Flexible 1D Batteries: Recent Progress and Prospects
With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 5; pp. e1901961 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium‐ion batteries, zinc‐ion batteries, zinc–air batteries, and lithium–air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed.
The latest advances in flexible 1D batteries, including metal‐ion batteries and metal–air batteries, are summarized, with particular emphasis on electrode preparation, battery design, and electrochemical and mechanical properties. Additionally, future perspectives on and remaining challenges to the practical application of 1D batteries are also discussed to promote the commercialization of 1D batteries. |
---|---|
AbstractList | With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium-ion batteries, zinc-ion batteries, zinc-air batteries, and lithium-air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed. With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium-ion batteries, zinc-ion batteries, zinc-air batteries, and lithium-air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed.With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium-ion batteries, zinc-ion batteries, zinc-air batteries, and lithium-air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed. With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium‐ion batteries, zinc‐ion batteries, zinc–air batteries, and lithium–air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed. The latest advances in flexible 1D batteries, including metal‐ion batteries and metal–air batteries, are summarized, with particular emphasis on electrode preparation, battery design, and electrochemical and mechanical properties. Additionally, future perspectives on and remaining challenges to the practical application of 1D batteries are also discussed to promote the commercialization of 1D batteries. |
Author | Zhang, Xin‐Bo Yang, Xiao‐Yang Liu, Tong Zhu, Yun‐Hai |
Author_xml | – sequence: 1 givenname: Yun‐Hai surname: Zhu fullname: Zhu, Yun‐Hai organization: Jilin University – sequence: 2 givenname: Xiao‐Yang surname: Yang fullname: Yang, Xiao‐Yang organization: Jilin University – sequence: 3 givenname: Tong surname: Liu fullname: Liu, Tong organization: University of Science and Technology of China – sequence: 4 givenname: Xin‐Bo orcidid: 0000-0002-5806-159X surname: Zhang fullname: Zhang, Xin‐Bo email: xbzhang@ciac.ac.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31328846$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEURoNUbH1sXcqAGzetuXnMJO7qoypUFNF1yEzuyJTpTE2mqP_elFoFQYQL4cI5HzffLuk1bYOEHAIdAaXs1Lq5HTEKOk4KW2QAksFQUC17ZEA1l0OdCtUnuyHMKKU6pekO6XPgTCmRDoiY1Phe5TUmcJmc265DX2E4Sx6xwKZLHnz74jGExDZutYQFFl3YJ9ulrQMefL175Hly9XRxM5zeX99ejKfDQkC8woGgzmUqL6XKUVruJGiZU50JCRlIZYFjmTlkjgteWMGg4IqWmVaplTnne-Rknbvw7esSQ2fmVSiwrm2D7TIYxlKIYalSET3-hc7apW_idYZxSZkQQslIHX1Ry3yOzix8Nbf-w2z6iIBYA0X8a_BYmqLqbFe1TedtVRugZlW7WdVuvmuP2uiXtkn-U9Br4a2q8eMf2owv78Y_7ierupF6 |
CitedBy_id | crossref_primary_10_1021_acsami_2c09725 crossref_primary_10_1002_adma_202203905 crossref_primary_10_1021_acs_energyfuels_3c05007 crossref_primary_10_1021_acsami_3c04004 crossref_primary_10_1002_smm2_1076 crossref_primary_10_1002_inf2_12298 crossref_primary_10_1002_sus2_1 crossref_primary_10_1007_s42765_022_00250_8 crossref_primary_10_1016_j_nanoen_2020_104991 crossref_primary_10_3390_nano12193297 crossref_primary_10_1002_smtd_202101043 crossref_primary_10_1039_D4SC02139H crossref_primary_10_3390_cryst12091279 crossref_primary_10_1016_j_polymer_2024_127200 crossref_primary_10_1016_j_ensm_2021_07_024 crossref_primary_10_1002_adma_201908470 crossref_primary_10_1021_acsaem_3c00427 crossref_primary_10_1002_smm2_1007 crossref_primary_10_3390_nano14221856 crossref_primary_10_1007_s12598_020_01582_3 crossref_primary_10_1016_j_apsusc_2023_157528 crossref_primary_10_1016_S1872_5805_22_60628_0 crossref_primary_10_1186_s11671_021_03548_5 crossref_primary_10_1016_j_energy_2023_127705 crossref_primary_10_1002_cjoc_202200498 crossref_primary_10_1016_j_cej_2020_127697 crossref_primary_10_1002_anie_202423419 crossref_primary_10_1002_smll_202206338 crossref_primary_10_1002_smtd_202101276 crossref_primary_10_26599_NRE_2022_9120001 crossref_primary_10_3390_nano11092195 crossref_primary_10_1016_j_jechem_2020_10_018 crossref_primary_10_1002_smsc_202100023 crossref_primary_10_1002_asia_202000946 crossref_primary_10_4236_wjet_2021_92020 crossref_primary_10_1002_celc_202200337 crossref_primary_10_1021_acssuschemeng_4c06833 crossref_primary_10_1039_D3TA06945A crossref_primary_10_1039_D1EE01388B crossref_primary_10_1002_adfm_202001440 crossref_primary_10_1002_smll_202105887 crossref_primary_10_1007_s11708_024_0911_2 crossref_primary_10_1002_advs_202100911 crossref_primary_10_1039_D1SE01681D crossref_primary_10_1016_j_nanoen_2024_109501 crossref_primary_10_1557_s43578_023_01014_9 crossref_primary_10_1039_D1SE00865J crossref_primary_10_1007_s41918_022_00150_w crossref_primary_10_1016_j_mattod_2021_11_008 crossref_primary_10_3390_app11188690 crossref_primary_10_1002_aenm_202402721 crossref_primary_10_1002_admt_202201092 crossref_primary_10_1038_s41586_024_07343_x crossref_primary_10_1002_admt_202201762 crossref_primary_10_1002_adfm_202306223 crossref_primary_10_1039_D2TA02872G crossref_primary_10_1039_D0QM00291G crossref_primary_10_1039_D4EE00086B crossref_primary_10_1016_j_jcis_2021_02_007 crossref_primary_10_1002_adfm_202110535 crossref_primary_10_1016_j_jpowsour_2021_230329 crossref_primary_10_1039_D3NR05488H crossref_primary_10_3389_fchem_2020_546728 crossref_primary_10_1002_admt_202000476 crossref_primary_10_3390_ma13122733 crossref_primary_10_1002_cnl2_33 crossref_primary_10_1002_admt_202000071 crossref_primary_10_1007_s44258_024_00048_w crossref_primary_10_1021_acsaem_0c00070 crossref_primary_10_1016_j_mser_2022_100671 crossref_primary_10_1039_D3NR06207D crossref_primary_10_1016_j_est_2023_108810 crossref_primary_10_1021_acs_jpclett_2c03357 crossref_primary_10_1002_adfm_202003967 crossref_primary_10_1002_adma_202109355 crossref_primary_10_1002_ange_202423419 crossref_primary_10_1002_smtd_202000827 crossref_primary_10_1038_s41565_021_01062_4 crossref_primary_10_1002_smtd_202300501 crossref_primary_10_1021_acsnano_4c04184 crossref_primary_10_1002_adma_202414620 crossref_primary_10_1039_C9CE01387C crossref_primary_10_1016_j_jcis_2022_03_129 crossref_primary_10_1016_j_jcis_2024_10_145 crossref_primary_10_1002_cey2_284 crossref_primary_10_1016_j_mset_2020_12_001 crossref_primary_10_1002_adma_202211201 crossref_primary_10_1002_cey2_204 crossref_primary_10_1016_j_compscitech_2021_108676 crossref_primary_10_1016_j_cossms_2022_101042 crossref_primary_10_1021_acsami_1c22486 crossref_primary_10_1021_acsnano_0c10662 crossref_primary_10_1007_s11581_021_04403_4 crossref_primary_10_1088_2631_7990_ace66a crossref_primary_10_1016_j_cej_2023_145962 crossref_primary_10_1002_eem2_12564 crossref_primary_10_1002_eom2_12218 crossref_primary_10_1039_D3TC03336H crossref_primary_10_1021_acs_jpclett_1c03177 crossref_primary_10_1007_s12274_021_3933_7 crossref_primary_10_1360_SST_2023_0178 crossref_primary_10_1002_adfm_202105021 crossref_primary_10_1093_nsr_nwaa261 crossref_primary_10_1007_s40820_021_00588_5 crossref_primary_10_1002_ejic_202001024 crossref_primary_10_1039_D3EE01841E crossref_primary_10_1039_D4TA02085E crossref_primary_10_1039_D1NA00892G crossref_primary_10_1002_eom2_12283 crossref_primary_10_1021_acsami_0c10460 crossref_primary_10_1016_j_cej_2023_142601 crossref_primary_10_1021_acsaem_0c02612 crossref_primary_10_1063_5_0085301 crossref_primary_10_3390_mi14061249 crossref_primary_10_1021_acs_energyfuels_1c00201 crossref_primary_10_1002_admt_202400417 crossref_primary_10_26599_NRE_2025_9120159 crossref_primary_10_1021_acsnano_4c06502 crossref_primary_10_1016_j_carbon_2021_11_009 crossref_primary_10_1002_smll_202002932 crossref_primary_10_1002_adfm_202101193 crossref_primary_10_1016_S1872_5805_22_60623_1 crossref_primary_10_1002_adfm_202103092 crossref_primary_10_1039_D3EE03059H |
Cites_doi | 10.1039/c3ee24260a 10.1002/adma.201202196 10.1021/nl4021649 10.1039/C4EE03912B 10.1002/smll.201602790 10.1021/acs.jpcc.8b00918 10.1016/j.nanoen.2017.06.045 10.1002/smll.201702987 10.1039/c1ee01388b 10.1021/cr500232y 10.1002/adma.201804439 10.1039/C8CS00237A 10.1002/adma.201808267 10.1016/S1872-2067(15)61089-0 10.1002/adma.201400633 10.1021/acs.nanolett.7b04502 10.1016/j.chempr.2017.05.004 10.1038/nnano.2007.151 10.1002/aenm.201700779 10.1021/nl300794f 10.1002/anie.201508848 10.1039/C6TA09806A 10.1039/C8TA01172A 10.1002/adma.201202930 10.1002/adma.201600762 10.1002/adma.201500311 10.1038/nchem.1376 10.1016/j.mattod.2015.01.002 10.1002/adma.201305919 10.1021/ja310258x 10.1002/adfm.201703140 10.1002/adma.201504241 10.1016/j.mtchem.2017.05.003 10.1021/acs.jpclett.7b00040 10.1016/j.nantod.2012.12.002 10.1002/adma.201301036 10.1002/adma.201505391 10.1039/c1cs15228a 10.1002/adma.201503891 10.1021/jz300243r 10.1039/c3ee00053b 10.1021/nl5031985 10.1039/C6EE03526D 10.1039/C5EE03404C 10.1016/j.nanoen.2018.11.057 10.1039/c4ta01878h 10.1002/adfm.201802564 10.1002/adma.201504335 10.1016/j.ensm.2018.03.022 10.1002/anie.201506142 10.1016/j.jallcom.2011.03.044 10.1039/C4CS00015C 10.1002/adma.201703791 10.1002/adma.201704378 10.1002/anie.201601804 10.1038/ncomms2553 10.1002/aenm.201600476 10.1002/adma.201003294 10.1002/smtd.201700231 10.1021/nl5009647 10.1021/jacs.6b05046 10.1021/acsami.8b07756 10.1002/aenm.201500633 10.1021/jp306718v 10.1021/ja806104n 10.1016/j.nanoen.2018.06.023 10.1039/C7CS00278E 10.1039/c4ee00318g 10.1021/acsnano.7b09003 10.1002/anie.201409366 10.1002/adma.201400910 10.1002/adma.201604685 10.1126/science.1151831 10.1002/adma.201304319 10.1021/acsenergylett.8b01552 10.1002/smll.201600540 10.1021/acsenergylett.8b01426 10.1016/j.ensm.2018.06.001 10.1016/j.carbon.2018.10.064 10.1002/er.3499 10.1002/anie.201402388 10.1038/natrevmats.2017.23 10.1039/C7SE00346C 10.1038/ncomms8892 10.1002/adfm.201808117 10.1002/aenm.201702242 10.1002/adma.201304469 10.1002/adma.201404639 10.1016/j.joule.2018.01.010 10.1038/nature16521 10.1016/j.ensm.2018.11.010 10.1016/S0378-7753(99)00474-7 10.1002/aenm.201000010 10.1021/nn1018158 10.1002/aenm.201800348 10.1021/acs.nanolett.7b00623 10.1002/adfm.201804975 10.1002/aenm.201700927 10.1039/C4NR05988C 10.1002/adma.200901710 10.1002/ange.201301941 10.1002/adma.201703657 10.1039/C7EE01913K 10.1002/adma.201602868 10.1002/smll.201800414 10.1002/adma.201203445 10.1002/aenm.201501874 10.1002/aenm.201401438 10.1002/anie.201511832 10.1038/nnano.2007.89 10.1002/aenm.201703008 10.1016/j.mattod.2014.10.040 10.1002/adma.201506112 10.1038/nmat3191 10.1002/adma.201603719 10.1039/c3nr33560g 10.1002/advs.201700691 10.1021/acscentsci.7b00120 10.1002/adma.201603436 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201901961 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31328846 10_1002_adma_201901961 ADMA201901961 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2014CB932300 – fundername: Technology and Industry for National Defence of the People's Republic of China funderid: JCKY2016130B010 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2016YFB0100103; 2017YFA0206704 – fundername: National Natural Science Foundation of China funderid: 51522101; 51471075; 51631004; 51401084 – fundername: China Postdoctoral Science Foundation funderid: 2016M601395 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2016YFB0100103 – fundername: National Natural Science Foundation of China grantid: 51471075 – fundername: China Postdoctoral Science Foundation grantid: 2016M601395 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2017YFA0206704 – fundername: National Basic Research Program of China grantid: 2014CB932300 – fundername: Technology and Industry for National Defence of the People's Republic of China grantid: JCKY2016130B010 – fundername: National Natural Science Foundation of China grantid: 51631004 – fundername: National Natural Science Foundation of China grantid: 51522101 – fundername: National Natural Science Foundation of China grantid: 51401084 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4121-d140dd78bf58be5a3d5195b0974517158a13ef7de2d343ca421c380f7986a5b33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 04:40:26 EDT 2025 Fri Jul 25 07:46:17 EDT 2025 Wed Feb 19 02:32:09 EST 2025 Tue Jul 01 00:44:53 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Jan 22 16:34:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | metal-air batteries flexible 1D batteries metal-ion batteries wearable electronics |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4121-d140dd78bf58be5a3d5195b0974517158a13ef7de2d343ca421c380f7986a5b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5806-159X |
PMID | 31328846 |
PQID | 2350244485 |
PQPubID | 2045203 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2261974688 proquest_journals_2350244485 pubmed_primary_31328846 crossref_citationtrail_10_1002_adma_201901961 crossref_primary_10_1002_adma_201901961 wiley_primary_10_1002_adma_201901961_ADMA201901961 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 122 2017; 7 2017; 8 2017; 1 2013; 4 2017; 2 2013; 25 2017; 3 2000; 87 2019; 56 2017; 46 2014; 26 2019; 16 2013; 125 2013; 8 2013; 5 2012; 12 2013; 6 2012; 11 2016; 37 2018; 47 2018; 6 2018; 8 2018; 3 2014; 4 2018; 2 2018; 5 2014; 2 2019; 20 2017; 39 2013; 13 2008; 319 2014; 14 2016; 40 2019; 29 2018; 30 2011; 23 2007; 2 2012; 24 2014; 7 2010; 4 2014; 53 2018; 28 2015; 6 2015; 5 2009; 21 2015; 18 2011; 1 2019; 31 2017; 27 2016; 529 2015; 54 2017; 29 2011; 4 2015; 8 2015; 7 2014; 114 2014; 43 2019; 142 2016; 12 2016; 55 2016; 6 2015; 27 2012; 3 2011; 509 2017; 17 2017; 10 2017; 13 2013; 135 2016; 138 2018; 50 2018; 12 2016; 28 2018; 10 2012; 4 2012; 116 2008; 130 2016; 9 2018; 15 2018; 14 2012; 41 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 Chen Z. (e_1_2_10_18_1) 2014; 4 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 319 start-page: 737 year: 2008 publication-title: Science – volume: 5 start-page: 24 year: 2017 publication-title: Mater. Today Chem. – volume: 16 start-page: 243 year: 2019 publication-title: Energy Storage Mater. – volume: 14 year: 2018 publication-title: Small – volume: 8 start-page: 1169 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 43 start-page: 5257 year: 2014 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 1385 year: 2011 publication-title: Adv. Mater. – volume: 3 start-page: 348 year: 2017 publication-title: Chem – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 26 start-page: 1217 year: 2014 publication-title: Adv. Mater. – volume: 14 start-page: 6572 year: 2014 publication-title: Nano Lett. – volume: 2 start-page: 378 year: 2007 publication-title: Nat. Nanotechnol. – volume: 14 start-page: 3432 year: 2014 publication-title: Nano Lett. – volume: 8 start-page: 119 year: 2013 publication-title: Nano Today – volume: 6 start-page: 1125 year: 2013 publication-title: Energy Environ. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 663 year: 2016 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1909 year: 2017 publication-title: Sustainable Energy Fuels – volume: 12 start-page: 3005 year: 2012 publication-title: Nano Lett. – volume: 28 start-page: 3000 year: 2016 publication-title: Adv. Mater. – volume: 46 start-page: 6764 year: 2017 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 4524 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 3 start-page: 598 year: 2017 publication-title: ACS Cent. Sci. – volume: 39 start-page: 101 year: 2017 publication-title: Nano Energy – volume: 41 start-page: 2172 year: 2012 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 2620 year: 2018 publication-title: ACS Energy Lett. – volume: 25 start-page: 1155 year: 2013 publication-title: Adv. Mater. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 10 start-page: 2056 year: 2017 publication-title: Energy Environ. Sci. – volume: 50 start-page: 691 year: 2018 publication-title: Nano Energy – volume: 28 start-page: 748 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 997 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 125 start-page: 7872 year: 2013 publication-title: Angew. Chem. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 20 start-page: 234 year: 2019 publication-title: Energy Storage Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 18 start-page: 265 year: 2015 publication-title: Mater. Today – volume: 28 start-page: 2587 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 5310 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 846 year: 2017 publication-title: Energy Environ. Sci. – volume: 27 start-page: 2472 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 4539 year: 2013 publication-title: Adv. Mater. – volume: 8 start-page: 1660 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 13 year: 2017 publication-title: Small – volume: 4 start-page: 5843 year: 2010 publication-title: ACS Nano – volume: 7 start-page: 2101 year: 2014 publication-title: Energy Environ. Sci. – volume: 26 start-page: 4763 year: 2014 publication-title: Adv. Mater. – volume: 24 start-page: 5192 year: 2012 publication-title: Adv. Mater. – volume: 135 start-page: 494 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 1172 year: 2016 publication-title: Chin. J. Catal. – volume: 17 start-page: 3543 year: 2017 publication-title: Nano Lett. – volume: 142 start-page: 379 year: 2019 publication-title: Carbon – volume: 55 start-page: 4487 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 2 year: 2018 publication-title: Small Methods – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 6 start-page: 8549 year: 2018 publication-title: J. Mater. Chem. A – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 12 start-page: 3101 year: 2016 publication-title: Small – volume: 4 start-page: 579 year: 2012 publication-title: Nat. Chem. – volume: 2 start-page: 736 year: 2018 publication-title: Joule – volume: 509 start-page: 5974 year: 2011 publication-title: J. Alloys Compd. – volume: 7 start-page: 1830 year: 2015 publication-title: Nanoscale – volume: 18 start-page: 252 year: 2015 publication-title: Mater. Today – volume: 5 start-page: 3638 year: 2017 publication-title: J. Mater. Chem. A – volume: 26 start-page: 2273 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 3287 year: 2011 publication-title: Energy Environ. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 207 year: 2007 publication-title: Nat. Nanotechnol. – volume: 40 start-page: 1032 year: 2016 publication-title: Int. J. Energy Res. – volume: 27 start-page: 1396 year: 2015 publication-title: Adv. Mater. – volume: 17 start-page: 7989 year: 2017 publication-title: Nano Lett. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 6 start-page: 7892 year: 2015 publication-title: Nat. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 491 year: 2016 publication-title: Adv. Mater. – volume: 24 start-page: 5713 year: 2012 publication-title: Adv. Mater. – volume: 13 start-page: 4697 year: 2013 publication-title: Nano Lett. – volume: 47 start-page: 5919 year: 2018 publication-title: Chem. Soc. Rev. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 3592 year: 2014 publication-title: Adv. Mater. – volume: 15 start-page: 124 year: 2018 publication-title: Energy Storage Mater. – volume: 12 start-page: 3140 year: 2018 publication-title: ACS Nano – volume: 55 start-page: 7979 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 1727 year: 2013 publication-title: Nanoscale – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 122 start-page: 8788 year: 2018 publication-title: J. Phys. Chem. C – volume: 28 start-page: 6421 year: 2016 publication-title: Adv. Mater. – volume: 87 start-page: 144 year: 2000 publication-title: J. Power Sources – volume: 21 start-page: 4593 year: 2009 publication-title: Adv. Mater. – volume: 1 start-page: 34 year: 2011 publication-title: Adv. Energy Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2014 publication-title: Adv. Eng. Mater. – volume: 4 start-page: 1543 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 2414 year: 2013 publication-title: Energy Environ. Sci. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 454 year: 2019 publication-title: Nano Energy – volume: 53 start-page: 7864 year: 2014 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_10_25_1 doi: 10.1039/c3ee24260a – ident: e_1_2_10_30_1 doi: 10.1002/adma.201202196 – ident: e_1_2_10_111_1 doi: 10.1021/nl4021649 – ident: e_1_2_10_80_1 doi: 10.1039/C4EE03912B – ident: e_1_2_10_9_1 doi: 10.1002/smll.201602790 – ident: e_1_2_10_57_1 doi: 10.1021/acs.jpcc.8b00918 – ident: e_1_2_10_70_1 doi: 10.1016/j.nanoen.2017.06.045 – ident: e_1_2_10_95_1 doi: 10.1002/smll.201702987 – ident: e_1_2_10_27_1 doi: 10.1039/c1ee01388b – ident: e_1_2_10_53_1 doi: 10.1021/cr500232y – ident: e_1_2_10_120_1 doi: 10.1002/adma.201804439 – ident: e_1_2_10_29_1 doi: 10.1039/C8CS00237A – ident: e_1_2_10_83_1 doi: 10.1002/adma.201808267 – ident: e_1_2_10_118_1 doi: 10.1016/S1872-2067(15)61089-0 – ident: e_1_2_10_6_1 doi: 10.1002/adma.201400633 – ident: e_1_2_10_81_1 doi: 10.1021/acs.nanolett.7b04502 – ident: e_1_2_10_51_1 doi: 10.1016/j.chempr.2017.05.004 – ident: e_1_2_10_3_1 doi: 10.1038/nnano.2007.151 – ident: e_1_2_10_89_1 doi: 10.1002/aenm.201700779 – ident: e_1_2_10_19_1 doi: 10.1021/nl300794f – ident: e_1_2_10_93_1 doi: 10.1002/anie.201508848 – ident: e_1_2_10_108_1 doi: 10.1039/C6TA09806A – ident: e_1_2_10_62_1 doi: 10.1039/C8TA01172A – ident: e_1_2_10_11_1 doi: 10.1002/adma.201202930 – ident: e_1_2_10_77_1 doi: 10.1002/adma.201600762 – ident: e_1_2_10_14_1 doi: 10.1002/adma.201500311 – ident: e_1_2_10_114_1 doi: 10.1038/nchem.1376 – ident: e_1_2_10_23_1 doi: 10.1016/j.mattod.2015.01.002 – ident: e_1_2_10_12_1 doi: 10.1002/adma.201305919 – ident: e_1_2_10_110_1 doi: 10.1021/ja310258x – ident: e_1_2_10_43_1 doi: 10.1002/adfm.201703140 – ident: e_1_2_10_121_1 doi: 10.1002/adma.201504241 – ident: e_1_2_10_22_1 doi: 10.1016/j.mtchem.2017.05.003 – ident: e_1_2_10_103_1 doi: 10.1021/acs.jpclett.7b00040 – ident: e_1_2_10_39_1 doi: 10.1016/j.nantod.2012.12.002 – ident: e_1_2_10_42_1 doi: 10.1002/adma.201301036 – ident: e_1_2_10_41_1 doi: 10.1002/adma.201505391 – ident: e_1_2_10_90_1 doi: 10.1002/adma.201600762 – ident: e_1_2_10_71_1 doi: 10.1039/c1cs15228a – ident: e_1_2_10_24_1 doi: 10.1002/adma.201503891 – ident: e_1_2_10_109_1 doi: 10.1021/jz300243r – ident: e_1_2_10_97_1 doi: 10.1039/c3ee00053b – ident: e_1_2_10_116_1 doi: 10.1021/nl5031985 – ident: e_1_2_10_40_1 doi: 10.1039/C6EE03526D – ident: e_1_2_10_68_1 doi: 10.1039/C5EE03404C – ident: e_1_2_10_92_1 doi: 10.1016/j.nanoen.2018.11.057 – ident: e_1_2_10_45_1 doi: 10.1039/c4ta01878h – ident: e_1_2_10_54_1 doi: 10.1002/adfm.201802564 – ident: e_1_2_10_8_1 doi: 10.1002/adma.201504335 – ident: e_1_2_10_74_1 doi: 10.1016/j.ensm.2018.03.022 – ident: e_1_2_10_44_1 doi: 10.1002/anie.201506142 – ident: e_1_2_10_59_1 doi: 10.1016/j.jallcom.2011.03.044 – ident: e_1_2_10_66_1 doi: 10.1039/C4CS00015C – ident: e_1_2_10_102_1 doi: 10.1002/adma.201703791 – ident: e_1_2_10_117_1 doi: 10.1002/adma.201704378 – ident: e_1_2_10_122_1 doi: 10.1002/anie.201601804 – ident: e_1_2_10_20_1 doi: 10.1038/ncomms2553 – ident: e_1_2_10_85_1 doi: 10.1002/aenm.201600476 – ident: e_1_2_10_36_1 doi: 10.1002/adma.201003294 – ident: e_1_2_10_113_1 doi: 10.1002/smtd.201700231 – ident: e_1_2_10_31_1 doi: 10.1021/nl5009647 – ident: e_1_2_10_78_1 doi: 10.1021/jacs.6b05046 – ident: e_1_2_10_60_1 doi: 10.1021/acsami.8b07756 – ident: e_1_2_10_100_1 doi: 10.1002/aenm.201500633 – ident: e_1_2_10_115_1 doi: 10.1021/jp306718v – ident: e_1_2_10_35_1 doi: 10.1021/ja806104n – ident: e_1_2_10_73_1 doi: 10.1016/j.nanoen.2018.06.023 – ident: e_1_2_10_2_1 doi: 10.1039/C7CS00278E – ident: e_1_2_10_10_1 doi: 10.1039/c4ee00318g – ident: e_1_2_10_63_1 doi: 10.1021/acsnano.7b09003 – volume: 4 start-page: 400207 year: 2014 ident: e_1_2_10_18_1 publication-title: Adv. Eng. Mater. – ident: e_1_2_10_46_1 doi: 10.1002/anie.201409366 – ident: e_1_2_10_16_1 doi: 10.1002/adma.201400910 – ident: e_1_2_10_86_1 doi: 10.1002/adma.201604685 – ident: e_1_2_10_13_1 doi: 10.1126/science.1151831 – ident: e_1_2_10_34_1 doi: 10.1002/adma.201304319 – ident: e_1_2_10_55_1 doi: 10.1021/acsenergylett.8b01552 – ident: e_1_2_10_101_1 doi: 10.1002/smll.201600540 – ident: e_1_2_10_56_1 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_10_79_1 doi: 10.1016/j.ensm.2018.06.001 – ident: e_1_2_10_72_1 doi: 10.1016/j.carbon.2018.10.064 – ident: e_1_2_10_84_1 doi: 10.1002/er.3499 – ident: e_1_2_10_37_1 doi: 10.1002/anie.201402388 – ident: e_1_2_10_21_1 doi: 10.1038/natrevmats.2017.23 – ident: e_1_2_10_88_1 doi: 10.1039/C7SE00346C – ident: e_1_2_10_104_1 doi: 10.1038/ncomms8892 – ident: e_1_2_10_119_1 doi: 10.1002/adfm.201808117 – ident: e_1_2_10_107_1 doi: 10.1002/aenm.201702242 – ident: e_1_2_10_48_1 doi: 10.1002/adma.201304469 – ident: e_1_2_10_94_1 doi: 10.1002/adma.201404639 – ident: e_1_2_10_49_1 doi: 10.1016/j.joule.2018.01.010 – ident: e_1_2_10_7_1 doi: 10.1038/nature16521 – ident: e_1_2_10_91_1 doi: 10.1016/j.ensm.2018.11.010 – ident: e_1_2_10_58_1 doi: 10.1016/S0378-7753(99)00474-7 – ident: e_1_2_10_99_1 doi: 10.1002/aenm.201000010 – ident: e_1_2_10_17_1 doi: 10.1021/nn1018158 – ident: e_1_2_10_98_1 doi: 10.1002/aenm.201800348 – ident: e_1_2_10_38_1 doi: 10.1021/acs.nanolett.7b00623 – ident: e_1_2_10_61_1 doi: 10.1002/adfm.201804975 – ident: e_1_2_10_87_1 doi: 10.1002/aenm.201700927 – ident: e_1_2_10_82_1 doi: 10.1039/C4NR05988C – ident: e_1_2_10_28_1 doi: 10.1002/adma.200901710 – ident: e_1_2_10_4_1 doi: 10.1002/ange.201301941 – ident: e_1_2_10_75_1 doi: 10.1002/adma.201703657 – ident: e_1_2_10_65_1 doi: 10.1039/C7EE01913K – ident: e_1_2_10_64_1 doi: 10.1002/aenm.201000010 – ident: e_1_2_10_76_1 doi: 10.1002/adma.201602868 – ident: e_1_2_10_32_1 doi: 10.1002/smll.201800414 – ident: e_1_2_10_33_1 doi: 10.1002/adma.201203445 – ident: e_1_2_10_50_1 doi: 10.1002/aenm.201501874 – ident: e_1_2_10_105_1 doi: 10.1002/aenm.201401438 – ident: e_1_2_10_106_1 doi: 10.1002/anie.201511832 – ident: e_1_2_10_1_1 doi: 10.1038/nnano.2007.89 – ident: e_1_2_10_52_1 doi: 10.1002/aenm.201703008 – ident: e_1_2_10_26_1 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_10_69_1 doi: 10.1002/adma.201506112 – ident: e_1_2_10_96_1 doi: 10.1038/nmat3191 – ident: e_1_2_10_47_1 doi: 10.1002/adma.201603719 – ident: e_1_2_10_5_1 doi: 10.1039/c3nr33560g – ident: e_1_2_10_67_1 doi: 10.1002/advs.201700691 – ident: e_1_2_10_112_1 doi: 10.1021/acscentsci.7b00120 – ident: e_1_2_10_15_1 doi: 10.1002/adma.201603436 |
SSID | ssj0009606 |
Score | 2.6399 |
SecondaryResourceType | review_article |
Snippet | With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1901961 |
SubjectTerms | Commercialization Computer storage devices Energy storage flexible 1D batteries Flux density Lithium-ion batteries Metal air batteries metal‐ion batteries Miniaturization Portable equipment Storage batteries wearable electronics Zinc-oxygen batteries |
Title | Flexible 1D Batteries: Recent Progress and Prospects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901961 https://www.ncbi.nlm.nih.gov/pubmed/31328846 https://www.proquest.com/docview/2350244485 https://www.proquest.com/docview/2261974688 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfspMe_P2jOqWC4Clbmx9N6m04xxAmIg52K2mSXhyduO3iX2-SbnVTRNBjaULTJC_v-9qXTwCuaEp0lOICcWoYokQmSKrYIGnj20JpWUQekjR4SPpDej9io5Vd_BUfov7g5izDr9fOwGU-bX9CQ6X23CDn0FIf_7iELaeKnj75UU6ee9geYShNqFhSGyPcXq--7pW-Sc115epdT28H5LLRVcbJS2s-y1vq_QvP8T9vtQvbC10adqqJtAcbptyHrRVa4QHQnoNn5mMTxt2w4nLaMPsmtMrTeq7w0WV62XUzlKV2F34P5_QQhr2759s-Why6gBSNcYy0jbi05iIvmMgNk0Q7_kwe2biDxTxmQsbEFFwbrAklSlIcKyKigqcikSwn5Aga5aQ0JxBqwpkxkirBMOXCLhVWfpBCWomguKRpAGjZ6ZlaEMndwRjjrGIp48z1Rlb3RgDXdfnXisXxY8nmcgyzhU1OM0yYFSQ2HGUBXNa3rTW5XySyNJO5LeMCSk4TIQI4rsa-fpSDXAor1wLAfgR_aUPW6Q469dXpXyqdwSZ24b1PEm9CY_Y2N-dWA83yCz_PPwBeGvl5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1baxQxFMcPpT6oD94vo1VHUHxKO7lNMgUfFtdla7tFpIW-jZkkA2KZirtLqd_Kr-In6knmUlcRQeiDj2EyTMjlnP_JnPwC8EIU3GUFq4kSXhLBTU6MpZ4YjG9r60ydRUjSbD-fHop3R_JoDb73Z2FaPsSw4RZWRrTXYYGHDemtC2qocREcFDxakdMur3LXn51i1DZ_vTPGIX7J2OTtwZsp6S4WIFZQRonDqMI5pata6spLw11grFQZamtJFZXaUO5r5TxzXHBrBKOW66xWhc6NrMIeKFr9K-Ea8YDrH3-4IFaFgCDi_bgkRS50z4nM2NZqe1f94G_idlUrR2c3uQk_-m5qc1w-by4X1ab99gtB8r_qx1two5Pe6ahdK7dhzTd34PpPQMa7ICaBD1od-5SO0xY9-snPt1MU1-ic0_chmQ1dQ2oaFwrxmOr8HhxeSrPvw3pz0viHkDqupPdGWC2ZUBqtISosXhtUQVYZUSRA-lEubQddD3d_HJctLpqVoffLofcTeDXU_9LiRv5Yc6OfNGVnduYl4xI1F0bcMoHnw2M0GOEvkGn8yRLrhJhZiVzrBB60k234VOB4alSkCbA4Zf7ShnI0no2G0qN_eekZXJ0ezPbKvZ393cdwjYXdjJgTvwHri69L_wQl36J6GhdZCh8vezaeA9-zVZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1baxUxEMeHUkH0wftlteoKik9pN7dNVvDh4HporS1FLPRtzSZZEMu2eM5B2k_lV-k36iR7qUcRQeiDj2GzbMhl5j_ZyS8AL0TBXVawhijhJRHc5MRY6onB-LaxzjRZhCTt7Oab--L9gTxYgR_DWZiODzFuuIWVEe11WODHrtm4gIYaF7lBwaEVOe3TKrf9yXcM2mZvtkoc4ZeMTd99ertJ-nsFiBWUUeIwqHBO6bqRuvbScBcQK3WG0lpSRaU2lPtGOc8cF9wawajlOmtUoXMj67AFikb_isizIlwWUX68AFaFeCDS_bgkRS70gInM2MZye5fd4G_adlkqR183vQlnQy91KS5f1xfzet2e_gKQ_J-68Rbc6IV3OulWym1Y8e0duP4TjvEuiGmgg9aHPqVl2oFHv_jZ6xSlNbrmdC-ksqFjSE3rQiEeUp3dg_1LafZ9WG2PWv8QUseV9N4IqyUTSqMtRH3FG4MayCojigTIMMiV7ZHr4eaPw6qDRbMq9H419n4Cr8b6xx1s5I8114Y5U_VGZ1YxLlFxYbwtE3g-PkZzEf4BmdYfLbBOiJiVyLVO4EE318ZPBYqnRj2aAIsz5i9tqCblzmQsPfqXl57B1b1yWn3Y2t1-DNdY2MqICfFrsDr_tvBPUO_N66dxiaXw-bIn4zlV0lQ_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+1D+Batteries%3A+Recent+Progress+and+Prospects&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Yun%E2%80%90Hai&rft.au=Yang%2C+Xiao%E2%80%90Yang&rft.au=Liu%2C+Tong&rft.au=Zhang%2C+Xin%E2%80%90Bo&rft.date=2020-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201901961&rft.externalDBID=10.1002%252Fadma.201901961&rft.externalDocID=ADMA201901961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |