Complementary enhanced solar thermal conversion performance of core-shell nanoparticles
•Optical properties of core-shell NPs were discussed systematically.•Absorption efficiency can be adjusted by the core-shell or mixing ratios of NPs.•Optimized parameters of the core-shell NPs for solar absorption were obtained.•Efficiency of Au-decorated SiO2 NPs was superior to Au NPs and SiO2 NPs...
Saved in:
Published in | Applied energy Vol. 211; pp. 735 - 742 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Optical properties of core-shell NPs were discussed systematically.•Absorption efficiency can be adjusted by the core-shell or mixing ratios of NPs.•Optimized parameters of the core-shell NPs for solar absorption were obtained.•Efficiency of Au-decorated SiO2 NPs was superior to Au NPs and SiO2 NPs.
In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards the enhancement of solar absorption performance. Results showed that the resonance wavelength of SiO2@Au NPs lay in the 540–900 nm range, covering the near-infrared and visible regions. The resonance wavelength of SiO2@Ag NPs lay in the 390–830 nm range, covering the entire visible region. SiO2@Au nanofluid with a core-shell ratio of φ = 0.2 exhibited the highest solar absorption efficiency with 64% less Au consumption compared to pure Au NPs. For mixed nanofluids, the mixtures featuring core-shell ratios of 0.1 and 0.6 with mixing ratios of 0.5 for SiO2@Au and 0.6 for SiO2@Ag gave the highest absorption efficiencies. In addition, the peak solar absorption efficiency of a mixed nanofluid of SiO2@Au (φ = 0.1) and SiO2@Ag (φ = 0.4) with a mixing ratio of 0.58 was as high as 94.4%. Solar thermal conversion experiments revealed that, under the same conditions, a Au-decorated SiO2 nanofluid showed a comparable efficiency to the calculated solar absorption efficiency of the SiO2@Au core-shell nanofluid (∼95.2%); it was as high as 95.9%, higher than those of Au NPs and SiO2 NPs. These results showed that adjusting the core-shell ratios and tuning the mixing ratios of different nanofluids are two efficient methods to enhance the solar absorption efficiencies of SiO2@Au and SiO2@Ag NPs under the optimal conditions. |
---|---|
AbstractList | •Optical properties of core-shell NPs were discussed systematically.•Absorption efficiency can be adjusted by the core-shell or mixing ratios of NPs.•Optimized parameters of the core-shell NPs for solar absorption were obtained.•Efficiency of Au-decorated SiO2 NPs was superior to Au NPs and SiO2 NPs.
In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards the enhancement of solar absorption performance. Results showed that the resonance wavelength of SiO2@Au NPs lay in the 540–900 nm range, covering the near-infrared and visible regions. The resonance wavelength of SiO2@Ag NPs lay in the 390–830 nm range, covering the entire visible region. SiO2@Au nanofluid with a core-shell ratio of φ = 0.2 exhibited the highest solar absorption efficiency with 64% less Au consumption compared to pure Au NPs. For mixed nanofluids, the mixtures featuring core-shell ratios of 0.1 and 0.6 with mixing ratios of 0.5 for SiO2@Au and 0.6 for SiO2@Ag gave the highest absorption efficiencies. In addition, the peak solar absorption efficiency of a mixed nanofluid of SiO2@Au (φ = 0.1) and SiO2@Ag (φ = 0.4) with a mixing ratio of 0.58 was as high as 94.4%. Solar thermal conversion experiments revealed that, under the same conditions, a Au-decorated SiO2 nanofluid showed a comparable efficiency to the calculated solar absorption efficiency of the SiO2@Au core-shell nanofluid (∼95.2%); it was as high as 95.9%, higher than those of Au NPs and SiO2 NPs. These results showed that adjusting the core-shell ratios and tuning the mixing ratios of different nanofluids are two efficient methods to enhance the solar absorption efficiencies of SiO2@Au and SiO2@Ag NPs under the optimal conditions. In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards the enhancement of solar absorption performance. Results showed that the resonance wavelength of SiO₂@Au NPs lay in the 540–900 nm range, covering the near-infrared and visible regions. The resonance wavelength of SiO₂@Ag NPs lay in the 390–830 nm range, covering the entire visible region. SiO₂@Au nanofluid with a core-shell ratio of φ = 0.2 exhibited the highest solar absorption efficiency with 64% less Au consumption compared to pure Au NPs. For mixed nanofluids, the mixtures featuring core-shell ratios of 0.1 and 0.6 with mixing ratios of 0.5 for SiO₂@Au and 0.6 for SiO₂@Ag gave the highest absorption efficiencies. In addition, the peak solar absorption efficiency of a mixed nanofluid of SiO₂@Au (φ = 0.1) and SiO₂@Ag (φ = 0.4) with a mixing ratio of 0.58 was as high as 94.4%. Solar thermal conversion experiments revealed that, under the same conditions, a Au-decorated SiO₂ nanofluid showed a comparable efficiency to the calculated solar absorption efficiency of the SiO₂@Au core-shell nanofluid (∼95.2%); it was as high as 95.9%, higher than those of Au NPs and SiO₂ NPs. These results showed that adjusting the core-shell ratios and tuning the mixing ratios of different nanofluids are two efficient methods to enhance the solar absorption efficiencies of SiO₂@Au and SiO₂@Ag NPs under the optimal conditions. |
Author | Wang, Xinzhi He, Yurong Hu, Yanwei Chen, Meijie |
Author_xml | – sequence: 1 givenname: Meijie surname: Chen fullname: Chen, Meijie – sequence: 2 givenname: Yurong orcidid: 0000-0003-3009-0468 surname: He fullname: He, Yurong email: rong@hit.edu.cn – sequence: 3 givenname: Xinzhi surname: Wang fullname: Wang, Xinzhi – sequence: 4 givenname: Yanwei surname: Hu fullname: Hu, Yanwei |
BookMark | eNqFkE1LxDAQhoMouH78BenRS2smbdMGPCiLXyB4UTyGNDtxs7RJTaLgvzfL6sWLp4GZ9xlmniOy77xDQs6AVkCBX2wqNaPD8PZVMQpdBVDRvtsjC-g7VgqAfp8saE15yTiIQ3IU44ZSyoDRBXld-mkecUKXVPgq0K2V07gqoh9VKNIaw6TGQnv3iSFa74oZg_G5mVOFN3kSsIxrHMfCKednFZLVI8YTcmDUGPH0px6Tl9ub5-V9-fh097C8fix1A5BKXJm2E40ZGFct70UL2LQwgKKUd1gbxmvWM0EH0TTUQDMIGIQB0a40FaJW9TE53-2dg3__wJjkZKPO5yiH_iNKlhXVvG54l6OXu6gOPsaARmqbVMpPpaDsKIHKrU-5kb8-5danBJDZZ8b5H3wOdsrS_gevdiBmD58Wg4za4tayDaiTXHn734pvwkmXeg |
CitedBy_id | crossref_primary_10_1016_j_jqsrt_2018_12_023 crossref_primary_10_1007_s11468_019_00990_1 crossref_primary_10_1039_D4CP02754J crossref_primary_10_1002_apj_2482 crossref_primary_10_1016_j_jqsrt_2023_108707 crossref_primary_10_1016_j_watres_2020_115770 crossref_primary_10_1007_s10973_020_09519_9 crossref_primary_10_1016_j_solmat_2023_112203 crossref_primary_10_1007_s11468_024_02374_6 crossref_primary_10_1016_j_enconman_2018_04_086 crossref_primary_10_1016_j_applthermaleng_2020_115207 crossref_primary_10_1016_j_energy_2021_120483 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_071 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_086 crossref_primary_10_1002_apj_2803 crossref_primary_10_1039_C9TA05935K crossref_primary_10_1016_j_ijthermalsci_2024_109175 crossref_primary_10_1016_j_apenergy_2019_04_069 crossref_primary_10_1016_j_solener_2019_02_070 crossref_primary_10_1016_j_solener_2024_113071 crossref_primary_10_1007_s11468_023_01787_z crossref_primary_10_1016_j_optlastec_2021_107323 crossref_primary_10_1016_j_optlastec_2021_107565 crossref_primary_10_1615_JEnhHeatTransf_2023046713 crossref_primary_10_1016_j_renene_2018_10_072 crossref_primary_10_32604_EE_2021_014806 crossref_primary_10_1016_j_solmat_2018_10_011 crossref_primary_10_1002_adfm_202307533 crossref_primary_10_1016_j_solener_2018_06_071 crossref_primary_10_1016_j_ijthermalsci_2022_107547 crossref_primary_10_1080_15567265_2022_2146025 crossref_primary_10_3390_nano11092209 crossref_primary_10_1016_j_energy_2023_129846 crossref_primary_10_12677_MS_2022_123022 crossref_primary_10_1007_s10853_021_06114_7 crossref_primary_10_1016_j_applthermaleng_2023_121868 crossref_primary_10_1016_j_apenergy_2019_113706 crossref_primary_10_1080_01457632_2024_2400861 crossref_primary_10_1016_j_cjche_2018_03_021 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_026 crossref_primary_10_1016_j_solener_2020_08_068 crossref_primary_10_1134_S0030400X21080087 crossref_primary_10_1016_j_matpr_2022_11_371 crossref_primary_10_1002_ente_202100169 crossref_primary_10_1016_j_colsurfa_2024_133598 crossref_primary_10_1016_j_applthermaleng_2023_121189 crossref_primary_10_1007_s12633_024_03165_8 crossref_primary_10_1016_j_jqsrt_2021_107994 crossref_primary_10_1016_j_apenergy_2020_114570 crossref_primary_10_1380_ejssnt_2023_055 crossref_primary_10_1007_s11468_018_0889_x crossref_primary_10_1007_s10853_022_07863_9 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_017 crossref_primary_10_1016_j_applthermaleng_2023_121954 crossref_primary_10_1016_j_icheatmasstransfer_2024_107977 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_104 crossref_primary_10_7498_aps_70_20210602 crossref_primary_10_1016_j_seta_2024_103748 crossref_primary_10_1364_OE_405012 crossref_primary_10_1016_j_applthermaleng_2022_119212 crossref_primary_10_1016_j_apenergy_2018_07_113 crossref_primary_10_1016_j_rser_2021_110995 crossref_primary_10_1007_s11468_019_00925_w crossref_primary_10_1016_j_renene_2022_08_065 crossref_primary_10_1088_1674_1056_ab836d crossref_primary_10_1016_j_carbon_2018_04_026 crossref_primary_10_1016_j_renene_2022_04_126 crossref_primary_10_1016_j_apenergy_2018_09_191 crossref_primary_10_1016_j_energy_2020_119254 crossref_primary_10_1007_s11664_021_08909_5 crossref_primary_10_1007_s11814_020_0634_y crossref_primary_10_1016_j_ijthermalsci_2022_108099 |
Cites_doi | 10.1016/j.apenergy.2016.08.054 10.1016/j.apenergy.2013.12.058 10.1063/1.3429737 10.1016/j.apenergy.2017.03.003 10.1016/j.ijheatmasstransfer.2017.01.005 10.1073/pnas.1310131110 10.1016/j.apenergy.2015.03.108 10.1016/j.apenergy.2017.02.028 10.1016/j.apenergy.2017.03.080 10.1002/0471654507.eme123 10.1002/smll.200700493 10.1016/j.applthermaleng.2017.04.102 10.1016/j.apenergy.2008.10.020 10.1021/nl0515753 10.1016/0010-8545(82)85003-0 10.1021/cr2001178 10.1016/j.energy.2008.04.003 10.1021/ed039p333 10.1016/j.apenergy.2017.06.075 10.1016/j.apenergy.2015.05.031 10.1039/B514191E 10.1063/1.4966893 10.1016/j.apenergy.2012.11.074 10.1063/1.2988288 10.1038/srep17276 10.1016/j.ijheatmasstransfer.2014.11.026 10.1063/1.2336629 10.1021/jp9917648 10.1115/1.3250623 10.1063/1.125183 10.1016/j.enconman.2016.01.009 10.1016/j.apenergy.2012.08.002 10.1016/S0167-7799(00)01485-2 10.1016/j.enconman.2016.09.015 10.1016/j.enconman.2016.10.049 10.1016/j.apenergy.2008.12.004 10.1016/j.enconman.2014.04.009 10.1039/C4RA00630E |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2017.11.087 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 742 |
ExternalDocumentID | 10_1016_j_apenergy_2017_11_087 S0306261917316860 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-edf5794fb26a568951e451b1a0067e3f26328290b9440f14b91b9f195dc0993a3 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Thu Jul 10 23:59:56 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 02:53:21 EDT 2025 Fri Feb 23 02:47:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar thermal conversion Finite difference time domain Optical properties Core-shell nanoparticle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-edf5794fb26a568951e451b1a0067e3f26328290b9440f14b91b9f195dc0993a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3009-0468 |
PQID | 2101363467 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101363467 crossref_citationtrail_10_1016_j_apenergy_2017_11_087 crossref_primary_10_1016_j_apenergy_2017_11_087 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_11_087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 2018-02-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Otanicar, Phelan, Prasher, Rosengarten, Taylor (b0090) 2010; 2 Fahrenbruch, Bube (b0020) 2012 Bandarra Filho, Mendoza, Beicker, Menezes, Wen (b0095) 2014; 84 Chen, He, Huang, Zhu (b0200) 2016; 127 Bohren, Huffman (b0205) 2008 Wang, Li, Guo, He, Ding, Yan, Yang (b0050) 2015; 150 Potenza, Milanese, Colangelo, de Risi (b0065) 2017; 203 Derkacs, Lim, Matheu, Mar, Yu (b0085) 2006; 89 Wang, He, Liu, Cheng, Zhu (b0175) 2017; 195 Liu, Wu, Lu, Yao, Hsiao, Hung (b0130) 2008; 4 Lund, Mathiesen (b0010) 2009; 34 Oldenburg, Jackson, Westcott, Halas (b0140) 1999; 75 Neumann, Feronti, Neumann, Dong, Schell, Lu, Nordlander (b0070) 2013; 110 Colangelo, Favale, Miglietta, de Risi, Milanese, Laforgia (b0075) 2015; 154 Wang, Yang, Fang, Ding, Yan (b0035) 2009; 86 Moghimi, Hunter (b0055) 2000; 18 Chen, He, Zhu, Wen (b0185) 2016; 181 Tang, Zhou, Gu, Zhu, Wang, Xu (b0120) 2016; 109 Saha, Agasti, Kim, Li, Rotello (b0060) 2012; 112 Gómez-Villarejo, Martín, Navas, Sánchez-Coronilla, Aguilar, Gallardo (b0030) 2017; 194 Eustis, El-Sayed (b0110) 2006; 35 Kim, Lee (b0125) 2015 Li, He, Liu, Jiang (b0165) 2017; 121 Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. Artech House; 2005. Chen, He, Zhu, Kim (b0145) 2016; 112 Le Ru, Etchegoin (b0220) 2008 Gao, Liu, Zhang, Yan, Bao, Xu, Qin (b0015) 2013; 105 Wang, Quan, Zhang, Cheng (b0160) 2017 Tien (b0195) 1988; 110 Xuan, Duan, Li (b0150) 2014; 4 Link, El-Sayed (b0215) 1999; 103 Wang, Yang, Fang, Ding, Yan (b0040) 2009; 86 Crisostomo, Hjerrild, Mesgari, Li, Taylor (b0180) 2017; 193 Mélinon, Begin-Colin, Duvail, Gauffre, Boime, Ledoux, Warot-Fonrose (b0135) 2014; 543 Wu, Zhou, Du, Yang (b0155) 2015; 82 Duić, Guzović, Kafarov, Klemeš, vad Mathiessen, Yan (b0005) 2013; 101 Zhao, Duan, Yu, Zhang, He, Quan, Deng (b0225) 2015; 5 Gupta, Misra (b0115) 2017 Swinehart (b0210) 1962; 39 Kalyanasundaram (b0025) 1982; 46 Wang, Guo, Li, Yan, Zhao, Li, Ding (b0045) 2014; 119 Nakayama, Tanabe, Atwater (b0080) 2008; 93 Sherry, Chang, Schatz, Van Duyne, Wiley, Xia (b0105) 2005; 5 Wang, He, Cheng, Shi, Liu, Zhu (b0170) 2016; 130 Chen, He, Huang, Zhu (b0100) 2017; 108 Colangelo (10.1016/j.apenergy.2017.11.087_b0075) 2015; 154 Bandarra Filho (10.1016/j.apenergy.2017.11.087_b0095) 2014; 84 Liu (10.1016/j.apenergy.2017.11.087_b0130) 2008; 4 Wang (10.1016/j.apenergy.2017.11.087_b0050) 2015; 150 Xuan (10.1016/j.apenergy.2017.11.087_b0150) 2014; 4 Le Ru (10.1016/j.apenergy.2017.11.087_b0220) 2008 Tang (10.1016/j.apenergy.2017.11.087_b0120) 2016; 109 Swinehart (10.1016/j.apenergy.2017.11.087_b0210) 1962; 39 10.1016/j.apenergy.2017.11.087_b0190 Wang (10.1016/j.apenergy.2017.11.087_b0045) 2014; 119 Chen (10.1016/j.apenergy.2017.11.087_b0100) 2017; 108 Potenza (10.1016/j.apenergy.2017.11.087_b0065) 2017; 203 Neumann (10.1016/j.apenergy.2017.11.087_b0070) 2013; 110 Tien (10.1016/j.apenergy.2017.11.087_b0195) 1988; 110 Wang (10.1016/j.apenergy.2017.11.087_b0175) 2017; 195 Mélinon (10.1016/j.apenergy.2017.11.087_b0135) 2014; 543 Eustis (10.1016/j.apenergy.2017.11.087_b0110) 2006; 35 Derkacs (10.1016/j.apenergy.2017.11.087_b0085) 2006; 89 Li (10.1016/j.apenergy.2017.11.087_b0165) 2017; 121 Gómez-Villarejo (10.1016/j.apenergy.2017.11.087_b0030) 2017; 194 Moghimi (10.1016/j.apenergy.2017.11.087_b0055) 2000; 18 Link (10.1016/j.apenergy.2017.11.087_b0215) 1999; 103 Otanicar (10.1016/j.apenergy.2017.11.087_b0090) 2010; 2 Gupta (10.1016/j.apenergy.2017.11.087_b0115) 2017 Lund (10.1016/j.apenergy.2017.11.087_b0010) 2009; 34 Kim (10.1016/j.apenergy.2017.11.087_b0125) 2015 Chen (10.1016/j.apenergy.2017.11.087_b0185) 2016; 181 Nakayama (10.1016/j.apenergy.2017.11.087_b0080) 2008; 93 Kalyanasundaram (10.1016/j.apenergy.2017.11.087_b0025) 1982; 46 Saha (10.1016/j.apenergy.2017.11.087_b0060) 2012; 112 Crisostomo (10.1016/j.apenergy.2017.11.087_b0180) 2017; 193 Gao (10.1016/j.apenergy.2017.11.087_b0015) 2013; 105 Wang (10.1016/j.apenergy.2017.11.087_b0160) 2017 Chen (10.1016/j.apenergy.2017.11.087_b0200) 2016; 127 Bohren (10.1016/j.apenergy.2017.11.087_b0205) 2008 Wang (10.1016/j.apenergy.2017.11.087_b0035) 2009; 86 Chen (10.1016/j.apenergy.2017.11.087_b0145) 2016; 112 Duić (10.1016/j.apenergy.2017.11.087_b0005) 2013; 101 Fahrenbruch (10.1016/j.apenergy.2017.11.087_b0020) 2012 Wu (10.1016/j.apenergy.2017.11.087_b0155) 2015; 82 Sherry (10.1016/j.apenergy.2017.11.087_b0105) 2005; 5 Wang (10.1016/j.apenergy.2017.11.087_b0040) 2009; 86 Wang (10.1016/j.apenergy.2017.11.087_b0170) 2016; 130 Zhao (10.1016/j.apenergy.2017.11.087_b0225) 2015; 5 Oldenburg (10.1016/j.apenergy.2017.11.087_b0140) 1999; 75 |
References_xml | – volume: 4 start-page: 16206 year: 2014 end-page: 16213 ident: b0150 article-title: Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO publication-title: RSC Adv – volume: 34 start-page: 524 year: 2009 end-page: 531 ident: b0010 article-title: Energy system analysis of 100% renewable energy systems-the case of Denmark in years 2030 and 2050 publication-title: Energy – volume: 154 start-page: 874 year: 2015 end-page: 881 ident: b0075 article-title: Experimental test of an innovative high concentration nanofluid solar collector publication-title: Appl Energy – year: 2017 ident: b0160 article-title: Optical absorption of carbon-gold core-shell nanoparticles publication-title: J Quant Spectrosc Radiat Transf – volume: 5 start-page: 17276 year: 2015 ident: b0225 article-title: Enhancing localized evaporation through separated light absorbing centers and scattering centers publication-title: Sci Rep – volume: 127 start-page: 293 year: 2016 end-page: 300 ident: b0200 article-title: Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles publication-title: Energy Convers Manage – volume: 193 start-page: 1 year: 2017 end-page: 14 ident: b0180 article-title: A hybrid PV/T collector using spectrally selective absorbing nanofluids publication-title: Appl Energy – volume: 194 start-page: 19 year: 2017 end-page: 29 ident: b0030 article-title: Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: nano-level insights publication-title: Appl Energy – volume: 110 start-page: 1230 year: 1988 end-page: 1242 ident: b0195 article-title: Thermal radiation in packed and fluidized beds publication-title: J Heat Transf-Trans ASME – volume: 39 start-page: 333 year: 1962 ident: b0210 article-title: The beer-lambert law publication-title: J Chem Educ – volume: 112 start-page: 21 year: 2016 end-page: 30 ident: b0145 article-title: Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes publication-title: Energy Convers Manage – volume: 93 start-page: 121904 year: 2008 ident: b0080 article-title: Plasmonic nanoparticle enhanced light absorption in GaAs solar cells publication-title: Appl Phys Lett – volume: 121 start-page: 617 year: 2017 end-page: 627 ident: b0165 article-title: Synchronous steam generation and heat collection in a broadband Ag@TiO publication-title: Appl Therm Eng – year: 2008 ident: b0220 article-title: Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects – volume: 2 start-page: 033102 year: 2010 ident: b0090 article-title: Nanofluid-based direct absorption solar collector publication-title: J Renew Sustain Energy – volume: 150 start-page: 61 year: 2015 end-page: 68 ident: b0050 article-title: Numerical simulation study on discharging process of the direct-contact phase change energy storage system publication-title: Appl Energy – volume: 89 start-page: 093103 year: 2006 ident: b0085 article-title: Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles publication-title: Appl Phys Lett – volume: 82 start-page: 545 year: 2015 end-page: 554 ident: b0155 article-title: Optical and thermal radiative properties of plasmonic nanofluids containing core-shell composite nanoparticles for efficient photothermal conversion publication-title: Int J Heat Mass Transf – volume: 181 start-page: 65 year: 2016 end-page: 74 ident: b0185 article-title: Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors publication-title: Appl Energy – volume: 112 start-page: 2739 year: 2012 end-page: 2779 ident: b0060 article-title: Gold nanoparticles in chemical and biological sensing publication-title: Chem Rev – volume: 543 start-page: 163 year: 2014 end-page: 197 ident: b0135 article-title: Engineered inorganic core/shell nanoparticles publication-title: Phys Rep-Rev Sec Phys Lett – volume: 86 start-page: 1479 year: 2009 end-page: 1483 ident: b0035 article-title: Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage publication-title: Appl Energy – volume: 86 start-page: 1196 year: 2009 end-page: 1200 ident: b0040 article-title: Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride publication-title: Appl Energy – volume: 103 start-page: 8410 year: 1999 end-page: 8426 ident: b0215 article-title: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods publication-title: J Phys Chem B – volume: 105 start-page: 182 year: 2013 end-page: 193 ident: b0015 article-title: Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table publication-title: Appl Energy – year: 2017 ident: b0115 article-title: Metal semiconductor core-shell nanostructures for energy and environmental applications – year: 2008 ident: b0205 article-title: Absorption and scattering of light by small particles – volume: 5 start-page: 2034 year: 2005 end-page: 2038 ident: b0105 article-title: Localized surface plasmon resonance spectroscopy of single silver nanocubes publication-title: Nano Lett – reference: Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. Artech House; 2005. – volume: 101 start-page: 3 year: 2013 end-page: 5 ident: b0005 article-title: Sustainable development of energy, water and environment systems publication-title: Appl Energy – volume: 109 start-page: 183901 year: 2016 ident: b0120 article-title: Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells publication-title: Appl Phys Lett – volume: 110 start-page: 11677 year: 2013 end-page: 11681 ident: b0070 article-title: Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles publication-title: Proc Natl Acad Sci USA – volume: 18 start-page: 412 year: 2000 end-page: 420 ident: b0055 article-title: Poloxamers and poloxamines in nanoparticle engineering and experimental medicine publication-title: Trends Biotechnol – volume: 35 start-page: 209 year: 2006 end-page: 217 ident: b0110 article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes publication-title: Chem Soc Rev – volume: 203 start-page: 560 year: 2017 end-page: 570 ident: b0065 article-title: Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid publication-title: Appl Energy – year: 2012 ident: b0020 article-title: Fundamentals of solar cells: photovoltaic solar energy conversion – volume: 119 start-page: 181 year: 2014 end-page: 189 ident: b0045 article-title: Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES) publication-title: Appl Energy – volume: 46 start-page: 159 year: 1982 end-page: 244 ident: b0025 article-title: Photophysics, photochemistry and solar energy conversion with tris (bipyridyl) ruthenium (II) and its analogues publication-title: Coord Chem Rev – year: 2015 ident: b0125 article-title: The development of smart, multi-responsive core@shell composite nanoparticles, nanoparticles technology – volume: 4 start-page: 619 year: 2008 end-page: 626 ident: b0130 article-title: Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells publication-title: Small – volume: 108 start-page: 1894 year: 2017 end-page: 1900 ident: b0100 article-title: Investigation into Au nanofluids for solar photothermal conversion publication-title: Int J Heat Mass Transf – volume: 75 start-page: 2897 year: 1999 end-page: 2899 ident: b0140 article-title: Infrared extinction properties of gold nanoshells publication-title: Appl Phys Lett – volume: 130 start-page: 176 year: 2016 end-page: 183 ident: b0170 article-title: Direct vapor generation through localized solar heating via carbon-nanotube nanofluid publication-title: Energy Convers Manage – volume: 84 start-page: 261 year: 2014 end-page: 267 ident: b0095 article-title: Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system publication-title: Energy Convers Manage – volume: 195 start-page: 414 year: 2017 end-page: 425 ident: b0175 article-title: Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes publication-title: Appl Energy – year: 2017 ident: 10.1016/j.apenergy.2017.11.087_b0160 article-title: Optical absorption of carbon-gold core-shell nanoparticles publication-title: J Quant Spectrosc Radiat Transf – volume: 181 start-page: 65 year: 2016 ident: 10.1016/j.apenergy.2017.11.087_b0185 article-title: Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.054 – volume: 119 start-page: 181 year: 2014 ident: 10.1016/j.apenergy.2017.11.087_b0045 article-title: Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES) publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.12.058 – volume: 2 start-page: 033102 issue: 3 year: 2010 ident: 10.1016/j.apenergy.2017.11.087_b0090 article-title: Nanofluid-based direct absorption solar collector publication-title: J Renew Sustain Energy doi: 10.1063/1.3429737 – volume: 194 start-page: 19 year: 2017 ident: 10.1016/j.apenergy.2017.11.087_b0030 article-title: Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: nano-level insights publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.003 – volume: 108 start-page: 1894 year: 2017 ident: 10.1016/j.apenergy.2017.11.087_b0100 article-title: Investigation into Au nanofluids for solar photothermal conversion publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.01.005 – volume: 110 start-page: 11677 issue: 29 year: 2013 ident: 10.1016/j.apenergy.2017.11.087_b0070 article-title: Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1310131110 – volume: 150 start-page: 61 year: 2015 ident: 10.1016/j.apenergy.2017.11.087_b0050 article-title: Numerical simulation study on discharging process of the direct-contact phase change energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.108 – volume: 193 start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2017.11.087_b0180 article-title: A hybrid PV/T collector using spectrally selective absorbing nanofluids publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.02.028 – volume: 195 start-page: 414 year: 2017 ident: 10.1016/j.apenergy.2017.11.087_b0175 article-title: Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.080 – ident: 10.1016/j.apenergy.2017.11.087_b0190 doi: 10.1002/0471654507.eme123 – volume: 4 start-page: 619 issue: 5 year: 2008 ident: 10.1016/j.apenergy.2017.11.087_b0130 article-title: Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells publication-title: Small doi: 10.1002/smll.200700493 – volume: 121 start-page: 617 year: 2017 ident: 10.1016/j.apenergy.2017.11.087_b0165 article-title: Synchronous steam generation and heat collection in a broadband Ag@TiO2 core-shell nanoparticle-based receiver publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.04.102 – volume: 86 start-page: 1196 issue: 7 year: 2009 ident: 10.1016/j.apenergy.2017.11.087_b0040 article-title: Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.10.020 – volume: 5 start-page: 2034 issue: 10 year: 2005 ident: 10.1016/j.apenergy.2017.11.087_b0105 article-title: Localized surface plasmon resonance spectroscopy of single silver nanocubes publication-title: Nano Lett doi: 10.1021/nl0515753 – volume: 46 start-page: 159 year: 1982 ident: 10.1016/j.apenergy.2017.11.087_b0025 article-title: Photophysics, photochemistry and solar energy conversion with tris (bipyridyl) ruthenium (II) and its analogues publication-title: Coord Chem Rev doi: 10.1016/0010-8545(82)85003-0 – volume: 112 start-page: 2739 issue: 5 year: 2012 ident: 10.1016/j.apenergy.2017.11.087_b0060 article-title: Gold nanoparticles in chemical and biological sensing publication-title: Chem Rev doi: 10.1021/cr2001178 – volume: 34 start-page: 524 issue: 5 year: 2009 ident: 10.1016/j.apenergy.2017.11.087_b0010 article-title: Energy system analysis of 100% renewable energy systems-the case of Denmark in years 2030 and 2050 publication-title: Energy doi: 10.1016/j.energy.2008.04.003 – year: 2012 ident: 10.1016/j.apenergy.2017.11.087_b0020 – volume: 39 start-page: 333 issue: 7 year: 1962 ident: 10.1016/j.apenergy.2017.11.087_b0210 article-title: The beer-lambert law publication-title: J Chem Educ doi: 10.1021/ed039p333 – volume: 203 start-page: 560 year: 2017 ident: 10.1016/j.apenergy.2017.11.087_b0065 article-title: Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.075 – volume: 154 start-page: 874 year: 2015 ident: 10.1016/j.apenergy.2017.11.087_b0075 article-title: Experimental test of an innovative high concentration nanofluid solar collector publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.031 – volume: 35 start-page: 209 issue: 3 year: 2006 ident: 10.1016/j.apenergy.2017.11.087_b0110 article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes publication-title: Chem Soc Rev doi: 10.1039/B514191E – volume: 109 start-page: 183901 issue: 18 year: 2016 ident: 10.1016/j.apenergy.2017.11.087_b0120 article-title: Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells publication-title: Appl Phys Lett doi: 10.1063/1.4966893 – volume: 105 start-page: 182 year: 2013 ident: 10.1016/j.apenergy.2017.11.087_b0015 article-title: Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.11.074 – volume: 93 start-page: 121904 issue: 12 year: 2008 ident: 10.1016/j.apenergy.2017.11.087_b0080 article-title: Plasmonic nanoparticle enhanced light absorption in GaAs solar cells publication-title: Appl Phys Lett doi: 10.1063/1.2988288 – volume: 5 start-page: 17276 year: 2015 ident: 10.1016/j.apenergy.2017.11.087_b0225 article-title: Enhancing localized evaporation through separated light absorbing centers and scattering centers publication-title: Sci Rep doi: 10.1038/srep17276 – volume: 82 start-page: 545 year: 2015 ident: 10.1016/j.apenergy.2017.11.087_b0155 article-title: Optical and thermal radiative properties of plasmonic nanofluids containing core-shell composite nanoparticles for efficient photothermal conversion publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.11.026 – volume: 89 start-page: 093103 issue: 9 year: 2006 ident: 10.1016/j.apenergy.2017.11.087_b0085 article-title: Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles publication-title: Appl Phys Lett doi: 10.1063/1.2336629 – volume: 543 start-page: 163 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2017.11.087_b0135 article-title: Engineered inorganic core/shell nanoparticles publication-title: Phys Rep-Rev Sec Phys Lett – volume: 103 start-page: 8410 issue: 40 year: 1999 ident: 10.1016/j.apenergy.2017.11.087_b0215 article-title: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods publication-title: J Phys Chem B doi: 10.1021/jp9917648 – volume: 110 start-page: 1230 year: 1988 ident: 10.1016/j.apenergy.2017.11.087_b0195 article-title: Thermal radiation in packed and fluidized beds publication-title: J Heat Transf-Trans ASME doi: 10.1115/1.3250623 – year: 2015 ident: 10.1016/j.apenergy.2017.11.087_b0125 – volume: 75 start-page: 2897 issue: 19 year: 1999 ident: 10.1016/j.apenergy.2017.11.087_b0140 article-title: Infrared extinction properties of gold nanoshells publication-title: Appl Phys Lett doi: 10.1063/1.125183 – volume: 112 start-page: 21 year: 2016 ident: 10.1016/j.apenergy.2017.11.087_b0145 article-title: Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.01.009 – volume: 101 start-page: 3 year: 2013 ident: 10.1016/j.apenergy.2017.11.087_b0005 article-title: Sustainable development of energy, water and environment systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.08.002 – year: 2008 ident: 10.1016/j.apenergy.2017.11.087_b0205 – volume: 18 start-page: 412 issue: 10 year: 2000 ident: 10.1016/j.apenergy.2017.11.087_b0055 article-title: Poloxamers and poloxamines in nanoparticle engineering and experimental medicine publication-title: Trends Biotechnol doi: 10.1016/S0167-7799(00)01485-2 – volume: 127 start-page: 293 year: 2016 ident: 10.1016/j.apenergy.2017.11.087_b0200 article-title: Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.09.015 – volume: 130 start-page: 176 year: 2016 ident: 10.1016/j.apenergy.2017.11.087_b0170 article-title: Direct vapor generation through localized solar heating via carbon-nanotube nanofluid publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.10.049 – year: 2008 ident: 10.1016/j.apenergy.2017.11.087_b0220 – volume: 86 start-page: 1479 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2017.11.087_b0035 article-title: Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.12.004 – year: 2017 ident: 10.1016/j.apenergy.2017.11.087_b0115 – volume: 84 start-page: 261 year: 2014 ident: 10.1016/j.apenergy.2017.11.087_b0095 article-title: Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.04.009 – volume: 4 start-page: 16206 issue: 31 year: 2014 ident: 10.1016/j.apenergy.2017.11.087_b0150 article-title: Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles publication-title: RSC Adv doi: 10.1039/C4RA00630E |
SSID | ssj0002120 |
Score | 2.4964523 |
Snippet | •Optical properties of core-shell NPs were discussed systematically.•Absorption efficiency can be adjusted by the core-shell or mixing ratios of NPs.•Optimized... In this study, the properties of various types of core-shell nanoparticles (NPs) were evaluated using the finite difference time domain (FDTD) method towards... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 735 |
SubjectTerms | absorption Core-shell nanoparticle Finite difference time domain gold mixing nanofluids nanogold nanoparticles Optical properties silica solar radiation Solar thermal conversion wavelengths |
Title | Complementary enhanced solar thermal conversion performance of core-shell nanoparticles |
URI | https://dx.doi.org/10.1016/j.apenergy.2017.11.087 https://www.proquest.com/docview/2101363467 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IXvRgFCXiB6mJ1wFl3caOhEBQIxclcmvarY0QHQsfBy_-7b5XOkET48Hjltdmee37Wn_vV0JuOsiRYqSCIicNPa5j43WChHuJilKJJqhS_N_xMAqHY343CSYl0it6YRBW6Xz_xqdbb-3eNJ02m_l02nzEbBfzf2YvXwqxbuc8wl3e-NjCPNqOmhGEPZTe6RKeNWSubYcdQryihmXzjH4LUD9ctY0_gyNy6BJH2t182zEp6axCDnboBCuk2t92rYGoM9vlCXlGq3c48cU71dmLPfenS6xrKaaAbyBvAej27xnNt-0EdG4oUl16S4SM0kxmUGY7NN0pGQ_6T72h525U8BLO2MrTqQnAAI1qhzIIO5BdaR4wxSQGLe0bJG_Hk1UVc94yjKuYqdiwOEgTyCR96VdJOZtn-ozQxJfgGmUYhSzlUGHHRqUsSlowcUtL6ddIUKhRJI5uHG-9eBUFrmwmCvULVD_UIgLUXyPNr3H5hnDjzxFxsUri29YREBX-HHtdLKsAu8LDEpnp-XopoBRmfuhDHDn_x_wXZB-eOhuY9yUprxZrfQVZzErV7Tatk73u7f1w9AmKyfS7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5V7QAMCAqIN0ZiDa0bJ2lGVIHCqwtUdLPsxBatII1oGfj33KVOKUiIgTXxWdHZ94q_-wxw1iWOFKs0FjlZ6AkTW68bpMJLdZQpMkGd0f-O-36YDMTNMBjWoFf1whCs0vn-uU8vvbV70nLabBWjUeuBsl3K_3l5-VKIdXuD2KmCOjQurm-T_sIhdxw7I473SGCpUXh8rgpTNtkRyis6Lwk9o99i1A9vXYagqw1Yd7kju5h_3ibUTN6EtSVGwSbsXH41ruFQZ7nTLXgiw3dQ8bcPZvLn8uifTam0ZZQFvuL4EoNe_kBjxVdHAZtYRmyX3pRQoyxXOVbaDlC3DYOry8de4rlLFbxUcD7zTGYDtEGrO6EKwi4mWEYEXHNFccv4lvjb6XBVx0K0LRc65jq2PA6yFJNJX_k7UM8nudkFlvoKvaMKo5BnAovs2OqMR2kbJ24bpfw9CCo1ytQxjtPFFy-ygpaNZaV-SerHckSi-vegtZAr5pwbf0rE1SrJb7tHYmD4U_a0WlaJpkXnJSo3k_epxGqY-6GPoWT_H_OfwEryeH8n7677twewim-6c9T3IdRnb-_mCJOamT52m_YT5sD3bA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complementary+enhanced+solar+thermal+conversion+performance+of+core-shell+nanoparticles&rft.jtitle=Applied+energy&rft.au=Chen%2C+Meijie&rft.au=He%2C+Yurong&rft.au=Wang%2C+Xinzhi&rft.au=Hu%2C+Yanwei&rft.date=2018-02-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=211&rft.spage=735&rft.epage=742&rft_id=info:doi/10.1016%2Fj.apenergy.2017.11.087&rft.externalDocID=S0306261917316860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |