Complementary enhanced solar thermal conversion performance of core-shell nanoparticles

•Optical properties of core-shell NPs were discussed systematically.•Absorption efficiency can be adjusted by the core-shell or mixing ratios of NPs.•Optimized parameters of the core-shell NPs for solar absorption were obtained.•Efficiency of Au-decorated SiO2 NPs was superior to Au NPs and SiO2 NPs...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 211; pp. 735 - 742
Main Authors Chen, Meijie, He, Yurong, Wang, Xinzhi, Hu, Yanwei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Optical properties of core-shell NPs were discussed systematically.•Absorption efficiency can be adjusted by the core-shell or mixing ratios of NPs.•Optimized parameters of the core-shell NPs for solar absorption were obtained.•Efficiency of Au-decorated SiO2 NPs was superior to Au NPs and SiO2 NPs. In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards the enhancement of solar absorption performance. Results showed that the resonance wavelength of SiO2@Au NPs lay in the 540–900 nm range, covering the near-infrared and visible regions. The resonance wavelength of SiO2@Ag NPs lay in the 390–830 nm range, covering the entire visible region. SiO2@Au nanofluid with a core-shell ratio of φ = 0.2 exhibited the highest solar absorption efficiency with 64% less Au consumption compared to pure Au NPs. For mixed nanofluids, the mixtures featuring core-shell ratios of 0.1 and 0.6 with mixing ratios of 0.5 for SiO2@Au and 0.6 for SiO2@Ag gave the highest absorption efficiencies. In addition, the peak solar absorption efficiency of a mixed nanofluid of SiO2@Au (φ = 0.1) and SiO2@Ag (φ = 0.4) with a mixing ratio of 0.58 was as high as 94.4%. Solar thermal conversion experiments revealed that, under the same conditions, a Au-decorated SiO2 nanofluid showed a comparable efficiency to the calculated solar absorption efficiency of the SiO2@Au core-shell nanofluid (∼95.2%); it was as high as 95.9%, higher than those of Au NPs and SiO2 NPs. These results showed that adjusting the core-shell ratios and tuning the mixing ratios of different nanofluids are two efficient methods to enhance the solar absorption efficiencies of SiO2@Au and SiO2@Ag NPs under the optimal conditions.
AbstractList •Optical properties of core-shell NPs were discussed systematically.•Absorption efficiency can be adjusted by the core-shell or mixing ratios of NPs.•Optimized parameters of the core-shell NPs for solar absorption were obtained.•Efficiency of Au-decorated SiO2 NPs was superior to Au NPs and SiO2 NPs. In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards the enhancement of solar absorption performance. Results showed that the resonance wavelength of SiO2@Au NPs lay in the 540–900 nm range, covering the near-infrared and visible regions. The resonance wavelength of SiO2@Ag NPs lay in the 390–830 nm range, covering the entire visible region. SiO2@Au nanofluid with a core-shell ratio of φ = 0.2 exhibited the highest solar absorption efficiency with 64% less Au consumption compared to pure Au NPs. For mixed nanofluids, the mixtures featuring core-shell ratios of 0.1 and 0.6 with mixing ratios of 0.5 for SiO2@Au and 0.6 for SiO2@Ag gave the highest absorption efficiencies. In addition, the peak solar absorption efficiency of a mixed nanofluid of SiO2@Au (φ = 0.1) and SiO2@Ag (φ = 0.4) with a mixing ratio of 0.58 was as high as 94.4%. Solar thermal conversion experiments revealed that, under the same conditions, a Au-decorated SiO2 nanofluid showed a comparable efficiency to the calculated solar absorption efficiency of the SiO2@Au core-shell nanofluid (∼95.2%); it was as high as 95.9%, higher than those of Au NPs and SiO2 NPs. These results showed that adjusting the core-shell ratios and tuning the mixing ratios of different nanofluids are two efficient methods to enhance the solar absorption efficiencies of SiO2@Au and SiO2@Ag NPs under the optimal conditions.
In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards the enhancement of solar absorption performance. Results showed that the resonance wavelength of SiO₂@Au NPs lay in the 540–900 nm range, covering the near-infrared and visible regions. The resonance wavelength of SiO₂@Ag NPs lay in the 390–830 nm range, covering the entire visible region. SiO₂@Au nanofluid with a core-shell ratio of φ = 0.2 exhibited the highest solar absorption efficiency with 64% less Au consumption compared to pure Au NPs. For mixed nanofluids, the mixtures featuring core-shell ratios of 0.1 and 0.6 with mixing ratios of 0.5 for SiO₂@Au and 0.6 for SiO₂@Ag gave the highest absorption efficiencies. In addition, the peak solar absorption efficiency of a mixed nanofluid of SiO₂@Au (φ = 0.1) and SiO₂@Ag (φ = 0.4) with a mixing ratio of 0.58 was as high as 94.4%. Solar thermal conversion experiments revealed that, under the same conditions, a Au-decorated SiO₂ nanofluid showed a comparable efficiency to the calculated solar absorption efficiency of the SiO₂@Au core-shell nanofluid (∼95.2%); it was as high as 95.9%, higher than those of Au NPs and SiO₂ NPs. These results showed that adjusting the core-shell ratios and tuning the mixing ratios of different nanofluids are two efficient methods to enhance the solar absorption efficiencies of SiO₂@Au and SiO₂@Ag NPs under the optimal conditions.
Author Wang, Xinzhi
He, Yurong
Hu, Yanwei
Chen, Meijie
Author_xml – sequence: 1
  givenname: Meijie
  surname: Chen
  fullname: Chen, Meijie
– sequence: 2
  givenname: Yurong
  orcidid: 0000-0003-3009-0468
  surname: He
  fullname: He, Yurong
  email: rong@hit.edu.cn
– sequence: 3
  givenname: Xinzhi
  surname: Wang
  fullname: Wang, Xinzhi
– sequence: 4
  givenname: Yanwei
  surname: Hu
  fullname: Hu, Yanwei
BookMark eNqFkE1LxDAQhoMouH78BenRS2smbdMGPCiLXyB4UTyGNDtxs7RJTaLgvzfL6sWLp4GZ9xlmniOy77xDQs6AVkCBX2wqNaPD8PZVMQpdBVDRvtsjC-g7VgqAfp8saE15yTiIQ3IU44ZSyoDRBXld-mkecUKXVPgq0K2V07gqoh9VKNIaw6TGQnv3iSFa74oZg_G5mVOFN3kSsIxrHMfCKednFZLVI8YTcmDUGPH0px6Tl9ub5-V9-fh097C8fix1A5BKXJm2E40ZGFct70UL2LQwgKKUd1gbxmvWM0EH0TTUQDMIGIQB0a40FaJW9TE53-2dg3__wJjkZKPO5yiH_iNKlhXVvG54l6OXu6gOPsaARmqbVMpPpaDsKIHKrU-5kb8-5danBJDZZ8b5H3wOdsrS_gevdiBmD58Wg4za4tayDaiTXHn734pvwkmXeg
CitedBy_id crossref_primary_10_1016_j_jqsrt_2018_12_023
crossref_primary_10_1007_s11468_019_00990_1
crossref_primary_10_1039_D4CP02754J
crossref_primary_10_1002_apj_2482
crossref_primary_10_1016_j_jqsrt_2023_108707
crossref_primary_10_1016_j_watres_2020_115770
crossref_primary_10_1007_s10973_020_09519_9
crossref_primary_10_1016_j_solmat_2023_112203
crossref_primary_10_1007_s11468_024_02374_6
crossref_primary_10_1016_j_enconman_2018_04_086
crossref_primary_10_1016_j_applthermaleng_2020_115207
crossref_primary_10_1016_j_energy_2021_120483
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_071
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_086
crossref_primary_10_1002_apj_2803
crossref_primary_10_1039_C9TA05935K
crossref_primary_10_1016_j_ijthermalsci_2024_109175
crossref_primary_10_1016_j_apenergy_2019_04_069
crossref_primary_10_1016_j_solener_2019_02_070
crossref_primary_10_1016_j_solener_2024_113071
crossref_primary_10_1007_s11468_023_01787_z
crossref_primary_10_1016_j_optlastec_2021_107323
crossref_primary_10_1016_j_optlastec_2021_107565
crossref_primary_10_1615_JEnhHeatTransf_2023046713
crossref_primary_10_1016_j_renene_2018_10_072
crossref_primary_10_32604_EE_2021_014806
crossref_primary_10_1016_j_solmat_2018_10_011
crossref_primary_10_1002_adfm_202307533
crossref_primary_10_1016_j_solener_2018_06_071
crossref_primary_10_1016_j_ijthermalsci_2022_107547
crossref_primary_10_1080_15567265_2022_2146025
crossref_primary_10_3390_nano11092209
crossref_primary_10_1016_j_energy_2023_129846
crossref_primary_10_12677_MS_2022_123022
crossref_primary_10_1007_s10853_021_06114_7
crossref_primary_10_1016_j_applthermaleng_2023_121868
crossref_primary_10_1016_j_apenergy_2019_113706
crossref_primary_10_1080_01457632_2024_2400861
crossref_primary_10_1016_j_cjche_2018_03_021
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_026
crossref_primary_10_1016_j_solener_2020_08_068
crossref_primary_10_1134_S0030400X21080087
crossref_primary_10_1016_j_matpr_2022_11_371
crossref_primary_10_1002_ente_202100169
crossref_primary_10_1016_j_colsurfa_2024_133598
crossref_primary_10_1016_j_applthermaleng_2023_121189
crossref_primary_10_1007_s12633_024_03165_8
crossref_primary_10_1016_j_jqsrt_2021_107994
crossref_primary_10_1016_j_apenergy_2020_114570
crossref_primary_10_1380_ejssnt_2023_055
crossref_primary_10_1007_s11468_018_0889_x
crossref_primary_10_1007_s10853_022_07863_9
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_017
crossref_primary_10_1016_j_applthermaleng_2023_121954
crossref_primary_10_1016_j_icheatmasstransfer_2024_107977
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_104
crossref_primary_10_7498_aps_70_20210602
crossref_primary_10_1016_j_seta_2024_103748
crossref_primary_10_1364_OE_405012
crossref_primary_10_1016_j_applthermaleng_2022_119212
crossref_primary_10_1016_j_apenergy_2018_07_113
crossref_primary_10_1016_j_rser_2021_110995
crossref_primary_10_1007_s11468_019_00925_w
crossref_primary_10_1016_j_renene_2022_08_065
crossref_primary_10_1088_1674_1056_ab836d
crossref_primary_10_1016_j_carbon_2018_04_026
crossref_primary_10_1016_j_renene_2022_04_126
crossref_primary_10_1016_j_apenergy_2018_09_191
crossref_primary_10_1016_j_energy_2020_119254
crossref_primary_10_1007_s11664_021_08909_5
crossref_primary_10_1007_s11814_020_0634_y
crossref_primary_10_1016_j_ijthermalsci_2022_108099
Cites_doi 10.1016/j.apenergy.2016.08.054
10.1016/j.apenergy.2013.12.058
10.1063/1.3429737
10.1016/j.apenergy.2017.03.003
10.1016/j.ijheatmasstransfer.2017.01.005
10.1073/pnas.1310131110
10.1016/j.apenergy.2015.03.108
10.1016/j.apenergy.2017.02.028
10.1016/j.apenergy.2017.03.080
10.1002/0471654507.eme123
10.1002/smll.200700493
10.1016/j.applthermaleng.2017.04.102
10.1016/j.apenergy.2008.10.020
10.1021/nl0515753
10.1016/0010-8545(82)85003-0
10.1021/cr2001178
10.1016/j.energy.2008.04.003
10.1021/ed039p333
10.1016/j.apenergy.2017.06.075
10.1016/j.apenergy.2015.05.031
10.1039/B514191E
10.1063/1.4966893
10.1016/j.apenergy.2012.11.074
10.1063/1.2988288
10.1038/srep17276
10.1016/j.ijheatmasstransfer.2014.11.026
10.1063/1.2336629
10.1021/jp9917648
10.1115/1.3250623
10.1063/1.125183
10.1016/j.enconman.2016.01.009
10.1016/j.apenergy.2012.08.002
10.1016/S0167-7799(00)01485-2
10.1016/j.enconman.2016.09.015
10.1016/j.enconman.2016.10.049
10.1016/j.apenergy.2008.12.004
10.1016/j.enconman.2014.04.009
10.1039/C4RA00630E
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.11.087
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 742
ExternalDocumentID 10_1016_j_apenergy_2017_11_087
S0306261917316860
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c411t-edf5794fb26a568951e451b1a0067e3f26328290b9440f14b91b9f195dc0993a3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Thu Jul 10 23:59:56 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 02:53:21 EDT 2025
Fri Feb 23 02:47:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar thermal conversion
Finite difference time domain
Optical properties
Core-shell nanoparticle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-edf5794fb26a568951e451b1a0067e3f26328290b9440f14b91b9f195dc0993a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3009-0468
PQID 2101363467
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2101363467
crossref_citationtrail_10_1016_j_apenergy_2017_11_087
crossref_primary_10_1016_j_apenergy_2017_11_087
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_11_087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Otanicar, Phelan, Prasher, Rosengarten, Taylor (b0090) 2010; 2
Fahrenbruch, Bube (b0020) 2012
Bandarra Filho, Mendoza, Beicker, Menezes, Wen (b0095) 2014; 84
Chen, He, Huang, Zhu (b0200) 2016; 127
Bohren, Huffman (b0205) 2008
Wang, Li, Guo, He, Ding, Yan, Yang (b0050) 2015; 150
Potenza, Milanese, Colangelo, de Risi (b0065) 2017; 203
Derkacs, Lim, Matheu, Mar, Yu (b0085) 2006; 89
Wang, He, Liu, Cheng, Zhu (b0175) 2017; 195
Liu, Wu, Lu, Yao, Hsiao, Hung (b0130) 2008; 4
Lund, Mathiesen (b0010) 2009; 34
Oldenburg, Jackson, Westcott, Halas (b0140) 1999; 75
Neumann, Feronti, Neumann, Dong, Schell, Lu, Nordlander (b0070) 2013; 110
Colangelo, Favale, Miglietta, de Risi, Milanese, Laforgia (b0075) 2015; 154
Wang, Yang, Fang, Ding, Yan (b0035) 2009; 86
Moghimi, Hunter (b0055) 2000; 18
Chen, He, Zhu, Wen (b0185) 2016; 181
Tang, Zhou, Gu, Zhu, Wang, Xu (b0120) 2016; 109
Saha, Agasti, Kim, Li, Rotello (b0060) 2012; 112
Gómez-Villarejo, Martín, Navas, Sánchez-Coronilla, Aguilar, Gallardo (b0030) 2017; 194
Eustis, El-Sayed (b0110) 2006; 35
Kim, Lee (b0125) 2015
Li, He, Liu, Jiang (b0165) 2017; 121
Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. Artech House; 2005.
Chen, He, Zhu, Kim (b0145) 2016; 112
Le Ru, Etchegoin (b0220) 2008
Gao, Liu, Zhang, Yan, Bao, Xu, Qin (b0015) 2013; 105
Wang, Quan, Zhang, Cheng (b0160) 2017
Tien (b0195) 1988; 110
Xuan, Duan, Li (b0150) 2014; 4
Link, El-Sayed (b0215) 1999; 103
Wang, Yang, Fang, Ding, Yan (b0040) 2009; 86
Crisostomo, Hjerrild, Mesgari, Li, Taylor (b0180) 2017; 193
Mélinon, Begin-Colin, Duvail, Gauffre, Boime, Ledoux, Warot-Fonrose (b0135) 2014; 543
Wu, Zhou, Du, Yang (b0155) 2015; 82
Duić, Guzović, Kafarov, Klemeš, vad Mathiessen, Yan (b0005) 2013; 101
Zhao, Duan, Yu, Zhang, He, Quan, Deng (b0225) 2015; 5
Gupta, Misra (b0115) 2017
Swinehart (b0210) 1962; 39
Kalyanasundaram (b0025) 1982; 46
Wang, Guo, Li, Yan, Zhao, Li, Ding (b0045) 2014; 119
Nakayama, Tanabe, Atwater (b0080) 2008; 93
Sherry, Chang, Schatz, Van Duyne, Wiley, Xia (b0105) 2005; 5
Wang, He, Cheng, Shi, Liu, Zhu (b0170) 2016; 130
Chen, He, Huang, Zhu (b0100) 2017; 108
Colangelo (10.1016/j.apenergy.2017.11.087_b0075) 2015; 154
Bandarra Filho (10.1016/j.apenergy.2017.11.087_b0095) 2014; 84
Liu (10.1016/j.apenergy.2017.11.087_b0130) 2008; 4
Wang (10.1016/j.apenergy.2017.11.087_b0050) 2015; 150
Xuan (10.1016/j.apenergy.2017.11.087_b0150) 2014; 4
Le Ru (10.1016/j.apenergy.2017.11.087_b0220) 2008
Tang (10.1016/j.apenergy.2017.11.087_b0120) 2016; 109
Swinehart (10.1016/j.apenergy.2017.11.087_b0210) 1962; 39
10.1016/j.apenergy.2017.11.087_b0190
Wang (10.1016/j.apenergy.2017.11.087_b0045) 2014; 119
Chen (10.1016/j.apenergy.2017.11.087_b0100) 2017; 108
Potenza (10.1016/j.apenergy.2017.11.087_b0065) 2017; 203
Neumann (10.1016/j.apenergy.2017.11.087_b0070) 2013; 110
Tien (10.1016/j.apenergy.2017.11.087_b0195) 1988; 110
Wang (10.1016/j.apenergy.2017.11.087_b0175) 2017; 195
Mélinon (10.1016/j.apenergy.2017.11.087_b0135) 2014; 543
Eustis (10.1016/j.apenergy.2017.11.087_b0110) 2006; 35
Derkacs (10.1016/j.apenergy.2017.11.087_b0085) 2006; 89
Li (10.1016/j.apenergy.2017.11.087_b0165) 2017; 121
Gómez-Villarejo (10.1016/j.apenergy.2017.11.087_b0030) 2017; 194
Moghimi (10.1016/j.apenergy.2017.11.087_b0055) 2000; 18
Link (10.1016/j.apenergy.2017.11.087_b0215) 1999; 103
Otanicar (10.1016/j.apenergy.2017.11.087_b0090) 2010; 2
Gupta (10.1016/j.apenergy.2017.11.087_b0115) 2017
Lund (10.1016/j.apenergy.2017.11.087_b0010) 2009; 34
Kim (10.1016/j.apenergy.2017.11.087_b0125) 2015
Chen (10.1016/j.apenergy.2017.11.087_b0185) 2016; 181
Nakayama (10.1016/j.apenergy.2017.11.087_b0080) 2008; 93
Kalyanasundaram (10.1016/j.apenergy.2017.11.087_b0025) 1982; 46
Saha (10.1016/j.apenergy.2017.11.087_b0060) 2012; 112
Crisostomo (10.1016/j.apenergy.2017.11.087_b0180) 2017; 193
Gao (10.1016/j.apenergy.2017.11.087_b0015) 2013; 105
Wang (10.1016/j.apenergy.2017.11.087_b0160) 2017
Chen (10.1016/j.apenergy.2017.11.087_b0200) 2016; 127
Bohren (10.1016/j.apenergy.2017.11.087_b0205) 2008
Wang (10.1016/j.apenergy.2017.11.087_b0035) 2009; 86
Chen (10.1016/j.apenergy.2017.11.087_b0145) 2016; 112
Duić (10.1016/j.apenergy.2017.11.087_b0005) 2013; 101
Fahrenbruch (10.1016/j.apenergy.2017.11.087_b0020) 2012
Wu (10.1016/j.apenergy.2017.11.087_b0155) 2015; 82
Sherry (10.1016/j.apenergy.2017.11.087_b0105) 2005; 5
Wang (10.1016/j.apenergy.2017.11.087_b0040) 2009; 86
Wang (10.1016/j.apenergy.2017.11.087_b0170) 2016; 130
Zhao (10.1016/j.apenergy.2017.11.087_b0225) 2015; 5
Oldenburg (10.1016/j.apenergy.2017.11.087_b0140) 1999; 75
References_xml – volume: 4
  start-page: 16206
  year: 2014
  end-page: 16213
  ident: b0150
  article-title: Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO
  publication-title: RSC Adv
– volume: 34
  start-page: 524
  year: 2009
  end-page: 531
  ident: b0010
  article-title: Energy system analysis of 100% renewable energy systems-the case of Denmark in years 2030 and 2050
  publication-title: Energy
– volume: 154
  start-page: 874
  year: 2015
  end-page: 881
  ident: b0075
  article-title: Experimental test of an innovative high concentration nanofluid solar collector
  publication-title: Appl Energy
– year: 2017
  ident: b0160
  article-title: Optical absorption of carbon-gold core-shell nanoparticles
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 5
  start-page: 17276
  year: 2015
  ident: b0225
  article-title: Enhancing localized evaporation through separated light absorbing centers and scattering centers
  publication-title: Sci Rep
– volume: 127
  start-page: 293
  year: 2016
  end-page: 300
  ident: b0200
  article-title: Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles
  publication-title: Energy Convers Manage
– volume: 193
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0180
  article-title: A hybrid PV/T collector using spectrally selective absorbing nanofluids
  publication-title: Appl Energy
– volume: 194
  start-page: 19
  year: 2017
  end-page: 29
  ident: b0030
  article-title: Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: nano-level insights
  publication-title: Appl Energy
– volume: 110
  start-page: 1230
  year: 1988
  end-page: 1242
  ident: b0195
  article-title: Thermal radiation in packed and fluidized beds
  publication-title: J Heat Transf-Trans ASME
– volume: 39
  start-page: 333
  year: 1962
  ident: b0210
  article-title: The beer-lambert law
  publication-title: J Chem Educ
– volume: 112
  start-page: 21
  year: 2016
  end-page: 30
  ident: b0145
  article-title: Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes
  publication-title: Energy Convers Manage
– volume: 93
  start-page: 121904
  year: 2008
  ident: b0080
  article-title: Plasmonic nanoparticle enhanced light absorption in GaAs solar cells
  publication-title: Appl Phys Lett
– volume: 121
  start-page: 617
  year: 2017
  end-page: 627
  ident: b0165
  article-title: Synchronous steam generation and heat collection in a broadband Ag@TiO
  publication-title: Appl Therm Eng
– year: 2008
  ident: b0220
  article-title: Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects
– volume: 2
  start-page: 033102
  year: 2010
  ident: b0090
  article-title: Nanofluid-based direct absorption solar collector
  publication-title: J Renew Sustain Energy
– volume: 150
  start-page: 61
  year: 2015
  end-page: 68
  ident: b0050
  article-title: Numerical simulation study on discharging process of the direct-contact phase change energy storage system
  publication-title: Appl Energy
– volume: 89
  start-page: 093103
  year: 2006
  ident: b0085
  article-title: Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles
  publication-title: Appl Phys Lett
– volume: 82
  start-page: 545
  year: 2015
  end-page: 554
  ident: b0155
  article-title: Optical and thermal radiative properties of plasmonic nanofluids containing core-shell composite nanoparticles for efficient photothermal conversion
  publication-title: Int J Heat Mass Transf
– volume: 181
  start-page: 65
  year: 2016
  end-page: 74
  ident: b0185
  article-title: Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors
  publication-title: Appl Energy
– volume: 112
  start-page: 2739
  year: 2012
  end-page: 2779
  ident: b0060
  article-title: Gold nanoparticles in chemical and biological sensing
  publication-title: Chem Rev
– volume: 543
  start-page: 163
  year: 2014
  end-page: 197
  ident: b0135
  article-title: Engineered inorganic core/shell nanoparticles
  publication-title: Phys Rep-Rev Sec Phys Lett
– volume: 86
  start-page: 1479
  year: 2009
  end-page: 1483
  ident: b0035
  article-title: Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage
  publication-title: Appl Energy
– volume: 86
  start-page: 1196
  year: 2009
  end-page: 1200
  ident: b0040
  article-title: Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride
  publication-title: Appl Energy
– volume: 103
  start-page: 8410
  year: 1999
  end-page: 8426
  ident: b0215
  article-title: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods
  publication-title: J Phys Chem B
– volume: 105
  start-page: 182
  year: 2013
  end-page: 193
  ident: b0015
  article-title: Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table
  publication-title: Appl Energy
– year: 2017
  ident: b0115
  article-title: Metal semiconductor core-shell nanostructures for energy and environmental applications
– year: 2008
  ident: b0205
  article-title: Absorption and scattering of light by small particles
– volume: 5
  start-page: 2034
  year: 2005
  end-page: 2038
  ident: b0105
  article-title: Localized surface plasmon resonance spectroscopy of single silver nanocubes
  publication-title: Nano Lett
– reference: Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. Artech House; 2005.
– volume: 101
  start-page: 3
  year: 2013
  end-page: 5
  ident: b0005
  article-title: Sustainable development of energy, water and environment systems
  publication-title: Appl Energy
– volume: 109
  start-page: 183901
  year: 2016
  ident: b0120
  article-title: Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells
  publication-title: Appl Phys Lett
– volume: 110
  start-page: 11677
  year: 2013
  end-page: 11681
  ident: b0070
  article-title: Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles
  publication-title: Proc Natl Acad Sci USA
– volume: 18
  start-page: 412
  year: 2000
  end-page: 420
  ident: b0055
  article-title: Poloxamers and poloxamines in nanoparticle engineering and experimental medicine
  publication-title: Trends Biotechnol
– volume: 35
  start-page: 209
  year: 2006
  end-page: 217
  ident: b0110
  article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
  publication-title: Chem Soc Rev
– volume: 203
  start-page: 560
  year: 2017
  end-page: 570
  ident: b0065
  article-title: Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid
  publication-title: Appl Energy
– year: 2012
  ident: b0020
  article-title: Fundamentals of solar cells: photovoltaic solar energy conversion
– volume: 119
  start-page: 181
  year: 2014
  end-page: 189
  ident: b0045
  article-title: Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)
  publication-title: Appl Energy
– volume: 46
  start-page: 159
  year: 1982
  end-page: 244
  ident: b0025
  article-title: Photophysics, photochemistry and solar energy conversion with tris (bipyridyl) ruthenium (II) and its analogues
  publication-title: Coord Chem Rev
– year: 2015
  ident: b0125
  article-title: The development of smart, multi-responsive core@shell composite nanoparticles, nanoparticles technology
– volume: 4
  start-page: 619
  year: 2008
  end-page: 626
  ident: b0130
  article-title: Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells
  publication-title: Small
– volume: 108
  start-page: 1894
  year: 2017
  end-page: 1900
  ident: b0100
  article-title: Investigation into Au nanofluids for solar photothermal conversion
  publication-title: Int J Heat Mass Transf
– volume: 75
  start-page: 2897
  year: 1999
  end-page: 2899
  ident: b0140
  article-title: Infrared extinction properties of gold nanoshells
  publication-title: Appl Phys Lett
– volume: 130
  start-page: 176
  year: 2016
  end-page: 183
  ident: b0170
  article-title: Direct vapor generation through localized solar heating via carbon-nanotube nanofluid
  publication-title: Energy Convers Manage
– volume: 84
  start-page: 261
  year: 2014
  end-page: 267
  ident: b0095
  article-title: Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system
  publication-title: Energy Convers Manage
– volume: 195
  start-page: 414
  year: 2017
  end-page: 425
  ident: b0175
  article-title: Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes
  publication-title: Appl Energy
– year: 2017
  ident: 10.1016/j.apenergy.2017.11.087_b0160
  article-title: Optical absorption of carbon-gold core-shell nanoparticles
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 181
  start-page: 65
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.087_b0185
  article-title: Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.054
– volume: 119
  start-page: 181
  year: 2014
  ident: 10.1016/j.apenergy.2017.11.087_b0045
  article-title: Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.12.058
– volume: 2
  start-page: 033102
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2017.11.087_b0090
  article-title: Nanofluid-based direct absorption solar collector
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.3429737
– volume: 194
  start-page: 19
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.087_b0030
  article-title: Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: nano-level insights
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.003
– volume: 108
  start-page: 1894
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.087_b0100
  article-title: Investigation into Au nanofluids for solar photothermal conversion
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.01.005
– volume: 110
  start-page: 11677
  issue: 29
  year: 2013
  ident: 10.1016/j.apenergy.2017.11.087_b0070
  article-title: Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1310131110
– volume: 150
  start-page: 61
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.087_b0050
  article-title: Numerical simulation study on discharging process of the direct-contact phase change energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.108
– volume: 193
  start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.087_b0180
  article-title: A hybrid PV/T collector using spectrally selective absorbing nanofluids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.02.028
– volume: 195
  start-page: 414
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.087_b0175
  article-title: Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.080
– ident: 10.1016/j.apenergy.2017.11.087_b0190
  doi: 10.1002/0471654507.eme123
– volume: 4
  start-page: 619
  issue: 5
  year: 2008
  ident: 10.1016/j.apenergy.2017.11.087_b0130
  article-title: Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells
  publication-title: Small
  doi: 10.1002/smll.200700493
– volume: 121
  start-page: 617
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.087_b0165
  article-title: Synchronous steam generation and heat collection in a broadband Ag@TiO2 core-shell nanoparticle-based receiver
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.04.102
– volume: 86
  start-page: 1196
  issue: 7
  year: 2009
  ident: 10.1016/j.apenergy.2017.11.087_b0040
  article-title: Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.10.020
– volume: 5
  start-page: 2034
  issue: 10
  year: 2005
  ident: 10.1016/j.apenergy.2017.11.087_b0105
  article-title: Localized surface plasmon resonance spectroscopy of single silver nanocubes
  publication-title: Nano Lett
  doi: 10.1021/nl0515753
– volume: 46
  start-page: 159
  year: 1982
  ident: 10.1016/j.apenergy.2017.11.087_b0025
  article-title: Photophysics, photochemistry and solar energy conversion with tris (bipyridyl) ruthenium (II) and its analogues
  publication-title: Coord Chem Rev
  doi: 10.1016/0010-8545(82)85003-0
– volume: 112
  start-page: 2739
  issue: 5
  year: 2012
  ident: 10.1016/j.apenergy.2017.11.087_b0060
  article-title: Gold nanoparticles in chemical and biological sensing
  publication-title: Chem Rev
  doi: 10.1021/cr2001178
– volume: 34
  start-page: 524
  issue: 5
  year: 2009
  ident: 10.1016/j.apenergy.2017.11.087_b0010
  article-title: Energy system analysis of 100% renewable energy systems-the case of Denmark in years 2030 and 2050
  publication-title: Energy
  doi: 10.1016/j.energy.2008.04.003
– year: 2012
  ident: 10.1016/j.apenergy.2017.11.087_b0020
– volume: 39
  start-page: 333
  issue: 7
  year: 1962
  ident: 10.1016/j.apenergy.2017.11.087_b0210
  article-title: The beer-lambert law
  publication-title: J Chem Educ
  doi: 10.1021/ed039p333
– volume: 203
  start-page: 560
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.087_b0065
  article-title: Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.075
– volume: 154
  start-page: 874
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.087_b0075
  article-title: Experimental test of an innovative high concentration nanofluid solar collector
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.031
– volume: 35
  start-page: 209
  issue: 3
  year: 2006
  ident: 10.1016/j.apenergy.2017.11.087_b0110
  article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
  publication-title: Chem Soc Rev
  doi: 10.1039/B514191E
– volume: 109
  start-page: 183901
  issue: 18
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.087_b0120
  article-title: Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4966893
– volume: 105
  start-page: 182
  year: 2013
  ident: 10.1016/j.apenergy.2017.11.087_b0015
  article-title: Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.11.074
– volume: 93
  start-page: 121904
  issue: 12
  year: 2008
  ident: 10.1016/j.apenergy.2017.11.087_b0080
  article-title: Plasmonic nanoparticle enhanced light absorption in GaAs solar cells
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2988288
– volume: 5
  start-page: 17276
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.087_b0225
  article-title: Enhancing localized evaporation through separated light absorbing centers and scattering centers
  publication-title: Sci Rep
  doi: 10.1038/srep17276
– volume: 82
  start-page: 545
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.087_b0155
  article-title: Optical and thermal radiative properties of plasmonic nanofluids containing core-shell composite nanoparticles for efficient photothermal conversion
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.11.026
– volume: 89
  start-page: 093103
  issue: 9
  year: 2006
  ident: 10.1016/j.apenergy.2017.11.087_b0085
  article-title: Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2336629
– volume: 543
  start-page: 163
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2017.11.087_b0135
  article-title: Engineered inorganic core/shell nanoparticles
  publication-title: Phys Rep-Rev Sec Phys Lett
– volume: 103
  start-page: 8410
  issue: 40
  year: 1999
  ident: 10.1016/j.apenergy.2017.11.087_b0215
  article-title: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods
  publication-title: J Phys Chem B
  doi: 10.1021/jp9917648
– volume: 110
  start-page: 1230
  year: 1988
  ident: 10.1016/j.apenergy.2017.11.087_b0195
  article-title: Thermal radiation in packed and fluidized beds
  publication-title: J Heat Transf-Trans ASME
  doi: 10.1115/1.3250623
– year: 2015
  ident: 10.1016/j.apenergy.2017.11.087_b0125
– volume: 75
  start-page: 2897
  issue: 19
  year: 1999
  ident: 10.1016/j.apenergy.2017.11.087_b0140
  article-title: Infrared extinction properties of gold nanoshells
  publication-title: Appl Phys Lett
  doi: 10.1063/1.125183
– volume: 112
  start-page: 21
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.087_b0145
  article-title: Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.01.009
– volume: 101
  start-page: 3
  year: 2013
  ident: 10.1016/j.apenergy.2017.11.087_b0005
  article-title: Sustainable development of energy, water and environment systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.08.002
– year: 2008
  ident: 10.1016/j.apenergy.2017.11.087_b0205
– volume: 18
  start-page: 412
  issue: 10
  year: 2000
  ident: 10.1016/j.apenergy.2017.11.087_b0055
  article-title: Poloxamers and poloxamines in nanoparticle engineering and experimental medicine
  publication-title: Trends Biotechnol
  doi: 10.1016/S0167-7799(00)01485-2
– volume: 127
  start-page: 293
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.087_b0200
  article-title: Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.09.015
– volume: 130
  start-page: 176
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.087_b0170
  article-title: Direct vapor generation through localized solar heating via carbon-nanotube nanofluid
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.10.049
– year: 2008
  ident: 10.1016/j.apenergy.2017.11.087_b0220
– volume: 86
  start-page: 1479
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2017.11.087_b0035
  article-title: Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.12.004
– year: 2017
  ident: 10.1016/j.apenergy.2017.11.087_b0115
– volume: 84
  start-page: 261
  year: 2014
  ident: 10.1016/j.apenergy.2017.11.087_b0095
  article-title: Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.04.009
– volume: 4
  start-page: 16206
  issue: 31
  year: 2014
  ident: 10.1016/j.apenergy.2017.11.087_b0150
  article-title: Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles
  publication-title: RSC Adv
  doi: 10.1039/C4RA00630E
SSID ssj0002120
Score 2.4964523
Snippet •Optical properties of core-shell NPs were discussed systematically.•Absorption efficiency can be adjusted by the core-shell or mixing ratios of NPs.•Optimized...
In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 735
SubjectTerms absorption
Core-shell nanoparticle
Finite difference time domain
gold
mixing
nanofluids
nanogold
nanoparticles
Optical properties
silica
solar radiation
Solar thermal conversion
wavelengths
Title Complementary enhanced solar thermal conversion performance of core-shell nanoparticles
URI https://dx.doi.org/10.1016/j.apenergy.2017.11.087
https://www.proquest.com/docview/2101363467
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IXvRgFCXiB6mJ1wFl3caOhEBQIxclcmvarY0QHQsfBy_-7b5XOkET48Hjltdmee37Wn_vV0JuOsiRYqSCIicNPa5j43WChHuJilKJJqhS_N_xMAqHY343CSYl0it6YRBW6Xz_xqdbb-3eNJ02m_l02nzEbBfzf2YvXwqxbuc8wl3e-NjCPNqOmhGEPZTe6RKeNWSubYcdQryihmXzjH4LUD9ctY0_gyNy6BJH2t182zEp6axCDnboBCuk2t92rYGoM9vlCXlGq3c48cU71dmLPfenS6xrKaaAbyBvAej27xnNt-0EdG4oUl16S4SM0kxmUGY7NN0pGQ_6T72h525U8BLO2MrTqQnAAI1qhzIIO5BdaR4wxSQGLe0bJG_Hk1UVc94yjKuYqdiwOEgTyCR96VdJOZtn-ozQxJfgGmUYhSzlUGHHRqUsSlowcUtL6ddIUKhRJI5uHG-9eBUFrmwmCvULVD_UIgLUXyPNr3H5hnDjzxFxsUri29YREBX-HHtdLKsAu8LDEpnp-XopoBRmfuhDHDn_x_wXZB-eOhuY9yUprxZrfQVZzErV7Tatk73u7f1w9AmKyfS7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5V7QAMCAqIN0ZiDa0bJ2lGVIHCqwtUdLPsxBatII1oGfj33KVOKUiIgTXxWdHZ94q_-wxw1iWOFKs0FjlZ6AkTW68bpMJLdZQpMkGd0f-O-36YDMTNMBjWoFf1whCs0vn-uU8vvbV70nLabBWjUeuBsl3K_3l5-VKIdXuD2KmCOjQurm-T_sIhdxw7I473SGCpUXh8rgpTNtkRyis6Lwk9o99i1A9vXYagqw1Yd7kju5h_3ibUTN6EtSVGwSbsXH41ruFQZ7nTLXgiw3dQ8bcPZvLn8uifTam0ZZQFvuL4EoNe_kBjxVdHAZtYRmyX3pRQoyxXOVbaDlC3DYOry8de4rlLFbxUcD7zTGYDtEGrO6EKwi4mWEYEXHNFccv4lvjb6XBVx0K0LRc65jq2PA6yFJNJX_k7UM8nudkFlvoKvaMKo5BnAovs2OqMR2kbJ24bpfw9CCo1ytQxjtPFFy-ygpaNZaV-SerHckSi-vegtZAr5pwbf0rE1SrJb7tHYmD4U_a0WlaJpkXnJSo3k_epxGqY-6GPoWT_H_OfwEryeH8n7677twewim-6c9T3IdRnb-_mCJOamT52m_YT5sD3bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complementary+enhanced+solar+thermal+conversion+performance+of+core-shell+nanoparticles&rft.jtitle=Applied+energy&rft.au=Chen%2C+Meijie&rft.au=He%2C+Yurong&rft.au=Wang%2C+Xinzhi&rft.au=Hu%2C+Yanwei&rft.date=2018-02-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=211&rft.spage=735&rft.epage=742&rft_id=info:doi/10.1016%2Fj.apenergy.2017.11.087&rft.externalDocID=S0306261917316860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon