A Small‐Molecule “Charge Driver” enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13

Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 37; pp. e1900111 - n/a
Main Authors Xue, Jingjing, Wang, Rui, Chen, Lan, Nuryyeva, Selbi, Han, Tae‐Hee, Huang, Tianyi, Tan, Shaun, Zhu, Jiahui, Wang, Minhuan, Wang, Zhao‐Kui, Zhang, Chunfeng, Lee, Jin‐Wook, Yang, Yang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher‐performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type‐Ⅱ core–shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open‐circuit voltage of 1.10 V, short‐circuit current density of 15.4 mA cm−2, and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high‐performance perovskite CQD solar cells. The power conversion efficiency of perovskite colloidal quantum dot (CQD) solar cells is improved using a conjugated small molecule, ITIC. The carrier dynamics of this unique perovskite CQD/ITIC system are investigated, showing an effective carrier transfer from the perovskite CQDs to the ITIC, which provides an additional driving force for charge separation in perovskite CQDs photovoltaic devices and boosts the efficiency up to 12.7%.
AbstractList Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher‐performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type‐Ⅱ core–shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open‐circuit voltage of 1.10 V, short‐circuit current density of 15.4 mA cm−2, and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high‐performance perovskite CQD solar cells. The power conversion efficiency of perovskite colloidal quantum dot (CQD) solar cells is improved using a conjugated small molecule, ITIC. The carrier dynamics of this unique perovskite CQD/ITIC system are investigated, showing an effective carrier transfer from the perovskite CQDs to the ITIC, which provides an additional driving force for charge separation in perovskite CQDs photovoltaic devices and boosts the efficiency up to 12.7%.
Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher‐performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type‐Ⅱ core–shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open‐circuit voltage of 1.10 V, short‐circuit current density of 15.4 mA cm−2, and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high‐performance perovskite CQD solar cells.
Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells.
Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher‐performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type‐Ⅱ core–shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open‐circuit voltage of 1.10 V, short‐circuit current density of 15.4 mA cm −2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high‐performance perovskite CQD solar cells.
Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm-2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells.Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm-2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells.
Author Huang, Tianyi
Tan, Shaun
Wang, Minhuan
Lee, Jin‐Wook
Nuryyeva, Selbi
Han, Tae‐Hee
Yang, Yang
Wang, Rui
Zhu, Jiahui
Wang, Zhao‐Kui
Zhang, Chunfeng
Xue, Jingjing
Chen, Lan
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Xue
  fullname: Xue, Jingjing
  organization: University of California
– sequence: 2
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: University of California
– sequence: 3
  givenname: Lan
  surname: Chen
  fullname: Chen, Lan
  organization: Nanjing University
– sequence: 4
  givenname: Selbi
  surname: Nuryyeva
  fullname: Nuryyeva, Selbi
  organization: University of California
– sequence: 5
  givenname: Tae‐Hee
  surname: Han
  fullname: Han, Tae‐Hee
  organization: University of California
– sequence: 6
  givenname: Tianyi
  surname: Huang
  fullname: Huang, Tianyi
  organization: University of California
– sequence: 7
  givenname: Shaun
  surname: Tan
  fullname: Tan, Shaun
  organization: University of California
– sequence: 8
  givenname: Jiahui
  surname: Zhu
  fullname: Zhu, Jiahui
  organization: University of California
– sequence: 9
  givenname: Minhuan
  surname: Wang
  fullname: Wang, Minhuan
  organization: University of California
– sequence: 10
  givenname: Zhao‐Kui
  surname: Wang
  fullname: Wang, Zhao‐Kui
  organization: University of California
– sequence: 11
  givenname: Chunfeng
  surname: Zhang
  fullname: Zhang, Chunfeng
  organization: Nanjing University
– sequence: 12
  givenname: Jin‐Wook
  orcidid: 0000-0002-0170-8620
  surname: Lee
  fullname: Lee, Jin‐Wook
  email: jw.lee@skku.edu
  organization: University of California
– sequence: 13
  givenname: Yang
  orcidid: 0000-0001-8833-7641
  surname: Yang
  fullname: Yang, Yang
  email: yangy@ucla.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31343086$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEURS1URNPCliWyxKabBHvs8YyXo6QtSK0AtV1bjvOmcfHYwZ5plV0-gQ-An8uX4CgtSJUQ3nhzzvPzvUfowAcPCL2lZEIJKT7oRacnBaGSEErpCzSiZUHHnMjyAI2IZOVYCl4foqOU7gghUhDxCh0yyjgjtRihVYOvOu3cdvPjMjgwgwO83fycLnW8BTyL9h7idvMLg9dzBwl_gRju0zfbA_46aN8PHZ6FHl8FpyOegnMJP9h-iU_b1hoL3qxxs1rFoM3S-ltM2Wv0stUuwZvH-xjdnJ1eTz-OLz6ff5o2F2PDaf7BomS0pkZSpitWg2YtMVXLGJR1PlTSumKMiVbwglfzgtdCVIxwNidGaClLdoxO9nPz498HSL3qbDJ5Qe0hDEkVRV0TmhMSGX3_DL0LQ_R5ux1V8TLnJjP17pEa5h0s1CraTse1esoyA3wPmBhSitAqY3vd2-D7qK1TlKhdZWpXmfpTWdYmz7Snyf8U5F54sA7W_6FVM7ts_rq_ASIZqE4
CitedBy_id crossref_primary_10_1002_smll_202203443
crossref_primary_10_1039_D4CS01107D
crossref_primary_10_1021_acsami_0c14332
crossref_primary_10_1002_advs_202204476
crossref_primary_10_1002_smll_202406569
crossref_primary_10_1002_solr_202300606
crossref_primary_10_1021_acsenergylett_1c00354
crossref_primary_10_1007_s13204_022_02535_1
crossref_primary_10_1039_D1EE01463C
crossref_primary_10_1038_s41377_022_00777_w
crossref_primary_10_1038_s41467_020_20749_1
crossref_primary_10_1016_j_nanoen_2020_104757
crossref_primary_10_1002_sstr_202000124
crossref_primary_10_1021_acsanm_1c01093
crossref_primary_10_1021_accountsmr_1c00056
crossref_primary_10_1039_D2TA07671C
crossref_primary_10_1002_advs_202105307
crossref_primary_10_1021_acsami_1c20274
crossref_primary_10_1021_acsenergylett_3c01983
crossref_primary_10_1021_acsenergylett_1c00462
crossref_primary_10_1002_advs_202104577
crossref_primary_10_1021_acsanm_3c06274
crossref_primary_10_1088_2515_7655_ac2e13
crossref_primary_10_1021_acs_nanolett_2c01222
crossref_primary_10_1002_aenm_202100354
crossref_primary_10_1039_D1MA01075A
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1039_C9TC06862G
crossref_primary_10_1002_sstr_202000130
crossref_primary_10_1002_smtd_202000419
crossref_primary_10_1039_D0TA02743J
crossref_primary_10_1002_adma_202002066
crossref_primary_10_1002_adma_202212160
crossref_primary_10_1016_j_cej_2024_157596
crossref_primary_10_1002_adma_202417346
crossref_primary_10_1038_s44160_024_00678_3
crossref_primary_10_1063_5_0166032
crossref_primary_10_1016_j_jechem_2022_02_006
crossref_primary_10_1021_acsaem_0c00917
crossref_primary_10_1021_acsenergylett_0c01222
crossref_primary_10_1002_adom_202001130
crossref_primary_10_1021_acs_jpcc_0c09057
crossref_primary_10_1021_acsanm_2c02787
crossref_primary_10_1002_adfm_202005930
crossref_primary_10_1002_adfm_202302542
crossref_primary_10_1038_s41570_022_00409_2
crossref_primary_10_1002_inf2_12086
crossref_primary_10_1021_acsami_4c04856
crossref_primary_10_1002_cssc_202401587
crossref_primary_10_1002_solr_202400379
crossref_primary_10_1039_D4MH01478B
crossref_primary_10_1002_adma_202404495
crossref_primary_10_1021_acsami_4c02917
crossref_primary_10_1002_adfm_202101272
crossref_primary_10_1021_acsaem_0c00584
crossref_primary_10_1002_adfm_202210155
crossref_primary_10_1039_D3EE03751G
crossref_primary_10_1002_cjoc_202300128
crossref_primary_10_1039_D2NR06976H
crossref_primary_10_1007_s40820_022_00946_x
crossref_primary_10_1039_D2TA09434G
crossref_primary_10_1016_j_mssp_2023_107935
crossref_primary_10_1038_s41560_024_01564_0
crossref_primary_10_1002_adma_202401788
crossref_primary_10_1039_D4EE01629G
crossref_primary_10_1039_D2NR05456F
crossref_primary_10_1002_anie_202214241
crossref_primary_10_1002_adma_202209486
crossref_primary_10_1002_aenm_202101923
crossref_primary_10_1002_adma_202105958
crossref_primary_10_1021_acsenergylett_9b01920
crossref_primary_10_1039_D1TC05065F
crossref_primary_10_1002_ange_202214241
crossref_primary_10_1016_j_joule_2020_04_006
crossref_primary_10_1002_adfm_202210728
crossref_primary_10_1016_j_cej_2022_134867
crossref_primary_10_1007_s12200_022_00038_z
crossref_primary_10_1021_acsaem_2c01565
crossref_primary_10_1002_aenm_201903922
crossref_primary_10_1021_acsami_1c12587
crossref_primary_10_1021_acs_jpclett_0c02151
crossref_primary_10_1016_j_nxener_2024_100152
crossref_primary_10_1038_s41560_024_01450_9
crossref_primary_10_1021_acs_jpcc_3c01614
crossref_primary_10_3390_app10165553
crossref_primary_10_1021_jacs_9b06796
crossref_primary_10_1002_adfm_202303449
crossref_primary_10_1063_5_0051158
crossref_primary_10_1002_adma_202107888
crossref_primary_10_1063_5_0126496
crossref_primary_10_1002_solr_202100205
crossref_primary_10_1039_D0EE02900A
crossref_primary_10_1039_D0NA00123F
crossref_primary_10_1063_1_5127887
crossref_primary_10_1039_D1SE01892B
crossref_primary_10_1021_acsaem_3c00009
crossref_primary_10_1002_advs_202305349
crossref_primary_10_1021_acs_jpclett_0c03628
crossref_primary_10_1002_ppsc_202100274
crossref_primary_10_1039_D4TA04233F
crossref_primary_10_1038_s41578_020_0221_1
crossref_primary_10_1021_acsami_3c16486
Cites_doi 10.1002/adma.201706363
10.1002/adma.201704871
10.1038/nenergy.2017.52
10.1038/nenergy.2016.148
10.1126/science.aag2700
10.1038/s41563-018-0018-4
10.1002/adma.201705243
10.1126/science.aam7093
10.1021/jz200166y
10.1021/acs.jpcc.6b10920
10.1002/adma.201800082
10.1038/nmat4800
10.1002/adma.201700749
10.1126/science.1209845
10.1038/srep10626
10.1016/j.joule.2018.07.018
10.1126/sciadv.aao4204
10.1021/ja4079804
10.1021/acs.chemrev.5b00063
10.1038/nnano.2015.247
10.1126/science.aac5523
10.1021/ja211224s
10.1002/adma.201404317
10.1021/nn500897c
10.1021/jacs.8b04984
10.1038/nenergy.2016.89
10.1038/nphys3357
10.1038/ncomms13651
10.1021/acs.jpclett.8b01593
10.1002/adma.201605756
10.1002/adma.201706576
10.1002/aenm.201800007
10.1038/s41467-017-01362-1
10.1002/aenm.201200673
10.1016/j.joule.2018.04.012
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201900111
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31343086
10_1002_adma_201900111
ADMA201900111
Genre article
Journal Article
GrantInformation_xml – fundername: Office of Naval Research
  funderid: N00014‐17‐1‐2484
– fundername: Solargiga Energy
– fundername: National Science Foundation
  funderid: ECCS‐EPMD‐1509955
– fundername: Air Force Office of Scientific Research
  funderid: FA9550‐15‐1‐0333
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-15-1-0333
– fundername: Office of Naval Research
  grantid: N00014-17-1-2484
– fundername: National Science Foundation
  grantid: ECCS-EPMD-1509955
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4121-d53181c913a738ea3f0c7f33e58888191873336f64247b2486673043b0c6a9953
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 14:00:08 EDT 2025
Mon Jul 14 07:50:43 EDT 2025
Wed Feb 19 02:31:28 EST 2025
Thu Apr 24 23:10:15 EDT 2025
Tue Jul 01 00:44:53 EDT 2025
Wed Jan 22 16:41:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords conjugated small molecules
formamidinium lead iodide
quantum dot solar cells
perovskite
charge transfer
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4121-d53181c913a738ea3f0c7f33e58888191873336f64247b2486673043b0c6a9953
Notes Present address: SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, South Korea
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0170-8620
0000-0001-8833-7641
PMID 31343086
PQID 2287450099
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2288010936
proquest_journals_2287450099
pubmed_primary_31343086
crossref_citationtrail_10_1002_adma_201900111
crossref_primary_10_1002_adma_201900111
wiley_primary_10_1002_adma_201900111_ADMA201900111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2017; 8
2013; 3
2017; 2
2015; 5
2011; 2
2017; 3
2018; 140
2015; 11
2015; 10
2013; 344
2017; 29
2017; 750
2016; 120
2018; 9
2018; 17
2016; 7
2018; 8
2018; 2
2015; 27
2016; 1
2012; 134
2015; 115
2017; 16
2016; 354
2016; 353
2013; 135
2018; 30
2014; 8
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
Xing G. (e_1_2_5_14_1) 2013; 344
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 134
  start-page: 2508
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1170
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1500
  year: 2018
  publication-title: Joule
– volume: 10
  start-page: 1013
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 750
  start-page: 745
  year: 2017
  publication-title: Science
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1282
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 344
  start-page: 347
  year: 2013
  publication-title: Science
– volume: 11
  start-page: 582
  year: 2015
  publication-title: Nat. Phys.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1866
  year: 2018
  publication-title: Joule
– volume: 3
  start-page: 744
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 353
  start-page: aac5523
  year: 2016
  publication-title: Science
– volume: 9
  start-page: 4066
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: eaao4204
  year: 2017
  publication-title: Sci. Adv.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 16
  start-page: 258
  year: 2017
  publication-title: Nat. Mater.
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 5863
  year: 2014
  publication-title: ACS Nano
– volume: 334
  start-page: 1530
  year: 2011
  publication-title: Science
– volume: 17
  start-page: 394
  year: 2018
  publication-title: Nat. Mater.
– volume: 8
  start-page: 1325
  year: 2017
  publication-title: Nat. Commun.
– volume: 354
  start-page: 92
  year: 2016
  publication-title: Science
– ident: e_1_2_5_33_1
  doi: 10.1002/adma.201706363
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201704871
– ident: e_1_2_5_7_1
  doi: 10.1038/nenergy.2017.52
– ident: e_1_2_5_30_1
  doi: 10.1038/nenergy.2016.148
– ident: e_1_2_5_11_1
  doi: 10.1126/science.aag2700
– ident: e_1_2_5_8_1
  doi: 10.1038/s41563-018-0018-4
– ident: e_1_2_5_36_1
  doi: 10.1002/adma.201705243
– ident: e_1_2_5_9_1
  doi: 10.1126/science.aam7093
– ident: e_1_2_5_6_1
  doi: 10.1021/jz200166y
– volume: 344
  start-page: 347
  year: 2013
  ident: e_1_2_5_14_1
  publication-title: Science
– ident: e_1_2_5_22_1
  doi: 10.1021/acs.jpcc.6b10920
– ident: e_1_2_5_20_1
  doi: 10.1002/adma.201800082
– ident: e_1_2_5_27_1
  doi: 10.1038/nmat4800
– ident: e_1_2_5_2_1
  doi: 10.1002/adma.201700749
– ident: e_1_2_5_5_1
  doi: 10.1126/science.1209845
– ident: e_1_2_5_19_1
  doi: 10.1038/srep10626
– ident: e_1_2_5_12_1
  doi: 10.1016/j.joule.2018.07.018
– ident: e_1_2_5_13_1
  doi: 10.1126/sciadv.aao4204
– ident: e_1_2_5_25_1
  doi: 10.1021/ja4079804
– ident: e_1_2_5_1_1
  doi: 10.1021/acs.chemrev.5b00063
– ident: e_1_2_5_26_1
  doi: 10.1038/nnano.2015.247
– ident: e_1_2_5_3_1
  doi: 10.1126/science.aac5523
– ident: e_1_2_5_24_1
  doi: 10.1021/ja211224s
– ident: e_1_2_5_29_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_5_23_1
  doi: 10.1021/nn500897c
– ident: e_1_2_5_28_1
  doi: 10.1021/jacs.8b04984
– ident: e_1_2_5_34_1
  doi: 10.1038/nenergy.2016.89
– ident: e_1_2_5_15_1
  doi: 10.1038/nphys3357
– ident: e_1_2_5_32_1
  doi: 10.1038/ncomms13651
– ident: e_1_2_5_16_1
  doi: 10.1021/acs.jpclett.8b01593
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201605756
– ident: e_1_2_5_31_1
  doi: 10.1002/adma.201706576
– ident: e_1_2_5_35_1
  doi: 10.1002/aenm.201800007
– ident: e_1_2_5_18_1
  doi: 10.1038/s41467-017-01362-1
– ident: e_1_2_5_17_1
  doi: 10.1002/aenm.201200673
– ident: e_1_2_5_10_1
  doi: 10.1016/j.joule.2018.04.012
SSID ssj0009606
Score 2.5984147
Snippet Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1900111
SubjectTerms Charge efficiency
charge transfer
Circuits
conjugated small molecules
Core-shell structure
Design modifications
Efficiency
Energy conversion efficiency
formamidinium lead iodide
Materials science
Optoelectronics
perovskite
Perovskites
Photovoltaic cells
Quantum confinement
quantum dot solar cells
Quantum dots
Separation
Solar cells
Structural integrity
Title A Small‐Molecule “Charge Driver” enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201900111
https://www.ncbi.nlm.nih.gov/pubmed/31343086
https://www.proquest.com/docview/2287450099
https://www.proquest.com/docview/2288010936
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hnuDA_09oi4yExCntOuMkzjHqtqqQFgGlUm-RnfVyIN2tNpseetpH6APAy-2TdMbJpl0QQoJbotiy4_F4vrE93wC8c2pSytJkYULWgkm1bWjJMoXaeDJyFaeWA4VHH5PjU_XhLD67E8Xf8kP0G26sGX69ZgU3tt6_JQ01Y88bRAaN06XTIswXthgVfbnlj2J47sn2MA6zROk1a-Mg2t-svmmVfoOam8jVm56jR2DWnW5vnHzfaxZ2r7z6hc_xf_7qMTzscKnI24n0BO656VN4cIet8Blc5OLk3FTVank9apPqOrFa_uAD-29ODOd8w2O1_CmcD8eqxSc3n13WvDssPjckwOZcDGcLccLOtDhwVVUL3gUWh57FgkNARd4xnFN7QuJzOD06_HpwHHYJG8JSyUiGY1JoLctMoklRO4OTQZlOEF1MfjZ7hjpFxGRCPo9KbaQ05xwdKLSDMjFZFuML2JrOpu4VCEycstIlkR7ThJH0VVNxgpdqbAn0pQGEa4EVZcdmzkk1qqLlYY4KHsmiH8kA3vflL1oejz-W3FnLv-j0uS4inxaA4XQAb_vPpIl8vGKmbtb4MpoPGjEJ4GU7b_qmUKJC8h4DiLz0_9KHIh-O8v7t9b9U2ob7_Nxeh9uBrcW8cbuEnxb2jdeRG3yED0A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VeigcoD9QUmjrSpV6CrvOOIlzjFjQtmVRW0DiFsVZL4eGXbS74dDTPkIfoLzcPgke54duK4QEx8Rj2bE9mR_PfAPwUYtBxrM0cgMjLQhUW7nKSCZXphaMXPihokTh3lHQPRVfzvw6mpByYUp8iMbhRpxh_9fE4OSQbt2ihqZ9CxxkJBrVS1-Cp1TW21pVP24RpEhBt3B76LtRIGSN29j2Wov9F-XSf8rmou5qhc_BOqh62mXMyc_dYqp2s1__IDo-6ruew1qlmrK4PEsv4IkevoTVvwALX8FlzI4v0jyfz373yrq6ms1nf-jO_lyzzpiCPOaza6ZtRtaEfdPj0dWEHMTse2H2sLhgndGUHZM9zfZ0nk8YOYLZvgWyoCxQFlcg52Y8xnEDTg_2T_a6blWzwc0E97jbNzwteRZxTEOUOsVBOwsHiNo3pjYZhzJExGBgzB4RKk9IKjvaFqjaWZBGkY-bsDwcDfUWMAy0UFwHnuybM8NNqzTkRsMUfWX0vtABt96xJKsAzamuRp6UUMxeQiuZNCvpwKeG_rKE8riTcqc-AEnF0pPEs5UBSKN24EPTbJiRbljSoR4VlkbSXSMGDrwuD04zFHIUaAxIBzy7_ffMIYk7vbh5evOQTu_hWfekd5gcfj76ug0r9L6MjtuB5em40G-NOjVV7yzD3ABzeBNb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BKyE4QPkpBAoYCYlT2jh2HOcYNV2Vn60KpVJvkZ04HEh3V7sbDpz2EXiA9uX2SfA42bQLQkhwTDyWHc9MZsb2fAPw2vCqoIVKfGGtBYJqa19by-RL5cDIeRRrTBQeHonDU_7uLDq7lsXf4kP0G26oGe5_jQo-Kau9K9BQVTrcIGvQsFz6TdjkIpAo19mnKwAp9M8d2h6L_ERwuYJtDMK99f7rZuk3X3PddXW2Z3AP1GrW7ZWTr7vNXO8W338BdPyfz9qCu51jStJWku7DDTN6AHeuwRU-hElKTs5VXS8XP4ZtVV1DlosLPLH_Ykg2xSsey8UlMS4fa0aOzXT8bYbbw-RjYznYnJNsPCcnGE2TfVPXM4LbwOTAwVhgDihJO4hzOx6h7BGcDg4-7x_6XcUGv-A0pH5pNVrSIqFMxUwaxaqgiCvGTGQDbQwNZcwYE5UNenisQy6x6GjAmQ4KoZIkYtuwMRqPzBMgTBiuqRGhLK3EUNsqLbn1L3mprdcXe-CvGJYXHZw5VtWo8xaIOcxxJfN-JT1409NPWiCPP1LurPifdwo9y0NXFwD9aQ9e9c1WFfF8RY3MuHE0Ek8amfDgcSs3_VCMMs5s-OhB6Lj_lznkaTZM-6en_9LpJdw6zgb5h7dH75_BbXzdXo3bgY35tDHPrS811y-cuvwEOqMSEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Small%E2%80%90Molecule+%E2%80%9CCharge+Driver%E2%80%9D+enables+Perovskite+Quantum+Dot+Solar+Cells+with+Efficiency+Approaching+13&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xue%2C+Jingjing&rft.au=Wang%2C+Rui&rft.au=Chen%2C+Lan&rft.au=Nuryyeva%2C+Selbi&rft.date=2019-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=37&rft_id=info:doi/10.1002%2Fadma.201900111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon