Graphitic Carbon Nitride (g‐C3N4)‐Derived N‐Rich Graphene with Tuneable Interlayer Distance as a High‐Rate Anode for Sodium‐Ion Batteries

Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 24; pp. e1901261 - n/a
Main Authors Liu, Jinlong, Zhang, Yaqian, Zhang, Lei, Xie, Fangxi, Vasileff, Anthony, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g−1 at 40 A g−1) and excellent long‐term stability (211.3 mAh g−1 at 0.5 A g−1 after 2000 cycles), demonstrating the effectiveness of material design. Well‐controlled N‐doped few‐layer graphene (N‐FLG) with tunable interlayer structure, nitrogen content, and nitrogen configuration, is realized through the pyrolysis of g‐C3N4 under zinc catalysis and appropriate temperature. The optimal N‐FLG‐800 features significantly enlarged interplanar spacing and high nitrogen content with pyridinic and pyrrolic configurations, resulting in superior Na+ storage performance and ultrahigh rate capability.
AbstractList Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C 3 N 4 ) under zinc catalysis and selected temperature ( T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na + storage performance with ultrahigh rate capability (56.6 mAh g −1 at 40 A g −1 ) and excellent long‐term stability (211.3 mAh g −1 at 0.5 A g −1 after 2000 cycles), demonstrating the effectiveness of material design.
Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N-rich few-layer graphene (N-FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g-C3 N4 ) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N-FLG-800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N-FLG-800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g-1 at 40 A g-1 ) and excellent long-term stability (211.3 mAh g-1 at 0.5 A g-1 after 2000 cycles), demonstrating the effectiveness of material design.Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N-rich few-layer graphene (N-FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g-C3 N4 ) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N-FLG-800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N-FLG-800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g-1 at 40 A g-1 ) and excellent long-term stability (211.3 mAh g-1 at 0.5 A g-1 after 2000 cycles), demonstrating the effectiveness of material design.
Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N-rich few-layer graphene (N-FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g-C N ) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N-FLG-800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N-FLG-800 shows remarkable Na storage performance with ultrahigh rate capability (56.6 mAh g at 40 A g ) and excellent long-term stability (211.3 mAh g at 0.5 A g after 2000 cycles), demonstrating the effectiveness of material design.
Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g−1 at 40 A g−1) and excellent long‐term stability (211.3 mAh g−1 at 0.5 A g−1 after 2000 cycles), demonstrating the effectiveness of material design. Well‐controlled N‐doped few‐layer graphene (N‐FLG) with tunable interlayer structure, nitrogen content, and nitrogen configuration, is realized through the pyrolysis of g‐C3N4 under zinc catalysis and appropriate temperature. The optimal N‐FLG‐800 features significantly enlarged interplanar spacing and high nitrogen content with pyridinic and pyrrolic configurations, resulting in superior Na+ storage performance and ultrahigh rate capability.
Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g−1 at 40 A g−1) and excellent long‐term stability (211.3 mAh g−1 at 0.5 A g−1 after 2000 cycles), demonstrating the effectiveness of material design.
Author Xie, Fangxi
Vasileff, Anthony
Liu, Jinlong
Qiao, Shi‐Zhang
Zhang, Yaqian
Zhang, Lei
Author_xml – sequence: 1
  givenname: Jinlong
  surname: Liu
  fullname: Liu, Jinlong
  organization: The University of Adelaide
– sequence: 2
  givenname: Yaqian
  surname: Zhang
  fullname: Zhang, Yaqian
  organization: University of Alberta
– sequence: 3
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: The University of Adelaide
– sequence: 4
  givenname: Fangxi
  surname: Xie
  fullname: Xie, Fangxi
  organization: The University of Adelaide
– sequence: 5
  givenname: Anthony
  surname: Vasileff
  fullname: Vasileff, Anthony
  organization: The University of Adelaide
– sequence: 6
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30998272$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEQhi1URNPClSOyxKUcEuz12rs-hgTaSCVIUM6r2fVs42rXG2wvVW48AhJvyJPgkFKkSojTWNb3zXj8n5AjNzgk5DlnM85Y9hpMD7OMcc14pvgjMuEy49OcaXlEJkwLOdUqL4_JSQg3jDGtmHpCjgXTusyKbEJ-nHvYbmy0DV2ArwdH1zZ6a5CeXf_89n0h1vmrVJfo7Vc0dJ3OH22zob81dEhvbdzQq9Eh1B3SlYvoO9ihp0sbIrgGKQQK9MJeb_YuRKRzN6T-7eDpp8HYsU_3qzT4DcQkWwxPyeMWuoDP7uop-fzu7dXiYnr54Xy1mF9Om5ynJRtelEY2pRSlMaLVvACuUNdS1IWSHIAZ1UimCtkKU5QqLwDKwmRpc6Og5uKUnB36bv3wZcQQq96GBrsOHA5jqLKMc5FxrUVCXz5Ab4bRu_S6RAnFJRdyT724o8a6R1Ntve3B76o_352A2QFo_BCCx_Ye4aza51nt86zu80xC_kBobIRoBxc92O7fmj5ot7bD3X-GVPPl-_lf9xfjc7eZ
CitedBy_id crossref_primary_10_1021_acssuschemeng_0c05520
crossref_primary_10_1002_smll_202204375
crossref_primary_10_1016_j_ces_2021_116709
crossref_primary_10_1002_adma_201905361
crossref_primary_10_1039_D5GC00029G
crossref_primary_10_1039_D4NR04936E
crossref_primary_10_1002_ange_202012141
crossref_primary_10_1016_j_jallcom_2022_165131
crossref_primary_10_1021_acsami_1c18464
crossref_primary_10_1016_j_jcis_2024_01_141
crossref_primary_10_1039_D0CC03253K
crossref_primary_10_3390_nano13182525
crossref_primary_10_1002_eem2_12733
crossref_primary_10_1021_jacs_2c05247
crossref_primary_10_1039_C9GC04333K
crossref_primary_10_1002_aenm_202400929
crossref_primary_10_1021_acsami_1c05162
crossref_primary_10_1021_acs_jpclett_2c03032
crossref_primary_10_1002_adma_202407570
crossref_primary_10_1016_j_nanoms_2021_06_007
crossref_primary_10_1016_j_jece_2024_113415
crossref_primary_10_1002_batt_202100369
crossref_primary_10_1007_s40843_021_1733_1
crossref_primary_10_1039_C9RA09411C
crossref_primary_10_1016_j_cej_2022_141196
crossref_primary_10_1002_admi_202001847
crossref_primary_10_1039_D2NJ02098J
crossref_primary_10_1016_j_jallcom_2022_165353
crossref_primary_10_1016_j_jcis_2022_04_140
crossref_primary_10_1155_2023_9881400
crossref_primary_10_1002_adfm_202203279
crossref_primary_10_1016_j_fbio_2024_104718
crossref_primary_10_1002_ange_201914001
crossref_primary_10_1021_acs_energyfuels_3c00220
crossref_primary_10_1016_j_jpowsour_2022_231849
crossref_primary_10_1016_j_seppur_2021_120005
crossref_primary_10_1016_S1872_5805_21_60007_0
crossref_primary_10_1002_adfm_202106958
crossref_primary_10_1016_j_jcis_2021_03_163
crossref_primary_10_1002_adfm_202107928
crossref_primary_10_1039_D1CY00388G
crossref_primary_10_1002_ange_202009180
crossref_primary_10_1002_admi_202102408
crossref_primary_10_1039_D0CC04112B
crossref_primary_10_1002_eem2_12749
crossref_primary_10_1039_D0NJ01373K
crossref_primary_10_1002_anie_201914001
crossref_primary_10_1039_D0QM00598C
crossref_primary_10_1021_acsami_2c08282
crossref_primary_10_1016_j_jhazmat_2022_129056
crossref_primary_10_1016_j_electacta_2022_139964
crossref_primary_10_1039_D0TA10179F
crossref_primary_10_1002_smll_201907164
crossref_primary_10_1002_smll_202309353
crossref_primary_10_1021_acsanm_4c05088
crossref_primary_10_1021_acsami_0c14538
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1016_j_chphi_2023_100408
crossref_primary_10_1016_j_cej_2020_127471
crossref_primary_10_1088_1361_6463_ab8e79
crossref_primary_10_1016_j_jece_2022_107869
crossref_primary_10_1016_j_jelechem_2022_116769
crossref_primary_10_1002_slct_202102274
crossref_primary_10_1021_acsami_1c11922
crossref_primary_10_1021_acs_inorgchem_3c00646
crossref_primary_10_1016_j_apsusc_2020_145963
crossref_primary_10_1016_j_cej_2025_159764
crossref_primary_10_1021_acs_nanolett_1c03381
crossref_primary_10_1002_adfm_202306574
crossref_primary_10_1016_j_carbon_2021_11_036
crossref_primary_10_1016_j_cej_2024_157044
crossref_primary_10_1002_anie_202012141
crossref_primary_10_1002_ange_201905803
crossref_primary_10_1021_acssuschemeng_3c05202
crossref_primary_10_1016_j_ijhydene_2021_01_195
crossref_primary_10_1016_j_jallcom_2021_160667
crossref_primary_10_1039_D0CP06518H
crossref_primary_10_1039_D1DT00490E
crossref_primary_10_1007_s12668_023_01149_3
crossref_primary_10_1021_acsaem_2c01201
crossref_primary_10_1002_adfm_202102300
crossref_primary_10_1016_j_jallcom_2021_159670
crossref_primary_10_1021_acsnano_0c10624
crossref_primary_10_1002_adfm_202102540
crossref_primary_10_1021_acsami_0c11282
crossref_primary_10_1016_j_cej_2021_134075
crossref_primary_10_1039_D4EE00315B
crossref_primary_10_1002_smll_202301975
crossref_primary_10_1002_er_7377
crossref_primary_10_1016_j_cej_2022_139805
crossref_primary_10_1007_s40820_020_00522_1
crossref_primary_10_1021_acsami_2c20068
crossref_primary_10_1021_acsaem_9b02166
crossref_primary_10_1002_anie_202116394
crossref_primary_10_1016_j_carbon_2024_119354
crossref_primary_10_1002_aenm_202000099
crossref_primary_10_1016_j_colsurfa_2020_126096
crossref_primary_10_1016_j_colsurfa_2019_123721
crossref_primary_10_1016_j_cis_2024_103284
crossref_primary_10_3390_nano11071863
crossref_primary_10_1002_ange_202307083
crossref_primary_10_1002_batt_202100313
crossref_primary_10_1016_j_seppur_2023_126078
crossref_primary_10_1016_j_jpowsour_2021_230003
crossref_primary_10_1021_acsanm_4c00775
crossref_primary_10_1039_D1NR02826J
crossref_primary_10_1021_acsmaterialslett_0c00215
crossref_primary_10_1002_batt_202300613
crossref_primary_10_1016_j_ceramint_2021_07_195
crossref_primary_10_1002_ange_202116394
crossref_primary_10_1016_j_cej_2023_144698
crossref_primary_10_1016_j_aca_2020_05_033
crossref_primary_10_1016_j_seppur_2024_127694
crossref_primary_10_1002_cey2_198
crossref_primary_10_1002_ange_202000314
crossref_primary_10_1021_acs_chemrev_1c00636
crossref_primary_10_1016_j_seppur_2021_118474
crossref_primary_10_1039_D2NR03469G
crossref_primary_10_1016_j_jcis_2021_12_121
crossref_primary_10_1002_celc_201901770
crossref_primary_10_1039_D1TA04193B
crossref_primary_10_1016_j_isci_2023_108470
crossref_primary_10_1039_D1CE00439E
crossref_primary_10_1039_D1EE00166C
crossref_primary_10_1021_acs_est_1c06205
crossref_primary_10_1016_j_cej_2021_131156
crossref_primary_10_1016_j_cej_2021_131032
crossref_primary_10_1002_solr_202000326
crossref_primary_10_1016_j_jallcom_2023_169076
crossref_primary_10_1016_j_nanoen_2022_107767
crossref_primary_10_1002_anie_201905803
crossref_primary_10_1088_2516_1083_aba5f5
crossref_primary_10_1039_D3TA01362F
crossref_primary_10_1016_j_apsusc_2023_158321
crossref_primary_10_1002_smll_202102159
crossref_primary_10_1002_smll_202406630
crossref_primary_10_1016_j_carbon_2020_07_022
crossref_primary_10_3390_nano14110937
crossref_primary_10_1016_j_cej_2021_130070
crossref_primary_10_1016_j_carbon_2020_07_021
crossref_primary_10_1021_acs_nanolett_2c02177
crossref_primary_10_1016_S1872_5805_24_60877_2
crossref_primary_10_1016_j_jcis_2024_06_049
crossref_primary_10_1016_j_cej_2022_134727
crossref_primary_10_1016_j_nanoen_2021_106246
crossref_primary_10_1002_er_7323
crossref_primary_10_1039_C9QM00425D
crossref_primary_10_1039_D0TA03181J
crossref_primary_10_1039_D1SE01060C
crossref_primary_10_1016_j_jallcom_2023_171494
crossref_primary_10_1021_acsmaterialslett_1c00280
crossref_primary_10_1039_D1TA09645A
crossref_primary_10_3390_ma12121952
crossref_primary_10_1002_sstr_202100041
crossref_primary_10_1039_D1EE01346G
crossref_primary_10_1002_ange_202407578
crossref_primary_10_1039_D3QI00056G
crossref_primary_10_1016_j_jpowsour_2021_230530
crossref_primary_10_1016_j_gee_2020_05_006
crossref_primary_10_1016_j_carbon_2020_12_010
crossref_primary_10_1002_smtd_202000314
crossref_primary_10_1002_ente_202000361
crossref_primary_10_3390_ijms24108777
crossref_primary_10_1016_j_carbon_2021_09_061
crossref_primary_10_1002_smll_202403261
crossref_primary_10_1016_j_est_2023_109571
crossref_primary_10_1016_j_cej_2021_134321
crossref_primary_10_1016_j_apsusc_2021_149312
crossref_primary_10_1002_cnma_202200348
crossref_primary_10_1016_j_foodchem_2020_126848
crossref_primary_10_1007_s12274_024_6448_1
crossref_primary_10_1002_adfm_202202351
crossref_primary_10_1016_j_jallcom_2020_157686
crossref_primary_10_1016_j_cej_2023_141363
crossref_primary_10_1039_C9NR10473A
crossref_primary_10_1002_bkcs_12798
crossref_primary_10_1016_j_electacta_2022_140198
crossref_primary_10_1021_acsanm_4c06475
crossref_primary_10_1021_acssuschemeng_9b06534
crossref_primary_10_1002_cnma_201900582
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1016_j_cej_2024_152422
crossref_primary_10_3390_nano14110988
crossref_primary_10_1039_D1TA08215A
crossref_primary_10_1002_smtd_201900853
crossref_primary_10_1002_adfm_202403642
crossref_primary_10_1039_C9NR07886J
crossref_primary_10_1002_cnma_202200137
crossref_primary_10_1021_acsaem_0c02730
crossref_primary_10_1016_j_cej_2021_131080
crossref_primary_10_1039_D2TA09502E
crossref_primary_10_1002_tcr_202200171
crossref_primary_10_1016_j_apsusc_2021_150439
crossref_primary_10_1021_acsami_0c04469
crossref_primary_10_1039_D2CC01140A
crossref_primary_10_1002_adma_201905923
crossref_primary_10_1016_j_est_2024_111900
crossref_primary_10_1016_j_jece_2023_111642
crossref_primary_10_1039_D2CP06044B
crossref_primary_10_1039_D1TA09964G
crossref_primary_10_1038_s43246_022_00301_y
crossref_primary_10_1021_acs_energyfuels_4c01895
crossref_primary_10_1016_j_cej_2020_124606
crossref_primary_10_1016_j_ces_2021_117241
crossref_primary_10_1021_acssuschemeng_0c00502
crossref_primary_10_1002_adfm_202304753
crossref_primary_10_1039_D4CP04214J
crossref_primary_10_1002_adma_202412592
crossref_primary_10_1002_asia_202200192
crossref_primary_10_1039_D2CC02265F
crossref_primary_10_1039_D2TA05678J
crossref_primary_10_1016_j_jpowsour_2020_228769
crossref_primary_10_1039_D1TA01768C
crossref_primary_10_1016_j_jelechem_2020_114044
crossref_primary_10_1016_j_jallcom_2021_159080
crossref_primary_10_1016_j_apsusc_2023_159155
crossref_primary_10_1016_j_apsusc_2024_159770
crossref_primary_10_1016_j_apsusc_2020_147309
crossref_primary_10_3390_nano12162821
crossref_primary_10_1016_j_matt_2019_12_020
crossref_primary_10_1002_cey2_482
crossref_primary_10_1002_eem2_12169
crossref_primary_10_1002_smll_202307923
crossref_primary_10_1016_j_carbon_2021_08_060
crossref_primary_10_1088_1361_6528_ab7101
crossref_primary_10_3390_en14092436
crossref_primary_10_1088_1361_6463_abfdd8
crossref_primary_10_1016_j_jechem_2022_09_009
crossref_primary_10_1007_s12598_024_02974_5
crossref_primary_10_1002_cey2_490
crossref_primary_10_1016_j_jpowsour_2022_231292
crossref_primary_10_1002_asia_201901802
crossref_primary_10_1021_acs_langmuir_4c02868
crossref_primary_10_1002_cctc_202201620
crossref_primary_10_1039_D3NJ05154D
crossref_primary_10_1016_j_mattod_2024_12_003
crossref_primary_10_1021_acssuschemeng_3c02504
crossref_primary_10_1021_acs_inorgchem_3c04626
crossref_primary_10_1016_j_apsusc_2022_153890
crossref_primary_10_1039_D2TA00506A
crossref_primary_10_1021_acsanm_9b01222
crossref_primary_10_1016_j_bioactmat_2024_02_018
crossref_primary_10_1016_j_cej_2020_125705
crossref_primary_10_1021_acs_energyfuels_0c02278
crossref_primary_10_1016_j_jcis_2021_08_063
crossref_primary_10_1016_j_scib_2020_02_015
crossref_primary_10_1016_j_ijhydene_2022_06_173
crossref_primary_10_1016_j_cej_2024_155204
crossref_primary_10_1021_acsami_0c12838
crossref_primary_10_1002_ange_202110373
crossref_primary_10_1016_j_nanoen_2023_108744
crossref_primary_10_1002_adfm_202310286
crossref_primary_10_1515_ntrev_2024_0127
crossref_primary_10_1039_D0TA04513F
crossref_primary_10_1016_j_jallcom_2022_164645
crossref_primary_10_1016_j_nanoen_2019_104132
crossref_primary_10_1002_adma_201904635
crossref_primary_10_1002_aenm_202000789
crossref_primary_10_1016_j_matt_2023_04_004
crossref_primary_10_1016_j_carbon_2021_07_064
crossref_primary_10_1039_D1EE00370D
crossref_primary_10_1016_j_apsusc_2024_160973
crossref_primary_10_1039_D3CC05976F
crossref_primary_10_1002_admi_202201941
crossref_primary_10_1016_j_molliq_2021_117820
crossref_primary_10_1016_j_cej_2023_145454
crossref_primary_10_1002_anie_202110373
crossref_primary_10_1016_j_jhazmat_2021_126267
crossref_primary_10_1016_j_nanoen_2021_106184
crossref_primary_10_1002_smll_201906883
crossref_primary_10_1016_j_chempr_2021_01_001
crossref_primary_10_1039_D0NR01612H
crossref_primary_10_1016_j_jelechem_2023_117485
crossref_primary_10_1016_j_est_2023_107673
crossref_primary_10_1016_j_jallcom_2020_156992
crossref_primary_10_1016_j_jallcom_2020_157720
crossref_primary_10_1016_j_jece_2021_106545
crossref_primary_10_1016_j_jelechem_2019_113706
crossref_primary_10_1002_solr_201900517
crossref_primary_10_1021_acs_jpclett_2c01687
crossref_primary_10_1038_s41467_024_50899_5
crossref_primary_10_1002_cben_202200038
crossref_primary_10_1002_smll_202400845
crossref_primary_10_1016_j_inoche_2023_111184
crossref_primary_10_1002_celc_202200138
crossref_primary_10_1007_s12598_023_02397_8
crossref_primary_10_1016_j_cej_2021_131591
crossref_primary_10_1016_j_apsusc_2020_148473
crossref_primary_10_1016_j_colsurfa_2024_134643
crossref_primary_10_1039_D1CY02181H
crossref_primary_10_1007_s11706_023_0651_y
crossref_primary_10_1016_j_apsusc_2023_158006
crossref_primary_10_1016_j_seppur_2023_125429
crossref_primary_10_3390_molecules28083458
crossref_primary_10_6023_A20120575
crossref_primary_10_1016_j_jallcom_2021_163009
crossref_primary_10_1016_j_carbon_2022_03_054
crossref_primary_10_1016_j_jechem_2020_06_066
crossref_primary_10_1021_acssuschemeng_2c04585
crossref_primary_10_1002_adfm_202210143
crossref_primary_10_1039_D1TA10889A
crossref_primary_10_1002_cey2_221
crossref_primary_10_1039_D4SE00478G
crossref_primary_10_1039_D4SC01799D
crossref_primary_10_1039_D1EN00426C
crossref_primary_10_1002_adfm_202201322
crossref_primary_10_1016_j_apsusc_2021_151800
crossref_primary_10_1021_acs_energyfuels_2c04223
crossref_primary_10_1039_D4SC07354A
crossref_primary_10_1007_s00339_023_06674_2
crossref_primary_10_1002_smll_202303296
crossref_primary_10_1021_acs_langmuir_4c03305
crossref_primary_10_1039_D0QM01124J
crossref_primary_10_1016_j_ssi_2020_115451
crossref_primary_10_1038_s41467_020_14671_9
crossref_primary_10_1142_S1793604723400040
crossref_primary_10_1039_D5TA00740B
crossref_primary_10_1021_acs_iecr_3c01472
crossref_primary_10_1016_j_nantod_2019_100796
crossref_primary_10_1016_j_seppur_2020_117765
crossref_primary_10_1016_j_cej_2023_142826
crossref_primary_10_1002_anie_202407578
crossref_primary_10_1002_anie_202307083
crossref_primary_10_1002_anie_202009180
crossref_primary_10_1002_adfm_202308706
crossref_primary_10_1039_D1DT03554A
crossref_primary_10_1002_adfm_202405174
crossref_primary_10_1016_j_est_2023_108604
crossref_primary_10_1016_j_jelechem_2022_116855
crossref_primary_10_1021_acs_inorgchem_1c01352
crossref_primary_10_1039_D0NR04922K
crossref_primary_10_1021_acs_jpcc_3c01773
crossref_primary_10_1016_j_cplett_2023_140680
crossref_primary_10_1021_acs_inorgchem_3c00890
crossref_primary_10_1016_j_cej_2024_156021
crossref_primary_10_1016_j_chempr_2019_07_019
crossref_primary_10_1039_D1NR01227D
crossref_primary_10_1021_acs_energyfuels_0c03405
crossref_primary_10_1016_j_cej_2022_139607
crossref_primary_10_1016_j_ceramint_2021_09_130
crossref_primary_10_1016_j_cej_2022_137427
crossref_primary_10_1016_j_cej_2021_128421
crossref_primary_10_1016_j_renene_2021_06_001
crossref_primary_10_1007_s12274_021_3407_y
crossref_primary_10_1007_s10904_023_02944_x
crossref_primary_10_1007_s10854_024_13952_z
crossref_primary_10_1016_j_jechem_2020_08_005
crossref_primary_10_1016_j_cej_2022_140721
crossref_primary_10_3390_cryst13071011
crossref_primary_10_1016_j_apsusc_2021_150077
crossref_primary_10_1016_j_flatc_2023_100508
crossref_primary_10_1016_j_cej_2019_122359
crossref_primary_10_1021_acs_nanolett_3c00661
crossref_primary_10_1016_j_jpowsour_2020_228973
crossref_primary_10_1038_s41699_021_00243_y
crossref_primary_10_1002_cey2_69
crossref_primary_10_1021_acsestengg_1c00157
crossref_primary_10_1021_acssuschemeng_2c07248
crossref_primary_10_1016_j_compositesb_2024_111759
crossref_primary_10_1007_s11426_021_1074_8
crossref_primary_10_1038_s41467_023_40118_y
crossref_primary_10_1039_D1AN01010G
crossref_primary_10_1016_j_scitotenv_2025_178444
crossref_primary_10_1016_j_cej_2023_145181
crossref_primary_10_1021_acsestengg_0c00176
crossref_primary_10_1039_D3NJ00340J
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1007_s11581_024_05650_x
crossref_primary_10_1016_j_cej_2022_135272
crossref_primary_10_1016_j_bios_2022_114811
crossref_primary_10_1039_D2TA04975A
crossref_primary_10_1039_D1TA03101E
crossref_primary_10_1002_aesr_202100111
crossref_primary_10_1016_j_electacta_2022_139985
crossref_primary_10_1002_eem2_12200
crossref_primary_10_1016_j_jallcom_2022_166082
crossref_primary_10_5004_dwt_2021_27751
crossref_primary_10_1016_j_fuel_2022_126158
crossref_primary_10_1016_j_electacta_2021_139475
crossref_primary_10_1016_j_ces_2021_116651
crossref_primary_10_1021_acsanm_4c01593
crossref_primary_10_1002_eem2_12553
crossref_primary_10_1016_j_ccr_2024_215879
crossref_primary_10_1016_j_jcis_2020_03_068
crossref_primary_10_1002_celc_202100793
crossref_primary_10_1021_acsanm_3c03544
crossref_primary_10_1021_acsami_0c12764
crossref_primary_10_1016_j_apsusc_2020_146317
crossref_primary_10_1021_acs_energyfuels_0c00058
crossref_primary_10_1016_j_electacta_2021_138256
crossref_primary_10_1016_j_mtphys_2023_101080
crossref_primary_10_1007_s40820_020_00481_7
crossref_primary_10_1021_acsanm_3c04507
crossref_primary_10_1002_anie_202000314
crossref_primary_10_1021_acsmaterialslett_9b00213
crossref_primary_10_1016_j_jelechem_2024_118219
crossref_primary_10_1007_s40843_020_1389_x
crossref_primary_10_1007_s00604_019_4042_0
crossref_primary_10_1007_s42823_023_00612_1
crossref_primary_10_1016_S1872_5805_22_60642_5
Cites_doi 10.1016/j.carbon.2018.08.071
10.1002/adma.201100904
10.1039/c3ee40847g
10.1002/adma.201503816
10.1002/anie.201410376
10.1149/1.1838571
10.1002/aenm.201301584
10.1038/nnano.2013.46
10.1039/c2ee02781j
10.1002/celc.201500412
10.1002/aenm.201602898
10.1002/adma.201604108
10.1016/0167-2738(88)90351-7
10.1038/nmat2007
10.1016/j.jallcom.2016.11.135
10.1039/C3EE42944J
10.1073/pnas.1602473113
10.1021/acsami.5b00861
10.1002/adma.201506197
10.1107/S0567739476001551
10.1021/jp970490q
10.1002/cssc.201200680
10.1002/adfm.201200691
10.1021/am404788e
10.1002/aenm.201502217
10.1149/1.1379565
10.1002/adma.201700989
10.1002/adma.201305522
10.1021/nn404640c
10.1002/adma.201405370
10.1002/aenm.201100691
10.1039/C7CC00301C
10.1038/nmat3601
10.1021/nl201432g
10.1002/adfm.201801917
10.1039/C7RA04707J
10.1038/nmat4170
10.1021/cr500192f
10.1021/nn400601y
10.1002/chem.201402511
10.1149/1.2221153
10.1002/adma.201804116
10.1002/smll.201600101
10.1021/nl803279t
10.1038/nmat3309
10.1021/nl3016957
10.1002/aenm.201200026
10.1039/C6TA04877C
10.1002/adfm.201100854
10.1002/adma.201501527
10.1038/ncomms5033
10.1002/aenm.201502568
10.1016/j.nanoen.2014.12.032
10.1038/ncomms3922
10.1002/adma.201305638
10.1021/acs.chemmater.8b00645
10.1002/advs.201600243
10.1002/advs.201500195
10.1002/celc.201500437
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201901261
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30998272
10_1002_adma_201901261
ADMA201901261
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP140104062; DP160104866; DP170104464; DE150101234; LP160100927
– fundername: National Natural Science Foundation of China
  funderid: 21576202
– fundername: Australian Research Council
  grantid: DP160104866
– fundername: National Natural Science Foundation of China
  grantid: 21576202
– fundername: Australian Research Council
  grantid: DP170104464
– fundername: Australian Research Council
  grantid: DE150101234
– fundername: Australian Research Council
  grantid: LP160100927
– fundername: Australian Research Council
  grantid: DP140104062
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4121-c178d5c8538dd3f917a16e9b53b7651aa0d6c50675f3d78647aa87d2982d6ab13
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:24:39 EDT 2025
Fri Jul 25 02:45:49 EDT 2025
Wed Feb 19 02:35:01 EST 2025
Tue Jul 01 00:44:52 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Wed Jan 22 16:41:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords sodium-ion batteries
few-layer graphene
graphitic carbon nitride
nitrogen doping
interlayer distance
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4121-c178d5c8538dd3f917a16e9b53b7651aa0d6c50675f3d78647aa87d2982d6ab13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4568-8422
PMID 30998272
PQID 2236151353
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2211321993
proquest_journals_2236151353
pubmed_primary_30998272
crossref_primary_10_1002_adma_201901261
crossref_citationtrail_10_1002_adma_201901261
wiley_primary_10_1002_adma_201901261_ADMA201901261
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2015; 12
2017; 7
2018; 28
2015; 14
2013; 4
2018; 140
2017; 4
1988; 28–30
2013; 23
2015; 54
2014; 26
2011; 11
1993; 140
2017; 29
2013; 7
2013; 8
2017; 695
2012; 12
2013; 6
2012; 11
2015; 7
2014; 114
2001; 148
2016; 12
2014; 20
1976; 32
2016; 4
2016; 6
2017; 53
2012; 2
2014; 5
2015; 27
2014; 4
2016; 3
2013; 12
1997; 101
2016; 113
2007; 6
2009; 9
2011; 21
2018; 30
2011; 23
2016; 28
2014; 7
2012; 5
2014; 6
1998; 145
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_56_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_58_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_59_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_57_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 7
  start-page: 3627
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 2922
  year: 2013
  publication-title: Nat. Commun.
– volume: 145
  start-page: 1882
  year: 1998
  publication-title: J. Electrochem. Soc.
– volume: 140
  start-page: L169
  year: 1993
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 31940
  year: 2017
  publication-title: RSC Adv..
– volume: 27
  start-page: 2042
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 11004
  year: 2013
  publication-title: ACS Nano
– volume: 113
  start-page: 3735
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 3859
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 751
  year: 1976
  publication-title: Acta Crystallogr. A
– volume: 28
  start-page: 3777
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2338
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 114
  start-page: 11636
  year: 2014
  publication-title: Chem. Rev.
– volume: 14
  start-page: 271
  year: 2015
  publication-title: Nat. Mater.
– volume: 7
  start-page: 323
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 5884
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 4536
  year: 2018
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1600243
  year: 2017
  publication-title: Adv. Sci.
– volume: 6
  start-page: 1502217
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 695
  start-page: 632
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 11
  start-page: 512
  year: 2012
  publication-title: Nat. Mater.
– volume: 26
  start-page: 4139
  year: 2014
  publication-title: Adv. Mater.
– volume: 12
  start-page: 2559
  year: 2016
  publication-title: Small
– volume: 27
  start-page: 7861
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 13046
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 873
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1752
  year: 2009
  publication-title: Nano Lett.
– volume: 7
  start-page: 5598
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  start-page: 276
  year: 2018
  publication-title: Carbon
– volume: 27
  start-page: 5343
  year: 2015
  publication-title: Adv. Mater.
– volume: 12
  start-page: 224
  year: 2015
  publication-title: Nano Energy
– volume: 11
  start-page: 3190
  year: 2011
  publication-title: Nano Lett.
– volume: 7
  start-page: 1602898
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1700989
  year: 2017
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604108
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4033
  year: 2014
  publication-title: Nat. Commun.
– volume: 28
  start-page: 1801917
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 54
  start-page: 3431
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 56
  year: 2013
  publication-title: ChemSusChem
– volume: 6
  start-page: 749
  year: 2007
  publication-title: Nat. Mater.
– volume: 8
  start-page: 235
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 11980
  year: 2014
  publication-title: Chem. – Eur. J.
– volume: 23
  start-page: 3155
  year: 2011
  publication-title: Adv. Mater.
– volume: 148
  start-page: A803
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 28–30
  start-page: 1172
  year: 1988
  publication-title: Solid State Ionics
– volume: 6
  start-page: 1502568
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1917
  year: 2015
  publication-title: ChemElectroChem
– volume: 2
  start-page: 710
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1804116
  year: 2018
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3545
  year: 2014
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1500195
  year: 2015
  publication-title: Adv. Sci.
– volume: 6
  start-page: 1788
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 518
  year: 2013
  publication-title: Nat. Mater.
– volume: 3
  start-page: 292
  year: 2016
  publication-title: ChemElectroChem
– volume: 101
  start-page: 7717
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 23
  start-page: 947
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 2610
  year: 2017
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1301584
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3783
  year: 2012
  publication-title: Nano Lett..
– ident: e_1_2_4_42_1
  doi: 10.1016/j.carbon.2018.08.071
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201100904
– ident: e_1_2_4_5_1
  doi: 10.1039/c3ee40847g
– ident: e_1_2_4_48_1
  doi: 10.1002/adma.201503816
– ident: e_1_2_4_4_1
  doi: 10.1002/anie.201410376
– ident: e_1_2_4_55_1
  doi: 10.1149/1.1838571
– ident: e_1_2_4_57_1
  doi: 10.1002/aenm.201301584
– ident: e_1_2_4_36_1
  doi: 10.1038/nnano.2013.46
– ident: e_1_2_4_6_1
  doi: 10.1039/c2ee02781j
– ident: e_1_2_4_59_1
  doi: 10.1002/celc.201500412
– ident: e_1_2_4_13_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_4_26_1
  doi: 10.1002/adma.201604108
– ident: e_1_2_4_15_1
  doi: 10.1016/0167-2738(88)90351-7
– ident: e_1_2_4_8_1
  doi: 10.1038/nmat2007
– ident: e_1_2_4_51_1
  doi: 10.1016/j.jallcom.2016.11.135
– ident: e_1_2_4_22_1
  doi: 10.1039/C3EE42944J
– ident: e_1_2_4_25_1
  doi: 10.1073/pnas.1602473113
– ident: e_1_2_4_45_1
  doi: 10.1021/acsami.5b00861
– ident: e_1_2_4_40_1
  doi: 10.1002/adma.201506197
– ident: e_1_2_4_17_1
  doi: 10.1107/S0567739476001551
– ident: e_1_2_4_52_1
  doi: 10.1021/jp970490q
– ident: e_1_2_4_32_1
  doi: 10.1002/cssc.201200680
– ident: e_1_2_4_2_1
  doi: 10.1002/adfm.201200691
– ident: e_1_2_4_34_1
  doi: 10.1021/am404788e
– ident: e_1_2_4_39_1
  doi: 10.1002/aenm.201502217
– ident: e_1_2_4_44_1
  doi: 10.1149/1.1379565
– ident: e_1_2_4_14_1
  doi: 10.1002/adma.201700989
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201305522
– ident: e_1_2_4_46_1
  doi: 10.1021/nn404640c
– ident: e_1_2_4_31_1
  doi: 10.1002/adma.201405370
– ident: e_1_2_4_47_1
  doi: 10.1002/aenm.201100691
– ident: e_1_2_4_50_1
  doi: 10.1039/C7CC00301C
– ident: e_1_2_4_53_1
  doi: 10.1038/nmat3601
– ident: e_1_2_4_35_1
  doi: 10.1021/nl201432g
– ident: e_1_2_4_12_1
  doi: 10.1002/adfm.201801917
– ident: e_1_2_4_43_1
  doi: 10.1039/C7RA04707J
– ident: e_1_2_4_38_1
  doi: 10.1038/nmat4170
– ident: e_1_2_4_3_1
  doi: 10.1021/cr500192f
– ident: e_1_2_4_21_1
  doi: 10.1021/nn400601y
– ident: e_1_2_4_23_1
  doi: 10.1002/chem.201402511
– ident: e_1_2_4_16_1
  doi: 10.1149/1.2221153
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201804116
– ident: e_1_2_4_37_1
  doi: 10.1002/smll.201600101
– ident: e_1_2_4_41_1
  doi: 10.1021/nl803279t
– ident: e_1_2_4_9_1
  doi: 10.1038/nmat3309
– ident: e_1_2_4_24_1
  doi: 10.1021/nl3016957
– ident: e_1_2_4_1_1
  doi: 10.1002/aenm.201200026
– ident: e_1_2_4_58_1
  doi: 10.1039/C6TA04877C
– ident: e_1_2_4_56_1
  doi: 10.1002/adfm.201100854
– ident: e_1_2_4_7_1
  doi: 10.1002/adma.201501527
– ident: e_1_2_4_27_1
  doi: 10.1038/ncomms5033
– ident: e_1_2_4_54_1
  doi: 10.1002/aenm.201502568
– ident: e_1_2_4_30_1
  doi: 10.1016/j.nanoen.2014.12.032
– ident: e_1_2_4_19_1
  doi: 10.1038/ncomms3922
– ident: e_1_2_4_20_1
  doi: 10.1002/adma.201305638
– ident: e_1_2_4_33_1
  doi: 10.1021/acs.chemmater.8b00645
– ident: e_1_2_4_28_1
  doi: 10.1002/advs.201600243
– ident: e_1_2_4_29_1
  doi: 10.1002/advs.201500195
– ident: e_1_2_4_49_1
  doi: 10.1002/celc.201500437
SSID ssj0009606
Score 2.6714523
Snippet Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains...
Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1901261
SubjectTerms Anodes
Carbon
Carbon nitride
Catalysis
Electrode materials
Enlargement
few‐layer graphene
Graphene
graphitic carbon nitride
interlayer distance
Interlayers
Materials science
Nitrogen
nitrogen doping
Rechargeable batteries
Sodium-ion batteries
Title Graphitic Carbon Nitride (g‐C3N4)‐Derived N‐Rich Graphene with Tuneable Interlayer Distance as a High‐Rate Anode for Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901261
https://www.ncbi.nlm.nih.gov/pubmed/30998272
https://www.proquest.com/docview/2236151353
https://www.proquest.com/docview/2211321993
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT-UALb8pBRkJCTi4XTuxkxxXu5SCxB6glXqLxj-LVpQE7W44cOIRKvUNeRJmnN20C0JIcIqTjGPHmbG_ccafGXsmw1QZq0sB2huRyYEXRWmskBaMDWlOPgVFW0zM8Wn29kyfXVvF3_FD9BNuZBmxvyYDB7s4vCINBR95g2hAU9H_oYAtQkXvr_ijCJ5Hsr1Ui9JkxZq1caAON7Nvjkq_Qc1N5BqHnqPbDNaV7iJOPh20S3vgvv3C5_g_b7XDbq1wKR92irTLboT6Drt5ja3wLrt8TeTWFC3HRzC3Tc0ns-V85gN_8fHH94tROsle4nGM4l-D5xNM07J9HrNhl8ppzpeftHWg5Vo8zkWeA0J-PiYQi9rHYcGBU-gJ5UUUzId1g89HYM0_NH7Wfsbrb7DgjhUUnfx77PTo1cnoWKz2dBAuk0oKJ_PCa4cgofA-naKzCNKE0urU5kZLgIE3TpMbM019XpgsByhyr8pCeQNWpvfZVt3U4SGtNle5dpYYz2wWpEWxqfM4JhsoEbW4hIn1N63civCc9t04rzqqZlVRY1d9YyfseS__paP6-KPk_lpFqpXJLypFNDaathFJ2NP-Nhor_YGBOjQtyUj0_ilmMmEPOtXqi0oRqxcqVwlTUUH-UodqOH437M_2_iXTI7ZN6S7wbZ9tLedteIwQa2mfRDP6CTh8H5c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQewAOLf8EChgJCTi4XduxkxxXu5QttDnAVuIW-W_RijZB200PPfEISLwhT8JMsklZEEKCUxJnHDvOjP2NM_5MyDMeZkJblTGjvGYxH3iWZtoybo22QSboU2C0Ra4nx_GbD6qLJsS1MC0_RD_hhpbR9Ndo4DghvXfJGmp8QxyEI5pAB2gTt_VG-vzxu0sGKQToDd2eVCzTcdrxNg7E3nr-9XHpN7C5jl2bwWd_m9iu2m3Myafdeml33cUvjI7_9V43yNYKmtJhq0s3yZVQ3iLXfyIsvE2-vUZ-awyYoyOzsFVJ8_lyMfeBvvj4_cvXkczjl3Acg_h58DSHc1y5T5ts0KtSnPal07oMuGKLNtORJwZQPx0jjgUFpOaMGorRJ5gXgDAdlhU8H7A1fV_5eX0K6QdQcEsMCn7-HXK8_2o6mrDVtg7MxVxw5niSeuUAJ6Teyxn4i4brkFklbQJf0JiB106hJzOTPkl1nBiTJl5kqfDaWC7vko2yKsN9XHAuEuUskp7ZOHALYjPnYVjWJgPg4iLCuo9auBXnOW69cVK0bM2iwMYu-saOyPNe_nPL9vFHyZ1OR4qV1Z8VAplsFO4kEpGn_W2wV_wJY8pQ1SjDuRQYNhmRe61u9UVJgOupSERERKMhf6lDMRwfDfurB_-S6Qm5OpkeHRaHB_nbh-QaprdxcDtkY7mowyNAXEv7uLGpHyFeI7M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIlVwAFpegdIaCQk4uF07sZMcVxu2LY8IQSv1FvkVtGqbVNsNB078BCT-Ib-EmWQ37YIQUjklccax48zY3zjjz4Q8574UysiUaekUi_jAsSRVhnGjlfFhjD4FRlvkav8oenMsj6-s4u_4IfoJN7SMtr9GAz935e4laah2LW8QDmgC_Z8bkRqkuHlD9vGSQArxecu2F0qWqihZ0DYOxO5y_uVh6Q-suQxd27FnfIfoRa27kJOTnWZmduzX3wgd_-e17pLbc2BKh50mrZMVX22QW1foCu-RH3vIbo3hcnSkp6auaD6ZTSfO05eff377Pgrz6BUcMxD_4h3N4RzX7dM2G_SpFCd96WFTeVyvRdvJyFMNmJ9miGJB_ai-oJpi7AnmBRhMh1UNzwdkTT_VbtKcQfoBFNzRgoKXf58cjV8fjvbZfFMHZiMuOLM8Tpy0gBIS58ISvEXNlU-NDE2sJNd64JSV6MeUoYsTFcVaJ7ETaSKc0oaHD8hqVVf-ES43F7G0BinPTOS5AbHSOhiUlU4BttiAsMU3Leyc8Rw33jgtOq5mUWBjF31jB-RFL3_ecX38VXJzoSLF3OYvCoE8NhL3EQnIs_42WCv-gtGVrxuU4eD-Y9BkQB52qtUXFQJYT0QsAiJaBflHHYph9n7YXz2-TqZtsvYhGxfvDvK3T8hNTO6C4DbJ6mza-KcAt2Zmq7WoX5lUImI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphitic+Carbon+Nitride+%28g-C+3+N+4+%29-Derived+N-Rich+Graphene+with+Tuneable+Interlayer+Distance+as+a+High-Rate+Anode+for+Sodium-Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Jinlong&rft.au=Zhang%2C+Yaqian&rft.au=Zhang%2C+Lei&rft.au=Xie%2C+Fangxi&rft.date=2019-06-01&rft.eissn=1521-4095&rft.spage=e1901261&rft_id=info:doi/10.1002%2Fadma.201901261&rft_id=info%3Apmid%2F30998272&rft.externalDocID=30998272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon