A Small‐Molecule “Charge Driver” enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13
Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical o...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 37; pp. e1900111 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher‐performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type‐Ⅱ core–shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open‐circuit voltage of 1.10 V, short‐circuit current density of 15.4 mA cm−2, and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high‐performance perovskite CQD solar cells.
The power conversion efficiency of perovskite colloidal quantum dot (CQD) solar cells is improved using a conjugated small molecule, ITIC. The carrier dynamics of this unique perovskite CQD/ITIC system are investigated, showing an effective carrier transfer from the perovskite CQDs to the ITIC, which provides an additional driving force for charge separation in perovskite CQDs photovoltaic devices and boosts the efficiency up to 12.7%. |
---|---|
AbstractList | Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher‐performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type‐Ⅱ core–shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open‐circuit voltage of 1.10 V, short‐circuit current density of 15.4 mA cm−2, and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high‐performance perovskite CQD solar cells.
The power conversion efficiency of perovskite colloidal quantum dot (CQD) solar cells is improved using a conjugated small molecule, ITIC. The carrier dynamics of this unique perovskite CQD/ITIC system are investigated, showing an effective carrier transfer from the perovskite CQDs to the ITIC, which provides an additional driving force for charge separation in perovskite CQDs photovoltaic devices and boosts the efficiency up to 12.7%. Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher‐performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type‐Ⅱ core–shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open‐circuit voltage of 1.10 V, short‐circuit current density of 15.4 mA cm−2, and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high‐performance perovskite CQD solar cells. Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells. Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher‐performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type‐Ⅱ core–shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open‐circuit voltage of 1.10 V, short‐circuit current density of 15.4 mA cm −2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high‐performance perovskite CQD solar cells. Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm-2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells.Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm-2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells. |
Author | Huang, Tianyi Tan, Shaun Wang, Minhuan Lee, Jin‐Wook Nuryyeva, Selbi Han, Tae‐Hee Yang, Yang Wang, Rui Zhu, Jiahui Wang, Zhao‐Kui Zhang, Chunfeng Xue, Jingjing Chen, Lan |
Author_xml | – sequence: 1 givenname: Jingjing surname: Xue fullname: Xue, Jingjing organization: University of California – sequence: 2 givenname: Rui surname: Wang fullname: Wang, Rui organization: University of California – sequence: 3 givenname: Lan surname: Chen fullname: Chen, Lan organization: Nanjing University – sequence: 4 givenname: Selbi surname: Nuryyeva fullname: Nuryyeva, Selbi organization: University of California – sequence: 5 givenname: Tae‐Hee surname: Han fullname: Han, Tae‐Hee organization: University of California – sequence: 6 givenname: Tianyi surname: Huang fullname: Huang, Tianyi organization: University of California – sequence: 7 givenname: Shaun surname: Tan fullname: Tan, Shaun organization: University of California – sequence: 8 givenname: Jiahui surname: Zhu fullname: Zhu, Jiahui organization: University of California – sequence: 9 givenname: Minhuan surname: Wang fullname: Wang, Minhuan organization: University of California – sequence: 10 givenname: Zhao‐Kui surname: Wang fullname: Wang, Zhao‐Kui organization: University of California – sequence: 11 givenname: Chunfeng surname: Zhang fullname: Zhang, Chunfeng organization: Nanjing University – sequence: 12 givenname: Jin‐Wook orcidid: 0000-0002-0170-8620 surname: Lee fullname: Lee, Jin‐Wook email: jw.lee@skku.edu organization: University of California – sequence: 13 givenname: Yang orcidid: 0000-0001-8833-7641 surname: Yang fullname: Yang, Yang email: yangy@ucla.edu organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31343086$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEURS1URNPCliWyxKabBHvs8YyXo6QtSK0AtV1bjvOmcfHYwZ5plV0-gQ-An8uX4CgtSJUQ3nhzzvPzvUfowAcPCL2lZEIJKT7oRacnBaGSEErpCzSiZUHHnMjyAI2IZOVYCl4foqOU7gghUhDxCh0yyjgjtRihVYOvOu3cdvPjMjgwgwO83fycLnW8BTyL9h7idvMLg9dzBwl_gRju0zfbA_46aN8PHZ6FHl8FpyOegnMJP9h-iU_b1hoL3qxxs1rFoM3S-ltM2Wv0stUuwZvH-xjdnJ1eTz-OLz6ff5o2F2PDaf7BomS0pkZSpitWg2YtMVXLGJR1PlTSumKMiVbwglfzgtdCVIxwNidGaClLdoxO9nPz498HSL3qbDJ5Qe0hDEkVRV0TmhMSGX3_DL0LQ_R5ux1V8TLnJjP17pEa5h0s1CraTse1esoyA3wPmBhSitAqY3vd2-D7qK1TlKhdZWpXmfpTWdYmz7Snyf8U5F54sA7W_6FVM7ts_rq_ASIZqE4 |
CitedBy_id | crossref_primary_10_1002_smll_202203443 crossref_primary_10_1039_D4CS01107D crossref_primary_10_1021_acsami_0c14332 crossref_primary_10_1002_advs_202204476 crossref_primary_10_1002_smll_202406569 crossref_primary_10_1002_solr_202300606 crossref_primary_10_1021_acsenergylett_1c00354 crossref_primary_10_1007_s13204_022_02535_1 crossref_primary_10_1039_D1EE01463C crossref_primary_10_1038_s41377_022_00777_w crossref_primary_10_1038_s41467_020_20749_1 crossref_primary_10_1016_j_nanoen_2020_104757 crossref_primary_10_1002_sstr_202000124 crossref_primary_10_1021_acsanm_1c01093 crossref_primary_10_1021_accountsmr_1c00056 crossref_primary_10_1039_D2TA07671C crossref_primary_10_1002_advs_202105307 crossref_primary_10_1021_acsami_1c20274 crossref_primary_10_1021_acsenergylett_3c01983 crossref_primary_10_1021_acsenergylett_1c00462 crossref_primary_10_1002_advs_202104577 crossref_primary_10_1021_acsanm_3c06274 crossref_primary_10_1088_2515_7655_ac2e13 crossref_primary_10_1021_acs_nanolett_2c01222 crossref_primary_10_1002_aenm_202100354 crossref_primary_10_1039_D1MA01075A crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1039_C9TC06862G crossref_primary_10_1002_sstr_202000130 crossref_primary_10_1002_smtd_202000419 crossref_primary_10_1039_D0TA02743J crossref_primary_10_1002_adma_202002066 crossref_primary_10_1002_adma_202212160 crossref_primary_10_1016_j_cej_2024_157596 crossref_primary_10_1002_adma_202417346 crossref_primary_10_1038_s44160_024_00678_3 crossref_primary_10_1063_5_0166032 crossref_primary_10_1016_j_jechem_2022_02_006 crossref_primary_10_1021_acsaem_0c00917 crossref_primary_10_1021_acsenergylett_0c01222 crossref_primary_10_1002_adom_202001130 crossref_primary_10_1021_acs_jpcc_0c09057 crossref_primary_10_1021_acsanm_2c02787 crossref_primary_10_1002_adfm_202005930 crossref_primary_10_1002_adfm_202302542 crossref_primary_10_1038_s41570_022_00409_2 crossref_primary_10_1002_inf2_12086 crossref_primary_10_1021_acsami_4c04856 crossref_primary_10_1002_cssc_202401587 crossref_primary_10_1002_solr_202400379 crossref_primary_10_1039_D4MH01478B crossref_primary_10_1002_adma_202404495 crossref_primary_10_1021_acsami_4c02917 crossref_primary_10_1002_adfm_202101272 crossref_primary_10_1021_acsaem_0c00584 crossref_primary_10_1002_adfm_202210155 crossref_primary_10_1039_D3EE03751G crossref_primary_10_1002_cjoc_202300128 crossref_primary_10_1039_D2NR06976H crossref_primary_10_1007_s40820_022_00946_x crossref_primary_10_1039_D2TA09434G crossref_primary_10_1016_j_mssp_2023_107935 crossref_primary_10_1038_s41560_024_01564_0 crossref_primary_10_1002_adma_202401788 crossref_primary_10_1039_D4EE01629G crossref_primary_10_1039_D2NR05456F crossref_primary_10_1002_anie_202214241 crossref_primary_10_1002_adma_202209486 crossref_primary_10_1002_aenm_202101923 crossref_primary_10_1002_adma_202105958 crossref_primary_10_1021_acsenergylett_9b01920 crossref_primary_10_1039_D1TC05065F crossref_primary_10_1002_ange_202214241 crossref_primary_10_1016_j_joule_2020_04_006 crossref_primary_10_1002_adfm_202210728 crossref_primary_10_1016_j_cej_2022_134867 crossref_primary_10_1007_s12200_022_00038_z crossref_primary_10_1021_acsaem_2c01565 crossref_primary_10_1002_aenm_201903922 crossref_primary_10_1021_acsami_1c12587 crossref_primary_10_1021_acs_jpclett_0c02151 crossref_primary_10_1016_j_nxener_2024_100152 crossref_primary_10_1038_s41560_024_01450_9 crossref_primary_10_1021_acs_jpcc_3c01614 crossref_primary_10_3390_app10165553 crossref_primary_10_1021_jacs_9b06796 crossref_primary_10_1002_adfm_202303449 crossref_primary_10_1063_5_0051158 crossref_primary_10_1002_adma_202107888 crossref_primary_10_1063_5_0126496 crossref_primary_10_1002_solr_202100205 crossref_primary_10_1039_D0EE02900A crossref_primary_10_1039_D0NA00123F crossref_primary_10_1063_1_5127887 crossref_primary_10_1039_D1SE01892B crossref_primary_10_1021_acsaem_3c00009 crossref_primary_10_1002_advs_202305349 crossref_primary_10_1021_acs_jpclett_0c03628 crossref_primary_10_1002_ppsc_202100274 crossref_primary_10_1039_D4TA04233F crossref_primary_10_1038_s41578_020_0221_1 crossref_primary_10_1021_acsami_3c16486 |
Cites_doi | 10.1002/adma.201706363 10.1002/adma.201704871 10.1038/nenergy.2017.52 10.1038/nenergy.2016.148 10.1126/science.aag2700 10.1038/s41563-018-0018-4 10.1002/adma.201705243 10.1126/science.aam7093 10.1021/jz200166y 10.1021/acs.jpcc.6b10920 10.1002/adma.201800082 10.1038/nmat4800 10.1002/adma.201700749 10.1126/science.1209845 10.1038/srep10626 10.1016/j.joule.2018.07.018 10.1126/sciadv.aao4204 10.1021/ja4079804 10.1021/acs.chemrev.5b00063 10.1038/nnano.2015.247 10.1126/science.aac5523 10.1021/ja211224s 10.1002/adma.201404317 10.1021/nn500897c 10.1021/jacs.8b04984 10.1038/nenergy.2016.89 10.1038/nphys3357 10.1038/ncomms13651 10.1021/acs.jpclett.8b01593 10.1002/adma.201605756 10.1002/adma.201706576 10.1002/aenm.201800007 10.1038/s41467-017-01362-1 10.1002/aenm.201200673 10.1016/j.joule.2018.04.012 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201900111 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31343086 10_1002_adma_201900111 ADMA201900111 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Office of Naval Research funderid: N00014‐17‐1‐2484 – fundername: Solargiga Energy – fundername: National Science Foundation funderid: ECCS‐EPMD‐1509955 – fundername: Air Force Office of Scientific Research funderid: FA9550‐15‐1‐0333 – fundername: Air Force Office of Scientific Research grantid: FA9550-15-1-0333 – fundername: Office of Naval Research grantid: N00014-17-1-2484 – fundername: National Science Foundation grantid: ECCS-EPMD-1509955 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4121-d53181c913a738ea3f0c7f33e58888191873336f64247b2486673043b0c6a9953 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 14:00:08 EDT 2025 Mon Jul 14 07:50:43 EDT 2025 Wed Feb 19 02:31:28 EST 2025 Thu Apr 24 23:10:15 EDT 2025 Tue Jul 01 00:44:53 EDT 2025 Wed Jan 22 16:41:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | conjugated small molecules formamidinium lead iodide quantum dot solar cells perovskite charge transfer |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4121-d53181c913a738ea3f0c7f33e58888191873336f64247b2486673043b0c6a9953 |
Notes | Present address: SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, South Korea ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0170-8620 0000-0001-8833-7641 |
PMID | 31343086 |
PQID | 2287450099 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2288010936 proquest_journals_2287450099 pubmed_primary_31343086 crossref_citationtrail_10_1002_adma_201900111 crossref_primary_10_1002_adma_201900111 wiley_primary_10_1002_adma_201900111_ADMA201900111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2017; 8 2013; 3 2017; 2 2015; 5 2011; 2 2017; 3 2018; 140 2015; 11 2015; 10 2013; 344 2017; 29 2017; 750 2016; 120 2018; 9 2018; 17 2016; 7 2018; 8 2018; 2 2015; 27 2016; 1 2012; 134 2015; 115 2017; 16 2016; 354 2016; 353 2013; 135 2018; 30 2014; 8 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 Xing G. (e_1_2_5_14_1) 2013; 344 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 134 start-page: 2508 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1170 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 1500 year: 2018 publication-title: Joule – volume: 10 start-page: 1013 year: 2015 publication-title: Nat. Nanotechnol. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 750 start-page: 745 year: 2017 publication-title: Science – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 2 start-page: 1282 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 344 start-page: 347 year: 2013 publication-title: Science – volume: 11 start-page: 582 year: 2015 publication-title: Nat. Phys. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1866 year: 2018 publication-title: Joule – volume: 3 start-page: 744 year: 2013 publication-title: Adv. Energy Mater. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 353 start-page: aac5523 year: 2016 publication-title: Science – volume: 9 start-page: 4066 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 3 start-page: eaao4204 year: 2017 publication-title: Sci. Adv. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 16 start-page: 258 year: 2017 publication-title: Nat. Mater. – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 5863 year: 2014 publication-title: ACS Nano – volume: 334 start-page: 1530 year: 2011 publication-title: Science – volume: 17 start-page: 394 year: 2018 publication-title: Nat. Mater. – volume: 8 start-page: 1325 year: 2017 publication-title: Nat. Commun. – volume: 354 start-page: 92 year: 2016 publication-title: Science – ident: e_1_2_5_33_1 doi: 10.1002/adma.201706363 – ident: e_1_2_5_4_1 doi: 10.1002/adma.201704871 – ident: e_1_2_5_7_1 doi: 10.1038/nenergy.2017.52 – ident: e_1_2_5_30_1 doi: 10.1038/nenergy.2016.148 – ident: e_1_2_5_11_1 doi: 10.1126/science.aag2700 – ident: e_1_2_5_8_1 doi: 10.1038/s41563-018-0018-4 – ident: e_1_2_5_36_1 doi: 10.1002/adma.201705243 – ident: e_1_2_5_9_1 doi: 10.1126/science.aam7093 – ident: e_1_2_5_6_1 doi: 10.1021/jz200166y – volume: 344 start-page: 347 year: 2013 ident: e_1_2_5_14_1 publication-title: Science – ident: e_1_2_5_22_1 doi: 10.1021/acs.jpcc.6b10920 – ident: e_1_2_5_20_1 doi: 10.1002/adma.201800082 – ident: e_1_2_5_27_1 doi: 10.1038/nmat4800 – ident: e_1_2_5_2_1 doi: 10.1002/adma.201700749 – ident: e_1_2_5_5_1 doi: 10.1126/science.1209845 – ident: e_1_2_5_19_1 doi: 10.1038/srep10626 – ident: e_1_2_5_12_1 doi: 10.1016/j.joule.2018.07.018 – ident: e_1_2_5_13_1 doi: 10.1126/sciadv.aao4204 – ident: e_1_2_5_25_1 doi: 10.1021/ja4079804 – ident: e_1_2_5_1_1 doi: 10.1021/acs.chemrev.5b00063 – ident: e_1_2_5_26_1 doi: 10.1038/nnano.2015.247 – ident: e_1_2_5_3_1 doi: 10.1126/science.aac5523 – ident: e_1_2_5_24_1 doi: 10.1021/ja211224s – ident: e_1_2_5_29_1 doi: 10.1002/adma.201404317 – ident: e_1_2_5_23_1 doi: 10.1021/nn500897c – ident: e_1_2_5_28_1 doi: 10.1021/jacs.8b04984 – ident: e_1_2_5_34_1 doi: 10.1038/nenergy.2016.89 – ident: e_1_2_5_15_1 doi: 10.1038/nphys3357 – ident: e_1_2_5_32_1 doi: 10.1038/ncomms13651 – ident: e_1_2_5_16_1 doi: 10.1021/acs.jpclett.8b01593 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201605756 – ident: e_1_2_5_31_1 doi: 10.1002/adma.201706576 – ident: e_1_2_5_35_1 doi: 10.1002/aenm.201800007 – ident: e_1_2_5_18_1 doi: 10.1038/s41467-017-01362-1 – ident: e_1_2_5_17_1 doi: 10.1002/aenm.201200673 – ident: e_1_2_5_10_1 doi: 10.1016/j.joule.2018.04.012 |
SSID | ssj0009606 |
Score | 2.5984147 |
Snippet | Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1900111 |
SubjectTerms | Charge efficiency charge transfer Circuits conjugated small molecules Core-shell structure Design modifications Efficiency Energy conversion efficiency formamidinium lead iodide Materials science Optoelectronics perovskite Perovskites Photovoltaic cells Quantum confinement quantum dot solar cells Quantum dots Separation Solar cells Structural integrity |
Title | A Small‐Molecule “Charge Driver” enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201900111 https://www.ncbi.nlm.nih.gov/pubmed/31343086 https://www.proquest.com/docview/2287450099 https://www.proquest.com/docview/2288010936 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hnuDA_09oi4yExCntOuMkzjHqtqqQFgGlUm-RnfVyIN2tNpseetpH6APAy-2TdMbJpl0QQoJbotiy4_F4vrE93wC8c2pSytJkYULWgkm1bWjJMoXaeDJyFaeWA4VHH5PjU_XhLD67E8Xf8kP0G26sGX69ZgU3tt6_JQ01Y88bRAaN06XTIswXthgVfbnlj2J47sn2MA6zROk1a-Mg2t-svmmVfoOam8jVm56jR2DWnW5vnHzfaxZ2r7z6hc_xf_7qMTzscKnI24n0BO656VN4cIet8Blc5OLk3FTVank9apPqOrFa_uAD-29ODOd8w2O1_CmcD8eqxSc3n13WvDssPjckwOZcDGcLccLOtDhwVVUL3gUWh57FgkNARd4xnFN7QuJzOD06_HpwHHYJG8JSyUiGY1JoLctMoklRO4OTQZlOEF1MfjZ7hjpFxGRCPo9KbaQ05xwdKLSDMjFZFuML2JrOpu4VCEycstIlkR7ThJH0VVNxgpdqbAn0pQGEa4EVZcdmzkk1qqLlYY4KHsmiH8kA3vflL1oejz-W3FnLv-j0uS4inxaA4XQAb_vPpIl8vGKmbtb4MpoPGjEJ4GU7b_qmUKJC8h4DiLz0_9KHIh-O8v7t9b9U2ob7_Nxeh9uBrcW8cbuEnxb2jdeRG3yED0A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VeigcoD9QUmjrSpV6CrvOOIlzjFjQtmVRW0DiFsVZL4eGXbS74dDTPkIfoLzcPgke54duK4QEx8Rj2bE9mR_PfAPwUYtBxrM0cgMjLQhUW7nKSCZXphaMXPihokTh3lHQPRVfzvw6mpByYUp8iMbhRpxh_9fE4OSQbt2ihqZ9CxxkJBrVS1-Cp1TW21pVP24RpEhBt3B76LtRIGSN29j2Wov9F-XSf8rmou5qhc_BOqh62mXMyc_dYqp2s1__IDo-6ruew1qlmrK4PEsv4IkevoTVvwALX8FlzI4v0jyfz373yrq6ms1nf-jO_lyzzpiCPOaza6ZtRtaEfdPj0dWEHMTse2H2sLhgndGUHZM9zfZ0nk8YOYLZvgWyoCxQFlcg52Y8xnEDTg_2T_a6blWzwc0E97jbNzwteRZxTEOUOsVBOwsHiNo3pjYZhzJExGBgzB4RKk9IKjvaFqjaWZBGkY-bsDwcDfUWMAy0UFwHnuybM8NNqzTkRsMUfWX0vtABt96xJKsAzamuRp6UUMxeQiuZNCvpwKeG_rKE8riTcqc-AEnF0pPEs5UBSKN24EPTbJiRbljSoR4VlkbSXSMGDrwuD04zFHIUaAxIBzy7_ffMIYk7vbh5evOQTu_hWfekd5gcfj76ug0r9L6MjtuB5em40G-NOjVV7yzD3ABzeBNb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BKyE4QPkpBAoYCYlT2jh2HOcYNV2Vn60KpVJvkZ04HEh3V7sbDpz2EXiA9uX2SfA42bQLQkhwTDyWHc9MZsb2fAPw2vCqoIVKfGGtBYJqa19by-RL5cDIeRRrTBQeHonDU_7uLDq7lsXf4kP0G26oGe5_jQo-Kau9K9BQVTrcIGvQsFz6TdjkIpAo19mnKwAp9M8d2h6L_ERwuYJtDMK99f7rZuk3X3PddXW2Z3AP1GrW7ZWTr7vNXO8W338BdPyfz9qCu51jStJWku7DDTN6AHeuwRU-hElKTs5VXS8XP4ZtVV1DlosLPLH_Ykg2xSsey8UlMS4fa0aOzXT8bYbbw-RjYznYnJNsPCcnGE2TfVPXM4LbwOTAwVhgDihJO4hzOx6h7BGcDg4-7x_6XcUGv-A0pH5pNVrSIqFMxUwaxaqgiCvGTGQDbQwNZcwYE5UNenisQy6x6GjAmQ4KoZIkYtuwMRqPzBMgTBiuqRGhLK3EUNsqLbn1L3mprdcXe-CvGJYXHZw5VtWo8xaIOcxxJfN-JT1409NPWiCPP1LurPifdwo9y0NXFwD9aQ9e9c1WFfF8RY3MuHE0Ek8amfDgcSs3_VCMMs5s-OhB6Lj_lznkaTZM-6en_9LpJdw6zgb5h7dH75_BbXzdXo3bgY35tDHPrS811y-cuvwEOqMSEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Small%E2%80%90Molecule+%E2%80%9CCharge+Driver%E2%80%9D+enables+Perovskite+Quantum+Dot+Solar+Cells+with+Efficiency+Approaching+13&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xue%2C+Jingjing&rft.au=Wang%2C+Rui&rft.au=Chen%2C+Lan&rft.au=Nuryyeva%2C+Selbi&rft.date=2019-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=37&rft_id=info:doi/10.1002%2Fadma.201900111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |