Graphitic Carbon Nitride (g‐C3N4)‐Derived N‐Rich Graphene with Tuneable Interlayer Distance as a High‐Rate Anode for Sodium‐Ion Batteries
Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 24; pp. e1901261 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g−1 at 40 A g−1) and excellent long‐term stability (211.3 mAh g−1 at 0.5 A g−1 after 2000 cycles), demonstrating the effectiveness of material design.
Well‐controlled N‐doped few‐layer graphene (N‐FLG) with tunable interlayer structure, nitrogen content, and nitrogen configuration, is realized through the pyrolysis of g‐C3N4 under zinc catalysis and appropriate temperature. The optimal N‐FLG‐800 features significantly enlarged interplanar spacing and high nitrogen content with pyridinic and pyrrolic configurations, resulting in superior Na+ storage performance and ultrahigh rate capability. |
---|---|
AbstractList | Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C
3
N
4
) under zinc catalysis and selected temperature (
T
= 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na
+
storage performance with ultrahigh rate capability (56.6 mAh g
−1
at 40 A g
−1
) and excellent long‐term stability (211.3 mAh g
−1
at 0.5 A g
−1
after 2000 cycles), demonstrating the effectiveness of material design. Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N-rich few-layer graphene (N-FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g-C3 N4 ) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N-FLG-800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N-FLG-800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g-1 at 40 A g-1 ) and excellent long-term stability (211.3 mAh g-1 at 0.5 A g-1 after 2000 cycles), demonstrating the effectiveness of material design.Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N-rich few-layer graphene (N-FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g-C3 N4 ) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N-FLG-800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N-FLG-800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g-1 at 40 A g-1 ) and excellent long-term stability (211.3 mAh g-1 at 0.5 A g-1 after 2000 cycles), demonstrating the effectiveness of material design. Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N-rich few-layer graphene (N-FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g-C N ) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N-FLG-800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N-FLG-800 shows remarkable Na storage performance with ultrahigh rate capability (56.6 mAh g at 40 A g ) and excellent long-term stability (211.3 mAh g at 0.5 A g after 2000 cycles), demonstrating the effectiveness of material design. Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g−1 at 40 A g−1) and excellent long‐term stability (211.3 mAh g−1 at 0.5 A g−1 after 2000 cycles), demonstrating the effectiveness of material design. Well‐controlled N‐doped few‐layer graphene (N‐FLG) with tunable interlayer structure, nitrogen content, and nitrogen configuration, is realized through the pyrolysis of g‐C3N4 under zinc catalysis and appropriate temperature. The optimal N‐FLG‐800 features significantly enlarged interplanar spacing and high nitrogen content with pyridinic and pyrrolic configurations, resulting in superior Na+ storage performance and ultrahigh rate capability. Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N‐rich few‐layer graphene (N‐FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g‐C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N‐FLG‐T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N‐FLG‐800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N‐FLG‐800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g−1 at 40 A g−1) and excellent long‐term stability (211.3 mAh g−1 at 0.5 A g−1 after 2000 cycles), demonstrating the effectiveness of material design. |
Author | Xie, Fangxi Vasileff, Anthony Liu, Jinlong Qiao, Shi‐Zhang Zhang, Yaqian Zhang, Lei |
Author_xml | – sequence: 1 givenname: Jinlong surname: Liu fullname: Liu, Jinlong organization: The University of Adelaide – sequence: 2 givenname: Yaqian surname: Zhang fullname: Zhang, Yaqian organization: University of Alberta – sequence: 3 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: The University of Adelaide – sequence: 4 givenname: Fangxi surname: Xie fullname: Xie, Fangxi organization: The University of Adelaide – sequence: 5 givenname: Anthony surname: Vasileff fullname: Vasileff, Anthony organization: The University of Adelaide – sequence: 6 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: Tianjin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30998272$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEQhi1URNPClSOyxKUcEuz12rs-hgTaSCVIUM6r2fVs42rXG2wvVW48AhJvyJPgkFKkSojTWNb3zXj8n5AjNzgk5DlnM85Y9hpMD7OMcc14pvgjMuEy49OcaXlEJkwLOdUqL4_JSQg3jDGtmHpCjgXTusyKbEJ-nHvYbmy0DV2ArwdH1zZ6a5CeXf_89n0h1vmrVJfo7Vc0dJ3OH22zob81dEhvbdzQq9Eh1B3SlYvoO9ihp0sbIrgGKQQK9MJeb_YuRKRzN6T-7eDpp8HYsU_3qzT4DcQkWwxPyeMWuoDP7uop-fzu7dXiYnr54Xy1mF9Om5ynJRtelEY2pRSlMaLVvACuUNdS1IWSHIAZ1UimCtkKU5QqLwDKwmRpc6Og5uKUnB36bv3wZcQQq96GBrsOHA5jqLKMc5FxrUVCXz5Ab4bRu_S6RAnFJRdyT724o8a6R1Ntve3B76o_352A2QFo_BCCx_Ye4aza51nt86zu80xC_kBobIRoBxc92O7fmj5ot7bD3X-GVPPl-_lf9xfjc7eZ |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_0c05520 crossref_primary_10_1002_smll_202204375 crossref_primary_10_1016_j_ces_2021_116709 crossref_primary_10_1002_adma_201905361 crossref_primary_10_1039_D5GC00029G crossref_primary_10_1039_D4NR04936E crossref_primary_10_1002_ange_202012141 crossref_primary_10_1016_j_jallcom_2022_165131 crossref_primary_10_1021_acsami_1c18464 crossref_primary_10_1016_j_jcis_2024_01_141 crossref_primary_10_1039_D0CC03253K crossref_primary_10_3390_nano13182525 crossref_primary_10_1002_eem2_12733 crossref_primary_10_1021_jacs_2c05247 crossref_primary_10_1039_C9GC04333K crossref_primary_10_1002_aenm_202400929 crossref_primary_10_1021_acsami_1c05162 crossref_primary_10_1021_acs_jpclett_2c03032 crossref_primary_10_1002_adma_202407570 crossref_primary_10_1016_j_nanoms_2021_06_007 crossref_primary_10_1016_j_jece_2024_113415 crossref_primary_10_1002_batt_202100369 crossref_primary_10_1007_s40843_021_1733_1 crossref_primary_10_1039_C9RA09411C crossref_primary_10_1016_j_cej_2022_141196 crossref_primary_10_1002_admi_202001847 crossref_primary_10_1039_D2NJ02098J crossref_primary_10_1016_j_jallcom_2022_165353 crossref_primary_10_1016_j_jcis_2022_04_140 crossref_primary_10_1155_2023_9881400 crossref_primary_10_1002_adfm_202203279 crossref_primary_10_1016_j_fbio_2024_104718 crossref_primary_10_1002_ange_201914001 crossref_primary_10_1021_acs_energyfuels_3c00220 crossref_primary_10_1016_j_jpowsour_2022_231849 crossref_primary_10_1016_j_seppur_2021_120005 crossref_primary_10_1016_S1872_5805_21_60007_0 crossref_primary_10_1002_adfm_202106958 crossref_primary_10_1016_j_jcis_2021_03_163 crossref_primary_10_1002_adfm_202107928 crossref_primary_10_1039_D1CY00388G crossref_primary_10_1002_ange_202009180 crossref_primary_10_1002_admi_202102408 crossref_primary_10_1039_D0CC04112B crossref_primary_10_1002_eem2_12749 crossref_primary_10_1039_D0NJ01373K crossref_primary_10_1002_anie_201914001 crossref_primary_10_1039_D0QM00598C crossref_primary_10_1021_acsami_2c08282 crossref_primary_10_1016_j_jhazmat_2022_129056 crossref_primary_10_1016_j_electacta_2022_139964 crossref_primary_10_1039_D0TA10179F crossref_primary_10_1002_smll_201907164 crossref_primary_10_1002_smll_202309353 crossref_primary_10_1021_acsanm_4c05088 crossref_primary_10_1021_acsami_0c14538 crossref_primary_10_1039_D2CS00931E crossref_primary_10_1016_j_chphi_2023_100408 crossref_primary_10_1016_j_cej_2020_127471 crossref_primary_10_1088_1361_6463_ab8e79 crossref_primary_10_1016_j_jece_2022_107869 crossref_primary_10_1016_j_jelechem_2022_116769 crossref_primary_10_1002_slct_202102274 crossref_primary_10_1021_acsami_1c11922 crossref_primary_10_1021_acs_inorgchem_3c00646 crossref_primary_10_1016_j_apsusc_2020_145963 crossref_primary_10_1016_j_cej_2025_159764 crossref_primary_10_1021_acs_nanolett_1c03381 crossref_primary_10_1002_adfm_202306574 crossref_primary_10_1016_j_carbon_2021_11_036 crossref_primary_10_1016_j_cej_2024_157044 crossref_primary_10_1002_anie_202012141 crossref_primary_10_1002_ange_201905803 crossref_primary_10_1021_acssuschemeng_3c05202 crossref_primary_10_1016_j_ijhydene_2021_01_195 crossref_primary_10_1016_j_jallcom_2021_160667 crossref_primary_10_1039_D0CP06518H crossref_primary_10_1039_D1DT00490E crossref_primary_10_1007_s12668_023_01149_3 crossref_primary_10_1021_acsaem_2c01201 crossref_primary_10_1002_adfm_202102300 crossref_primary_10_1016_j_jallcom_2021_159670 crossref_primary_10_1021_acsnano_0c10624 crossref_primary_10_1002_adfm_202102540 crossref_primary_10_1021_acsami_0c11282 crossref_primary_10_1016_j_cej_2021_134075 crossref_primary_10_1039_D4EE00315B crossref_primary_10_1002_smll_202301975 crossref_primary_10_1002_er_7377 crossref_primary_10_1016_j_cej_2022_139805 crossref_primary_10_1007_s40820_020_00522_1 crossref_primary_10_1021_acsami_2c20068 crossref_primary_10_1021_acsaem_9b02166 crossref_primary_10_1002_anie_202116394 crossref_primary_10_1016_j_carbon_2024_119354 crossref_primary_10_1002_aenm_202000099 crossref_primary_10_1016_j_colsurfa_2020_126096 crossref_primary_10_1016_j_colsurfa_2019_123721 crossref_primary_10_1016_j_cis_2024_103284 crossref_primary_10_3390_nano11071863 crossref_primary_10_1002_ange_202307083 crossref_primary_10_1002_batt_202100313 crossref_primary_10_1016_j_seppur_2023_126078 crossref_primary_10_1016_j_jpowsour_2021_230003 crossref_primary_10_1021_acsanm_4c00775 crossref_primary_10_1039_D1NR02826J crossref_primary_10_1021_acsmaterialslett_0c00215 crossref_primary_10_1002_batt_202300613 crossref_primary_10_1016_j_ceramint_2021_07_195 crossref_primary_10_1002_ange_202116394 crossref_primary_10_1016_j_cej_2023_144698 crossref_primary_10_1016_j_aca_2020_05_033 crossref_primary_10_1016_j_seppur_2024_127694 crossref_primary_10_1002_cey2_198 crossref_primary_10_1002_ange_202000314 crossref_primary_10_1021_acs_chemrev_1c00636 crossref_primary_10_1016_j_seppur_2021_118474 crossref_primary_10_1039_D2NR03469G crossref_primary_10_1016_j_jcis_2021_12_121 crossref_primary_10_1002_celc_201901770 crossref_primary_10_1039_D1TA04193B crossref_primary_10_1016_j_isci_2023_108470 crossref_primary_10_1039_D1CE00439E crossref_primary_10_1039_D1EE00166C crossref_primary_10_1021_acs_est_1c06205 crossref_primary_10_1016_j_cej_2021_131156 crossref_primary_10_1016_j_cej_2021_131032 crossref_primary_10_1002_solr_202000326 crossref_primary_10_1016_j_jallcom_2023_169076 crossref_primary_10_1016_j_nanoen_2022_107767 crossref_primary_10_1002_anie_201905803 crossref_primary_10_1088_2516_1083_aba5f5 crossref_primary_10_1039_D3TA01362F crossref_primary_10_1016_j_apsusc_2023_158321 crossref_primary_10_1002_smll_202102159 crossref_primary_10_1002_smll_202406630 crossref_primary_10_1016_j_carbon_2020_07_022 crossref_primary_10_3390_nano14110937 crossref_primary_10_1016_j_cej_2021_130070 crossref_primary_10_1016_j_carbon_2020_07_021 crossref_primary_10_1021_acs_nanolett_2c02177 crossref_primary_10_1016_S1872_5805_24_60877_2 crossref_primary_10_1016_j_jcis_2024_06_049 crossref_primary_10_1016_j_cej_2022_134727 crossref_primary_10_1016_j_nanoen_2021_106246 crossref_primary_10_1002_er_7323 crossref_primary_10_1039_C9QM00425D crossref_primary_10_1039_D0TA03181J crossref_primary_10_1039_D1SE01060C crossref_primary_10_1016_j_jallcom_2023_171494 crossref_primary_10_1021_acsmaterialslett_1c00280 crossref_primary_10_1039_D1TA09645A crossref_primary_10_3390_ma12121952 crossref_primary_10_1002_sstr_202100041 crossref_primary_10_1039_D1EE01346G crossref_primary_10_1002_ange_202407578 crossref_primary_10_1039_D3QI00056G crossref_primary_10_1016_j_jpowsour_2021_230530 crossref_primary_10_1016_j_gee_2020_05_006 crossref_primary_10_1016_j_carbon_2020_12_010 crossref_primary_10_1002_smtd_202000314 crossref_primary_10_1002_ente_202000361 crossref_primary_10_3390_ijms24108777 crossref_primary_10_1016_j_carbon_2021_09_061 crossref_primary_10_1002_smll_202403261 crossref_primary_10_1016_j_est_2023_109571 crossref_primary_10_1016_j_cej_2021_134321 crossref_primary_10_1016_j_apsusc_2021_149312 crossref_primary_10_1002_cnma_202200348 crossref_primary_10_1016_j_foodchem_2020_126848 crossref_primary_10_1007_s12274_024_6448_1 crossref_primary_10_1002_adfm_202202351 crossref_primary_10_1016_j_jallcom_2020_157686 crossref_primary_10_1016_j_cej_2023_141363 crossref_primary_10_1039_C9NR10473A crossref_primary_10_1002_bkcs_12798 crossref_primary_10_1016_j_electacta_2022_140198 crossref_primary_10_1021_acsanm_4c06475 crossref_primary_10_1021_acssuschemeng_9b06534 crossref_primary_10_1002_cnma_201900582 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1016_j_cej_2024_152422 crossref_primary_10_3390_nano14110988 crossref_primary_10_1039_D1TA08215A crossref_primary_10_1002_smtd_201900853 crossref_primary_10_1002_adfm_202403642 crossref_primary_10_1039_C9NR07886J crossref_primary_10_1002_cnma_202200137 crossref_primary_10_1021_acsaem_0c02730 crossref_primary_10_1016_j_cej_2021_131080 crossref_primary_10_1039_D2TA09502E crossref_primary_10_1002_tcr_202200171 crossref_primary_10_1016_j_apsusc_2021_150439 crossref_primary_10_1021_acsami_0c04469 crossref_primary_10_1039_D2CC01140A crossref_primary_10_1002_adma_201905923 crossref_primary_10_1016_j_est_2024_111900 crossref_primary_10_1016_j_jece_2023_111642 crossref_primary_10_1039_D2CP06044B crossref_primary_10_1039_D1TA09964G crossref_primary_10_1038_s43246_022_00301_y crossref_primary_10_1021_acs_energyfuels_4c01895 crossref_primary_10_1016_j_cej_2020_124606 crossref_primary_10_1016_j_ces_2021_117241 crossref_primary_10_1021_acssuschemeng_0c00502 crossref_primary_10_1002_adfm_202304753 crossref_primary_10_1039_D4CP04214J crossref_primary_10_1002_adma_202412592 crossref_primary_10_1002_asia_202200192 crossref_primary_10_1039_D2CC02265F crossref_primary_10_1039_D2TA05678J crossref_primary_10_1016_j_jpowsour_2020_228769 crossref_primary_10_1039_D1TA01768C crossref_primary_10_1016_j_jelechem_2020_114044 crossref_primary_10_1016_j_jallcom_2021_159080 crossref_primary_10_1016_j_apsusc_2023_159155 crossref_primary_10_1016_j_apsusc_2024_159770 crossref_primary_10_1016_j_apsusc_2020_147309 crossref_primary_10_3390_nano12162821 crossref_primary_10_1016_j_matt_2019_12_020 crossref_primary_10_1002_cey2_482 crossref_primary_10_1002_eem2_12169 crossref_primary_10_1002_smll_202307923 crossref_primary_10_1016_j_carbon_2021_08_060 crossref_primary_10_1088_1361_6528_ab7101 crossref_primary_10_3390_en14092436 crossref_primary_10_1088_1361_6463_abfdd8 crossref_primary_10_1016_j_jechem_2022_09_009 crossref_primary_10_1007_s12598_024_02974_5 crossref_primary_10_1002_cey2_490 crossref_primary_10_1016_j_jpowsour_2022_231292 crossref_primary_10_1002_asia_201901802 crossref_primary_10_1021_acs_langmuir_4c02868 crossref_primary_10_1002_cctc_202201620 crossref_primary_10_1039_D3NJ05154D crossref_primary_10_1016_j_mattod_2024_12_003 crossref_primary_10_1021_acssuschemeng_3c02504 crossref_primary_10_1021_acs_inorgchem_3c04626 crossref_primary_10_1016_j_apsusc_2022_153890 crossref_primary_10_1039_D2TA00506A crossref_primary_10_1021_acsanm_9b01222 crossref_primary_10_1016_j_bioactmat_2024_02_018 crossref_primary_10_1016_j_cej_2020_125705 crossref_primary_10_1021_acs_energyfuels_0c02278 crossref_primary_10_1016_j_jcis_2021_08_063 crossref_primary_10_1016_j_scib_2020_02_015 crossref_primary_10_1016_j_ijhydene_2022_06_173 crossref_primary_10_1016_j_cej_2024_155204 crossref_primary_10_1021_acsami_0c12838 crossref_primary_10_1002_ange_202110373 crossref_primary_10_1016_j_nanoen_2023_108744 crossref_primary_10_1002_adfm_202310286 crossref_primary_10_1515_ntrev_2024_0127 crossref_primary_10_1039_D0TA04513F crossref_primary_10_1016_j_jallcom_2022_164645 crossref_primary_10_1016_j_nanoen_2019_104132 crossref_primary_10_1002_adma_201904635 crossref_primary_10_1002_aenm_202000789 crossref_primary_10_1016_j_matt_2023_04_004 crossref_primary_10_1016_j_carbon_2021_07_064 crossref_primary_10_1039_D1EE00370D crossref_primary_10_1016_j_apsusc_2024_160973 crossref_primary_10_1039_D3CC05976F crossref_primary_10_1002_admi_202201941 crossref_primary_10_1016_j_molliq_2021_117820 crossref_primary_10_1016_j_cej_2023_145454 crossref_primary_10_1002_anie_202110373 crossref_primary_10_1016_j_jhazmat_2021_126267 crossref_primary_10_1016_j_nanoen_2021_106184 crossref_primary_10_1002_smll_201906883 crossref_primary_10_1016_j_chempr_2021_01_001 crossref_primary_10_1039_D0NR01612H crossref_primary_10_1016_j_jelechem_2023_117485 crossref_primary_10_1016_j_est_2023_107673 crossref_primary_10_1016_j_jallcom_2020_156992 crossref_primary_10_1016_j_jallcom_2020_157720 crossref_primary_10_1016_j_jece_2021_106545 crossref_primary_10_1016_j_jelechem_2019_113706 crossref_primary_10_1002_solr_201900517 crossref_primary_10_1021_acs_jpclett_2c01687 crossref_primary_10_1038_s41467_024_50899_5 crossref_primary_10_1002_cben_202200038 crossref_primary_10_1002_smll_202400845 crossref_primary_10_1016_j_inoche_2023_111184 crossref_primary_10_1002_celc_202200138 crossref_primary_10_1007_s12598_023_02397_8 crossref_primary_10_1016_j_cej_2021_131591 crossref_primary_10_1016_j_apsusc_2020_148473 crossref_primary_10_1016_j_colsurfa_2024_134643 crossref_primary_10_1039_D1CY02181H crossref_primary_10_1007_s11706_023_0651_y crossref_primary_10_1016_j_apsusc_2023_158006 crossref_primary_10_1016_j_seppur_2023_125429 crossref_primary_10_3390_molecules28083458 crossref_primary_10_6023_A20120575 crossref_primary_10_1016_j_jallcom_2021_163009 crossref_primary_10_1016_j_carbon_2022_03_054 crossref_primary_10_1016_j_jechem_2020_06_066 crossref_primary_10_1021_acssuschemeng_2c04585 crossref_primary_10_1002_adfm_202210143 crossref_primary_10_1039_D1TA10889A crossref_primary_10_1002_cey2_221 crossref_primary_10_1039_D4SE00478G crossref_primary_10_1039_D4SC01799D crossref_primary_10_1039_D1EN00426C crossref_primary_10_1002_adfm_202201322 crossref_primary_10_1016_j_apsusc_2021_151800 crossref_primary_10_1021_acs_energyfuels_2c04223 crossref_primary_10_1039_D4SC07354A crossref_primary_10_1007_s00339_023_06674_2 crossref_primary_10_1002_smll_202303296 crossref_primary_10_1021_acs_langmuir_4c03305 crossref_primary_10_1039_D0QM01124J crossref_primary_10_1016_j_ssi_2020_115451 crossref_primary_10_1038_s41467_020_14671_9 crossref_primary_10_1142_S1793604723400040 crossref_primary_10_1039_D5TA00740B crossref_primary_10_1021_acs_iecr_3c01472 crossref_primary_10_1016_j_nantod_2019_100796 crossref_primary_10_1016_j_seppur_2020_117765 crossref_primary_10_1016_j_cej_2023_142826 crossref_primary_10_1002_anie_202407578 crossref_primary_10_1002_anie_202307083 crossref_primary_10_1002_anie_202009180 crossref_primary_10_1002_adfm_202308706 crossref_primary_10_1039_D1DT03554A crossref_primary_10_1002_adfm_202405174 crossref_primary_10_1016_j_est_2023_108604 crossref_primary_10_1016_j_jelechem_2022_116855 crossref_primary_10_1021_acs_inorgchem_1c01352 crossref_primary_10_1039_D0NR04922K crossref_primary_10_1021_acs_jpcc_3c01773 crossref_primary_10_1016_j_cplett_2023_140680 crossref_primary_10_1021_acs_inorgchem_3c00890 crossref_primary_10_1016_j_cej_2024_156021 crossref_primary_10_1016_j_chempr_2019_07_019 crossref_primary_10_1039_D1NR01227D crossref_primary_10_1021_acs_energyfuels_0c03405 crossref_primary_10_1016_j_cej_2022_139607 crossref_primary_10_1016_j_ceramint_2021_09_130 crossref_primary_10_1016_j_cej_2022_137427 crossref_primary_10_1016_j_cej_2021_128421 crossref_primary_10_1016_j_renene_2021_06_001 crossref_primary_10_1007_s12274_021_3407_y crossref_primary_10_1007_s10904_023_02944_x crossref_primary_10_1007_s10854_024_13952_z crossref_primary_10_1016_j_jechem_2020_08_005 crossref_primary_10_1016_j_cej_2022_140721 crossref_primary_10_3390_cryst13071011 crossref_primary_10_1016_j_apsusc_2021_150077 crossref_primary_10_1016_j_flatc_2023_100508 crossref_primary_10_1016_j_cej_2019_122359 crossref_primary_10_1021_acs_nanolett_3c00661 crossref_primary_10_1016_j_jpowsour_2020_228973 crossref_primary_10_1038_s41699_021_00243_y crossref_primary_10_1002_cey2_69 crossref_primary_10_1021_acsestengg_1c00157 crossref_primary_10_1021_acssuschemeng_2c07248 crossref_primary_10_1016_j_compositesb_2024_111759 crossref_primary_10_1007_s11426_021_1074_8 crossref_primary_10_1038_s41467_023_40118_y crossref_primary_10_1039_D1AN01010G crossref_primary_10_1016_j_scitotenv_2025_178444 crossref_primary_10_1016_j_cej_2023_145181 crossref_primary_10_1021_acsestengg_0c00176 crossref_primary_10_1039_D3NJ00340J crossref_primary_10_1002_admt_202000744 crossref_primary_10_1007_s11581_024_05650_x crossref_primary_10_1016_j_cej_2022_135272 crossref_primary_10_1016_j_bios_2022_114811 crossref_primary_10_1039_D2TA04975A crossref_primary_10_1039_D1TA03101E crossref_primary_10_1002_aesr_202100111 crossref_primary_10_1016_j_electacta_2022_139985 crossref_primary_10_1002_eem2_12200 crossref_primary_10_1016_j_jallcom_2022_166082 crossref_primary_10_5004_dwt_2021_27751 crossref_primary_10_1016_j_fuel_2022_126158 crossref_primary_10_1016_j_electacta_2021_139475 crossref_primary_10_1016_j_ces_2021_116651 crossref_primary_10_1021_acsanm_4c01593 crossref_primary_10_1002_eem2_12553 crossref_primary_10_1016_j_ccr_2024_215879 crossref_primary_10_1016_j_jcis_2020_03_068 crossref_primary_10_1002_celc_202100793 crossref_primary_10_1021_acsanm_3c03544 crossref_primary_10_1021_acsami_0c12764 crossref_primary_10_1016_j_apsusc_2020_146317 crossref_primary_10_1021_acs_energyfuels_0c00058 crossref_primary_10_1016_j_electacta_2021_138256 crossref_primary_10_1016_j_mtphys_2023_101080 crossref_primary_10_1007_s40820_020_00481_7 crossref_primary_10_1021_acsanm_3c04507 crossref_primary_10_1002_anie_202000314 crossref_primary_10_1021_acsmaterialslett_9b00213 crossref_primary_10_1016_j_jelechem_2024_118219 crossref_primary_10_1007_s40843_020_1389_x crossref_primary_10_1007_s00604_019_4042_0 crossref_primary_10_1007_s42823_023_00612_1 crossref_primary_10_1016_S1872_5805_22_60642_5 |
Cites_doi | 10.1016/j.carbon.2018.08.071 10.1002/adma.201100904 10.1039/c3ee40847g 10.1002/adma.201503816 10.1002/anie.201410376 10.1149/1.1838571 10.1002/aenm.201301584 10.1038/nnano.2013.46 10.1039/c2ee02781j 10.1002/celc.201500412 10.1002/aenm.201602898 10.1002/adma.201604108 10.1016/0167-2738(88)90351-7 10.1038/nmat2007 10.1016/j.jallcom.2016.11.135 10.1039/C3EE42944J 10.1073/pnas.1602473113 10.1021/acsami.5b00861 10.1002/adma.201506197 10.1107/S0567739476001551 10.1021/jp970490q 10.1002/cssc.201200680 10.1002/adfm.201200691 10.1021/am404788e 10.1002/aenm.201502217 10.1149/1.1379565 10.1002/adma.201700989 10.1002/adma.201305522 10.1021/nn404640c 10.1002/adma.201405370 10.1002/aenm.201100691 10.1039/C7CC00301C 10.1038/nmat3601 10.1021/nl201432g 10.1002/adfm.201801917 10.1039/C7RA04707J 10.1038/nmat4170 10.1021/cr500192f 10.1021/nn400601y 10.1002/chem.201402511 10.1149/1.2221153 10.1002/adma.201804116 10.1002/smll.201600101 10.1021/nl803279t 10.1038/nmat3309 10.1021/nl3016957 10.1002/aenm.201200026 10.1039/C6TA04877C 10.1002/adfm.201100854 10.1002/adma.201501527 10.1038/ncomms5033 10.1002/aenm.201502568 10.1016/j.nanoen.2014.12.032 10.1038/ncomms3922 10.1002/adma.201305638 10.1021/acs.chemmater.8b00645 10.1002/advs.201600243 10.1002/advs.201500195 10.1002/celc.201500437 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201901261 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30998272 10_1002_adma_201901261 ADMA201901261 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP140104062; DP160104866; DP170104464; DE150101234; LP160100927 – fundername: National Natural Science Foundation of China funderid: 21576202 – fundername: Australian Research Council grantid: DP160104866 – fundername: National Natural Science Foundation of China grantid: 21576202 – fundername: Australian Research Council grantid: DP170104464 – fundername: Australian Research Council grantid: DE150101234 – fundername: Australian Research Council grantid: LP160100927 – fundername: Australian Research Council grantid: DP140104062 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4121-c178d5c8538dd3f917a16e9b53b7651aa0d6c50675f3d78647aa87d2982d6ab13 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 11:24:39 EDT 2025 Fri Jul 25 02:45:49 EDT 2025 Wed Feb 19 02:35:01 EST 2025 Tue Jul 01 00:44:52 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Wed Jan 22 16:41:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | sodium-ion batteries few-layer graphene graphitic carbon nitride nitrogen doping interlayer distance |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4121-c178d5c8538dd3f917a16e9b53b7651aa0d6c50675f3d78647aa87d2982d6ab13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4568-8422 |
PMID | 30998272 |
PQID | 2236151353 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2211321993 proquest_journals_2236151353 pubmed_primary_30998272 crossref_primary_10_1002_adma_201901261 crossref_citationtrail_10_1002_adma_201901261 wiley_primary_10_1002_adma_201901261_ADMA201901261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2015; 12 2017; 7 2018; 28 2015; 14 2013; 4 2018; 140 2017; 4 1988; 28–30 2013; 23 2015; 54 2014; 26 2011; 11 1993; 140 2017; 29 2013; 7 2013; 8 2017; 695 2012; 12 2013; 6 2012; 11 2015; 7 2014; 114 2001; 148 2016; 12 2014; 20 1976; 32 2016; 4 2016; 6 2017; 53 2012; 2 2014; 5 2015; 27 2014; 4 2016; 3 2013; 12 1997; 101 2016; 113 2007; 6 2009; 9 2011; 21 2018; 30 2011; 23 2016; 28 2014; 7 2012; 5 2014; 6 1998; 145 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_58_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 7 start-page: 3627 year: 2013 publication-title: ACS Nano – volume: 4 start-page: 2922 year: 2013 publication-title: Nat. Commun. – volume: 145 start-page: 1882 year: 1998 publication-title: J. Electrochem. Soc. – volume: 140 start-page: L169 year: 1993 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 31940 year: 2017 publication-title: RSC Adv.. – volume: 27 start-page: 2042 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 11004 year: 2013 publication-title: ACS Nano – volume: 113 start-page: 3735 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 3859 year: 2011 publication-title: Adv. Funct. Mater. – volume: 32 start-page: 751 year: 1976 publication-title: Acta Crystallogr. A – volume: 28 start-page: 3777 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 2338 year: 2013 publication-title: Energy Environ. Sci. – volume: 114 start-page: 11636 year: 2014 publication-title: Chem. Rev. – volume: 14 start-page: 271 year: 2015 publication-title: Nat. Mater. – volume: 7 start-page: 323 year: 2014 publication-title: Energy Environ. Sci. – volume: 5 start-page: 5884 year: 2012 publication-title: Energy Environ. Sci. – volume: 30 start-page: 4536 year: 2018 publication-title: Chem. Mater. – volume: 4 start-page: 1600243 year: 2017 publication-title: Adv. Sci. – volume: 6 start-page: 1502217 year: 2016 publication-title: Adv. Energy Mater. – volume: 695 start-page: 632 year: 2017 publication-title: J. Alloys Compd. – volume: 11 start-page: 512 year: 2012 publication-title: Nat. Mater. – volume: 26 start-page: 4139 year: 2014 publication-title: Adv. Mater. – volume: 12 start-page: 2559 year: 2016 publication-title: Small – volume: 27 start-page: 7861 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 13046 year: 2016 publication-title: J. Mater. Chem. A – volume: 2 start-page: 873 year: 2012 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1752 year: 2009 publication-title: Nano Lett. – volume: 7 start-page: 5598 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 140 start-page: 276 year: 2018 publication-title: Carbon – volume: 27 start-page: 5343 year: 2015 publication-title: Adv. Mater. – volume: 12 start-page: 224 year: 2015 publication-title: Nano Energy – volume: 11 start-page: 3190 year: 2011 publication-title: Nano Lett. – volume: 7 start-page: 1602898 year: 2017 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1700989 year: 2017 publication-title: Adv. Mater. – volume: 29 start-page: 1604108 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 4033 year: 2014 publication-title: Nat. Commun. – volume: 28 start-page: 1801917 year: 2018 publication-title: Adv. Funct. Mater. – volume: 54 start-page: 3431 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 56 year: 2013 publication-title: ChemSusChem – volume: 6 start-page: 749 year: 2007 publication-title: Nat. Mater. – volume: 8 start-page: 235 year: 2013 publication-title: Nat. Nanotechnol. – volume: 20 start-page: 11980 year: 2014 publication-title: Chem. – Eur. J. – volume: 23 start-page: 3155 year: 2011 publication-title: Adv. Mater. – volume: 148 start-page: A803 year: 2001 publication-title: J. Electrochem. Soc. – volume: 28–30 start-page: 1172 year: 1988 publication-title: Solid State Ionics – volume: 6 start-page: 1502568 year: 2016 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1917 year: 2015 publication-title: ChemElectroChem – volume: 2 start-page: 710 year: 2012 publication-title: Adv. Energy Mater. – volume: 30 start-page: 1804116 year: 2018 publication-title: Adv. Mater. – volume: 26 start-page: 3545 year: 2014 publication-title: Adv. Mater. – volume: 2 start-page: 1500195 year: 2015 publication-title: Adv. Sci. – volume: 6 start-page: 1788 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 518 year: 2013 publication-title: Nat. Mater. – volume: 3 start-page: 292 year: 2016 publication-title: ChemElectroChem – volume: 101 start-page: 7717 year: 1997 publication-title: J. Phys. Chem. B – volume: 23 start-page: 947 year: 2013 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 2610 year: 2017 publication-title: Chem. Commun. – volume: 4 start-page: 1301584 year: 2014 publication-title: Adv. Energy Mater. – volume: 12 start-page: 3783 year: 2012 publication-title: Nano Lett.. – ident: e_1_2_4_42_1 doi: 10.1016/j.carbon.2018.08.071 – ident: e_1_2_4_11_1 doi: 10.1002/adma.201100904 – ident: e_1_2_4_5_1 doi: 10.1039/c3ee40847g – ident: e_1_2_4_48_1 doi: 10.1002/adma.201503816 – ident: e_1_2_4_4_1 doi: 10.1002/anie.201410376 – ident: e_1_2_4_55_1 doi: 10.1149/1.1838571 – ident: e_1_2_4_57_1 doi: 10.1002/aenm.201301584 – ident: e_1_2_4_36_1 doi: 10.1038/nnano.2013.46 – ident: e_1_2_4_6_1 doi: 10.1039/c2ee02781j – ident: e_1_2_4_59_1 doi: 10.1002/celc.201500412 – ident: e_1_2_4_13_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_4_26_1 doi: 10.1002/adma.201604108 – ident: e_1_2_4_15_1 doi: 10.1016/0167-2738(88)90351-7 – ident: e_1_2_4_8_1 doi: 10.1038/nmat2007 – ident: e_1_2_4_51_1 doi: 10.1016/j.jallcom.2016.11.135 – ident: e_1_2_4_22_1 doi: 10.1039/C3EE42944J – ident: e_1_2_4_25_1 doi: 10.1073/pnas.1602473113 – ident: e_1_2_4_45_1 doi: 10.1021/acsami.5b00861 – ident: e_1_2_4_40_1 doi: 10.1002/adma.201506197 – ident: e_1_2_4_17_1 doi: 10.1107/S0567739476001551 – ident: e_1_2_4_52_1 doi: 10.1021/jp970490q – ident: e_1_2_4_32_1 doi: 10.1002/cssc.201200680 – ident: e_1_2_4_2_1 doi: 10.1002/adfm.201200691 – ident: e_1_2_4_34_1 doi: 10.1021/am404788e – ident: e_1_2_4_39_1 doi: 10.1002/aenm.201502217 – ident: e_1_2_4_44_1 doi: 10.1149/1.1379565 – ident: e_1_2_4_14_1 doi: 10.1002/adma.201700989 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201305522 – ident: e_1_2_4_46_1 doi: 10.1021/nn404640c – ident: e_1_2_4_31_1 doi: 10.1002/adma.201405370 – ident: e_1_2_4_47_1 doi: 10.1002/aenm.201100691 – ident: e_1_2_4_50_1 doi: 10.1039/C7CC00301C – ident: e_1_2_4_53_1 doi: 10.1038/nmat3601 – ident: e_1_2_4_35_1 doi: 10.1021/nl201432g – ident: e_1_2_4_12_1 doi: 10.1002/adfm.201801917 – ident: e_1_2_4_43_1 doi: 10.1039/C7RA04707J – ident: e_1_2_4_38_1 doi: 10.1038/nmat4170 – ident: e_1_2_4_3_1 doi: 10.1021/cr500192f – ident: e_1_2_4_21_1 doi: 10.1021/nn400601y – ident: e_1_2_4_23_1 doi: 10.1002/chem.201402511 – ident: e_1_2_4_16_1 doi: 10.1149/1.2221153 – ident: e_1_2_4_18_1 doi: 10.1002/adma.201804116 – ident: e_1_2_4_37_1 doi: 10.1002/smll.201600101 – ident: e_1_2_4_41_1 doi: 10.1021/nl803279t – ident: e_1_2_4_9_1 doi: 10.1038/nmat3309 – ident: e_1_2_4_24_1 doi: 10.1021/nl3016957 – ident: e_1_2_4_1_1 doi: 10.1002/aenm.201200026 – ident: e_1_2_4_58_1 doi: 10.1039/C6TA04877C – ident: e_1_2_4_56_1 doi: 10.1002/adfm.201100854 – ident: e_1_2_4_7_1 doi: 10.1002/adma.201501527 – ident: e_1_2_4_27_1 doi: 10.1038/ncomms5033 – ident: e_1_2_4_54_1 doi: 10.1002/aenm.201502568 – ident: e_1_2_4_30_1 doi: 10.1016/j.nanoen.2014.12.032 – ident: e_1_2_4_19_1 doi: 10.1038/ncomms3922 – ident: e_1_2_4_20_1 doi: 10.1002/adma.201305638 – ident: e_1_2_4_33_1 doi: 10.1021/acs.chemmater.8b00645 – ident: e_1_2_4_28_1 doi: 10.1002/advs.201600243 – ident: e_1_2_4_29_1 doi: 10.1002/advs.201500195 – ident: e_1_2_4_49_1 doi: 10.1002/celc.201500437 |
SSID | ssj0009606 |
Score | 2.6714523 |
Snippet | Heteroatom‐doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium‐ion batteries (SIBs). However, it remains... Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1901261 |
SubjectTerms | Anodes Carbon Carbon nitride Catalysis Electrode materials Enlargement few‐layer graphene Graphene graphitic carbon nitride interlayer distance Interlayers Materials science Nitrogen nitrogen doping Rechargeable batteries Sodium-ion batteries |
Title | Graphitic Carbon Nitride (g‐C3N4)‐Derived N‐Rich Graphene with Tuneable Interlayer Distance as a High‐Rate Anode for Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901261 https://www.ncbi.nlm.nih.gov/pubmed/30998272 https://www.proquest.com/docview/2236151353 https://www.proquest.com/docview/2211321993 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT-UALb8pBRkJCTi4XTuxkxxXu5SCxB6glXqLxj-LVpQE7W44cOIRKvUNeRJmnN20C0JIcIqTjGPHmbG_ccafGXsmw1QZq0sB2huRyYEXRWmskBaMDWlOPgVFW0zM8Wn29kyfXVvF3_FD9BNuZBmxvyYDB7s4vCINBR95g2hAU9H_oYAtQkXvr_ijCJ5Hsr1Ui9JkxZq1caAON7Nvjkq_Qc1N5BqHnqPbDNaV7iJOPh20S3vgvv3C5_g_b7XDbq1wKR92irTLboT6Drt5ja3wLrt8TeTWFC3HRzC3Tc0ns-V85gN_8fHH94tROsle4nGM4l-D5xNM07J9HrNhl8ppzpeftHWg5Vo8zkWeA0J-PiYQi9rHYcGBU-gJ5UUUzId1g89HYM0_NH7Wfsbrb7DgjhUUnfx77PTo1cnoWKz2dBAuk0oKJ_PCa4cgofA-naKzCNKE0urU5kZLgIE3TpMbM019XpgsByhyr8pCeQNWpvfZVt3U4SGtNle5dpYYz2wWpEWxqfM4JhsoEbW4hIn1N63civCc9t04rzqqZlVRY1d9YyfseS__paP6-KPk_lpFqpXJLypFNDaathFJ2NP-Nhor_YGBOjQtyUj0_ilmMmEPOtXqi0oRqxcqVwlTUUH-UodqOH437M_2_iXTI7ZN6S7wbZ9tLedteIwQa2mfRDP6CTh8H5c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQewAOLf8EChgJCTi4XduxkxxXu5QttDnAVuIW-W_RijZB200PPfEISLwhT8JMsklZEEKCUxJnHDvOjP2NM_5MyDMeZkJblTGjvGYxH3iWZtoybo22QSboU2C0Ra4nx_GbD6qLJsS1MC0_RD_hhpbR9Ndo4DghvXfJGmp8QxyEI5pAB2gTt_VG-vzxu0sGKQToDd2eVCzTcdrxNg7E3nr-9XHpN7C5jl2bwWd_m9iu2m3Myafdeml33cUvjI7_9V43yNYKmtJhq0s3yZVQ3iLXfyIsvE2-vUZ-awyYoyOzsFVJ8_lyMfeBvvj4_cvXkczjl3Acg_h58DSHc1y5T5ts0KtSnPal07oMuGKLNtORJwZQPx0jjgUFpOaMGorRJ5gXgDAdlhU8H7A1fV_5eX0K6QdQcEsMCn7-HXK8_2o6mrDVtg7MxVxw5niSeuUAJ6Teyxn4i4brkFklbQJf0JiB106hJzOTPkl1nBiTJl5kqfDaWC7vko2yKsN9XHAuEuUskp7ZOHALYjPnYVjWJgPg4iLCuo9auBXnOW69cVK0bM2iwMYu-saOyPNe_nPL9vFHyZ1OR4qV1Z8VAplsFO4kEpGn_W2wV_wJY8pQ1SjDuRQYNhmRe61u9UVJgOupSERERKMhf6lDMRwfDfurB_-S6Qm5OpkeHRaHB_nbh-QaprdxcDtkY7mowyNAXEv7uLGpHyFeI7M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIlVwAFpegdIaCQk4uF07sZMcVxu2LY8IQSv1FvkVtGqbVNsNB078BCT-Ib-EmWQ37YIQUjklccax48zY3zjjz4Q8574UysiUaekUi_jAsSRVhnGjlfFhjD4FRlvkav8oenMsj6-s4u_4IfoJN7SMtr9GAz935e4laah2LW8QDmgC_Z8bkRqkuHlD9vGSQArxecu2F0qWqihZ0DYOxO5y_uVh6Q-suQxd27FnfIfoRa27kJOTnWZmduzX3wgd_-e17pLbc2BKh50mrZMVX22QW1foCu-RH3vIbo3hcnSkp6auaD6ZTSfO05eff377Pgrz6BUcMxD_4h3N4RzX7dM2G_SpFCd96WFTeVyvRdvJyFMNmJ9miGJB_ai-oJpi7AnmBRhMh1UNzwdkTT_VbtKcQfoBFNzRgoKXf58cjV8fjvbZfFMHZiMuOLM8Tpy0gBIS58ISvEXNlU-NDE2sJNd64JSV6MeUoYsTFcVaJ7ETaSKc0oaHD8hqVVf-ES43F7G0BinPTOS5AbHSOhiUlU4BttiAsMU3Leyc8Rw33jgtOq5mUWBjF31jB-RFL3_ecX38VXJzoSLF3OYvCoE8NhL3EQnIs_42WCv-gtGVrxuU4eD-Y9BkQB52qtUXFQJYT0QsAiJaBflHHYph9n7YXz2-TqZtsvYhGxfvDvK3T8hNTO6C4DbJ6mza-KcAt2Zmq7WoX5lUImI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphitic+Carbon+Nitride+%28g-C+3+N+4+%29-Derived+N-Rich+Graphene+with+Tuneable+Interlayer+Distance+as+a+High-Rate+Anode+for+Sodium-Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Jinlong&rft.au=Zhang%2C+Yaqian&rft.au=Zhang%2C+Lei&rft.au=Xie%2C+Fangxi&rft.date=2019-06-01&rft.eissn=1521-4095&rft.spage=e1901261&rft_id=info:doi/10.1002%2Fadma.201901261&rft_id=info%3Apmid%2F30998272&rft.externalDocID=30998272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |