A Water‐/Fireproof Flexible Lithium–Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator
To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidat...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half‐open structure design prevents it from working properly under water or fire conditions. Herein, as a proof‐of‐concept experiment, a highly safe flexible lithium–oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride‐co‐hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium–oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium–oxygen battery is a promising candidate to power underwater flexible electronics.
A highly safe flexible lithium–oxygen (SFLO) battery is designed and fabricated to endow the possibility to power versatile portable and flexible devices. Thanks to an innovative assembly method, the structure of the SFLO battery possesses good flexibility, excellent water‐ and fire‐resistance, and superior electrochemical performances. |
---|---|
AbstractList | To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy-storage systems. Flexible lithium-oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half-open structure design prevents it from working properly under water or fire conditions. Herein, as a proof-of-concept experiment, a highly safe flexible lithium-oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride-co-hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium-oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium-oxygen battery is a promising candidate to power underwater flexible electronics. To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half‐open structure design prevents it from working properly under water or fire conditions. Herein, as a proof‐of‐concept experiment, a highly safe flexible lithium–oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride‐co‐hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium–oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium–oxygen battery is a promising candidate to power underwater flexible electronics. A highly safe flexible lithium–oxygen (SFLO) battery is designed and fabricated to endow the possibility to power versatile portable and flexible devices. Thanks to an innovative assembly method, the structure of the SFLO battery possesses good flexibility, excellent water‐ and fire‐resistance, and superior electrochemical performances. To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy-storage systems. Flexible lithium-oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half-open structure design prevents it from working properly under water or fire conditions. Herein, as a proof-of-concept experiment, a highly safe flexible lithium-oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride-co-hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium-oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium-oxygen battery is a promising candidate to power underwater flexible electronics.To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy-storage systems. Flexible lithium-oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half-open structure design prevents it from working properly under water or fire conditions. Herein, as a proof-of-concept experiment, a highly safe flexible lithium-oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride-co-hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium-oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium-oxygen battery is a promising candidate to power underwater flexible electronics. To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half‐open structure design prevents it from working properly under water or fire conditions. Herein, as a proof‐of‐concept experiment, a highly safe flexible lithium–oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride‐ co ‐hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium–oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium–oxygen battery is a promising candidate to power underwater flexible electronics. |
Author | Yin, Yan‐Bin Yan, Jun‐Min Liu, Tong Chang, Zhi‐Wen Yang, Xiao‐Yang Jiang, Qing Zhu, Yun‐Hai |
Author_xml | – sequence: 1 givenname: Yan‐Bin surname: Yin fullname: Yin, Yan‐Bin organization: Chinese Academy of Sciences – sequence: 2 givenname: Xiao‐Yang surname: Yang fullname: Yang, Xiao‐Yang organization: Chinese Academy of Sciences – sequence: 3 givenname: Zhi‐Wen surname: Chang fullname: Chang, Zhi‐Wen organization: Chinese Academy of Sciences – sequence: 4 givenname: Yun‐Hai surname: Zhu fullname: Zhu, Yun‐Hai organization: Chinese Academy of Sciences – sequence: 5 givenname: Tong surname: Liu fullname: Liu, Tong organization: Chinese Academy of Sciences – sequence: 6 givenname: Jun‐Min surname: Yan fullname: Yan, Jun‐Min email: junminyan@jlu.edu.cn organization: Jilin University – sequence: 7 givenname: Qing surname: Jiang fullname: Jiang, Qing organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29178201$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFO3DAQhq0KVJZtrz1WlnrpZRc7duL4mAJLKy3lQKseI8eZgJETbx2HkgviEZD6hjxJHS1QCanqybL8fTP-Z_bRTuc6QOgdJUtKSHKg6lYtE0IFYULSV2hG04QuOJHpDpoRydKFzHi-h_b7_ooQIjOSvUZ7iaQij9YM3Rb4hwrgH-7uD1bGw8Y71-CVhRtTWcBrEy7N0D7c_T67GS-gw59UiPSIC31p4BpqXI34fOzAX4w4il_dNVhc-PgaQIfBA1ZdjU8HG0wzdDoY1ymLz2GjvArOv0G7jbI9vH085-j76vjb4efF-uzky2GxXmhOYx5RqwSyJuZROQhOGpllgtS1kLkmXOu0ljXwRFSVyKpcM2BcpFxKnbKExRubo4_bujHfzwH6ULam12Ct6sANfUllJiXLaOwwRx9eoFdu8PHXE5WzhOdUTgXfP1JD1UJdbrxplR_Lp8lGYLkFtHd976F5Rigpp9WV0-rK59VFgb8QtAlqGljwyth_a3Kr_TIWxv80KYuj0-Kv-weRu6_F |
CitedBy_id | crossref_primary_10_1002_admt_202000476 crossref_primary_10_1002_adma_201901961 crossref_primary_10_1016_j_ces_2019_115164 crossref_primary_10_1039_C8CC09935A crossref_primary_10_1002_aenm_202202933 crossref_primary_10_1016_j_cej_2020_128160 crossref_primary_10_1039_C8NR07964A crossref_primary_10_1002_aenm_201703652 crossref_primary_10_1002_celc_201800741 crossref_primary_10_1002_adma_202108437 crossref_primary_10_1007_s40820_021_00669_5 crossref_primary_10_1021_acs_nanolett_0c00357 crossref_primary_10_1016_j_apcatb_2019_01_032 crossref_primary_10_1002_advs_202103760 crossref_primary_10_1002_aelm_201800167 crossref_primary_10_1002_anie_201911229 crossref_primary_10_1002_adfm_201808117 crossref_primary_10_1002_cjoc_202000408 crossref_primary_10_1016_j_ensm_2022_03_021 crossref_primary_10_1016_j_cej_2022_138462 crossref_primary_10_1002_adfm_202304981 crossref_primary_10_1016_j_ensm_2018_11_023 crossref_primary_10_1093_nsr_nwaa150 crossref_primary_10_1021_acs_nanolett_1c01631 crossref_primary_10_1021_acssuschemeng_4c02128 crossref_primary_10_1002_smm2_1205 crossref_primary_10_1002_aenm_201802964 crossref_primary_10_1021_acsami_0c20871 crossref_primary_10_1002_batt_202000115 crossref_primary_10_1002_eom2_12010 crossref_primary_10_1016_j_apsusc_2023_157543 crossref_primary_10_1039_D0EE00039F crossref_primary_10_1021_acs_chemrev_2c00196 crossref_primary_10_1007_s11771_022_5131_5 crossref_primary_10_1021_acsami_0c08355 crossref_primary_10_1021_acsaem_8b01061 crossref_primary_10_1002_adma_201902151 crossref_primary_10_1021_acsomega_3c02917 crossref_primary_10_1155_2022_6740710 crossref_primary_10_1016_j_ensm_2018_05_002 crossref_primary_10_1007_s12274_019_2482_9 crossref_primary_10_1007_s40843_022_2100_6 crossref_primary_10_1021_acsami_0c22783 crossref_primary_10_1016_j_jmst_2020_07_039 crossref_primary_10_1021_acssuschemeng_8b06351 crossref_primary_10_1016_j_progpolymsci_2023_101714 crossref_primary_10_1021_acs_chemrev_9b00545 crossref_primary_10_1039_D0TA00439A crossref_primary_10_1039_D1QI01260F crossref_primary_10_1021_acscentsci_0c00849 crossref_primary_10_1002_aenm_202302536 crossref_primary_10_1016_j_jpowsour_2020_228109 crossref_primary_10_1016_j_joule_2018_07_021 crossref_primary_10_1002_adma_201804439 crossref_primary_10_1021_acs_energyfuels_1c00201 crossref_primary_10_1002_admt_202400417 crossref_primary_10_1021_jacs_0c07317 crossref_primary_10_1007_s11581_019_02993_8 crossref_primary_10_3390_en16104047 crossref_primary_10_1002_smll_201801963 crossref_primary_10_1002_ange_201911229 crossref_primary_10_1002_batt_201900031 crossref_primary_10_1016_j_chempr_2018_02_015 crossref_primary_10_1039_C8EE00522B |
Cites_doi | 10.1126/science.1171230 10.1038/ncomms8892 10.1002/adma.200901846 10.1038/nature16484 10.1002/smll.201600540 10.1149/1.1836378 10.1038/nchem.1376 10.1126/science.1182383 10.1002/adma.201503025 10.1002/adma.201203410 10.1038/nchem.1499 10.1126/science.aac7730 10.1002/adma.201500311 10.1016/j.electacta.2014.01.042 10.1002/adma.201205337 10.1002/cssc.201200810 10.1039/c2ee02414d 10.1016/j.jpowsour.2013.01.049 10.1039/c4ee00318g 10.1002/adma.201503891 10.1002/adma.201101328 10.1002/anie.201205354 10.1039/c1ee01500a 10.1038/ncomms2553 10.1038/nmat3191 10.1002/anie.201406476 10.1038/ncomms3438 10.1021/jz1005384 10.1038/ncomms1772 10.1038/srep02247 10.1002/adma.201401805 10.1039/c1ee01496j 10.1038/ncomms3255 10.1002/adma.201401427 10.1002/adma.201400910 10.1002/smll.201602952 10.1002/adma.201300132 10.1002/adma.201600689 10.1002/adma.201501130 10.1002/adma.201600012 10.1002/adma.201602800 10.1038/ncomms2513 10.1002/anie.201511832 10.1126/science.1200770 10.1002/adma.201700378 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201703791 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29178201 10_1002_adma_201703791 ADMA201703791 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: JLU Science and Technology Innovative Research Team funderid: 2017TD‐09 – fundername: National Natural Science Foundation of China funderid: 51522101; 51631004; 51471075; 51401084 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4121-7da2e6f093a8e740f96670dd798c04cc5d9de427bb76b8c3e3475499c53233e33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:06:36 EDT 2025 Fri Jul 25 07:31:40 EDT 2025 Wed Feb 19 02:42:10 EST 2025 Thu Apr 24 23:06:33 EDT 2025 Tue Jul 01 00:44:37 EDT 2025 Wed Jan 22 17:10:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | composite separator Li-O2 battery flexible safety |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4121-7da2e6f093a8e740f96670dd798c04cc5d9de427bb76b8c3e3475499c53233e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29178201 |
PQID | 1983248193 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1969936109 proquest_journals_1983248193 pubmed_primary_29178201 crossref_primary_10_1002_adma_201703791 crossref_citationtrail_10_1002_adma_201703791 wiley_primary_10_1002_adma_201703791_ADMA201703791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2010 2013 2016 2012 2013; 28 22 4 28 5 25 1996 2012 2013 2015 2016; 143 11 4 350 529 2012 2012 2010 2011; 4 4 1 4 2013 2013 2011; 3 52 4 2009 2014 2013; 323 26 25 2013 2010 2014 2011 2012; 25 327 7 23 3 2015 2015 2016 2016 2016 2016 2017 2017; 6 27 12 28 28 55 13 29 2015 2014 2014 2013 2015 2014 2011; 27 53 26 4 27 26 332 2013 2013 2014 2013; 4 6 123 244 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_2_2 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_2_1 e_1_2_4_2_4 e_1_2_4_3_3 e_1_2_4_4_2 e_1_2_4_5_1 e_1_2_4_2_3 e_1_2_4_3_2 e_1_2_4_4_1 e_1_2_4_3_5 e_1_2_4_4_4 e_1_2_4_5_3 e_1_2_4_6_2 e_1_2_4_7_1 e_1_2_4_2_5 e_1_2_4_3_4 e_1_2_4_4_3 e_1_2_4_5_2 e_1_2_4_6_1 e_1_2_4_5_5 e_1_2_4_6_4 e_1_2_4_7_3 e_1_2_4_8_2 e_1_2_4_9_1 e_1_2_4_3_6 e_1_2_4_4_5 e_1_2_4_5_4 e_1_2_4_6_3 e_1_2_4_7_2 e_1_2_4_8_1 e_1_2_4_5_7 e_1_2_4_8_4 e_1_2_4_9_3 e_1_2_4_5_6 e_1_2_4_7_4 e_1_2_4_8_3 e_1_2_4_9_2 e_1_2_4_8_6 e_1_2_4_8_5 e_1_2_4_8_8 e_1_2_4_8_7 |
References_xml | – volume: 28 22 4 28 5 25 start-page: 4524 415 1543 3646 6423 267 year: 2016 2010 2013 2016 2012 2013 publication-title: Adv. Mater. Adv. Mater. Nat. Commun. Adv. Mater. Energy Environ. Sci. Adv. Mater. – volume: 3 52 4 start-page: 2247 392 2999 year: 2013 2013 2011 publication-title: Sci. Rep. Angew. Chem., Int. Ed. Energy Environ. Sci. – volume: 143 11 4 350 529 start-page: 1 19 2438 530 377 year: 1996 2012 2013 2015 2016 publication-title: J. Electrochem. Soc. Nat. Mater. Nat. Commun. Science Nature – volume: 4 6 123 244 start-page: 2255 51 419 606 year: 2013 2013 2014 2013 publication-title: Nat. Commun. ChemSusChem Electrochim. Acta J. Power Sources – volume: 6 27 12 28 28 55 13 29 start-page: 7892 8095 3101 7494 8413 4487 1602952 1700378 year: 2015 2015 2016 2016 2016 2016 2017 2017 publication-title: Nat. Commun. Adv. Mater. Small Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Small Adv. Mater. – volume: 27 53 26 4 27 26 332 start-page: 4097 12590 6186 1481 2472 6472 1537 year: 2015 2014 2014 2013 2015 2014 2011 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Nat. Commun. Adv. Mater. Adv. Mater. Science – volume: 323 26 25 start-page: 1566 4763 4296 year: 2009 2014 2013 publication-title: Science Adv. Mater. Adv. Mater. – volume: 25 327 7 23 3 start-page: 2326 1603 2101 3426 770 year: 2013 2010 2014 2011 2012 publication-title: Adv. Mater. Science Energy Environ. Sci. Adv. Mater. Nat. Commun. – volume: 4 4 1 4 start-page: 579 1004 2193 2952 year: 2012 2012 2010 2011 publication-title: Nat. Chem. Nat. Chem. J. Phys. Chem. Lett. Energy Environ. Sci. – ident: e_1_2_4_1_1 doi: 10.1126/science.1171230 – ident: e_1_2_4_8_1 doi: 10.1038/ncomms8892 – ident: e_1_2_4_3_2 doi: 10.1002/adma.200901846 – ident: e_1_2_4_4_5 doi: 10.1038/nature16484 – ident: e_1_2_4_8_3 doi: 10.1002/smll.201600540 – ident: e_1_2_4_4_1 doi: 10.1149/1.1836378 – ident: e_1_2_4_6_1 doi: 10.1038/nchem.1376 – ident: e_1_2_4_2_2 doi: 10.1126/science.1182383 – ident: e_1_2_4_8_2 doi: 10.1002/adma.201503025 – ident: e_1_2_4_3_6 doi: 10.1002/adma.201203410 – ident: e_1_2_4_6_2 doi: 10.1038/nchem.1499 – ident: e_1_2_4_4_4 doi: 10.1126/science.aac7730 – ident: e_1_2_4_5_5 doi: 10.1002/adma.201500311 – ident: e_1_2_4_7_3 doi: 10.1016/j.electacta.2014.01.042 – ident: e_1_2_4_1_3 doi: 10.1002/adma.201205337 – ident: e_1_2_4_7_2 doi: 10.1002/cssc.201200810 – ident: e_1_2_4_3_5 doi: 10.1039/c2ee02414d – ident: e_1_2_4_7_4 doi: 10.1016/j.jpowsour.2013.01.049 – ident: e_1_2_4_2_3 doi: 10.1039/c4ee00318g – ident: e_1_2_4_3_1 doi: 10.1002/adma.201503891 – ident: e_1_2_4_2_4 doi: 10.1002/adma.201101328 – ident: e_1_2_4_9_2 doi: 10.1002/anie.201205354 – ident: e_1_2_4_9_3 doi: 10.1039/c1ee01500a – ident: e_1_2_4_3_3 doi: 10.1038/ncomms2553 – ident: e_1_2_4_4_2 doi: 10.1038/nmat3191 – ident: e_1_2_4_5_2 doi: 10.1002/anie.201406476 – ident: e_1_2_4_4_3 doi: 10.1038/ncomms3438 – ident: e_1_2_4_6_3 doi: 10.1021/jz1005384 – ident: e_1_2_4_2_5 doi: 10.1038/ncomms1772 – ident: e_1_2_4_9_1 doi: 10.1038/srep02247 – ident: e_1_2_4_5_6 doi: 10.1002/adma.201401805 – ident: e_1_2_4_6_4 doi: 10.1039/c1ee01496j – ident: e_1_2_4_7_1 doi: 10.1038/ncomms3255 – ident: e_1_2_4_5_3 doi: 10.1002/adma.201401427 – ident: e_1_2_4_1_2 doi: 10.1002/adma.201400910 – ident: e_1_2_4_8_7 doi: 10.1002/smll.201602952 – ident: e_1_2_4_2_1 doi: 10.1002/adma.201300132 – ident: e_1_2_4_3_4 doi: 10.1002/adma.201600689 – ident: e_1_2_4_5_1 doi: 10.1002/adma.201501130 – ident: e_1_2_4_8_4 doi: 10.1002/adma.201600012 – ident: e_1_2_4_8_5 doi: 10.1002/adma.201602800 – ident: e_1_2_4_5_4 doi: 10.1038/ncomms2513 – ident: e_1_2_4_8_6 doi: 10.1002/anie.201511832 – ident: e_1_2_4_5_7 doi: 10.1126/science.1200770 – ident: e_1_2_4_8_8 doi: 10.1002/adma.201700378 |
SSID | ssj0009606 |
Score | 2.496089 |
Snippet | To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | composite separator Consolidation Energy storage Flammability flexible Flux density Ion currents Lithium Lithium batteries Li–O2 battery Materials science Oxygen Portable equipment safety Storage batteries Storage systems Thermal resistance Thermal stability Underwater Vinylidene Vinylidene fluoride Water resistance |
Title | A Water‐/Fireproof Flexible Lithium–Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201703791 https://www.ncbi.nlm.nih.gov/pubmed/29178201 https://www.proquest.com/docview/1983248193 https://www.proquest.com/docview/1969936109 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIatqiu64NJyCbSVkZBYuZPYjp0sI8qoQrRIlIruIt-ijigJms5UDAvUR0DiDfskHNszmQ6oQoJdohwriXOO_ftyviD0oiyMcLSxhHFTElDEGSlzLYkVkrrcOmOVz0Y-PBIHJ_zNaX56I4s_8iH6CTcfGaG99gGu9MVgCQ1VNnCDMnBZGdLX_YYtr4reL_lRXp4H2B7LSSl4saA2pnSwWny1V_pDaq4q19D1DO8htXjouOPk0950ovfMt994jv_zVvfR3bkuxVV0pAdozbWbaOMGrXALfa_wR1Cm4-urH4PhyNMwu67BQ0_U1OcOvx1NzkbTz9dXP999nYFb4ojunOHKnI3cpbNYz_DxLOQaYih41F06f8PlQgZWrcUhI9j3tnGSEh-7QCfvxg_RyfD1h1cHZP77BmJ4RjMiraJONFD5qnCSpw2MrGRqrQT_SLkxuS2t41RqLYUuDHOMSz9aNTmjDM7YI7Tedq17grApYSAgNVgXGW-ytGgYFwqUjWigyeEiQWTx-WozZ5v7X2yc15HKTGtfr3Vfrwl62dt_iVSPWy23F95Qz6P7os5KaAc5aCmWoOf9ZYhLv9iiWtdNvY0A6edh9gl6HL2ovxWFMbJXXgmiwRf-8gx1tX9Y9WdP_6XQM3QHjos4d7SN1ifjqdsBNTXRuyFifgEaRheu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMctNB6Ah43ryDbASEg8ZU0cx04eI0ZVoC0S2wRvUXyJVrElqLQT3QPaR0DiG-6TcE7cpBSEkOAxiS0nzjn235fzMyHP0kQLy0rjR1ynPiji0E9jJX0jJLOxsdoUGI08GovBMX_9IW53E2IsjONDdBNu6BlNe40OjhPSvRU1tDANOCgEm5UYv34dj_VGfP7BuxVBCgV6g9uLYj8VPGm5jQHrredf75d-E5vr2rXpfPpbRLWv7facfNyfz9S-vviF6Phf33WbbC6lKc2cLd0h12x1l9z6CVh4j3zN6HsQp9Ory2-9_gSBmHVd0j5CNdWppcPJ7GQyP7u6_P72ywIskzp654Jm-mRiz62hakEPF024IYWM4_rcYoGrtQxaVIY2QcHY4bp5SnpoG0B5Pb1Pjvsvj14M_OUJDr7mIQt9aQpmRQm1XyRW8qCEwZUMjJFgIgHXOjapsZxJpaRQiY5sxCUOWHUcsQiuogdko6or-5BQncJYQCpInYS8DIOkjLgoQNyIElodLjzit_8v10u8OZ6ycZo7MDPLsV7zrl498rxL_8mBPf6Ycq81h3zp4J_zMIWmkIOcijzytHsMronrLUVl6zmmEaD-kGfvkW1nRl1RDIbJKL48whpj-Ms75NnBKOuudv4l0xNyY3A0GubDV-M3u-Qm3E_cVNIe2ZhN5_YRiKuZety4zw-NXBvK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMctNCQED9wvgQFGQuLJa2I7dvIYUaIBW0GMib1F8SVaxUim0k6UB7SPgMQ33Cfh2G7TFYSQ4DGJLTvOOfbfds7PCD3NMy0sbQxhXOcEFHFC8lRJYoSkNjVWm9pFI--OxPY-f3WQHpyL4g98iH7BzXmG76-dgx-bZrCChtbGc4MSMFnpwtcvchHn7vCG4bsVQMrpc0_bYynJBc-W2MaYDtbzrw9Lv2nNdenqx57yGqqXtQ6_nHzcmk3Vlv76C9Dxf17rOrq6EKa4CJZ0A12w7U105Ryu8Bb6VuAPIE0nZ6ffB-XY4TC7rsGlQ2qqI4t3xtPD8ezT2emPN1_mYJc4sDvnuNCHY3tiDVZzvDf3wYYYMo66E-sKXO1k4Lo12IcEu-E2rFLiPevx5N3kNtovX7x_vk0W5zcQzROaEGlqakUDjV9nVvK4gamVjI2RYCAx1zo1ubGcSqWkUJlmlnHppqs6ZZTBFbuDNtqutfcQ1jnMBKSC1FnCmyTOGsZFDdJGNNDncBEhsvx8lV7Azd0ZG0dVwDLTyrVr1bdrhJ716Y8D1uOPKTeX1lAt3PtzleTQEXIQUyxCT_rH4Jhut6VubTdzaQRoP0ezj9DdYEV9URQmyU56RYh6W_hLHapiuFv0V_f_JdNjdOntsKx2Xo5eP0CX4XYW1pE20cZ0MrMPQVlN1SPvPD8BIAcaeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Water%E2%80%90%2FFireproof+Flexible+Lithium%E2%80%93Oxygen+Battery+Achieved+by+Synergy+of+Novel+Architecture+and+Multifunctional+Separator&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yin%2C+Yan%E2%80%90Bin&rft.au=Yang%2C+Xiao%E2%80%90Yang&rft.au=Chang%2C+Zhi%E2%80%90Wen&rft.au=Zhu%2C+Yun%E2%80%90Hai&rft.date=2018-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=1&rft_id=info:doi/10.1002%2Fadma.201703791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201703791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |