A Water‐/Fireproof Flexible Lithium–Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator

To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 1
Main Authors Yin, Yan‐Bin, Yang, Xiao‐Yang, Chang, Zhi‐Wen, Zhu, Yun‐Hai, Liu, Tong, Yan, Jun‐Min, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half‐open structure design prevents it from working properly under water or fire conditions. Herein, as a proof‐of‐concept experiment, a highly safe flexible lithium–oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride‐co‐hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium–oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium–oxygen battery is a promising candidate to power underwater flexible electronics. A highly safe flexible lithium–oxygen (SFLO) battery is designed and fabricated to endow the possibility to power versatile portable and flexible devices. Thanks to an innovative assembly method, the structure of the SFLO battery possesses good flexibility, excellent water‐ and fire‐resistance, and superior electrochemical performances.
AbstractList To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy-storage systems. Flexible lithium-oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half-open structure design prevents it from working properly under water or fire conditions. Herein, as a proof-of-concept experiment, a highly safe flexible lithium-oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride-co-hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium-oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium-oxygen battery is a promising candidate to power underwater flexible electronics.
To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half‐open structure design prevents it from working properly under water or fire conditions. Herein, as a proof‐of‐concept experiment, a highly safe flexible lithium–oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride‐co‐hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium–oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium–oxygen battery is a promising candidate to power underwater flexible electronics. A highly safe flexible lithium–oxygen (SFLO) battery is designed and fabricated to endow the possibility to power versatile portable and flexible devices. Thanks to an innovative assembly method, the structure of the SFLO battery possesses good flexibility, excellent water‐ and fire‐resistance, and superior electrochemical performances.
To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy-storage systems. Flexible lithium-oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half-open structure design prevents it from working properly under water or fire conditions. Herein, as a proof-of-concept experiment, a highly safe flexible lithium-oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride-co-hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium-oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium-oxygen battery is a promising candidate to power underwater flexible electronics.To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy-storage systems. Flexible lithium-oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half-open structure design prevents it from working properly under water or fire conditions. Herein, as a proof-of-concept experiment, a highly safe flexible lithium-oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride-co-hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium-oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium-oxygen battery is a promising candidate to power underwater flexible electronics.
To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half‐open structure design prevents it from working properly under water or fire conditions. Herein, as a proof‐of‐concept experiment, a highly safe flexible lithium–oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride‐ co ‐hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium–oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium–oxygen battery is a promising candidate to power underwater flexible electronics.
Author Yin, Yan‐Bin
Yan, Jun‐Min
Liu, Tong
Chang, Zhi‐Wen
Yang, Xiao‐Yang
Jiang, Qing
Zhu, Yun‐Hai
Author_xml – sequence: 1
  givenname: Yan‐Bin
  surname: Yin
  fullname: Yin, Yan‐Bin
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Xiao‐Yang
  surname: Yang
  fullname: Yang, Xiao‐Yang
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Zhi‐Wen
  surname: Chang
  fullname: Chang, Zhi‐Wen
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Yun‐Hai
  surname: Zhu
  fullname: Zhu, Yun‐Hai
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Tong
  surname: Liu
  fullname: Liu, Tong
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Jun‐Min
  surname: Yan
  fullname: Yan, Jun‐Min
  email: junminyan@jlu.edu.cn
  organization: Jilin University
– sequence: 7
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29178201$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFO3DAQhq0KVJZtrz1WlnrpZRc7duL4mAJLKy3lQKseI8eZgJETbx2HkgviEZD6hjxJHS1QCanqybL8fTP-Z_bRTuc6QOgdJUtKSHKg6lYtE0IFYULSV2hG04QuOJHpDpoRydKFzHi-h_b7_ooQIjOSvUZ7iaQij9YM3Rb4hwrgH-7uD1bGw8Y71-CVhRtTWcBrEy7N0D7c_T67GS-gw59UiPSIC31p4BpqXI34fOzAX4w4il_dNVhc-PgaQIfBA1ZdjU8HG0wzdDoY1ymLz2GjvArOv0G7jbI9vH085-j76vjb4efF-uzky2GxXmhOYx5RqwSyJuZROQhOGpllgtS1kLkmXOu0ljXwRFSVyKpcM2BcpFxKnbKExRubo4_bujHfzwH6ULam12Ct6sANfUllJiXLaOwwRx9eoFdu8PHXE5WzhOdUTgXfP1JD1UJdbrxplR_Lp8lGYLkFtHd976F5Rigpp9WV0-rK59VFgb8QtAlqGljwyth_a3Kr_TIWxv80KYuj0-Kv-weRu6_F
CitedBy_id crossref_primary_10_1002_admt_202000476
crossref_primary_10_1002_adma_201901961
crossref_primary_10_1016_j_ces_2019_115164
crossref_primary_10_1039_C8CC09935A
crossref_primary_10_1002_aenm_202202933
crossref_primary_10_1016_j_cej_2020_128160
crossref_primary_10_1039_C8NR07964A
crossref_primary_10_1002_aenm_201703652
crossref_primary_10_1002_celc_201800741
crossref_primary_10_1002_adma_202108437
crossref_primary_10_1007_s40820_021_00669_5
crossref_primary_10_1021_acs_nanolett_0c00357
crossref_primary_10_1016_j_apcatb_2019_01_032
crossref_primary_10_1002_advs_202103760
crossref_primary_10_1002_aelm_201800167
crossref_primary_10_1002_anie_201911229
crossref_primary_10_1002_adfm_201808117
crossref_primary_10_1002_cjoc_202000408
crossref_primary_10_1016_j_ensm_2022_03_021
crossref_primary_10_1016_j_cej_2022_138462
crossref_primary_10_1002_adfm_202304981
crossref_primary_10_1016_j_ensm_2018_11_023
crossref_primary_10_1093_nsr_nwaa150
crossref_primary_10_1021_acs_nanolett_1c01631
crossref_primary_10_1021_acssuschemeng_4c02128
crossref_primary_10_1002_smm2_1205
crossref_primary_10_1002_aenm_201802964
crossref_primary_10_1021_acsami_0c20871
crossref_primary_10_1002_batt_202000115
crossref_primary_10_1002_eom2_12010
crossref_primary_10_1016_j_apsusc_2023_157543
crossref_primary_10_1039_D0EE00039F
crossref_primary_10_1021_acs_chemrev_2c00196
crossref_primary_10_1007_s11771_022_5131_5
crossref_primary_10_1021_acsami_0c08355
crossref_primary_10_1021_acsaem_8b01061
crossref_primary_10_1002_adma_201902151
crossref_primary_10_1021_acsomega_3c02917
crossref_primary_10_1155_2022_6740710
crossref_primary_10_1016_j_ensm_2018_05_002
crossref_primary_10_1007_s12274_019_2482_9
crossref_primary_10_1007_s40843_022_2100_6
crossref_primary_10_1021_acsami_0c22783
crossref_primary_10_1016_j_jmst_2020_07_039
crossref_primary_10_1021_acssuschemeng_8b06351
crossref_primary_10_1016_j_progpolymsci_2023_101714
crossref_primary_10_1021_acs_chemrev_9b00545
crossref_primary_10_1039_D0TA00439A
crossref_primary_10_1039_D1QI01260F
crossref_primary_10_1021_acscentsci_0c00849
crossref_primary_10_1002_aenm_202302536
crossref_primary_10_1016_j_jpowsour_2020_228109
crossref_primary_10_1016_j_joule_2018_07_021
crossref_primary_10_1002_adma_201804439
crossref_primary_10_1021_acs_energyfuels_1c00201
crossref_primary_10_1002_admt_202400417
crossref_primary_10_1021_jacs_0c07317
crossref_primary_10_1007_s11581_019_02993_8
crossref_primary_10_3390_en16104047
crossref_primary_10_1002_smll_201801963
crossref_primary_10_1002_ange_201911229
crossref_primary_10_1002_batt_201900031
crossref_primary_10_1016_j_chempr_2018_02_015
crossref_primary_10_1039_C8EE00522B
Cites_doi 10.1126/science.1171230
10.1038/ncomms8892
10.1002/adma.200901846
10.1038/nature16484
10.1002/smll.201600540
10.1149/1.1836378
10.1038/nchem.1376
10.1126/science.1182383
10.1002/adma.201503025
10.1002/adma.201203410
10.1038/nchem.1499
10.1126/science.aac7730
10.1002/adma.201500311
10.1016/j.electacta.2014.01.042
10.1002/adma.201205337
10.1002/cssc.201200810
10.1039/c2ee02414d
10.1016/j.jpowsour.2013.01.049
10.1039/c4ee00318g
10.1002/adma.201503891
10.1002/adma.201101328
10.1002/anie.201205354
10.1039/c1ee01500a
10.1038/ncomms2553
10.1038/nmat3191
10.1002/anie.201406476
10.1038/ncomms3438
10.1021/jz1005384
10.1038/ncomms1772
10.1038/srep02247
10.1002/adma.201401805
10.1039/c1ee01496j
10.1038/ncomms3255
10.1002/adma.201401427
10.1002/adma.201400910
10.1002/smll.201602952
10.1002/adma.201300132
10.1002/adma.201600689
10.1002/adma.201501130
10.1002/adma.201600012
10.1002/adma.201602800
10.1038/ncomms2513
10.1002/anie.201511832
10.1126/science.1200770
10.1002/adma.201700378
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201703791
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29178201
10_1002_adma_201703791
ADMA201703791
Genre article
Journal Article
GrantInformation_xml – fundername: JLU Science and Technology Innovative Research Team
  funderid: 2017TD‐09
– fundername: National Natural Science Foundation of China
  funderid: 51522101; 51631004; 51471075; 51401084
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4121-7da2e6f093a8e740f96670dd798c04cc5d9de427bb76b8c3e3475499c53233e33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:06:36 EDT 2025
Fri Jul 25 07:31:40 EDT 2025
Wed Feb 19 02:42:10 EST 2025
Thu Apr 24 23:06:33 EDT 2025
Tue Jul 01 00:44:37 EDT 2025
Wed Jan 22 17:10:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords composite separator
Li-O2 battery
flexible
safety
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4121-7da2e6f093a8e740f96670dd798c04cc5d9de427bb76b8c3e3475499c53233e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29178201
PQID 1983248193
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_1969936109
proquest_journals_1983248193
pubmed_primary_29178201
crossref_primary_10_1002_adma_201703791
crossref_citationtrail_10_1002_adma_201703791
wiley_primary_10_1002_adma_201703791_ADMA201703791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2010 2013 2016 2012 2013; 28 22 4 28 5 25
1996 2012 2013 2015 2016; 143 11 4 350 529
2012 2012 2010 2011; 4 4 1 4
2013 2013 2011; 3 52 4
2009 2014 2013; 323 26 25
2013 2010 2014 2011 2012; 25 327 7 23 3
2015 2015 2016 2016 2016 2016 2017 2017; 6 27 12 28 28 55 13 29
2015 2014 2014 2013 2015 2014 2011; 27 53 26 4 27 26 332
2013 2013 2014 2013; 4 6 123 244
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_2_2
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_2_1
e_1_2_4_2_4
e_1_2_4_3_3
e_1_2_4_4_2
e_1_2_4_5_1
e_1_2_4_2_3
e_1_2_4_3_2
e_1_2_4_4_1
e_1_2_4_3_5
e_1_2_4_4_4
e_1_2_4_5_3
e_1_2_4_6_2
e_1_2_4_7_1
e_1_2_4_2_5
e_1_2_4_3_4
e_1_2_4_4_3
e_1_2_4_5_2
e_1_2_4_6_1
e_1_2_4_5_5
e_1_2_4_6_4
e_1_2_4_7_3
e_1_2_4_8_2
e_1_2_4_9_1
e_1_2_4_3_6
e_1_2_4_4_5
e_1_2_4_5_4
e_1_2_4_6_3
e_1_2_4_7_2
e_1_2_4_8_1
e_1_2_4_5_7
e_1_2_4_8_4
e_1_2_4_9_3
e_1_2_4_5_6
e_1_2_4_7_4
e_1_2_4_8_3
e_1_2_4_9_2
e_1_2_4_8_6
e_1_2_4_8_5
e_1_2_4_8_8
e_1_2_4_8_7
References_xml – volume: 28 22 4 28 5 25
  start-page: 4524 415 1543 3646 6423 267
  year: 2016 2010 2013 2016 2012 2013
  publication-title: Adv. Mater. Adv. Mater. Nat. Commun. Adv. Mater. Energy Environ. Sci. Adv. Mater.
– volume: 3 52 4
  start-page: 2247 392 2999
  year: 2013 2013 2011
  publication-title: Sci. Rep. Angew. Chem., Int. Ed. Energy Environ. Sci.
– volume: 143 11 4 350 529
  start-page: 1 19 2438 530 377
  year: 1996 2012 2013 2015 2016
  publication-title: J. Electrochem. Soc. Nat. Mater. Nat. Commun. Science Nature
– volume: 4 6 123 244
  start-page: 2255 51 419 606
  year: 2013 2013 2014 2013
  publication-title: Nat. Commun. ChemSusChem Electrochim. Acta J. Power Sources
– volume: 6 27 12 28 28 55 13 29
  start-page: 7892 8095 3101 7494 8413 4487 1602952 1700378
  year: 2015 2015 2016 2016 2016 2016 2017 2017
  publication-title: Nat. Commun. Adv. Mater. Small Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Small Adv. Mater.
– volume: 27 53 26 4 27 26 332
  start-page: 4097 12590 6186 1481 2472 6472 1537
  year: 2015 2014 2014 2013 2015 2014 2011
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Nat. Commun. Adv. Mater. Adv. Mater. Science
– volume: 323 26 25
  start-page: 1566 4763 4296
  year: 2009 2014 2013
  publication-title: Science Adv. Mater. Adv. Mater.
– volume: 25 327 7 23 3
  start-page: 2326 1603 2101 3426 770
  year: 2013 2010 2014 2011 2012
  publication-title: Adv. Mater. Science Energy Environ. Sci. Adv. Mater. Nat. Commun.
– volume: 4 4 1 4
  start-page: 579 1004 2193 2952
  year: 2012 2012 2010 2011
  publication-title: Nat. Chem. Nat. Chem. J. Phys. Chem. Lett. Energy Environ. Sci.
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1171230
– ident: e_1_2_4_8_1
  doi: 10.1038/ncomms8892
– ident: e_1_2_4_3_2
  doi: 10.1002/adma.200901846
– ident: e_1_2_4_4_5
  doi: 10.1038/nature16484
– ident: e_1_2_4_8_3
  doi: 10.1002/smll.201600540
– ident: e_1_2_4_4_1
  doi: 10.1149/1.1836378
– ident: e_1_2_4_6_1
  doi: 10.1038/nchem.1376
– ident: e_1_2_4_2_2
  doi: 10.1126/science.1182383
– ident: e_1_2_4_8_2
  doi: 10.1002/adma.201503025
– ident: e_1_2_4_3_6
  doi: 10.1002/adma.201203410
– ident: e_1_2_4_6_2
  doi: 10.1038/nchem.1499
– ident: e_1_2_4_4_4
  doi: 10.1126/science.aac7730
– ident: e_1_2_4_5_5
  doi: 10.1002/adma.201500311
– ident: e_1_2_4_7_3
  doi: 10.1016/j.electacta.2014.01.042
– ident: e_1_2_4_1_3
  doi: 10.1002/adma.201205337
– ident: e_1_2_4_7_2
  doi: 10.1002/cssc.201200810
– ident: e_1_2_4_3_5
  doi: 10.1039/c2ee02414d
– ident: e_1_2_4_7_4
  doi: 10.1016/j.jpowsour.2013.01.049
– ident: e_1_2_4_2_3
  doi: 10.1039/c4ee00318g
– ident: e_1_2_4_3_1
  doi: 10.1002/adma.201503891
– ident: e_1_2_4_2_4
  doi: 10.1002/adma.201101328
– ident: e_1_2_4_9_2
  doi: 10.1002/anie.201205354
– ident: e_1_2_4_9_3
  doi: 10.1039/c1ee01500a
– ident: e_1_2_4_3_3
  doi: 10.1038/ncomms2553
– ident: e_1_2_4_4_2
  doi: 10.1038/nmat3191
– ident: e_1_2_4_5_2
  doi: 10.1002/anie.201406476
– ident: e_1_2_4_4_3
  doi: 10.1038/ncomms3438
– ident: e_1_2_4_6_3
  doi: 10.1021/jz1005384
– ident: e_1_2_4_2_5
  doi: 10.1038/ncomms1772
– ident: e_1_2_4_9_1
  doi: 10.1038/srep02247
– ident: e_1_2_4_5_6
  doi: 10.1002/adma.201401805
– ident: e_1_2_4_6_4
  doi: 10.1039/c1ee01496j
– ident: e_1_2_4_7_1
  doi: 10.1038/ncomms3255
– ident: e_1_2_4_5_3
  doi: 10.1002/adma.201401427
– ident: e_1_2_4_1_2
  doi: 10.1002/adma.201400910
– ident: e_1_2_4_8_7
  doi: 10.1002/smll.201602952
– ident: e_1_2_4_2_1
  doi: 10.1002/adma.201300132
– ident: e_1_2_4_3_4
  doi: 10.1002/adma.201600689
– ident: e_1_2_4_5_1
  doi: 10.1002/adma.201501130
– ident: e_1_2_4_8_4
  doi: 10.1002/adma.201600012
– ident: e_1_2_4_8_5
  doi: 10.1002/adma.201602800
– ident: e_1_2_4_5_4
  doi: 10.1038/ncomms2513
– ident: e_1_2_4_8_6
  doi: 10.1002/anie.201511832
– ident: e_1_2_4_5_7
  doi: 10.1126/science.1200770
– ident: e_1_2_4_8_8
  doi: 10.1002/adma.201700378
SSID ssj0009606
Score 2.496089
Snippet To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms composite separator
Consolidation
Energy storage
Flammability
flexible
Flux density
Ion currents
Lithium
Lithium batteries
Li–O2 battery
Materials science
Oxygen
Portable equipment
safety
Storage batteries
Storage systems
Thermal resistance
Thermal stability
Underwater
Vinylidene
Vinylidene fluoride
Water resistance
Title A Water‐/Fireproof Flexible Lithium–Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201703791
https://www.ncbi.nlm.nih.gov/pubmed/29178201
https://www.proquest.com/docview/1983248193
https://www.proquest.com/docview/1969936109
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIatqiu64NJyCbSVkZBYuZPYjp0sI8qoQrRIlIruIt-ijigJms5UDAvUR0DiDfskHNszmQ6oQoJdohwriXOO_ftyviD0oiyMcLSxhHFTElDEGSlzLYkVkrrcOmOVz0Y-PBIHJ_zNaX56I4s_8iH6CTcfGaG99gGu9MVgCQ1VNnCDMnBZGdLX_YYtr4reL_lRXp4H2B7LSSl4saA2pnSwWny1V_pDaq4q19D1DO8htXjouOPk0950ovfMt994jv_zVvfR3bkuxVV0pAdozbWbaOMGrXALfa_wR1Cm4-urH4PhyNMwu67BQ0_U1OcOvx1NzkbTz9dXP999nYFb4ojunOHKnI3cpbNYz_DxLOQaYih41F06f8PlQgZWrcUhI9j3tnGSEh-7QCfvxg_RyfD1h1cHZP77BmJ4RjMiraJONFD5qnCSpw2MrGRqrQT_SLkxuS2t41RqLYUuDHOMSz9aNTmjDM7YI7Tedq17grApYSAgNVgXGW-ytGgYFwqUjWigyeEiQWTx-WozZ5v7X2yc15HKTGtfr3Vfrwl62dt_iVSPWy23F95Qz6P7os5KaAc5aCmWoOf9ZYhLv9iiWtdNvY0A6edh9gl6HL2ovxWFMbJXXgmiwRf-8gx1tX9Y9WdP_6XQM3QHjos4d7SN1ifjqdsBNTXRuyFifgEaRheu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMctNB6Ah43ryDbASEg8ZU0cx04eI0ZVoC0S2wRvUXyJVrElqLQT3QPaR0DiG-6TcE7cpBSEkOAxiS0nzjn235fzMyHP0kQLy0rjR1ynPiji0E9jJX0jJLOxsdoUGI08GovBMX_9IW53E2IsjONDdBNu6BlNe40OjhPSvRU1tDANOCgEm5UYv34dj_VGfP7BuxVBCgV6g9uLYj8VPGm5jQHrredf75d-E5vr2rXpfPpbRLWv7facfNyfz9S-vviF6Phf33WbbC6lKc2cLd0h12x1l9z6CVh4j3zN6HsQp9Ory2-9_gSBmHVd0j5CNdWppcPJ7GQyP7u6_P72ywIskzp654Jm-mRiz62hakEPF024IYWM4_rcYoGrtQxaVIY2QcHY4bp5SnpoG0B5Pb1Pjvsvj14M_OUJDr7mIQt9aQpmRQm1XyRW8qCEwZUMjJFgIgHXOjapsZxJpaRQiY5sxCUOWHUcsQiuogdko6or-5BQncJYQCpInYS8DIOkjLgoQNyIElodLjzit_8v10u8OZ6ycZo7MDPLsV7zrl498rxL_8mBPf6Ycq81h3zp4J_zMIWmkIOcijzytHsMronrLUVl6zmmEaD-kGfvkW1nRl1RDIbJKL48whpj-Ms75NnBKOuudv4l0xNyY3A0GubDV-M3u-Qm3E_cVNIe2ZhN5_YRiKuZety4zw-NXBvK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMctNCQED9wvgQFGQuLJa2I7dvIYUaIBW0GMib1F8SVaxUim0k6UB7SPgMQ33Cfh2G7TFYSQ4DGJLTvOOfbfds7PCD3NMy0sbQxhXOcEFHFC8lRJYoSkNjVWm9pFI--OxPY-f3WQHpyL4g98iH7BzXmG76-dgx-bZrCChtbGc4MSMFnpwtcvchHn7vCG4bsVQMrpc0_bYynJBc-W2MaYDtbzrw9Lv2nNdenqx57yGqqXtQ6_nHzcmk3Vlv76C9Dxf17rOrq6EKa4CJZ0A12w7U105Ryu8Bb6VuAPIE0nZ6ffB-XY4TC7rsGlQ2qqI4t3xtPD8ezT2emPN1_mYJc4sDvnuNCHY3tiDVZzvDf3wYYYMo66E-sKXO1k4Lo12IcEu-E2rFLiPevx5N3kNtovX7x_vk0W5zcQzROaEGlqakUDjV9nVvK4gamVjI2RYCAx1zo1ubGcSqWkUJlmlnHppqs6ZZTBFbuDNtqutfcQ1jnMBKSC1FnCmyTOGsZFDdJGNNDncBEhsvx8lV7Azd0ZG0dVwDLTyrVr1bdrhJ716Y8D1uOPKTeX1lAt3PtzleTQEXIQUyxCT_rH4Jhut6VubTdzaQRoP0ezj9DdYEV9URQmyU56RYh6W_hLHapiuFv0V_f_JdNjdOntsKx2Xo5eP0CX4XYW1pE20cZ0MrMPQVlN1SPvPD8BIAcaeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Water%E2%80%90%2FFireproof+Flexible+Lithium%E2%80%93Oxygen+Battery+Achieved+by+Synergy+of+Novel+Architecture+and+Multifunctional+Separator&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yin%2C+Yan%E2%80%90Bin&rft.au=Yang%2C+Xiao%E2%80%90Yang&rft.au=Chang%2C+Zhi%E2%80%90Wen&rft.au=Zhu%2C+Yun%E2%80%90Hai&rft.date=2018-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=1&rft_id=info:doi/10.1002%2Fadma.201703791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201703791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon