Uncertainty analysis and robust areas of high and low modeled human impact on the global oceans
Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assum...
Saved in:
Published in | Conservation biology Vol. 32; no. 6; pp. 1368 - 1379 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Blackwell, Inc
01.12.2018
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic Stressors under 7 simulated sources of uncertainty (factors: e.g., missing Stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. El incremento de la presión antropogénica sobre los ecosistemas marinos a partir de la pesca, la contaminación, el cambio climático, y otras fuentes es causa de una gran preocupación dentro de la conservación marina. Por esto, los científicos han desarrollado modelos espaciales para mapear los impactos humanos acumulativos sobre los ecosistemas marinos. Sin embargo, estos modelos están basados en muchas suposiciones e incorporan datos que sufren de errores y falta de información sustanciales. En lugar de utilizar solamente un modelo, usamos simulaciones Monte Cario para identificar las regiones de los océanos que están sujetas al mayor y al menor impacto por estresantes antropogénicos bajo siete fuentes simuladas de incertidumbre (factores: p. ej., falta de datos sobre el estresante y la suposición de respuestas ambientales lineales ante el estrés). La mayoría de los mapas concordaron en que las áreas de alto impacto estaban localizadas en el noreste del Atlántico, el este del Mediterráneo, el Caribe, la plataforma continental del oeste de África, algunas regiones del litoral del Atlántico tropical, el océano índico al este de Madagascar, algunas partes del este y sureste de Asia, algunas partes del noroeste del Pacífico, y muchas aguas costeras. Las grandes áreas de bajo impacto se ubicaron en las costas de la Antártida, en el centro del Pacífico, y en el sur del Atlántico. La incertidumbre en la distribución espacial a escala general de los impactos humanos fue causada por los efectos agregados de varios factores, en lugar de ser atribuible a un solo origen dominante. A pesar de la incertidumbre identificada en los mapas de impacto humano, estos pueden - a escalas espaciales generalizadas y en combinación con otra información ambiental y socioeconómica - señalar hacia áreas prioritarias para la investigación y el manejo. 越来越多渔业、污染、气候变化和其它来源的人类活动压カ正在成为海洋生态系统保护的一大问题。科 学家为此开发了空间模型来模拟人类对海洋生态系统的累计影响。然而,这些模型建立在许多假说上,还整合了 大量不完整和不准确的数据。相比于单ー模型,我们则使用了蒙特卡罗模拟来确定在七个模拟的不确定性因素 (如缺失压力因素的数据、假设生态系统对压カ的响应是线性的) 下,海洋受到人类活动压カ影响最大和最小的 地区。大多数模拟结果都显示,受到影响较大的是大西洋东北部、地中海东部、加勒比海、西非北部大陆架、 热带大西洋近海地区、马达加斯加以东的印度洋、东亚和东南亚部分地区、太平洋西北部的部分地区,以及许 多沿海水域。而受到影响较小的大片区域则位于南极洲外、太平洋中部和大西洋南部。模拟人类影响的大尺 度空间分布分析中的不确定性来自多个因素的综合效应,而不能归因于某个单ー的主要因素。虽然人类影响效 应确实存在不确定性,但它们可以在较大空间尺度上, 結合其它环境和社会经济学信息,指出研究和管理的优先 区域。 |
---|---|
AbstractList | Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high‐impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low‐impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad‐scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human‐impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can-at broad spatial scales and in combination with other environmental and socioeconomic information-point to priority areas for research and management.Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can-at broad spatial scales and in combination with other environmental and socioeconomic information-point to priority areas for research and management. Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic Stressors under 7 simulated sources of uncertainty (factors: e.g., missing Stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high-impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low-impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad-scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human-impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. El incremento de la presión antropogénica sobre los ecosistemas marinos a partir de la pesca, la contaminación, el cambio climático, y otras fuentes es causa de una gran preocupación dentro de la conservación marina. Por esto, los científicos han desarrollado modelos espaciales para mapear los impactos humanos acumulativos sobre los ecosistemas marinos. Sin embargo, estos modelos están basados en muchas suposiciones e incorporan datos que sufren de errores y falta de información sustanciales. En lugar de utilizar solamente un modelo, usamos simulaciones Monte Cario para identificar las regiones de los océanos que están sujetas al mayor y al menor impacto por estresantes antropogénicos bajo siete fuentes simuladas de incertidumbre (factores: p. ej., falta de datos sobre el estresante y la suposición de respuestas ambientales lineales ante el estrés). La mayoría de los mapas concordaron en que las áreas de alto impacto estaban localizadas en el noreste del Atlántico, el este del Mediterráneo, el Caribe, la plataforma continental del oeste de África, algunas regiones del litoral del Atlántico tropical, el océano índico al este de Madagascar, algunas partes del este y sureste de Asia, algunas partes del noroeste del Pacífico, y muchas aguas costeras. Las grandes áreas de bajo impacto se ubicaron en las costas de la Antártida, en el centro del Pacífico, y en el sur del Atlántico. La incertidumbre en la distribución espacial a escala general de los impactos humanos fue causada por los efectos agregados de varios factores, en lugar de ser atribuible a un solo origen dominante. A pesar de la incertidumbre identificada en los mapas de impacto humano, estos pueden - a escalas espaciales generalizadas y en combinación con otra información ambiental y socioeconómica - señalar hacia áreas prioritarias para la investigación y el manejo. 越来越多渔业、污染、气候变化和其它来源的人类活动压カ正在成为海洋生态系统保护的一大问题。科 学家为此开发了空间模型来模拟人类对海洋生态系统的累计影响。然而,这些模型建立在许多假说上,还整合了 大量不完整和不准确的数据。相比于单ー模型,我们则使用了蒙特卡罗模拟来确定在七个模拟的不确定性因素 (如缺失压力因素的数据、假设生态系统对压カ的响应是线性的) 下,海洋受到人类活动压カ影响最大和最小的 地区。大多数模拟结果都显示,受到影响较大的是大西洋东北部、地中海东部、加勒比海、西非北部大陆架、 热带大西洋近海地区、马达加斯加以东的印度洋、东亚和东南亚部分地区、太平洋西北部的部分地区,以及许 多沿海水域。而受到影响较小的大片区域则位于南极洲外、太平洋中部和大西洋南部。模拟人类影响的大尺 度空间分布分析中的不确定性来自多个因素的综合效应,而不能归因于某个单ー的主要因素。虽然人类影响效 应确实存在不确定性,但它们可以在较大空间尺度上, 結合其它环境和社会经济学信息,指出研究和管理的优先 区域。 Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high‐impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low‐impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad‐scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human‐impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. 越来越多渔业、污染、气候变化和其它来源的人类活动压力正在成为海洋生态系统保护的一大问题。科学家为此开发了空间模型来模拟人类对海洋生态系统的累计影响。然而, 这些模型建立在许多假说上, 还整合了大量不完整和不准确的数据。相比于单一模型, 我们则使用了蒙特卡罗模拟来确定在七个模拟的不确定性因素 (如缺失压力因素的数据、假设生态系统对压力的响应是线性的) 下, 海洋受到人类活动压力影响最大和最小的地区。大多数模拟结果都显示, 受到影响较大的是大西洋东北部、地中海东部、加勒比海、西非北部大陆架、热带大西洋近海地区、马达加斯加以东的印度洋、东亚和东南亚部分地区、太平洋西北部的部分地区, 以及许多沿海水域。而受到影响较小的大片区域则位于南极洲外、 太平洋中部和大西洋南部。模拟人类影响的大尺度空间分布分析中的不确定性来自多个因素的综合效应, 而不能归因于某个单一的主要因素。虽然人类影响效应确实存在不确定性, 但它们可以在较大空间尺度上, 结合其它环境和社会经济学信息, 指出研究和管理的优先区域。 【翻译: 胡怡思; 审校: 聂永刚】 Article impact statement : Using human‐impact maps for conservation planning requires understanding uncertainty and knowing which results on the maps are robust. Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation. Scientists have thus developed spatial models to map cumulative human impacts on marine ecosystems. However, these models are based on many assumptions and incorporate data that suffer from substantial incompleteness and inaccuracies. Rather than using a single model, we used Monte Carlo simulations to identify which parts of the oceans are subject to the most and least impact from anthropogenic stressors under 7 simulated sources of uncertainty (factors: e.g., missing stressor data and assuming linear ecosystem responses to stress). Most maps agreed that high‐impact areas were located in the Northeast Atlantic, the eastern Mediterranean, the Caribbean, the continental shelf off northern West Africa, offshore parts of the tropical Atlantic, the Indian Ocean east of Madagascar, parts of East and Southeast Asia, parts of the northwestern Pacific, and many coastal waters. Large low‐impact areas were located off Antarctica, in the central Pacific, and in the southern Atlantic. Uncertainty in the broad‐scale spatial distribution of modeled human impact was caused by the aggregate effects of several factors, rather than being attributable to a single dominant source. In spite of the identified uncertainty in human‐impact maps, they can—at broad spatial scales and in combination with other environmental and socioeconomic information—point to priority areas for research and management. Análisis de Incertidumbre y Áreas Robustas del Impacto Humano Alto y Bajo Modelado para los Océanos Mundiales Resumen El incremento de la presión antropogénica sobre los ecosistemas marinos a partir de la pesca, la contaminación, el cambio climático, y otras fuentes es causa de una gran preocupación dentro de la conservación marina. Por esto, los científicos han desarrollado modelos espaciales para mapear los impactos humanos acumulativos sobre los ecosistemas marinos. Sin embargo, estos modelos están basados en muchas suposiciones e incorporan datos que sufren de errores y falta de información sustanciales. En lugar de utilizar solamente un modelo, usamos simulaciones Monte Carlo para identificar las regiones de los océanos que están sujetas al mayor y al menor impacto por estresantes antropogénicos bajo siete fuentes simuladas de incertidumbre (factores: p. ej., falta de datos sobre el estresante y la suposición de respuestas ambientales lineales ante el estrés). La mayoría de los mapas concordaron en que las áreas de alto impacto estaban localizadas en el noreste del Atlántico, el este del Mediterráneo, el Caribe, la plataforma continental del oeste de África, algunas regiones del litoral del Atlántico tropical, el océano Índico al este de Madagascar, algunas partes del este y sureste de Asia, algunas partes del noroeste del Pacífico, y muchas aguas costeras. Las grandes áreas de bajo impacto se ubicaron en las costas de la Antártida, en el centro del Pacífico, y en el sur del Atlántico. La incertidumbre en la distribución espacial a escala general de los impactos humanos fue causada por los efectos agregados de varios factores, en lugar de ser atribuible a un solo origen dominante. A pesar de la incertidumbre identificada en los mapas de impacto humano, estos pueden – a escalas espaciales generalizadas y en combinación con otra información ambiental y socioeconómica – señalar hacia áreas prioritarias para la investigación y el manejo. 摘要 越来越多渔业、污染、气候变化和其它来源的人类活动压力正在成为海洋生态系统保护的一大问题。科学家为此开发了空间模型来模拟人类对海洋生态系统的累计影响。然而, 这些模型建立在许多假说上, 还整合了大量不完整和不准确的数据。相比于单一模型, 我们则使用了蒙特卡罗模拟来确定在七个模拟的不确定性因素 (如缺失压力因素的数据、假设生态系统对压力的响应是线性的) 下, 海洋受到人类活动压力影响最大和最小的地区。大多数模拟结果都显示, 受到影响较大的是大西洋东北部、地中海东部、加勒比海、西非北部大陆架、热带大西洋近海地区、马达加斯加以东的印度洋、东亚和东南亚部分地区、太平洋西北部的部分地区, 以及许多沿海水域。而受到影响较小的大片区域则位于南极洲外、 太平洋中部和大西洋南部。模拟人类影响的大尺度空间分布分析中的不确定性来自多个因素的综合效应, 而不能归因于某个单一的主要因素。虽然人类影响效应确实存在不确定性, 但它们可以在较大空间尺度上, 结合其它环境和社会经济学信息, 指出研究和管理的优先区域。【翻译: 胡怡思; 审校: 聂永刚】 Article impact statement: Using human‐impact maps for conservation planning requires understanding uncertainty and knowing which results on the maps are robust. |
Author | Halpern, Benjamin S. Stock, Andy Micheli, Fiorenza Crowder, Larry B. |
Author_xml | – sequence: 1 givenname: Andy surname: Stock fullname: Stock, Andy – sequence: 2 givenname: Larry B. surname: Crowder fullname: Crowder, Larry B. – sequence: 3 givenname: Benjamin S. surname: Halpern fullname: Halpern, Benjamin S. – sequence: 4 givenname: Fiorenza surname: Micheli fullname: Micheli, Fiorenza |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29797608$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrGzEURkVJaRy3m-5bBN2UwqR6zkjL1PQRCGSTroVGcx3LaCRX0hD87zuO4y5CKdVGAp3zwb3fBTqLKQJCbym5pPP57FLvLymngr5ACyoZb2jH9RlaEKVUo5Rm5-iilC0hREsqXqFzpjvdtUQtkPkZHeRqfax7bKMN--LL_BhwTv1UKrYZbMFpjTf-fvP4EdIDHtMAAQa8mUYbsR931lWcIq4bwPch9Tbg5MDG8hq9XNtQ4M3TvUR3377erX40N7ffr1dXN40TlNEGOqk0B6sVJUI5OSgu2oFKzqGVa9DzQAzarmOk53pouZVUdkIN1g1SdC1foo_H2F1OvyYo1Yy-OAjBRkhTMYzOEFeM_QdKhGRz9swv0Ydn6DZNeV7SIZAzqqmUB-r9EzX1Iwxml_1o896cljwD5Ai4nErJsDbOV1t9ijVbHwwl5tCjOfRoHnuclU_PlFPqX2F6hB98gP0_SLO6_XJ9ct4dnW2pKf9xhNCdILTlvwG3hrQ6 |
CitedBy_id | crossref_primary_10_1371_journal_pone_0245314 crossref_primary_10_3389_fmars_2020_00599 crossref_primary_10_1016_j_ecoinf_2018_07_007 crossref_primary_10_3389_fmars_2020_519845 crossref_primary_10_1016_j_biocon_2021_108995 crossref_primary_10_1038_s41598_019_47201_9 crossref_primary_10_1016_j_scitotenv_2023_161719 crossref_primary_10_3389_fmars_2020_00475 crossref_primary_10_3390_rs12203313 crossref_primary_10_1016_j_scitotenv_2022_160687 crossref_primary_10_1016_j_ygeno_2020_06_041 crossref_primary_10_1016_j_scitotenv_2021_147339 crossref_primary_10_1080_15481603_2022_2107113 crossref_primary_10_1016_j_biocon_2023_110142 crossref_primary_10_1016_j_scitotenv_2023_161686 crossref_primary_10_1016_j_scitotenv_2019_135316 crossref_primary_10_1002_eap_3056 crossref_primary_10_1016_j_jenvman_2024_123105 crossref_primary_10_1038_s41467_020_19899_z crossref_primary_10_1016_j_pocean_2019_102179 crossref_primary_10_1186_s13750_021_00234_y crossref_primary_10_3390_v12080806 crossref_primary_10_3389_fmars_2023_1270513 crossref_primary_10_3390_genes11020209 crossref_primary_10_1016_j_scitotenv_2020_138118 crossref_primary_10_1002_ecs2_4964 crossref_primary_10_3390_d11090146 |
Cites_doi | 10.1111/cobi.12332 10.1371/journal.pone.0177393 10.1111/j.1523-1739.2007.00752.x 10.3389/fmars.2017.00020 10.1371/journal.pone.0180501 10.1126/science.1149345 10.1371/journal.pone.0135473 10.4319/lo.1999.44.3_part_2.0864 10.1111/j.1461-0248.2004.00573.x 10.1016/j.envsoft.2006.10.004 10.1126/science.1127609 10.1016/j.ocecoaman.2015.07.011 10.1016/j.ocecoaman.2015.11.013 10.5334/jors.88 10.1038/s41598-018-19354-6 10.1080/13658810210137031 10.1098/rspb.2015.2592 10.1016/j.marpol.2008.03.012 10.1038/ncomms8615 10.1016/j.envsoft.2010.04.012 10.1111/gcb.12895 10.1371/journal.pone.0032742 10.1371/journal.pone.0059038 10.1016/j.ocecoaman.2016.11.028 10.1080/00401706.1991.10484804 10.1111/geb.12493 10.1371/journal.pone.0079889 10.1126/science.aah4119 10.3389/fmars.2016.00153 10.1016/j.ecss.2015.05.002 10.1016/j.ecolind.2011.07.027 10.3354/meps08345 10.1016/j.ecolind.2011.09.023 10.1890/14-2200 10.1111/ddi.12159 10.1073/pnas.1213841110 10.1890/ES13-00181.1 10.1016/j.scitotenv.2017.08.289 10.1016/j.marpol.2010.01.010 10.1016/j.ecolmodel.2016.03.020 |
ContentType | Journal Article |
Copyright | 2018 Society for Conservation Biology 2018 Society for Conservation Biology. 2018, Society for Conservation Biology |
Copyright_xml | – notice: 2018 Society for Conservation Biology – notice: 2018 Society for Conservation Biology. – notice: 2018, Society for Conservation Biology |
DBID | AAYXX CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/cobi.13141 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | 1379 |
ExternalDocumentID | 29797608 10_1111_cobi_13141 COBI13141 44974016 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Madagascar South East Asia Western Africa Antarctica Indian Ocean Caribbean |
GeographicLocations_xml | – name: Madagascar – name: South East Asia – name: Caribbean – name: Antarctica – name: Indian Ocean – name: Western Africa |
GrantInformation_xml | – fundername: National Science Foundation funderid: DEB‐1212124 |
GroupedDBID | --- -DZ .3N .GA 05W 0R~ 10A 1OC 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADUKH ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CBGCD CS3 CUYZI D-E D-F D0L DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RSU RX1 SA0 SUPJJ TEORI TN5 UB1 UKR V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW YFH YUY YV5 YZZ ZCA ZO4 ZZTAW ~02 ~IA ~KM ~WT .-4 .Y3 1OB 31~ 42X AAHHS AAISJ AANHP AAUTI ABEFU ABEML ACBWZ ACCFJ ACHIC ACPVT ACRPL ACSCC ACYXJ ADNMO ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AI. AILXY AIWBW AJBDE AQVQM ASPBG AVWKF AZFZN CAG COF DOOOF ESX FEDTE GTFYD HF~ HGD HQ2 HTVGU HVGLF JSODD MVM NEJ QN7 SAMSI UQL VH1 VOH WHG WRC XIH ZCG AAYXX ABSQW ADXHL AGQPQ AGUYK CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4121-e75893ea981048c5d8346d1533e65fe91732e67720b39d63a515748dacd54763 |
IEDL.DBID | DR2 |
ISSN | 0888-8892 1523-1739 |
IngestDate | Fri Jul 11 18:37:58 EDT 2025 Thu Jul 10 18:42:31 EDT 2025 Fri Jul 25 10:03:21 EDT 2025 Thu Apr 03 07:02:47 EDT 2025 Tue Jul 01 02:25:29 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Jan 22 16:19:19 EST 2025 Thu Jul 03 21:56:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | marino mapping 多重压力因素 不确定性 绘制地图 sensitivity analysis análisis de sensibilidad multiple stressors mapeo incertidumbre uncertainty marine efectos acumulativos 敏感度分析 累积效应 estresantes múltiples cumulative effects 海洋 |
Language | English |
License | 2018 Society for Conservation Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4121-e75893ea981048c5d8346d1533e65fe91732e67720b39d63a515748dacd54763 |
Notes | Article impact statement Current address: Lamont‐Doherty Earth Observatory, Marine Biology, 61 Rt 9W, Palisades, NY 10964, U.S.A. Using human‐impact maps for conservation planning requires understanding uncertainty and knowing, which results on the maps are robust. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3232-7783 |
PMID | 29797608 |
PQID | 2132191553 |
PQPubID | 36794 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2176338226 proquest_miscellaneous_2045274863 proquest_journals_2132191553 pubmed_primary_29797608 crossref_citationtrail_10_1111_cobi_13141 crossref_primary_10_1111_cobi_13141 wiley_primary_10_1111_cobi_13141_COBI13141 jstor_primary_44974016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181201 December 2018 2018-12-00 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 20181201 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conserv Biol |
PublicationYear | 2018 |
Publisher | Wiley Blackwell, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley Blackwell, Inc – name: Blackwell Publishing Ltd |
References | 2002; 16 2010; 34 2015; 161 2015; 6 2013; 4 2017; 4 2012 1991; 33 2013a; 8 2004; 7 2015; 10 2008 1999; 44 1995 2006 2012; 19 2008; 32 2002 2014; 28 2012; 15 2006; 313 1966; 54 2016; 120 2017; 137 2016; 283 2014; 20 2016; 4 2015; 26 2018; 8 2010; 25 2016; 3 2018; 612 2015; 116 2013b; 8 2010; 398 2015; 21 2017; 12 2008; 319 2016; 354 2016; 331 2013; 110 2013 2007; 21 2012; 7 2007; 22 2016; 25 e_1_2_6_10_1 e_1_2_6_31_1 Kingsland SE (e_1_2_6_29_1) 1995 e_1_2_6_30_1 e_1_2_6_19_1 Levins R (e_1_2_6_32_1) 1966; 54 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Saltelli A (e_1_2_6_42_1) 2008 Longhurst A (e_1_2_6_34_1) 2006 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 7 start-page: e32742 year: 2012 article-title: The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications publication-title: PLOS ONE – volume: 120 start-page: 88 year: 2016 end-page: 98 article-title: Validation and limitations of a cumulative impact model for an estuary publication-title: Ocean & Coastal Management – volume: 7 start-page: 221 year: 2004 end-page: 231 article-title: Quantifying the effects of fisheries on threatened species: the impact of pelagic longlines on loggerhead and leatherback sea turtles publication-title: Ecology Letters – volume: 8 start-page: 1469 year: 2018 article-title: Capturing expert uncertainty in spatial cumulative impact assessments publication-title: Scientific Reports – volume: 16 start-page: 405 year: 2002 end-page: 417 article-title: Responding to the consequences of uncertainty in geographical data publication-title: International Journal of Geographical Information Scienc – volume: 12 start-page: e0177393 year: 2017 article-title: Eight habitats, 38 threats and 55 experts: Assessing ecological risk in a multi‐use marine region publication-title: PLOS ONE – volume: 3 year: 2016 article-title: A global review of cumulative pressure and impact assessments in marine environments publication-title: Frontiers in Marine Science – volume: 10 start-page: e0135473 year: 2015 – volume: 15 start-page: 105 year: 2012 end-page: 114 article-title: Human pressures and their potential impact on the Baltic Sea ecosystem publication-title: Ecological Indicators – volume: 44 start-page: 864 year: 1999 end-page: 877 article-title: Synergism and antagonism among multiple stressors publication-title: Limnology and Oceanography – volume: 21 start-page: 1301 year: 2007 end-page: 1315 article-title: Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats publication-title: Conservation Biology – volume: 4 year: 2017 article-title: Using the Ocean Health Index to identify opportunities and challenges to improving Southern Ocean ecosystem health publication-title: Frontiers in Marine Science – volume: 612 start-page: 1132 year: 2018 end-page: 1140 article-title: A risk‐based approach to cumulative effect assessments for marine management publication-title: Science of The Total Environment – volume: 283 start-page: 20152592 year: 2016 article-title: Interactions among ecosystem stressors and their importance in conservation publication-title: Proceedings of the Royal Society B – volume: 33 start-page: 161 year: 1991 end-page: 174 article-title: Factorial sampling plans for preliminary computational experiments publication-title: Technometrics – volume: 116 start-page: 214 year: 2015 end-page: 223 article-title: Data requirements and tools to operationalize marine spatial planning in the United States publication-title: Ocean & Coastal Management – year: 2012 – volume: 21 start-page: 2488 year: 2015 end-page: 2499 article-title: Testing local and global stressor impacts on a coastal foundation species using an ecologically realistic framework publication-title: Global Change Biology – volume: 4 start-page: 1 year: 2013 end-page: 11 article-title: Assumptions, challenges, and future directions in cumulative impact analysis publication-title: Ecosphere – volume: 26 start-page: 651 year: 2015 end-page: 663 article-title: Characterizing driver‐response relationships in marine pelagic ecosystems for improved ocean management publication-title: Ecological Applications – volume: 8 start-page: e79889 year: 2013a article-title: Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities publication-title: PLOS ONE – volume: 25 start-page: 1508 year: 2010 end-page: 1517 article-title: How to avoid a perfunctory sensitivity analysis publication-title: Environmental Modelling & Software – volume: 4 start-page: e21 year: 2016 article-title: Open source software for mapping human impacts on marine ecosystems with an additive model publication-title: Journal of Open Research Software – volume: 32 start-page: 772 year: 2008 end-page: 778 article-title: Essential ecological insights for marine ecosystem‐based management and marine spatial planning publication-title: Marine Policy – volume: 34 start-page: 876 year: 2010 end-page: 886 article-title: Cumulative impact mapping: Advances, relevance and limitations to marine management and conservation, using Canada's Pacific waters as a case study publication-title: Marine Policy – volume: 20 start-page: 538 year: 2014 end-page: 546 article-title: Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping publication-title: Diversity and Distributions – year: 2002 – volume: 354 start-page: 185 year: 2016 end-page: 187 article-title: Science‐based management in decline in the Southern Ocean publication-title: Science – year: 2008 – volume: 161 start-page: 88 year: 2015 end-page: 92 article-title: Baltic Sea biodiversity status vs. cumulative human pressures publication-title: Estuarine, Coastal and Shelf Science – volume: 319 start-page: 948 year: 2008 end-page: 952 article-title: A global map of human impact on marine ecosystems publication-title: Science – year: 2006 – volume: 313 start-page: 58 year: 2006 end-page: 61 article-title: Global biodiversity conservation priorities publication-title: Science – volume: 19 start-page: 253 year: 2012 end-page: 263 article-title: Understanding relationships between conflicting human uses and coastal ecosystems status: a geospatial modeling approach publication-title: Ecological Indicators – year: 1995 – volume: 28 start-page: 1604 year: 2014 end-page: 1616 article-title: Mapping change in human pressure globally on land and within protected areas publication-title: Conservation Biology – volume: 398 start-page: 19 year: 2010 end-page: 32 article-title: Quantifying cumulative impacts of human pressures on the marine environment: a geospatial modelling framework publication-title: Marine Ecology Progress Series – volume: 12 start-page: e0180501 year: 2017 article-title: Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region publication-title: PLOS ONE – volume: 331 start-page: 100 year: 2016 end-page: 114 article-title: Modelling the cumulative spatial–temporal effects of environmental drivers and fishing in a NW Mediterranean marine ecosystem publication-title: Ecological Modelling – volume: 110 start-page: 372 year: 2013 end-page: 377 article-title: Joint analysis of stressors and ecosystem services to enhance restoration effectiveness publication-title: Proceedings of the National Academy of Sciences – volume: 22 start-page: 1509 year: 2007 end-page: 1518 article-title: An effective screening design for sensitivity analysis of large models publication-title: Environmental Modelling & Software – volume: 6 start-page: 7615 year: 2015 article-title: Spatial and temporal changes in cumulative human impacts on the world's ocean publication-title: Nature Communications – volume: 25 start-page: 1321 year: 2016 end-page: 1332 article-title: Effects of model assumptions and data quality on spatial cumulative human impact assessments publication-title: Global Ecology and Biogeography – volume: 8 start-page: e59038 year: 2013b article-title: Setting priorities for regional conservation planning in the Mediterranean Sea publication-title: PLOS ONE – year: 2013 – volume: 54 start-page: 421 year: 1966 end-page: 431 article-title: The strategy of model building in population biology publication-title: American Scientist – volume: 137 start-page: 1 year: 2017 end-page: 11 article-title: Assessment and management of cumulative impacts in California's network of marine protected areas publication-title: Ocean & Coastal Management – ident: e_1_2_6_19_1 doi: 10.1111/cobi.12332 – ident: e_1_2_6_16_1 doi: 10.1371/journal.pone.0177393 – ident: e_1_2_6_21_1 doi: 10.1111/j.1523-1739.2007.00752.x – ident: e_1_2_6_35_1 doi: 10.3389/fmars.2017.00020 – ident: e_1_2_6_20_1 doi: 10.1371/journal.pone.0180501 – ident: e_1_2_6_22_1 doi: 10.1126/science.1149345 – ident: e_1_2_6_25_1 doi: 10.1371/journal.pone.0135473 – ident: e_1_2_6_18_1 doi: 10.4319/lo.1999.44.3_part_2.0864 – ident: e_1_2_6_33_1 doi: 10.1111/j.1461-0248.2004.00573.x – ident: e_1_2_6_10_1 doi: 10.1016/j.envsoft.2006.10.004 – ident: e_1_2_6_8_1 doi: 10.1126/science.1127609 – ident: e_1_2_6_44_1 doi: 10.1016/j.ocecoaman.2015.07.011 – ident: e_1_2_6_12_1 doi: 10.1016/j.ocecoaman.2015.11.013 – ident: e_1_2_6_47_1 doi: 10.5334/jors.88 – ident: e_1_2_6_27_1 doi: 10.1038/s41598-018-19354-6 – ident: e_1_2_6_28_1 – ident: e_1_2_6_2_1 doi: 10.1080/13658810210137031 – ident: e_1_2_6_14_1 doi: 10.1098/rspb.2015.2592 – ident: e_1_2_6_15_1 doi: 10.1016/j.marpol.2008.03.012 – volume-title: Global sensitivity analysis: the primer year: 2008 ident: e_1_2_6_42_1 – ident: e_1_2_6_24_1 doi: 10.1038/ncomms8615 – ident: e_1_2_6_4_1 – volume-title: Modeling nature year: 1995 ident: e_1_2_6_29_1 – ident: e_1_2_6_17_1 – ident: e_1_2_6_43_1 doi: 10.1016/j.envsoft.2010.04.012 – ident: e_1_2_6_11_1 doi: 10.1111/gcb.12895 – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0032742 – ident: e_1_2_6_38_1 doi: 10.1371/journal.pone.0059038 – ident: e_1_2_6_36_1 doi: 10.1016/j.ocecoaman.2016.11.028 – ident: e_1_2_6_39_1 doi: 10.1080/00401706.1991.10484804 – ident: e_1_2_6_48_1 doi: 10.1111/geb.12493 – ident: e_1_2_6_37_1 doi: 10.1371/journal.pone.0079889 – ident: e_1_2_6_7_1 doi: 10.1126/science.aah4119 – ident: e_1_2_6_31_1 doi: 10.3389/fmars.2016.00153 – ident: e_1_2_6_5_1 doi: 10.1016/j.ecss.2015.05.002 – volume: 54 start-page: 421 year: 1966 ident: e_1_2_6_32_1 article-title: The strategy of model building in population biology publication-title: American Scientist – ident: e_1_2_6_40_1 doi: 10.1016/j.ecolind.2011.07.027 – volume-title: Ecological geography of the sea year: 2006 ident: e_1_2_6_34_1 – ident: e_1_2_6_45_1 doi: 10.3354/meps08345 – ident: e_1_2_6_30_1 doi: 10.1016/j.ecolind.2011.09.023 – ident: e_1_2_6_26_1 doi: 10.1890/14-2200 – ident: e_1_2_6_9_1 doi: 10.1111/ddi.12159 – ident: e_1_2_6_3_1 doi: 10.1073/pnas.1213841110 – ident: e_1_2_6_23_1 doi: 10.1890/ES13-00181.1 – ident: e_1_2_6_46_1 doi: 10.1016/j.scitotenv.2017.08.289 – ident: e_1_2_6_6_1 doi: 10.1016/j.marpol.2010.01.010 – ident: e_1_2_6_13_1 doi: 10.1016/j.ecolmodel.2016.03.020 |
SSID | ssj0009514 |
Score | 2.4270244 |
Snippet | Increasing anthropogenic pressure on marine ecosystems from fishing, pollution, climate change, and other sources is a big concern in marine conservation.... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1368 |
SubjectTerms | Antarctica anthropogenic activities Anthropogenic factors anthropogenic stressors análisis de sensibilidad Caribbean Climate change coastal water Coastal waters Computer simulation continental shelf Continental shelves cumulative effects Ecosystems efectos acumulativos Environment models estresantes múltiples Fishing Human impact Human influences incertidumbre Indian Ocean Madagascar mapeo mapping marine Marine conservation Marine ecosystems Marine fish Marine pollution marino Monte Carlo method Monte Carlo simulation multiple stressors Oceans Offshore pollution Pollution sources sensitivity analysis South East Asia Spatial distribution Statistical methods Tropical climate Uncertainty Uncertainty analysis Western Africa 不确定性 多重压力因素 敏感度分析 海洋 累积效应 绘制地图 |
Title | Uncertainty analysis and robust areas of high and low modeled human impact on the global oceans |
URI | https://www.jstor.org/stable/44974016 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.13141 https://www.ncbi.nlm.nih.gov/pubmed/29797608 https://www.proquest.com/docview/2132191553 https://www.proquest.com/docview/2045274863 https://www.proquest.com/docview/2176338226 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KQeiLVtvq0Spb7ItCDtnsJtmAL1pa2oIK0kJfJOwtIJZEenIox1_vzG6StlIK-rawE7KXmd1vkplvAPYFF0ZqOv1KLhOptUi0LKskdSrVxjVSlpTv_PlLcXwuTy_yizX4MObCRH6I6YMbWUY4r8nAtVncMnLbmR9zLnjIWqdgLUJE37JbjLuR2BtdvESpKhu4SSmM5-bRO7dRDEi8D2reRa7h6jl6At_HQceIk5_zZW_m9vdffI7_O6tNeDxgUvYxKtFTWPPtM3gUq1SusHUYmK1XW1Cfo4qEEIJ-xfRAZ4INx646s1z0TFOIO-saRizIoeOyu2ax2o5joR4gi3mZrGsZYk8WCUkY3qJ4Z27D2dHh2cFxMlRoSKzkGU88ehuV8LpS6NUpmzslZOEIQvqCoth4KTJfIIBPjahcITSip1Iqp63LJZ5sO7Dedq1_AaxIG6W0sZVurGxyjqeBR4_Z-rx0WqliBu_GjartwF5ORTQu69GLoZWrw8rN4O0k-ytydtwrtRP2exKRsqLyhPiq3VEB6sGgF3WGXjsnLn0xg72pG02R_q_o1ndLlCF6epxe8ZAMx2kLRGX4mudRuaYBZFWJ4DBVM3gfVOSBwdcHXz-dhNbLfxF-BRsI-FQMx9mF9f5q6V8jqOrNm2A8fwDQoxl6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iyPlyfpye62fkfFHo0jRpmz6qKOv5BccKvpU0SeFQ2sPtcuz99c4k3Z6KCPoWyJR8zSS_SSe_IWSfM14IhbtfykQglOKBEmkWhEaGqjClECm-d766Tga34uddfNfG5uBbGM8P0V24oWW4_RoNHC-kn1m5rovffcYZPlufw5TezqP6FT3j3PXU3uDkBVJmUctOioE8_799cR75kMS3wOZL7OoOn7NFn2F15DgLMebkvj9uir7-94rR8dPjWiJfW1hKj7weLZMZW62QeZ-ocgKlU0duPflG8lvQEhdF0EyoahlNoGDoY12MRw1VGOVO65IiEbKreKj_Up9wx1CXEpD6p5m0rijAT-o5SSgcpHBsrpLh2enwZBC0SRoCLVjEAgsOR8atyiQ4dlLHRnKRGESRNsFANpbyyCaA4cOCZybhCgBUKqRR2sQCNrc1MlvVlV0nNAlLKVWhM1VqUcYMNgQLTrO2cWqUlEmPHExXKtctgTnm0XjIp44MzlzuZq5HfnSyfzxtx5tSa27BOxEhMsxQCE1tTTUgb216lEfguDOk0-c9stdVgzXiLxZV2XoMMshQD8NL3pNhMGwOwAya-e61q-tAlKWAD0PZI4dOR97pfH5yc3zuShsfEd4lXwbDq8v88vz6YpMsAP6TPjpni8w2j2O7DRirKXacJT0BXN4dlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFD-Iw7GXqdvUq85lbC8b9NI0aZrCXpx60X24MRR8GSVNUpBJK9rLuP71O0na-oEI8y2QU5qPc5Lfac_5HYD3jLKSK3f6ZZRHXCkWKZ7lUWxkrEpTcZ65fOfvh2L_mH85SU_m4FOfCxP4IYYPbs4y_HntDPzcVDeMXDfl6Zgy6rLWn3ARS6fTu7-SG5S7gdkbfbxIyjzpyEldHM_1s7euoxCReB_WvA1d_d0zWYTf_ahDyMmf8bQtx_rqDqHjY6e1BM87UEq2gxYtw5ytX8BCKFM5w9aep7aevYTiGHXExxC0M6I6PhNsGHLRlNPLligX406aijgaZN9x1vwlodyOIb4gIAmJmaSpCYJPEhhJCF6jeGm-gqPJ3tHOftSVaIg0pwmNLLobObMql-jWSZ0aybgwDkNa4cLYaMYSKxDBxyXLjWAK4VPGpVHapByPthWYr5vargERcSWlKnWuKs2rlOJxYNFl1jbNjJJSjOBDv1GF7ujLXRWNs6J3Y9zKFX7lRvBukD0PpB33Sq34_R5EOM9dfUJ81WavAEVn0ZdFgm47dWT6bARvh260RfeDRdW2maKM46fH6YmHZChOmyEsw9esBuUaBpDkGaLDWI7go1eRBwZf7Pz4fOBb6_8j_Aae_tydFN8ODr9uwDMEfzKE5mzCfHsxta8RYLXllrejfwWVHE0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+analysis+and+robust+areas+of+high+and+low+modeled+human+impact+on+the+global+oceans&rft.jtitle=Conservation+biology&rft.au=Stock%2C+Andy&rft.au=Crowder%2C+Larry+B.&rft.au=Halpern%2C+Benjamin+S.&rft.au=Micheli%2C+Fiorenza&rft.date=2018-12-01&rft.pub=Wiley+Blackwell%2C+Inc&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=32&rft.issue=6&rft.spage=1368&rft.epage=1379&rft_id=info:doi/10.1111%2Fcobi.13141&rft.externalDocID=44974016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |