Uncertainty analysis and robust areas of high and low modeled human impact on the global oceans

Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assum...

Full description

Saved in:
Bibliographic Details
Published inConservation biology Vol. 32; no. 6; pp. 1368 - 1379
Main Authors Stock, Andy, Crowder, Larry B., Halpern, Benjamin S., Micheli, Fiorenza
Format Journal Article
LanguageEnglish
Published United States Wiley Blackwell, Inc 01.12.2018
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic Stressors under 7 simulated sources of uncertainty (factors: e.g., missing Stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. El incremento de la presión antropogénica sobre los ecosistemas marinos a partir de la pesca, la contaminación, el cambio climático, y otras fuentes es causa de una gran preocupación dentro de la conservación marina. Por esto, los científicos han desarrollado modelos espaciales para mapear los impactos humanos acumulativos sobre los ecosistemas marinos. Sin embargo, estos modelos están basados en muchas suposiciones e incorporan datos que sufren de errores y falta de información sustanciales. En lugar de utilizar solamente un modelo, usamos simulaciones Monte Cario para identificar las regiones de los océanos que están sujetas al mayor y al menor impacto por estresantes antropogénicos bajo siete fuentes simuladas de incertidumbre (factores: p. ej., falta de datos sobre el estresante y la suposición de respuestas ambientales lineales ante el estrés). La mayoría de los mapas concordaron en que las áreas de alto impacto estaban localizadas en el noreste del Atlántico, el este del Mediterráneo, el Caribe, la plataforma continental del oeste de África, algunas regiones del litoral del Atlántico tropical, el océano índico al este de Madagascar, algunas partes del este y sureste de Asia, algunas partes del noroeste del Pacífico, y muchas aguas costeras. Las grandes áreas de bajo impacto se ubicaron en las costas de la Antártida, en el centro del Pacífico, y en el sur del Atlántico. La incertidumbre en la distribución espacial a escala general de los impactos humanos fue causada por los efectos agregados de varios factores, en lugar de ser atribuible a un solo origen dominante. A pesar de la incertidumbre identificada en los mapas de impacto humano, estos pueden - a escalas espaciales generalizadas y en combinación con otra información ambiental y socioeconómica - señalar hacia áreas prioritarias para la investigación y el manejo. 越来越多渔业、污染、气候变化和其它来源的人类活动压カ正在成为海洋生态系统保护的一大问题。科 学家为此开发了空间模型来模拟人类对海洋生态系统的累计影响。然而,这些模型建立在许多假说上,还整合了 大量不完整和不准确的数据。相比于单ー模型,我们则使用了蒙特卡罗模拟来确定在七个模拟的不确定性因素 (如缺失压力因素的数据、假设生态系统对压カ的响应是线性的) 下,海洋受到人类活动压カ影响最大和最小的 地区。大多数模拟结果都显示,受到影响较大的是大西洋东北部、地中海东部、加勒比海、西非北部大陆架、 热带大西洋近海地区、马达加斯加以东的印度洋、东亚和东南亚部分地区、太平洋西北部的部分地区,以及许 多沿海水域。而受到影响较小的大片区域则位于南极洲外、太平洋中部和大西洋南部。模拟人类影响的大尺 度空间分布分析中的不确定性来自多个因素的综合效应,而不能归因于某个单ー的主要因素。虽然人类影响效 应确实存在不确定性,但它们可以在较大空间尺度上, 結合其它环境和社会经济学信息,指出研究和管理的优先 区域。
AbstractList Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high‐impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low‐impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad‐scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human‐impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management.
Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can-at broad spatial scales and in combination with other environmental and socioeconomic information-point to priority areas for research and management.Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can-at broad spatial scales and in combination with other environmental and socioeconomic information-point to priority areas for research and management.
Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic Stressors under 7 simulated sources of uncertainty (factors: e.g., missing Stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. El incremento de la presión antropogénica sobre los ecosistemas marinos a partir de la pesca, la contaminación, el cambio climático, y otras fuentes es causa de una gran preocupación dentro de la conservación marina. Por esto, los científicos han desarrollado modelos espaciales para mapear los impactos humanos acumulativos sobre los ecosistemas marinos. Sin embargo, estos modelos están basados en muchas suposiciones e incorporan datos que sufren de errores y falta de información sustanciales. En lugar de utilizar solamente un modelo, usamos simulaciones Monte Cario para identificar las regiones de los océanos que están sujetas al mayor y al menor impacto por estresantes antropogénicos bajo siete fuentes simuladas de incertidumbre (factores: p. ej., falta de datos sobre el estresante y la suposición de respuestas ambientales lineales ante el estrés). La mayoría de los mapas concordaron en que las áreas de alto impacto estaban localizadas en el noreste del Atlántico, el este del Mediterráneo, el Caribe, la plataforma continental del oeste de África, algunas regiones del litoral del Atlántico tropical, el océano índico al este de Madagascar, algunas partes del este y sureste de Asia, algunas partes del noroeste del Pacífico, y muchas aguas costeras. Las grandes áreas de bajo impacto se ubicaron en las costas de la Antártida, en el centro del Pacífico, y en el sur del Atlántico. La incertidumbre en la distribución espacial a escala general de los impactos humanos fue causada por los efectos agregados de varios factores, en lugar de ser atribuible a un solo origen dominante. A pesar de la incertidumbre identificada en los mapas de impacto humano, estos pueden - a escalas espaciales generalizadas y en combinación con otra información ambiental y socioeconómica - señalar hacia áreas prioritarias para la investigación y el manejo. 越来越多渔业、污染、气候变化和其它来源的人类活动压カ正在成为海洋生态系统保护的一大问题。科 学家为此开发了空间模型来模拟人类对海洋生态系统的累计影响。然而,这些模型建立在许多假说上,还整合了 大量不完整和不准确的数据。相比于单ー模型,我们则使用了蒙特卡罗模拟来确定在七个模拟的不确定性因素 (如缺失压力因素的数据、假设生态系统对压カ的响应是线性的) 下,海洋受到人类活动压カ影响最大和最小的 地区。大多数模拟结果都显示,受到影响较大的是大西洋东北部、地中海东部、加勒比海、西非北部大陆架、 热带大西洋近海地区、马达加斯加以东的印度洋、东亚和东南亚部分地区、太平洋西北部的部分地区,以及许 多沿海水域。而受到影响较小的大片区域则位于南极洲外、太平洋中部和大西洋南部。模拟人类影响的大尺 度空间分布分析中的不确定性来自多个因素的综合效应,而不能归因于某个单ー的主要因素。虽然人类影响效 应确实存在不确定性,但它们可以在较大空间尺度上, 結合其它环境和社会经济学信息,指出研究和管理的优先 区域。
Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high‐impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low‐impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad‐scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human‐impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. 越来越多渔业、污染、气候变化和其它来源的人类活动压力正在成为海洋生态系统保护的一大问题。科学家为此开发了空间模型来模拟人类对海洋生态系统的累计影响。然而, 这些模型建立在许多假说上, 还整合了大量不完整和不准确的数据。相比于单一模型, 我们则使用了蒙特卡罗模拟来确定在七个模拟的不确定性因素 (如缺失压力因素的数据、假设生态系统对压力的响应是线性的) 下, 海洋受到人类活动压力影响最大和最小的地区。大多数模拟结果都显示, 受到影响较大的是大西洋东北部、地中海东部、加勒比海、西非北部大陆架、热带大西洋近海地区、马达加斯加以东的印度洋、东亚和东南亚部分地区、太平洋西北部的部分地区, 以及许多沿海水域。而受到影响较小的大片区域则位于南极洲外、 太平洋中部和大西洋南部。模拟人类影响的大尺度空间分布分析中的不确定性来自多个因素的综合效应, 而不能归因于某个单一的主要因素。虽然人类影响效应确实存在不确定性, 但它们可以在较大空间尺度上, 结合其它环境和社会经济学信息, 指出研究和管理的优先区域。 【翻译: 胡怡思; 审校: 聂永刚】 Article impact statement : Using human‐impact maps for conservation planning requires understanding uncertainty and knowing which results on the maps are robust.
Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high‐impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low‐impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad‐scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human‐impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. Análisis de Incertidumbre y Áreas Robustas del Impacto Humano Alto y Bajo Modelado para los Océanos Mundiales Resumen El incremento de la presión antropogénica sobre los ecosistemas marinos a partir de la pesca, la contaminación, el cambio climático, y otras fuentes es causa de una gran preocupación dentro de la conservación marina. Por esto, los científicos han desarrollado modelos espaciales para mapear los impactos humanos acumulativos sobre los ecosistemas marinos. Sin embargo, estos modelos están basados en muchas suposiciones e incorporan datos que sufren de errores y falta de información sustanciales. En lugar de utilizar solamente un modelo, usamos simulaciones Monte Carlo para identificar las regiones de los océanos que están sujetas al mayor y al menor impacto por estresantes antropogénicos bajo siete fuentes simuladas de incertidumbre (factores: p. ej., falta de datos sobre el estresante y la suposición de respuestas ambientales lineales ante el estrés). La mayoría de los mapas concordaron en que las áreas de alto impacto estaban localizadas en el noreste del Atlántico, el este del Mediterráneo, el Caribe, la plataforma continental del oeste de África, algunas regiones del litoral del Atlántico tropical, el océano Índico al este de Madagascar, algunas partes del este y sureste de Asia, algunas partes del noroeste del Pacífico, y muchas aguas costeras. Las grandes áreas de bajo impacto se ubicaron en las costas de la Antártida, en el centro del Pacífico, y en el sur del Atlántico. La incertidumbre en la distribución espacial a escala general de los impactos humanos fue causada por los efectos agregados de varios factores, en lugar de ser atribuible a un solo origen dominante. A pesar de la incertidumbre identificada en los mapas de impacto humano, estos pueden – a escalas espaciales generalizadas y en combinación con otra información ambiental y socioeconómica – señalar hacia áreas prioritarias para la investigación y el manejo. 摘要 越来越多渔业、污染、气候变化和其它来源的人类活动压力正在成为海洋生态系统保护的一大问题。科学家为此开发了空间模型来模拟人类对海洋生态系统的累计影响。然而, 这些模型建立在许多假说上, 还整合了大量不完整和不准确的数据。相比于单一模型, 我们则使用了蒙特卡罗模拟来确定在七个模拟的不确定性因素 (如缺失压力因素的数据、假设生态系统对压力的响应是线性的) 下, 海洋受到人类活动压力影响最大和最小的地区。大多数模拟结果都显示, 受到影响较大的是大西洋东北部、地中海东部、加勒比海、西非北部大陆架、热带大西洋近海地区、马达加斯加以东的印度洋、东亚和东南亚部分地区、太平洋西北部的部分地区, 以及许多沿海水域。而受到影响较小的大片区域则位于南极洲外、 太平洋中部和大西洋南部。模拟人类影响的大尺度空间分布分析中的不确定性来自多个因素的综合效应, 而不能归因于某个单一的主要因素。虽然人类影响效应确实存在不确定性, 但它们可以在较大空间尺度上, 结合其它环境和社会经济学信息, 指出研究和管理的优先区域。【翻译: 胡怡思; 审校: 聂永刚】 Article impact statement: Using human‐impact maps for conservation planning requires understanding uncertainty and knowing which results on the maps are robust.
Author Halpern, Benjamin S.
Stock, Andy
Micheli, Fiorenza
Crowder, Larry B.
Author_xml – sequence: 1
  givenname: Andy
  surname: Stock
  fullname: Stock, Andy
– sequence: 2
  givenname: Larry B.
  surname: Crowder
  fullname: Crowder, Larry B.
– sequence: 3
  givenname: Benjamin S.
  surname: Halpern
  fullname: Halpern, Benjamin S.
– sequence: 4
  givenname: Fiorenza
  surname: Micheli
  fullname: Micheli, Fiorenza
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29797608$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrGzEURkVJaRy3m-5bBN2UwqR6zkjL1PQRCGSTroVGcx3LaCRX0hD87zuO4y5CKdVGAp3zwb3fBTqLKQJCbym5pPP57FLvLymngr5ACyoZb2jH9RlaEKVUo5Rm5-iilC0hREsqXqFzpjvdtUQtkPkZHeRqfax7bKMN--LL_BhwTv1UKrYZbMFpjTf-fvP4EdIDHtMAAQa8mUYbsR931lWcIq4bwPch9Tbg5MDG8hq9XNtQ4M3TvUR3377erX40N7ffr1dXN40TlNEGOqk0B6sVJUI5OSgu2oFKzqGVa9DzQAzarmOk53pouZVUdkIN1g1SdC1foo_H2F1OvyYo1Yy-OAjBRkhTMYzOEFeM_QdKhGRz9swv0Ydn6DZNeV7SIZAzqqmUB-r9EzX1Iwxml_1o896cljwD5Ai4nErJsDbOV1t9ijVbHwwl5tCjOfRoHnuclU_PlFPqX2F6hB98gP0_SLO6_XJ9ct4dnW2pKf9xhNCdILTlvwG3hrQ6
CitedBy_id crossref_primary_10_1371_journal_pone_0245314
crossref_primary_10_3389_fmars_2020_00599
crossref_primary_10_1016_j_ecoinf_2018_07_007
crossref_primary_10_3389_fmars_2020_519845
crossref_primary_10_1016_j_biocon_2021_108995
crossref_primary_10_1038_s41598_019_47201_9
crossref_primary_10_1016_j_scitotenv_2023_161719
crossref_primary_10_3389_fmars_2020_00475
crossref_primary_10_3390_rs12203313
crossref_primary_10_1016_j_scitotenv_2022_160687
crossref_primary_10_1016_j_ygeno_2020_06_041
crossref_primary_10_1016_j_scitotenv_2021_147339
crossref_primary_10_1080_15481603_2022_2107113
crossref_primary_10_1016_j_biocon_2023_110142
crossref_primary_10_1016_j_scitotenv_2023_161686
crossref_primary_10_1016_j_scitotenv_2019_135316
crossref_primary_10_1002_eap_3056
crossref_primary_10_1016_j_jenvman_2024_123105
crossref_primary_10_1038_s41467_020_19899_z
crossref_primary_10_1016_j_pocean_2019_102179
crossref_primary_10_1186_s13750_021_00234_y
crossref_primary_10_3390_v12080806
crossref_primary_10_3389_fmars_2023_1270513
crossref_primary_10_3390_genes11020209
crossref_primary_10_1016_j_scitotenv_2020_138118
crossref_primary_10_1002_ecs2_4964
crossref_primary_10_3390_d11090146
Cites_doi 10.1111/cobi.12332
10.1371/journal.pone.0177393
10.1111/j.1523-1739.2007.00752.x
10.3389/fmars.2017.00020
10.1371/journal.pone.0180501
10.1126/science.1149345
10.1371/journal.pone.0135473
10.4319/lo.1999.44.3_part_2.0864
10.1111/j.1461-0248.2004.00573.x
10.1016/j.envsoft.2006.10.004
10.1126/science.1127609
10.1016/j.ocecoaman.2015.07.011
10.1016/j.ocecoaman.2015.11.013
10.5334/jors.88
10.1038/s41598-018-19354-6
10.1080/13658810210137031
10.1098/rspb.2015.2592
10.1016/j.marpol.2008.03.012
10.1038/ncomms8615
10.1016/j.envsoft.2010.04.012
10.1111/gcb.12895
10.1371/journal.pone.0032742
10.1371/journal.pone.0059038
10.1016/j.ocecoaman.2016.11.028
10.1080/00401706.1991.10484804
10.1111/geb.12493
10.1371/journal.pone.0079889
10.1126/science.aah4119
10.3389/fmars.2016.00153
10.1016/j.ecss.2015.05.002
10.1016/j.ecolind.2011.07.027
10.3354/meps08345
10.1016/j.ecolind.2011.09.023
10.1890/14-2200
10.1111/ddi.12159
10.1073/pnas.1213841110
10.1890/ES13-00181.1
10.1016/j.scitotenv.2017.08.289
10.1016/j.marpol.2010.01.010
10.1016/j.ecolmodel.2016.03.020
ContentType Journal Article
Copyright 2018 Society for Conservation Biology
2018 Society for Conservation Biology.
2018, Society for Conservation Biology
Copyright_xml – notice: 2018 Society for Conservation Biology
– notice: 2018 Society for Conservation Biology.
– notice: 2018, Society for Conservation Biology
DBID AAYXX
CITATION
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/cobi.13141
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 1379
ExternalDocumentID 29797608
10_1111_cobi_13141
COBI13141
44974016
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Madagascar
South East Asia
Western Africa
Antarctica
Indian Ocean
Caribbean
GeographicLocations_xml – name: Madagascar
– name: South East Asia
– name: Caribbean
– name: Antarctica
– name: Indian Ocean
– name: Western Africa
GrantInformation_xml – fundername: National Science Foundation
  funderid: DEB‐1212124
GroupedDBID ---
-DZ
.3N
.GA
05W
0R~
10A
1OC
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADUKH
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CBGCD
CS3
CUYZI
D-E
D-F
D0L
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OES
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RSU
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UKR
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
YFH
YUY
YV5
YZZ
ZCA
ZO4
ZZTAW
~02
~IA
~KM
~WT
.-4
.Y3
1OB
31~
42X
AAHHS
AAISJ
AANHP
AAUTI
ABEFU
ABEML
ACBWZ
ACCFJ
ACHIC
ACPVT
ACRPL
ACSCC
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AI.
AILXY
AIWBW
AJBDE
AQVQM
ASPBG
AVWKF
AZFZN
CAG
COF
DOOOF
ESX
FEDTE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
MVM
NEJ
QN7
SAMSI
UQL
VH1
VOH
WHG
WRC
XIH
ZCG
AAYXX
ABSQW
ADXHL
AGQPQ
AGUYK
CITATION
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4121-e75893ea981048c5d8346d1533e65fe91732e67720b39d63a515748dacd54763
IEDL.DBID DR2
ISSN 0888-8892
1523-1739
IngestDate Fri Jul 11 18:37:58 EDT 2025
Thu Jul 10 18:42:31 EDT 2025
Fri Jul 25 10:03:21 EDT 2025
Thu Apr 03 07:02:47 EDT 2025
Tue Jul 01 02:25:29 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Wed Jan 22 16:19:19 EST 2025
Thu Jul 03 21:56:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords marino
mapping
多重压力因素
不确定性
绘制地图
sensitivity analysis
análisis de sensibilidad
multiple stressors
mapeo
incertidumbre
uncertainty
marine
efectos acumulativos
敏感度分析
累积效应
estresantes múltiples
cumulative effects
海洋
Language English
License 2018 Society for Conservation Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4121-e75893ea981048c5d8346d1533e65fe91732e67720b39d63a515748dacd54763
Notes Article impact statement
Current address: Lamont‐Doherty Earth Observatory, Marine Biology, 61 Rt 9W, Palisades, NY 10964, U.S.A.
Using human‐impact maps for conservation planning requires understanding uncertainty and knowing, which results on the maps are robust.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3232-7783
PMID 29797608
PQID 2132191553
PQPubID 36794
PageCount 12
ParticipantIDs proquest_miscellaneous_2176338226
proquest_miscellaneous_2045274863
proquest_journals_2132191553
pubmed_primary_29797608
crossref_citationtrail_10_1111_cobi_13141
crossref_primary_10_1111_cobi_13141
wiley_primary_10_1111_cobi_13141_COBI13141
jstor_primary_44974016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181201
December 2018
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181201
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conserv Biol
PublicationYear 2018
Publisher Wiley Blackwell, Inc
Blackwell Publishing Ltd
Publisher_xml – name: Wiley Blackwell, Inc
– name: Blackwell Publishing Ltd
References 2002; 16
2010; 34
2015; 161
2015; 6
2013; 4
2017; 4
2012
1991; 33
2013a; 8
2004; 7
2015; 10
2008
1999; 44
1995
2006
2012; 19
2008; 32
2002
2014; 28
2012; 15
2006; 313
1966; 54
2016; 120
2017; 137
2016; 283
2014; 20
2016; 4
2015; 26
2018; 8
2010; 25
2016; 3
2018; 612
2015; 116
2013b; 8
2010; 398
2015; 21
2017; 12
2008; 319
2016; 354
2016; 331
2013; 110
2013
2007; 21
2012; 7
2007; 22
2016; 25
e_1_2_6_10_1
e_1_2_6_31_1
Kingsland SE (e_1_2_6_29_1) 1995
e_1_2_6_30_1
e_1_2_6_19_1
Levins R (e_1_2_6_32_1) 1966; 54
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Saltelli A (e_1_2_6_42_1) 2008
Longhurst A (e_1_2_6_34_1) 2006
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 7
  start-page: e32742
  year: 2012
  article-title: The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications
  publication-title: PLOS ONE
– volume: 120
  start-page: 88
  year: 2016
  end-page: 98
  article-title: Validation and limitations of a cumulative impact model for an estuary
  publication-title: Ocean & Coastal Management
– volume: 7
  start-page: 221
  year: 2004
  end-page: 231
  article-title: Quantifying the effects of fisheries on threatened species: the impact of pelagic longlines on loggerhead and leatherback sea turtles
  publication-title: Ecology Letters
– volume: 8
  start-page: 1469
  year: 2018
  article-title: Capturing expert uncertainty in spatial cumulative impact assessments
  publication-title: Scientific Reports
– volume: 16
  start-page: 405
  year: 2002
  end-page: 417
  article-title: Responding to the consequences of uncertainty in geographical data
  publication-title: International Journal of Geographical Information Scienc
– volume: 12
  start-page: e0177393
  year: 2017
  article-title: Eight habitats, 38 threats and 55 experts: Assessing ecological risk in a multi‐use marine region
  publication-title: PLOS ONE
– volume: 3
  year: 2016
  article-title: A global review of cumulative pressure and impact assessments in marine environments
  publication-title: Frontiers in Marine Science
– volume: 10
  start-page: e0135473
  year: 2015
– volume: 15
  start-page: 105
  year: 2012
  end-page: 114
  article-title: Human pressures and their potential impact on the Baltic Sea ecosystem
  publication-title: Ecological Indicators
– volume: 44
  start-page: 864
  year: 1999
  end-page: 877
  article-title: Synergism and antagonism among multiple stressors
  publication-title: Limnology and Oceanography
– volume: 21
  start-page: 1301
  year: 2007
  end-page: 1315
  article-title: Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats
  publication-title: Conservation Biology
– volume: 4
  year: 2017
  article-title: Using the Ocean Health Index to identify opportunities and challenges to improving Southern Ocean ecosystem health
  publication-title: Frontiers in Marine Science
– volume: 612
  start-page: 1132
  year: 2018
  end-page: 1140
  article-title: A risk‐based approach to cumulative effect assessments for marine management
  publication-title: Science of The Total Environment
– volume: 283
  start-page: 20152592
  year: 2016
  article-title: Interactions among ecosystem stressors and their importance in conservation
  publication-title: Proceedings of the Royal Society B
– volume: 33
  start-page: 161
  year: 1991
  end-page: 174
  article-title: Factorial sampling plans for preliminary computational experiments
  publication-title: Technometrics
– volume: 116
  start-page: 214
  year: 2015
  end-page: 223
  article-title: Data requirements and tools to operationalize marine spatial planning in the United States
  publication-title: Ocean & Coastal Management
– year: 2012
– volume: 21
  start-page: 2488
  year: 2015
  end-page: 2499
  article-title: Testing local and global stressor impacts on a coastal foundation species using an ecologically realistic framework
  publication-title: Global Change Biology
– volume: 4
  start-page: 1
  year: 2013
  end-page: 11
  article-title: Assumptions, challenges, and future directions in cumulative impact analysis
  publication-title: Ecosphere
– volume: 26
  start-page: 651
  year: 2015
  end-page: 663
  article-title: Characterizing driver‐response relationships in marine pelagic ecosystems for improved ocean management
  publication-title: Ecological Applications
– volume: 8
  start-page: e79889
  year: 2013a
  article-title: Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities
  publication-title: PLOS ONE
– volume: 25
  start-page: 1508
  year: 2010
  end-page: 1517
  article-title: How to avoid a perfunctory sensitivity analysis
  publication-title: Environmental Modelling & Software
– volume: 4
  start-page: e21
  year: 2016
  article-title: Open source software for mapping human impacts on marine ecosystems with an additive model
  publication-title: Journal of Open Research Software
– volume: 32
  start-page: 772
  year: 2008
  end-page: 778
  article-title: Essential ecological insights for marine ecosystem‐based management and marine spatial planning
  publication-title: Marine Policy
– volume: 34
  start-page: 876
  year: 2010
  end-page: 886
  article-title: Cumulative impact mapping: Advances, relevance and limitations to marine management and conservation, using Canada's Pacific waters as a case study
  publication-title: Marine Policy
– volume: 20
  start-page: 538
  year: 2014
  end-page: 546
  article-title: Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping
  publication-title: Diversity and Distributions
– year: 2002
– volume: 354
  start-page: 185
  year: 2016
  end-page: 187
  article-title: Science‐based management in decline in the Southern Ocean
  publication-title: Science
– year: 2008
– volume: 161
  start-page: 88
  year: 2015
  end-page: 92
  article-title: Baltic Sea biodiversity status vs. cumulative human pressures
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 319
  start-page: 948
  year: 2008
  end-page: 952
  article-title: A global map of human impact on marine ecosystems
  publication-title: Science
– year: 2006
– volume: 313
  start-page: 58
  year: 2006
  end-page: 61
  article-title: Global biodiversity conservation priorities
  publication-title: Science
– volume: 19
  start-page: 253
  year: 2012
  end-page: 263
  article-title: Understanding relationships between conflicting human uses and coastal ecosystems status: a geospatial modeling approach
  publication-title: Ecological Indicators
– year: 1995
– volume: 28
  start-page: 1604
  year: 2014
  end-page: 1616
  article-title: Mapping change in human pressure globally on land and within protected areas
  publication-title: Conservation Biology
– volume: 398
  start-page: 19
  year: 2010
  end-page: 32
  article-title: Quantifying cumulative impacts of human pressures on the marine environment: a geospatial modelling framework
  publication-title: Marine Ecology Progress Series
– volume: 12
  start-page: e0180501
  year: 2017
  article-title: Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region
  publication-title: PLOS ONE
– volume: 331
  start-page: 100
  year: 2016
  end-page: 114
  article-title: Modelling the cumulative spatial–temporal effects of environmental drivers and fishing in a NW Mediterranean marine ecosystem
  publication-title: Ecological Modelling
– volume: 110
  start-page: 372
  year: 2013
  end-page: 377
  article-title: Joint analysis of stressors and ecosystem services to enhance restoration effectiveness
  publication-title: Proceedings of the National Academy of Sciences
– volume: 22
  start-page: 1509
  year: 2007
  end-page: 1518
  article-title: An effective screening design for sensitivity analysis of large models
  publication-title: Environmental Modelling & Software
– volume: 6
  start-page: 7615
  year: 2015
  article-title: Spatial and temporal changes in cumulative human impacts on the world's ocean
  publication-title: Nature Communications
– volume: 25
  start-page: 1321
  year: 2016
  end-page: 1332
  article-title: Effects of model assumptions and data quality on spatial cumulative human impact assessments
  publication-title: Global Ecology and Biogeography
– volume: 8
  start-page: e59038
  year: 2013b
  article-title: Setting priorities for regional conservation planning in the Mediterranean Sea
  publication-title: PLOS ONE
– year: 2013
– volume: 54
  start-page: 421
  year: 1966
  end-page: 431
  article-title: The strategy of model building in population biology
  publication-title: American Scientist
– volume: 137
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Assessment and management of cumulative impacts in California's network of marine protected areas
  publication-title: Ocean & Coastal Management
– ident: e_1_2_6_19_1
  doi: 10.1111/cobi.12332
– ident: e_1_2_6_16_1
  doi: 10.1371/journal.pone.0177393
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1523-1739.2007.00752.x
– ident: e_1_2_6_35_1
  doi: 10.3389/fmars.2017.00020
– ident: e_1_2_6_20_1
  doi: 10.1371/journal.pone.0180501
– ident: e_1_2_6_22_1
  doi: 10.1126/science.1149345
– ident: e_1_2_6_25_1
  doi: 10.1371/journal.pone.0135473
– ident: e_1_2_6_18_1
  doi: 10.4319/lo.1999.44.3_part_2.0864
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1461-0248.2004.00573.x
– ident: e_1_2_6_10_1
  doi: 10.1016/j.envsoft.2006.10.004
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1127609
– ident: e_1_2_6_44_1
  doi: 10.1016/j.ocecoaman.2015.07.011
– ident: e_1_2_6_12_1
  doi: 10.1016/j.ocecoaman.2015.11.013
– ident: e_1_2_6_47_1
  doi: 10.5334/jors.88
– ident: e_1_2_6_27_1
  doi: 10.1038/s41598-018-19354-6
– ident: e_1_2_6_28_1
– ident: e_1_2_6_2_1
  doi: 10.1080/13658810210137031
– ident: e_1_2_6_14_1
  doi: 10.1098/rspb.2015.2592
– ident: e_1_2_6_15_1
  doi: 10.1016/j.marpol.2008.03.012
– volume-title: Global sensitivity analysis: the primer
  year: 2008
  ident: e_1_2_6_42_1
– ident: e_1_2_6_24_1
  doi: 10.1038/ncomms8615
– ident: e_1_2_6_4_1
– volume-title: Modeling nature
  year: 1995
  ident: e_1_2_6_29_1
– ident: e_1_2_6_17_1
– ident: e_1_2_6_43_1
  doi: 10.1016/j.envsoft.2010.04.012
– ident: e_1_2_6_11_1
  doi: 10.1111/gcb.12895
– ident: e_1_2_6_41_1
  doi: 10.1371/journal.pone.0032742
– ident: e_1_2_6_38_1
  doi: 10.1371/journal.pone.0059038
– ident: e_1_2_6_36_1
  doi: 10.1016/j.ocecoaman.2016.11.028
– ident: e_1_2_6_39_1
  doi: 10.1080/00401706.1991.10484804
– ident: e_1_2_6_48_1
  doi: 10.1111/geb.12493
– ident: e_1_2_6_37_1
  doi: 10.1371/journal.pone.0079889
– ident: e_1_2_6_7_1
  doi: 10.1126/science.aah4119
– ident: e_1_2_6_31_1
  doi: 10.3389/fmars.2016.00153
– ident: e_1_2_6_5_1
  doi: 10.1016/j.ecss.2015.05.002
– volume: 54
  start-page: 421
  year: 1966
  ident: e_1_2_6_32_1
  article-title: The strategy of model building in population biology
  publication-title: American Scientist
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ecolind.2011.07.027
– volume-title: Ecological geography of the sea
  year: 2006
  ident: e_1_2_6_34_1
– ident: e_1_2_6_45_1
  doi: 10.3354/meps08345
– ident: e_1_2_6_30_1
  doi: 10.1016/j.ecolind.2011.09.023
– ident: e_1_2_6_26_1
  doi: 10.1890/14-2200
– ident: e_1_2_6_9_1
  doi: 10.1111/ddi.12159
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.1213841110
– ident: e_1_2_6_23_1
  doi: 10.1890/ES13-00181.1
– ident: e_1_2_6_46_1
  doi: 10.1016/j.scitotenv.2017.08.289
– ident: e_1_2_6_6_1
  doi: 10.1016/j.marpol.2010.01.010
– ident: e_1_2_6_13_1
  doi: 10.1016/j.ecolmodel.2016.03.020
SSID ssj0009514
Score 2.4270244
Snippet Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation....
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1368
SubjectTerms Antarctica
anthropogenic activities
Anthropogenic factors
anthropogenic stressors
análisis de sensibilidad
Caribbean
Climate change
coastal water
Coastal waters
Computer simulation
continental shelf
Continental shelves
cumulative effects
Ecosystems
efectos acumulativos
Environment models
estresantes múltiples
Fishing
Human impact
Human influences
incertidumbre
Indian Ocean
Madagascar
mapeo
mapping
marine
Marine conservation
Marine ecosystems
Marine fish
Marine pollution
marino
Monte Carlo method
Monte Carlo simulation
multiple stressors
Oceans
Offshore
pollution
Pollution sources
sensitivity analysis
South East Asia
Spatial distribution
Statistical methods
Tropical climate
Uncertainty
Uncertainty analysis
Western Africa
不确定性
多重压力因素
敏感度分析
海洋
累积效应
绘制地图
Title Uncertainty analysis and robust areas of high and low modeled human impact on the global oceans
URI https://www.jstor.org/stable/44974016
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.13141
https://www.ncbi.nlm.nih.gov/pubmed/29797608
https://www.proquest.com/docview/2132191553
https://www.proquest.com/docview/2045274863
https://www.proquest.com/docview/2176338226
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KQeiLVtvq0Spb7ItCDtnsJtmAL1pa2oIK0kJfJOwtIJZEenIox1_vzG6StlIK-rawE7KXmd1vkplvAPYFF0ZqOv1KLhOptUi0LKskdSrVxjVSlpTv_PlLcXwuTy_yizX4MObCRH6I6YMbWUY4r8nAtVncMnLbmR9zLnjIWqdgLUJE37JbjLuR2BtdvESpKhu4SSmM5-bRO7dRDEi8D2reRa7h6jl6At_HQceIk5_zZW_m9vdffI7_O6tNeDxgUvYxKtFTWPPtM3gUq1SusHUYmK1XW1Cfo4qEEIJ-xfRAZ4INx646s1z0TFOIO-saRizIoeOyu2ax2o5joR4gi3mZrGsZYk8WCUkY3qJ4Z27D2dHh2cFxMlRoSKzkGU88ehuV8LpS6NUpmzslZOEIQvqCoth4KTJfIIBPjahcITSip1Iqp63LJZ5sO7Dedq1_AaxIG6W0sZVurGxyjqeBR4_Z-rx0WqliBu_GjartwF5ORTQu69GLoZWrw8rN4O0k-ytydtwrtRP2exKRsqLyhPiq3VEB6sGgF3WGXjsnLn0xg72pG02R_q_o1ndLlCF6epxe8ZAMx2kLRGX4mudRuaYBZFWJ4DBVM3gfVOSBwdcHXz-dhNbLfxF-BRsI-FQMx9mF9f5q6V8jqOrNm2A8fwDQoxl6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iyPlyfpye62fkfFHo0jRpmz6qKOv5BccKvpU0SeFQ2sPtcuz99c4k3Z6KCPoWyJR8zSS_SSe_IWSfM14IhbtfykQglOKBEmkWhEaGqjClECm-d766Tga34uddfNfG5uBbGM8P0V24oWW4_RoNHC-kn1m5rovffcYZPlufw5TezqP6FT3j3PXU3uDkBVJmUctOioE8_799cR75kMS3wOZL7OoOn7NFn2F15DgLMebkvj9uir7-94rR8dPjWiJfW1hKj7weLZMZW62QeZ-ocgKlU0duPflG8lvQEhdF0EyoahlNoGDoY12MRw1VGOVO65IiEbKreKj_Up9wx1CXEpD6p5m0rijAT-o5SSgcpHBsrpLh2enwZBC0SRoCLVjEAgsOR8atyiQ4dlLHRnKRGESRNsFANpbyyCaA4cOCZybhCgBUKqRR2sQCNrc1MlvVlV0nNAlLKVWhM1VqUcYMNgQLTrO2cWqUlEmPHExXKtctgTnm0XjIp44MzlzuZq5HfnSyfzxtx5tSa27BOxEhMsxQCE1tTTUgb216lEfguDOk0-c9stdVgzXiLxZV2XoMMshQD8NL3pNhMGwOwAya-e61q-tAlKWAD0PZI4dOR97pfH5yc3zuShsfEd4lXwbDq8v88vz6YpMsAP6TPjpni8w2j2O7DRirKXacJT0BXN4dlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFD-Iw7GXqdvUq85lbC8b9NI0aZrCXpx60X24MRR8GSVNUpBJK9rLuP71O0na-oEI8y2QU5qPc5Lfac_5HYD3jLKSK3f6ZZRHXCkWKZ7lUWxkrEpTcZ65fOfvh2L_mH85SU_m4FOfCxP4IYYPbs4y_HntDPzcVDeMXDfl6Zgy6rLWn3ARS6fTu7-SG5S7gdkbfbxIyjzpyEldHM_1s7euoxCReB_WvA1d_d0zWYTf_ahDyMmf8bQtx_rqDqHjY6e1BM87UEq2gxYtw5ytX8BCKFM5w9aep7aevYTiGHXExxC0M6I6PhNsGHLRlNPLligX406aijgaZN9x1vwlodyOIb4gIAmJmaSpCYJPEhhJCF6jeGm-gqPJ3tHOftSVaIg0pwmNLLobObMql-jWSZ0aybgwDkNa4cLYaMYSKxDBxyXLjWAK4VPGpVHapByPthWYr5vargERcSWlKnWuKs2rlOJxYNFl1jbNjJJSjOBDv1GF7ujLXRWNs6J3Y9zKFX7lRvBukD0PpB33Sq34_R5EOM9dfUJ81WavAEVn0ZdFgm47dWT6bARvh260RfeDRdW2maKM46fH6YmHZChOmyEsw9esBuUaBpDkGaLDWI7go1eRBwZf7Pz4fOBb6_8j_Aae_tydFN8ODr9uwDMEfzKE5mzCfHsxta8RYLXllrejfwWVHE0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+analysis+and+robust+areas+of+high+and+low+modeled+human+impact+on+the+global+oceans&rft.jtitle=Conservation+biology&rft.au=Stock%2C+Andy&rft.au=Crowder%2C+Larry+B.&rft.au=Halpern%2C+Benjamin+S.&rft.au=Micheli%2C+Fiorenza&rft.date=2018-12-01&rft.pub=Wiley+Blackwell%2C+Inc&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=32&rft.issue=6&rft.spage=1368&rft.epage=1379&rft_id=info:doi/10.1111%2Fcobi.13141&rft.externalDocID=44974016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon