref_primary_10_1039_D1TA04927E
crossref_primary_10_1002_anie_202403399
crossref_primary_10_1016_j_jcis_2022_12_081
crossref_primary_10_1007_s42114_023_00769_3
crossref_primary_10_1016_j_cej_2022_135416
crossref_primary_10_3390_batteries8110246
crossref_primary_10_1002_cey2_147
crossref_primary_10_1039_D3TA01706K
crossref_primary_10_1002_adfm_202301976
crossref_primary_10_1002_cssc_202400210
crossref_primary_10_1016_j_nanoen_2022_107677
crossref_primary_10_1002_adfm_202303319
crossref_primary_10_1016_j_jpowsour_2023_233515
crossref_primary_10_54227_elab_20220015
crossref_primary_10_1021_acsnano_2c01432
Cites_doi 10.1002/adma.201403337
10.1002/anie.201814324
10.1039/D0TA02499F
10.1016/j.jpowsour.2019.02.033
10.1038/s41563-020-0729-1
10.1002/adfm.201806752
10.1002/admt.201900806
10.1038/nature11475
10.1021/acs.nanolett.8b04376
10.1002/adma.201800884
10.1038/35104644
10.1038/ncomms10992
10.1016/j.ensm.2020.04.022
10.1038/s41560-019-0390-6
10.1038/nnano.2017.16
10.1038/nnano.2016.32
10.1038/451652a
10.1002/adma.201902785
10.1039/C7TA08531A
10.1039/C3EE40795K
10.1126/science.aay8672
10.1039/C9TA07999H
10.1039/D0TC02087G
10.1002/adma.201902399
10.1016/j.joule.2018.03.008
10.1002/adma.201705711
10.1016/j.electacta.2013.02.101
10.1002/aenm.201800635
10.1002/adfm.202001285
10.1038/s41467-018-06126-z
10.1021/acsenergylett.9b00750
10.1038/s41467-019-08767-0
10.1002/aenm.201802349
10.1002/adma.201901310
10.1021/acsnano.6b06369
10.1021/ja3091438
10.1073/pnas.1518188113
10.1002/adma.201803869
10.1002/anie.201710806
10.1126/sciadv.aau5655
10.1126/science.1222453
10.1002/advs.201902643
10.1038/nenergy.2017.12
10.1021/jacs.7b10864
10.1039/C9CS00636B
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202006702
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33314412
10_1002_adma_202006702
ADMA202006702
Genre article
Journal Article
GrantInformation_xml – fundername: Department of Science and Technology of Jiangxi Province
  funderid: GJJ160596; 20194BCJ22012
– fundername: program for Excellent Young Talents
– fundername: JXUST
– fundername: National Natural Science Foundation of China
  funderid: 22075092; 51861009; 51202095
– fundername: National Natural Science Foundation of China
  grantid: 22075092
– fundername: National Natural Science Foundation of China
  grantid: 51202095
– fundername: Department of Science and Technology of Jiangxi Province
  grantid: GJJ160596
– fundername: National Natural Science Foundation of China
  grantid: 51861009
– fundername: Department of Science and Technology of Jiangxi Province
  grantid: 20194BCJ22012
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4122-63176b5dc3c53a9ed5a85aed4ba6bc3dc3fae2a20fa715998e98e03d671687d73
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 04:20:55 EDT 2025
Fri Jul 25 03:46:14 EDT 2025
Thu Apr 03 07:03:54 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 02:32:56 EDT 2025
Wed Jan 22 16:30:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Li-metal batteries
dendrite-free batteries
molten lithium
carbon nanotubes
undercooling
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4122-63176b5dc3c53a9ed5a85aed4ba6bc3dc3fae2a20fa715998e98e03d671687d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4701-121X
PMID 33314412
PQID 2480196671
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2470024265
proquest_journals_2480196671
pubmed_primary_33314412
crossref_primary_10_1002_adma_202006702
crossref_citationtrail_10_1002_adma_202006702
wiley_primary_10_1002_adma_202006702_ADMA202006702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2019; 4
2017; 2
2018; 140
2019; 5
2019; 31
2010
2019; 10
2019; 58
2016; 10
2014; 26
2019; 366
2019; 19
2012; 488
2020; 19
2016; 11
2020; 8
2020; 7
2018; 9
2020; 5
2016; 7
2018; 8
2018; 2
2020; 30
2013; 339
2019; 419
2013; 97
2017; 12
2016; 113
2020; 49
2013; 135
2019; 29
2018; 30
2008; 451
2014; 7
2001; 414
2018; 57
2020; 29
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
Hu G. X. (e_1_2_4_38_1) 2010
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 19
  start-page: 494
  year: 2019
  publication-title: Nano Lett.
– volume: 26
  start-page: 7456
  year: 2014
  publication-title: Adv. Mater.
– volume: 29
  start-page: 332
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 97
  start-page: 42
  year: 2013
  publication-title: Electrochim. Acta
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 1339
  year: 2020
  publication-title: Nat. Mater.
– volume: 140
  start-page: 82
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 900
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 419
  start-page: 72
  year: 2019
  publication-title: J. Power Sources
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 339
  start-page: 535
  year: 2013
  publication-title: Science
– volume: 4
  start-page: 1349
  year: 2019
  publication-title: ACS Energy Lett.
– year: 2010
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 113
  start-page: 2862
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 57
  start-page: 1505
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 9945
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  start-page: 9733
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 58
  start-page: 2437
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 49
  start-page: 5407
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 3729
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 833
  year: 2018
  publication-title: Joule
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 366
  start-page: 426
  year: 2019
  publication-title: Science
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 4
  start-page: 551
  year: 2019
  publication-title: Nat. Energy
– ident: e_1_2_4_45_1
  doi: 10.1002/adma.201403337
– ident: e_1_2_4_27_1
  doi: 10.1002/anie.201814324
– ident: e_1_2_4_18_1
  doi: 10.1039/D0TA02499F
– volume-title: Fundamentals of Materials Science (In Chinese)
  year: 2010
  ident: e_1_2_4_38_1
– ident: e_1_2_4_39_1
  doi: 10.1016/j.jpowsour.2019.02.033
– ident: e_1_2_4_44_1
  doi: 10.1038/s41563-020-0729-1
– ident: e_1_2_4_22_1
  doi: 10.1002/adfm.201806752
– ident: e_1_2_4_26_1
  doi: 10.1002/admt.201900806
– ident: e_1_2_4_2_1
  doi: 10.1038/nature11475
– ident: e_1_2_4_29_1
  doi: 10.1021/acs.nanolett.8b04376
– ident: e_1_2_4_30_1
  doi: 10.1002/adma.201800884
– ident: e_1_2_4_4_1
  doi: 10.1038/35104644
– ident: e_1_2_4_34_1
  doi: 10.1038/ncomms10992
– ident: e_1_2_4_31_1
  doi: 10.1016/j.ensm.2020.04.022
– ident: e_1_2_4_10_1
  doi: 10.1038/s41560-019-0390-6
– ident: e_1_2_4_5_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_4_32_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_4_3_1
  doi: 10.1038/451652a
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201902785
– ident: e_1_2_4_28_1
  doi: 10.1039/C7TA08531A
– ident: e_1_2_4_6_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_4_8_1
  doi: 10.1126/science.aay8672
– ident: e_1_2_4_16_1
  doi: 10.1039/C9TA07999H
– ident: e_1_2_4_35_1
  doi: 10.1039/D0TC02087G
– ident: e_1_2_4_41_1
  doi: 10.1002/adma.201902399
– ident: e_1_2_4_9_1
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201705711
– ident: e_1_2_4_42_1
  doi: 10.1016/j.electacta.2013.02.101
– ident: e_1_2_4_40_1
  doi: 10.1002/aenm.201800635
– ident: e_1_2_4_13_1
  doi: 10.1002/adfm.202001285
– ident: e_1_2_4_19_1
  doi: 10.1038/s41467-018-06126-z
– ident: e_1_2_4_43_1
  doi: 10.1021/acsenergylett.9b00750
– ident: e_1_2_4_21_1
  doi: 10.1038/s41467-019-08767-0
– ident: e_1_2_4_36_1
  doi: 10.1002/aenm.201802349
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201901310
– ident: e_1_2_4_46_1
  doi: 10.1021/acsnano.6b06369
– ident: e_1_2_4_1_1
  doi: 10.1021/ja3091438
– ident: e_1_2_4_33_1
  doi: 10.1073/pnas.1518188113
– ident: e_1_2_4_20_1
  doi: 10.1002/adma.201803869
– ident: e_1_2_4_14_1
  doi: 10.1002/anie.201710806
– ident: e_1_2_4_25_1
  doi: 10.1126/sciadv.aau5655
– ident: e_1_2_4_37_1
  doi: 10.1126/science.1222453
– ident: e_1_2_4_24_1
  doi: 10.1002/advs.201902643
– ident: e_1_2_4_12_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_4_17_1
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_4_7_1
  doi: 10.1039/C9CS00636B
SSID ssj0009606
Score 2.6414688
Snippet Lithium (Li) metal is promising in the next‐generation energy storage systems. However, its practical application is still hindered by the poor cycling...
Lithium (Li) metal is promising in the next-generation energy storage systems. However, its practical application is still hindered by the poor cycling...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2006702
SubjectTerms Carbon nanotubes
Current density
Cycles
dendrite‐free batteries
Dendritic structure
Energy storage
Lithium batteries
Li‐metal batteries
Materials science
molten lithium
Storage batteries
Storage systems
undercooling
Title A Dendrite‐Free Lithium/Carbon Nanotube Hybrid for Lithium‐Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006702
https://www.ncbi.nlm.nih.gov/pubmed/33314412
https://www.proquest.com/docview/2480196671
https://www.proquest.com/docview/2470024265
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF6CT8mhr_ShxikqBHqSLe1Dj6NJakypfQgx-CZmtSNq2sjBlg7JqT-hvzG_pLOSJdstpdCCLkKz0mpnZ_eb2Z1vGbsQOgiMH6OnEtSe1Ao8m57pCZPFgZ-jjNDGO6azcDKXnxZqsZfF3_BDdAE3axn1eG0NHPRmuCMNBVPzBvE608QOwnbDlkVF1zv-KAvPa7I9obwklHHL2ujz4WHxw1npN6h5iFzrqWf8lEFb6WbHyddBVepB9vALn-P__NUz9mSLS91R05GesyMsXrCTPbbCUzYbuVdYmDWB1MfvP8ZrRPfzsvyyrG6Hl7DWq8KloXpVVhrdyb1NBHMJELciVGKKBPTdhtCT_POXbD7-eHM58bbHMXiZDMhlDQlqhFqZTGRKQIJGQawAjdQQ6oyUK3JADtzPISKQlMRIly9MSC5ZHJlIvGK9YlXgG-YGxmjFkzxXAiX4GUjCITqQgBAmxiQO81p1pNmWq9wemfEtbViWeWrbKe3ayWEfOvm7hqXjj5L9Vrvp1lo3KbccOuT3RYHD3nePyc7s4gkUuKqsTNTgGeWw102v6D4lhLB-Kb2c17r9Sx3S0dV01N29_ZdCZ-yY2801dSyoz3rlusJzQkelfldbwE-ihQZt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5bewUMBIIE7pJnacnwOHVZfVlu7uAbVSb8GOJ2IFZNFuoqqceARepa_SR-BJGOevLAghIfWAlEuUseN4Zjw_8XwGeC605xk3QkfGqB1fS-XY8kxHmDTy3Az9EG2-YzoLxkf-m2N5vAFnbS1MjQ_RJdysZlTrtVVwm5DuX6CGKlMBB_Gq1IQ3-yoP8PSEorbVq_0hsfgF56PXh3tjpzlYwEl9j4KvgIxmoKVJRSqFitFIFUmFxtcq0CkNU2QKueJupkIy93GEdLnCBBRcRKEJBfV7Ba7aY8QtXP_w7QVilQ0IKng_IZ048KMWJ9Ll_fXxrtvB35zbdV-5Mnajm3DeTlO9x-XDblno3fTLLwiS_9U83oKtxvVmg1pXbsMG5nfgxk-AjHdhNmBDzM2S_PDvX7-NlohsMi_ez8tP_T211IuckTVaFKVGNj61tW6MfP6WhFpMkWIZVmOWznF1D44u5YO2YTNf5PgAmGeMljzOMinQV26qfHK1tOcrVEFsTNwDp-V_kjZw7PZUkI9JDSTNE8uXpONLD1529J9rIJI_Uu604pQ0C9Iq4RYmiELb0OvBs-4xLSX2_5DKcVFamrB22WQP7tdi2L1KCGFDb-qcV8L0lzEkg-F00N09_JdGT-Ha-HA6SSb7s4NHcJ3bvURV6msHNotliY_JGSz0k0r9GLy7bDn9AfOWZWk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48H4sFAgSiFO6iR95HDisGlZb2l0hRKXegh1PxKolW-0mQuXET-Cn8Ff4C_wSxnmVBSEkpB6Qcokydhx7xvON4_kM8JRr3zdehK6MUbtCS-Xa9EyXmyzyvRxFiHa9YzoLJgfi1aE83ICvXS5Mww_RL7hZy6jna2vgJyYfnpGGKlPzBrE604S12yr38PQjBW2rF7sJjfAzxsYv3-5M3PZcATcTPsVeAfnMQEuT8UxyFaORKpIKjdAq0Bm1kucKmWJerkLy9nGEdHncBBRbRKEJOdV7AS6KwIvtYRHJmzPCKhsP1Ox-XLpxIKKOJtJjw_X2rrvB37DtOlSufd34GnzreqnZ4nK0XZV6O_v0C4Hk_9SN1-FqC7ydUWMpN2ADi5tw5Sc6xlswGzkJFmZJKPz75y_jJaKzPy_fz6sPwx211IvCIV-0KCuNzuTUZro5hPg7ESoxRYpknIaxdI6r23BwLh90BzaLRYH3wPGN0ZLFeS45CuVlShDQ0r5QqILYmHgAbjf8adaSsdszQY7ThkaapXZc0n5cBvC8lz9paEj-KLnVaVPaTkerlFmSIApsQ38AT_rHNJHYv0OqwEVlZcIGsMkB3G20sH8V59wG3lQ5q3XpL21IR8l01N_d_5dCj-HS62Sc7u_O9h7AZWY3EtXrXluwWS4rfEhIsNSPauNz4N15q-kPQXZkGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dendrite-Free+Lithium%2FCarbon+Nanotube+Hybrid+for+Lithium-Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Zhi+Yong&rft.au=Lu%2C+Zhong+Xu&rft.au=Guo%2C+Wei&rft.au=Luo%2C+Qin&rft.date=2021-01-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=4&rft.spage=e2006702&rft_id=info:doi/10.1002%2Fadma.202006702&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon