Flexible 1D Batteries: Recent Progress and Prospects

With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 5; pp. e1901961 - n/a
Main Authors Zhu, Yun‐Hai, Yang, Xiao‐Yang, Liu, Tong, Zhang, Xin‐Bo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium‐ion batteries, zinc‐ion batteries, zinc–air batteries, and lithium–air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed. The latest advances in flexible 1D batteries, including metal‐ion batteries and metal–air batteries, are summarized, with particular emphasis on electrode preparation, battery design, and electrochemical and mechanical properties. Additionally, future perspectives on and remaining challenges to the practical application of 1D batteries are also discussed to promote the commercialization of 1D batteries.
AbstractList With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium-ion batteries, zinc-ion batteries, zinc-air batteries, and lithium-air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed.
With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium-ion batteries, zinc-ion batteries, zinc-air batteries, and lithium-air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed.With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium-ion batteries, zinc-ion batteries, zinc-air batteries, and lithium-air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed.
With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among numerous flexible energy storage technologies, flexible batteries are considered as the most favorable candidate due to their high energy density and long cycle life. In particular, flexible 1D batteries with the unique advantages of miniaturization, adaptability, and weavability are expected to be a part of such applications. The development of 1D batteries, including lithium‐ion batteries, zinc‐ion batteries, zinc–air batteries, and lithium–air batteries, is comprehensively summarized, with particular emphasis on electrode preparation, battery design, and battery properties. In addition, the remaining challenges to the commercialization of current 1D batteries and prospective opportunities in the field are discussed. The latest advances in flexible 1D batteries, including metal‐ion batteries and metal–air batteries, are summarized, with particular emphasis on electrode preparation, battery design, and electrochemical and mechanical properties. Additionally, future perspectives on and remaining challenges to the practical application of 1D batteries are also discussed to promote the commercialization of 1D batteries.
Author Zhang, Xin‐Bo
Yang, Xiao‐Yang
Liu, Tong
Zhu, Yun‐Hai
Author_xml – sequence: 1
  givenname: Yun‐Hai
  surname: Zhu
  fullname: Zhu, Yun‐Hai
  organization: Jilin University
– sequence: 2
  givenname: Xiao‐Yang
  surname: Yang
  fullname: Yang, Xiao‐Yang
  organization: Jilin University
– sequence: 3
  givenname: Tong
  surname: Liu
  fullname: Liu, Tong
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Xin‐Bo
  orcidid: 0000-0002-5806-159X
  surname: Zhang
  fullname: Zhang, Xin‐Bo
  email: xbzhang@ciac.ac.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31328846$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLAzEURoNUbH1sXcqAGzetuXnMJO7qoypUFNF1yEzuyJTpTE2mqP_elFoFQYQL4cI5HzffLuk1bYOEHAIdAaXs1Lq5HTEKOk4KW2QAksFQUC17ZEA1l0OdCtUnuyHMKKU6pekO6XPgTCmRDoiY1Phe5TUmcJmc265DX2E4Sx6xwKZLHnz74jGExDZutYQFFl3YJ9ulrQMefL175Hly9XRxM5zeX99ejKfDQkC8woGgzmUqL6XKUVruJGiZU50JCRlIZYFjmTlkjgteWMGg4IqWmVaplTnne-Rknbvw7esSQ2fmVSiwrm2D7TIYxlKIYalSET3-hc7apW_idYZxSZkQQslIHX1Ry3yOzix8Nbf-w2z6iIBYA0X8a_BYmqLqbFe1TedtVRugZlW7WdVuvmuP2uiXtkn-U9Br4a2q8eMf2owv78Y_7ierupF6
CitedBy_id crossref_primary_10_1021_acsami_2c09725
crossref_primary_10_1002_adma_202203905
crossref_primary_10_1021_acs_energyfuels_3c05007
crossref_primary_10_1021_acsami_3c04004
crossref_primary_10_1002_smm2_1076
crossref_primary_10_1002_inf2_12298
crossref_primary_10_1002_sus2_1
crossref_primary_10_1007_s42765_022_00250_8
crossref_primary_10_1016_j_nanoen_2020_104991
crossref_primary_10_3390_nano12193297
crossref_primary_10_1002_smtd_202101043
crossref_primary_10_1039_D4SC02139H
crossref_primary_10_3390_cryst12091279
crossref_primary_10_1016_j_polymer_2024_127200
crossref_primary_10_1016_j_ensm_2021_07_024
crossref_primary_10_1002_adma_201908470
crossref_primary_10_1021_acsaem_3c00427
crossref_primary_10_1002_smm2_1007
crossref_primary_10_3390_nano14221856
crossref_primary_10_1007_s12598_020_01582_3
crossref_primary_10_1016_j_apsusc_2023_157528
crossref_primary_10_1016_S1872_5805_22_60628_0
crossref_primary_10_1186_s11671_021_03548_5
crossref_primary_10_1016_j_energy_2023_127705
crossref_primary_10_1002_cjoc_202200498
crossref_primary_10_1016_j_cej_2020_127697
crossref_primary_10_1002_anie_202423419
crossref_primary_10_1002_smll_202206338
crossref_primary_10_1002_smtd_202101276
crossref_primary_10_26599_NRE_2022_9120001
crossref_primary_10_3390_nano11092195
crossref_primary_10_1016_j_jechem_2020_10_018
crossref_primary_10_1002_smsc_202100023
crossref_primary_10_1002_asia_202000946
crossref_primary_10_4236_wjet_2021_92020
crossref_primary_10_1002_celc_202200337
crossref_primary_10_1021_acssuschemeng_4c06833
crossref_primary_10_1039_D3TA06945A
crossref_primary_10_1039_D1EE01388B
crossref_primary_10_1002_adfm_202001440
crossref_primary_10_1002_smll_202105887
crossref_primary_10_1007_s11708_024_0911_2
crossref_primary_10_1002_advs_202100911
crossref_primary_10_1039_D1SE01681D
crossref_primary_10_1016_j_nanoen_2024_109501
crossref_primary_10_1557_s43578_023_01014_9
crossref_primary_10_1039_D1SE00865J
crossref_primary_10_1007_s41918_022_00150_w
crossref_primary_10_1016_j_mattod_2021_11_008
crossref_primary_10_3390_app11188690
crossref_primary_10_1002_aenm_202402721
crossref_primary_10_1002_admt_202201092
crossref_primary_10_1038_s41586_024_07343_x
crossref_primary_10_1002_admt_202201762
crossref_primary_10_1002_adfm_202306223
crossref_primary_10_1039_D2TA02872G
crossref_primary_10_1039_D0QM00291G
crossref_primary_10_1039_D4EE00086B
crossref_primary_10_1016_j_jcis_2021_02_007
crossref_primary_10_1002_adfm_202110535
crossref_primary_10_1016_j_jpowsour_2021_230329
crossref_primary_10_1039_D3NR05488H
crossref_primary_10_3389_fchem_2020_546728
crossref_primary_10_1002_admt_202000476
crossref_primary_10_3390_ma13122733
crossref_primary_10_1002_cnl2_33
crossref_primary_10_1002_admt_202000071
crossref_primary_10_1007_s44258_024_00048_w
crossref_primary_10_1021_acsaem_0c00070
crossref_primary_10_1016_j_mser_2022_100671
crossref_primary_10_1039_D3NR06207D
crossref_primary_10_1016_j_est_2023_108810
crossref_primary_10_1021_acs_jpclett_2c03357
crossref_primary_10_1002_adfm_202003967
crossref_primary_10_1002_adma_202109355
crossref_primary_10_1002_ange_202423419
crossref_primary_10_1002_smtd_202000827
crossref_primary_10_1038_s41565_021_01062_4
crossref_primary_10_1002_smtd_202300501
crossref_primary_10_1021_acsnano_4c04184
crossref_primary_10_1002_adma_202414620
crossref_primary_10_1039_C9CE01387C
crossref_primary_10_1016_j_jcis_2022_03_129
crossref_primary_10_1016_j_jcis_2024_10_145
crossref_primary_10_1002_cey2_284
crossref_primary_10_1016_j_mset_2020_12_001
crossref_primary_10_1002_adma_202211201
crossref_primary_10_1002_cey2_204
crossref_primary_10_1016_j_compscitech_2021_108676
crossref_primary_10_1016_j_cossms_2022_101042
crossref_primary_10_1021_acsami_1c22486
crossref_primary_10_1021_acsnano_0c10662
crossref_primary_10_1007_s11581_021_04403_4
crossref_primary_10_1088_2631_7990_ace66a
crossref_primary_10_1016_j_cej_2023_145962
crossref_primary_10_1002_eem2_12564
crossref_primary_10_1002_eom2_12218
crossref_primary_10_1039_D3TC03336H
crossref_primary_10_1021_acs_jpclett_1c03177
crossref_primary_10_1007_s12274_021_3933_7
crossref_primary_10_1360_SST_2023_0178
crossref_primary_10_1002_adfm_202105021
crossref_primary_10_1093_nsr_nwaa261
crossref_primary_10_1007_s40820_021_00588_5
crossref_primary_10_1002_ejic_202001024
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_1039_D4TA02085E
crossref_primary_10_1039_D1NA00892G
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1021_acsami_0c10460
crossref_primary_10_1016_j_cej_2023_142601
crossref_primary_10_1021_acsaem_0c02612
crossref_primary_10_1063_5_0085301
crossref_primary_10_3390_mi14061249
crossref_primary_10_1021_acs_energyfuels_1c00201
crossref_primary_10_1002_admt_202400417
crossref_primary_10_26599_NRE_2025_9120159
crossref_primary_10_1021_acsnano_4c06502
crossref_primary_10_1016_j_carbon_2021_11_009
crossref_primary_10_1002_smll_202002932
crossref_primary_10_1002_adfm_202101193
crossref_primary_10_1016_S1872_5805_22_60623_1
crossref_primary_10_1002_adfm_202103092
crossref_primary_10_1039_D3EE03059H
Cites_doi 10.1039/c3ee24260a
10.1002/adma.201202196
10.1021/nl4021649
10.1039/C4EE03912B
10.1002/smll.201602790
10.1021/acs.jpcc.8b00918
10.1016/j.nanoen.2017.06.045
10.1002/smll.201702987
10.1039/c1ee01388b
10.1021/cr500232y
10.1002/adma.201804439
10.1039/C8CS00237A
10.1002/adma.201808267
10.1016/S1872-2067(15)61089-0
10.1002/adma.201400633
10.1021/acs.nanolett.7b04502
10.1016/j.chempr.2017.05.004
10.1038/nnano.2007.151
10.1002/aenm.201700779
10.1021/nl300794f
10.1002/anie.201508848
10.1039/C6TA09806A
10.1039/C8TA01172A
10.1002/adma.201202930
10.1002/adma.201600762
10.1002/adma.201500311
10.1038/nchem.1376
10.1016/j.mattod.2015.01.002
10.1002/adma.201305919
10.1021/ja310258x
10.1002/adfm.201703140
10.1002/adma.201504241
10.1016/j.mtchem.2017.05.003
10.1021/acs.jpclett.7b00040
10.1016/j.nantod.2012.12.002
10.1002/adma.201301036
10.1002/adma.201505391
10.1039/c1cs15228a
10.1002/adma.201503891
10.1021/jz300243r
10.1039/c3ee00053b
10.1021/nl5031985
10.1039/C6EE03526D
10.1039/C5EE03404C
10.1016/j.nanoen.2018.11.057
10.1039/c4ta01878h
10.1002/adfm.201802564
10.1002/adma.201504335
10.1016/j.ensm.2018.03.022
10.1002/anie.201506142
10.1016/j.jallcom.2011.03.044
10.1039/C4CS00015C
10.1002/adma.201703791
10.1002/adma.201704378
10.1002/anie.201601804
10.1038/ncomms2553
10.1002/aenm.201600476
10.1002/adma.201003294
10.1002/smtd.201700231
10.1021/nl5009647
10.1021/jacs.6b05046
10.1021/acsami.8b07756
10.1002/aenm.201500633
10.1021/jp306718v
10.1021/ja806104n
10.1016/j.nanoen.2018.06.023
10.1039/C7CS00278E
10.1039/c4ee00318g
10.1021/acsnano.7b09003
10.1002/anie.201409366
10.1002/adma.201400910
10.1002/adma.201604685
10.1126/science.1151831
10.1002/adma.201304319
10.1021/acsenergylett.8b01552
10.1002/smll.201600540
10.1021/acsenergylett.8b01426
10.1016/j.ensm.2018.06.001
10.1016/j.carbon.2018.10.064
10.1002/er.3499
10.1002/anie.201402388
10.1038/natrevmats.2017.23
10.1039/C7SE00346C
10.1038/ncomms8892
10.1002/adfm.201808117
10.1002/aenm.201702242
10.1002/adma.201304469
10.1002/adma.201404639
10.1016/j.joule.2018.01.010
10.1038/nature16521
10.1016/j.ensm.2018.11.010
10.1016/S0378-7753(99)00474-7
10.1002/aenm.201000010
10.1021/nn1018158
10.1002/aenm.201800348
10.1021/acs.nanolett.7b00623
10.1002/adfm.201804975
10.1002/aenm.201700927
10.1039/C4NR05988C
10.1002/adma.200901710
10.1002/ange.201301941
10.1002/adma.201703657
10.1039/C7EE01913K
10.1002/adma.201602868
10.1002/smll.201800414
10.1002/adma.201203445
10.1002/aenm.201501874
10.1002/aenm.201401438
10.1002/anie.201511832
10.1038/nnano.2007.89
10.1002/aenm.201703008
10.1016/j.mattod.2014.10.040
10.1002/adma.201506112
10.1038/nmat3191
10.1002/adma.201603719
10.1039/c3nr33560g
10.1002/advs.201700691
10.1021/acscentsci.7b00120
10.1002/adma.201603436
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201901961
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31328846
10_1002_adma_201901961
ADMA201901961
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2014CB932300
– fundername: Technology and Industry for National Defence of the People's Republic of China
  funderid: JCKY2016130B010
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2016YFB0100103; 2017YFA0206704
– fundername: National Natural Science Foundation of China
  funderid: 51522101; 51471075; 51631004; 51401084
– fundername: China Postdoctoral Science Foundation
  funderid: 2016M601395
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2016YFB0100103
– fundername: National Natural Science Foundation of China
  grantid: 51471075
– fundername: China Postdoctoral Science Foundation
  grantid: 2016M601395
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2017YFA0206704
– fundername: National Basic Research Program of China
  grantid: 2014CB932300
– fundername: Technology and Industry for National Defence of the People's Republic of China
  grantid: JCKY2016130B010
– fundername: National Natural Science Foundation of China
  grantid: 51631004
– fundername: National Natural Science Foundation of China
  grantid: 51522101
– fundername: National Natural Science Foundation of China
  grantid: 51401084
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4121-d140dd78bf58be5a3d5195b0974517158a13ef7de2d343ca421c380f7986a5b33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 04:40:26 EDT 2025
Fri Jul 25 07:46:17 EDT 2025
Wed Feb 19 02:32:09 EST 2025
Tue Jul 01 00:44:53 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Jan 22 16:34:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords metal-air batteries
flexible 1D batteries
metal-ion batteries
wearable electronics
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4121-d140dd78bf58be5a3d5195b0974517158a13ef7de2d343ca421c380f7986a5b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5806-159X
PMID 31328846
PQID 2350244485
PQPubID 2045203
PageCount 19
ParticipantIDs proquest_miscellaneous_2261974688
proquest_journals_2350244485
pubmed_primary_31328846
crossref_citationtrail_10_1002_adma_201901961
crossref_primary_10_1002_adma_201901961
wiley_primary_10_1002_adma_201901961_ADMA201901961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2018; 122
2017; 7
2017; 8
2017; 1
2013; 4
2017; 2
2013; 25
2017; 3
2000; 87
2019; 56
2017; 46
2014; 26
2019; 16
2013; 125
2013; 8
2013; 5
2012; 12
2013; 6
2012; 11
2016; 37
2018; 47
2018; 6
2018; 8
2018; 3
2014; 4
2018; 2
2018; 5
2014; 2
2019; 20
2017; 39
2013; 13
2008; 319
2014; 14
2016; 40
2019; 29
2018; 30
2011; 23
2007; 2
2012; 24
2014; 7
2010; 4
2014; 53
2018; 28
2015; 6
2015; 5
2009; 21
2015; 18
2011; 1
2019; 31
2017; 27
2016; 529
2015; 54
2017; 29
2011; 4
2015; 8
2015; 7
2014; 114
2014; 43
2019; 142
2016; 12
2016; 55
2016; 6
2015; 27
2012; 3
2011; 509
2017; 17
2017; 10
2017; 13
2013; 135
2016; 138
2018; 50
2018; 12
2016; 28
2018; 10
2012; 4
2012; 116
2008; 130
2016; 9
2018; 15
2018; 14
2012; 41
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_80_1
Chen Z. (e_1_2_10_18_1) 2014; 4
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 319
  start-page: 737
  year: 2008
  publication-title: Science
– volume: 5
  start-page: 24
  year: 2017
  publication-title: Mater. Today Chem.
– volume: 16
  start-page: 243
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 8
  start-page: 1169
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 43
  start-page: 5257
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 1385
  year: 2011
  publication-title: Adv. Mater.
– volume: 3
  start-page: 348
  year: 2017
  publication-title: Chem
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 26
  start-page: 1217
  year: 2014
  publication-title: Adv. Mater.
– volume: 14
  start-page: 6572
  year: 2014
  publication-title: Nano Lett.
– volume: 2
  start-page: 378
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 3432
  year: 2014
  publication-title: Nano Lett.
– volume: 8
  start-page: 119
  year: 2013
  publication-title: Nano Today
– volume: 6
  start-page: 1125
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 663
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1909
  year: 2017
  publication-title: Sustainable Energy Fuels
– volume: 12
  start-page: 3005
  year: 2012
  publication-title: Nano Lett.
– volume: 28
  start-page: 3000
  year: 2016
  publication-title: Adv. Mater.
– volume: 46
  start-page: 6764
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 28
  start-page: 4524
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 598
  year: 2017
  publication-title: ACS Cent. Sci.
– volume: 39
  start-page: 101
  year: 2017
  publication-title: Nano Energy
– volume: 41
  start-page: 2172
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 2620
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 25
  start-page: 1155
  year: 2013
  publication-title: Adv. Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 10
  start-page: 2056
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 691
  year: 2018
  publication-title: Nano Energy
– volume: 28
  start-page: 748
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 997
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 125
  start-page: 7872
  year: 2013
  publication-title: Angew. Chem.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 20
  start-page: 234
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 18
  start-page: 265
  year: 2015
  publication-title: Mater. Today
– volume: 28
  start-page: 2587
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 5310
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 846
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 2472
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4539
  year: 2013
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1660
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 4
  start-page: 5843
  year: 2010
  publication-title: ACS Nano
– volume: 7
  start-page: 2101
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 4763
  year: 2014
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5192
  year: 2012
  publication-title: Adv. Mater.
– volume: 135
  start-page: 494
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 1172
  year: 2016
  publication-title: Chin. J. Catal.
– volume: 17
  start-page: 3543
  year: 2017
  publication-title: Nano Lett.
– volume: 142
  start-page: 379
  year: 2019
  publication-title: Carbon
– volume: 55
  start-page: 4487
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 6
  start-page: 8549
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3101
  year: 2016
  publication-title: Small
– volume: 4
  start-page: 579
  year: 2012
  publication-title: Nat. Chem.
– volume: 2
  start-page: 736
  year: 2018
  publication-title: Joule
– volume: 509
  start-page: 5974
  year: 2011
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 1830
  year: 2015
  publication-title: Nanoscale
– volume: 18
  start-page: 252
  year: 2015
  publication-title: Mater. Today
– volume: 5
  start-page: 3638
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 2273
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3287
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 207
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 40
  start-page: 1032
  year: 2016
  publication-title: Int. J. Energy Res.
– volume: 27
  start-page: 1396
  year: 2015
  publication-title: Adv. Mater.
– volume: 17
  start-page: 7989
  year: 2017
  publication-title: Nano Lett.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7892
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 491
  year: 2016
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5713
  year: 2012
  publication-title: Adv. Mater.
– volume: 13
  start-page: 4697
  year: 2013
  publication-title: Nano Lett.
– volume: 47
  start-page: 5919
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 3592
  year: 2014
  publication-title: Adv. Mater.
– volume: 15
  start-page: 124
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 3140
  year: 2018
  publication-title: ACS Nano
– volume: 55
  start-page: 7979
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 1727
  year: 2013
  publication-title: Nanoscale
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 122
  start-page: 8788
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 6421
  year: 2016
  publication-title: Adv. Mater.
– volume: 87
  start-page: 144
  year: 2000
  publication-title: J. Power Sources
– volume: 21
  start-page: 4593
  year: 2009
  publication-title: Adv. Mater.
– volume: 1
  start-page: 34
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 130
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2014
  publication-title: Adv. Eng. Mater.
– volume: 4
  start-page: 1543
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2414
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 454
  year: 2019
  publication-title: Nano Energy
– volume: 53
  start-page: 7864
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_10_25_1
  doi: 10.1039/c3ee24260a
– ident: e_1_2_10_30_1
  doi: 10.1002/adma.201202196
– ident: e_1_2_10_111_1
  doi: 10.1021/nl4021649
– ident: e_1_2_10_80_1
  doi: 10.1039/C4EE03912B
– ident: e_1_2_10_9_1
  doi: 10.1002/smll.201602790
– ident: e_1_2_10_57_1
  doi: 10.1021/acs.jpcc.8b00918
– ident: e_1_2_10_70_1
  doi: 10.1016/j.nanoen.2017.06.045
– ident: e_1_2_10_95_1
  doi: 10.1002/smll.201702987
– ident: e_1_2_10_27_1
  doi: 10.1039/c1ee01388b
– ident: e_1_2_10_53_1
  doi: 10.1021/cr500232y
– ident: e_1_2_10_120_1
  doi: 10.1002/adma.201804439
– ident: e_1_2_10_29_1
  doi: 10.1039/C8CS00237A
– ident: e_1_2_10_83_1
  doi: 10.1002/adma.201808267
– ident: e_1_2_10_118_1
  doi: 10.1016/S1872-2067(15)61089-0
– ident: e_1_2_10_6_1
  doi: 10.1002/adma.201400633
– ident: e_1_2_10_81_1
  doi: 10.1021/acs.nanolett.7b04502
– ident: e_1_2_10_51_1
  doi: 10.1016/j.chempr.2017.05.004
– ident: e_1_2_10_3_1
  doi: 10.1038/nnano.2007.151
– ident: e_1_2_10_89_1
  doi: 10.1002/aenm.201700779
– ident: e_1_2_10_19_1
  doi: 10.1021/nl300794f
– ident: e_1_2_10_93_1
  doi: 10.1002/anie.201508848
– ident: e_1_2_10_108_1
  doi: 10.1039/C6TA09806A
– ident: e_1_2_10_62_1
  doi: 10.1039/C8TA01172A
– ident: e_1_2_10_11_1
  doi: 10.1002/adma.201202930
– ident: e_1_2_10_77_1
  doi: 10.1002/adma.201600762
– ident: e_1_2_10_14_1
  doi: 10.1002/adma.201500311
– ident: e_1_2_10_114_1
  doi: 10.1038/nchem.1376
– ident: e_1_2_10_23_1
  doi: 10.1016/j.mattod.2015.01.002
– ident: e_1_2_10_12_1
  doi: 10.1002/adma.201305919
– ident: e_1_2_10_110_1
  doi: 10.1021/ja310258x
– ident: e_1_2_10_43_1
  doi: 10.1002/adfm.201703140
– ident: e_1_2_10_121_1
  doi: 10.1002/adma.201504241
– ident: e_1_2_10_22_1
  doi: 10.1016/j.mtchem.2017.05.003
– ident: e_1_2_10_103_1
  doi: 10.1021/acs.jpclett.7b00040
– ident: e_1_2_10_39_1
  doi: 10.1016/j.nantod.2012.12.002
– ident: e_1_2_10_42_1
  doi: 10.1002/adma.201301036
– ident: e_1_2_10_41_1
  doi: 10.1002/adma.201505391
– ident: e_1_2_10_90_1
  doi: 10.1002/adma.201600762
– ident: e_1_2_10_71_1
  doi: 10.1039/c1cs15228a
– ident: e_1_2_10_24_1
  doi: 10.1002/adma.201503891
– ident: e_1_2_10_109_1
  doi: 10.1021/jz300243r
– ident: e_1_2_10_97_1
  doi: 10.1039/c3ee00053b
– ident: e_1_2_10_116_1
  doi: 10.1021/nl5031985
– ident: e_1_2_10_40_1
  doi: 10.1039/C6EE03526D
– ident: e_1_2_10_68_1
  doi: 10.1039/C5EE03404C
– ident: e_1_2_10_92_1
  doi: 10.1016/j.nanoen.2018.11.057
– ident: e_1_2_10_45_1
  doi: 10.1039/c4ta01878h
– ident: e_1_2_10_54_1
  doi: 10.1002/adfm.201802564
– ident: e_1_2_10_8_1
  doi: 10.1002/adma.201504335
– ident: e_1_2_10_74_1
  doi: 10.1016/j.ensm.2018.03.022
– ident: e_1_2_10_44_1
  doi: 10.1002/anie.201506142
– ident: e_1_2_10_59_1
  doi: 10.1016/j.jallcom.2011.03.044
– ident: e_1_2_10_66_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_10_102_1
  doi: 10.1002/adma.201703791
– ident: e_1_2_10_117_1
  doi: 10.1002/adma.201704378
– ident: e_1_2_10_122_1
  doi: 10.1002/anie.201601804
– ident: e_1_2_10_20_1
  doi: 10.1038/ncomms2553
– ident: e_1_2_10_85_1
  doi: 10.1002/aenm.201600476
– ident: e_1_2_10_36_1
  doi: 10.1002/adma.201003294
– ident: e_1_2_10_113_1
  doi: 10.1002/smtd.201700231
– ident: e_1_2_10_31_1
  doi: 10.1021/nl5009647
– ident: e_1_2_10_78_1
  doi: 10.1021/jacs.6b05046
– ident: e_1_2_10_60_1
  doi: 10.1021/acsami.8b07756
– ident: e_1_2_10_100_1
  doi: 10.1002/aenm.201500633
– ident: e_1_2_10_115_1
  doi: 10.1021/jp306718v
– ident: e_1_2_10_35_1
  doi: 10.1021/ja806104n
– ident: e_1_2_10_73_1
  doi: 10.1016/j.nanoen.2018.06.023
– ident: e_1_2_10_2_1
  doi: 10.1039/C7CS00278E
– ident: e_1_2_10_10_1
  doi: 10.1039/c4ee00318g
– ident: e_1_2_10_63_1
  doi: 10.1021/acsnano.7b09003
– volume: 4
  start-page: 400207
  year: 2014
  ident: e_1_2_10_18_1
  publication-title: Adv. Eng. Mater.
– ident: e_1_2_10_46_1
  doi: 10.1002/anie.201409366
– ident: e_1_2_10_16_1
  doi: 10.1002/adma.201400910
– ident: e_1_2_10_86_1
  doi: 10.1002/adma.201604685
– ident: e_1_2_10_13_1
  doi: 10.1126/science.1151831
– ident: e_1_2_10_34_1
  doi: 10.1002/adma.201304319
– ident: e_1_2_10_55_1
  doi: 10.1021/acsenergylett.8b01552
– ident: e_1_2_10_101_1
  doi: 10.1002/smll.201600540
– ident: e_1_2_10_56_1
  doi: 10.1021/acsenergylett.8b01426
– ident: e_1_2_10_79_1
  doi: 10.1016/j.ensm.2018.06.001
– ident: e_1_2_10_72_1
  doi: 10.1016/j.carbon.2018.10.064
– ident: e_1_2_10_84_1
  doi: 10.1002/er.3499
– ident: e_1_2_10_37_1
  doi: 10.1002/anie.201402388
– ident: e_1_2_10_21_1
  doi: 10.1038/natrevmats.2017.23
– ident: e_1_2_10_88_1
  doi: 10.1039/C7SE00346C
– ident: e_1_2_10_104_1
  doi: 10.1038/ncomms8892
– ident: e_1_2_10_119_1
  doi: 10.1002/adfm.201808117
– ident: e_1_2_10_107_1
  doi: 10.1002/aenm.201702242
– ident: e_1_2_10_48_1
  doi: 10.1002/adma.201304469
– ident: e_1_2_10_94_1
  doi: 10.1002/adma.201404639
– ident: e_1_2_10_49_1
  doi: 10.1016/j.joule.2018.01.010
– ident: e_1_2_10_7_1
  doi: 10.1038/nature16521
– ident: e_1_2_10_91_1
  doi: 10.1016/j.ensm.2018.11.010
– ident: e_1_2_10_58_1
  doi: 10.1016/S0378-7753(99)00474-7
– ident: e_1_2_10_99_1
  doi: 10.1002/aenm.201000010
– ident: e_1_2_10_17_1
  doi: 10.1021/nn1018158
– ident: e_1_2_10_98_1
  doi: 10.1002/aenm.201800348
– ident: e_1_2_10_38_1
  doi: 10.1021/acs.nanolett.7b00623
– ident: e_1_2_10_61_1
  doi: 10.1002/adfm.201804975
– ident: e_1_2_10_87_1
  doi: 10.1002/aenm.201700927
– ident: e_1_2_10_82_1
  doi: 10.1039/C4NR05988C
– ident: e_1_2_10_28_1
  doi: 10.1002/adma.200901710
– ident: e_1_2_10_4_1
  doi: 10.1002/ange.201301941
– ident: e_1_2_10_75_1
  doi: 10.1002/adma.201703657
– ident: e_1_2_10_65_1
  doi: 10.1039/C7EE01913K
– ident: e_1_2_10_64_1
  doi: 10.1002/aenm.201000010
– ident: e_1_2_10_76_1
  doi: 10.1002/adma.201602868
– ident: e_1_2_10_32_1
  doi: 10.1002/smll.201800414
– ident: e_1_2_10_33_1
  doi: 10.1002/adma.201203445
– ident: e_1_2_10_50_1
  doi: 10.1002/aenm.201501874
– ident: e_1_2_10_105_1
  doi: 10.1002/aenm.201401438
– ident: e_1_2_10_106_1
  doi: 10.1002/anie.201511832
– ident: e_1_2_10_1_1
  doi: 10.1038/nnano.2007.89
– ident: e_1_2_10_52_1
  doi: 10.1002/aenm.201703008
– ident: e_1_2_10_26_1
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_10_69_1
  doi: 10.1002/adma.201506112
– ident: e_1_2_10_96_1
  doi: 10.1038/nmat3191
– ident: e_1_2_10_47_1
  doi: 10.1002/adma.201603719
– ident: e_1_2_10_5_1
  doi: 10.1039/c3nr33560g
– ident: e_1_2_10_67_1
  doi: 10.1002/advs.201700691
– ident: e_1_2_10_112_1
  doi: 10.1021/acscentsci.7b00120
– ident: e_1_2_10_15_1
  doi: 10.1002/adma.201603436
SSID ssj0009606
Score 2.6399
SecondaryResourceType review_article
Snippet With the rapid development of wearable and portable electronics, flexible and stretchable energy storage devices to power them are rapidly emerging. Among...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1901961
SubjectTerms Commercialization
Computer storage devices
Energy storage
flexible 1D batteries
Flux density
Lithium-ion batteries
Metal air batteries
metal‐ion batteries
Miniaturization
Portable equipment
Storage batteries
wearable electronics
Zinc-oxygen batteries
Title Flexible 1D Batteries: Recent Progress and Prospects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901961
https://www.ncbi.nlm.nih.gov/pubmed/31328846
https://www.proquest.com/docview/2350244485
https://www.proquest.com/docview/2261974688
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfspMe_P2jOqWC4Clbmx9N6m04xxAmIg52K2mSXhyduO3iX2-SbnVTRNBjaULTJC_v-9qXTwCuaEp0lOICcWoYokQmSKrYIGnj20JpWUQekjR4SPpDej9io5Vd_BUfov7g5izDr9fOwGU-bX9CQ6X23CDn0FIf_7iELaeKnj75UU6ee9geYShNqFhSGyPcXq--7pW-Sc115epdT28H5LLRVcbJS2s-y1vq_QvP8T9vtQvbC10adqqJtAcbptyHrRVa4QHQnoNn5mMTxt2w4nLaMPsmtMrTeq7w0WV62XUzlKV2F34P5_QQhr2759s-Why6gBSNcYy0jbi05iIvmMgNk0Q7_kwe2biDxTxmQsbEFFwbrAklSlIcKyKigqcikSwn5Aga5aQ0JxBqwpkxkirBMOXCLhVWfpBCWomguKRpAGjZ6ZlaEMndwRjjrGIp48z1Rlb3RgDXdfnXisXxY8nmcgyzhU1OM0yYFSQ2HGUBXNa3rTW5XySyNJO5LeMCSk4TIQI4rsa-fpSDXAor1wLAfgR_aUPW6Q469dXpXyqdwSZ24b1PEm9CY_Y2N-dWA83yCz_PPwBeGvl5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1baxQxFMcPpT6oD94vo1VHUHxKO7lNMgUfFtdla7tFpIW-jZkkA2KZirtLqd_Kr-In6knmUlcRQeiDj2EyTMjlnP_JnPwC8EIU3GUFq4kSXhLBTU6MpZ4YjG9r60ydRUjSbD-fHop3R_JoDb73Z2FaPsSw4RZWRrTXYYGHDemtC2qocREcFDxakdMur3LXn51i1DZ_vTPGIX7J2OTtwZsp6S4WIFZQRonDqMI5pata6spLw11grFQZamtJFZXaUO5r5TxzXHBrBKOW66xWhc6NrMIeKFr9K-Ea8YDrH3-4IFaFgCDi_bgkRS50z4nM2NZqe1f94G_idlUrR2c3uQk_-m5qc1w-by4X1ab99gtB8r_qx1two5Pe6ahdK7dhzTd34PpPQMa7ICaBD1od-5SO0xY9-snPt1MU1-ic0_chmQ1dQ2oaFwrxmOr8HhxeSrPvw3pz0viHkDqupPdGWC2ZUBqtISosXhtUQVYZUSRA-lEubQddD3d_HJctLpqVoffLofcTeDXU_9LiRv5Yc6OfNGVnduYl4xI1F0bcMoHnw2M0GOEvkGn8yRLrhJhZiVzrBB60k234VOB4alSkCbA4Zf7ShnI0no2G0qN_eekZXJ0ezPbKvZ393cdwjYXdjJgTvwHri69L_wQl36J6GhdZCh8vezaeA9-zVZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1baxUxEMeHUkH0wftlteoKik9pN7dNVvDh4HporS1FLPRtzSZZEMu2eM5B2k_lV-k36iR7qUcRQeiDj2GzbMhl5j_ZyS8AL0TBXVawhijhJRHc5MRY6onB-LaxzjRZhCTt7Oab--L9gTxYgR_DWZiODzFuuIWVEe11WODHrtm4gIYaF7lBwaEVOe3TKrf9yXcM2mZvtkoc4ZeMTd99ertJ-nsFiBWUUeIwqHBO6bqRuvbScBcQK3WG0lpSRaU2lPtGOc8cF9wawajlOmtUoXMj67AFikb_isizIlwWUX68AFaFeCDS_bgkRS70gInM2MZye5fd4G_adlkqR183vQlnQy91KS5f1xfzet2e_gKQ_J-68Rbc6IV3OulWym1Y8e0duP4TjvEuiGmgg9aHPqVl2oFHv_jZ6xSlNbrmdC-ksqFjSE3rQiEeUp3dg_1LafZ9WG2PWv8QUseV9N4IqyUTSqMtRH3FG4MayCojigTIMMiV7ZHr4eaPw6qDRbMq9H419n4Cr8b6xx1s5I8114Y5U_VGZ1YxLlFxYbwtE3g-PkZzEf4BmdYfLbBOiJiVyLVO4EE318ZPBYqnRj2aAIsz5i9tqCblzmQsPfqXl57B1b1yWn3Y2t1-DNdY2MqICfFrsDr_tvBPUO_N66dxiaXw-bIn4zlV0lQ_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+1D+Batteries%3A+Recent+Progress+and+Prospects&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Yun%E2%80%90Hai&rft.au=Yang%2C+Xiao%E2%80%90Yang&rft.au=Liu%2C+Tong&rft.au=Zhang%2C+Xin%E2%80%90Bo&rft.date=2020-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201901961&rft.externalDBID=10.1002%252Fadma.201901961&rft.externalDocID=ADMA201901961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon