The Behavioral and Neurochemical Effects of a Novel d-Amino Acid Oxidase Inhibitor Compound 8 [4 H-Thieno [3,2-b]pyrrole-5-carboxylic Acid] and d-Serine

Multiple studies indicate that N-methyl-d-aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for improving NMDA receptor function is to enhance occupancy of the glycine modulatory site on the NMDA receptor by increasing the availability...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 328; no. 3; pp. 921 - 930
Main Authors Smith, Sean M., Uslaner, Jason M., Yao, Lihang, Mullins, Chadwick M., Surles, Nathan O., Huszar, Sarah L., McNaughton, Caitlyn H., Pascarella, Danette M., Kandebo, Monika, Hinchliffe, Richard M., Sparey, Tim, Brandon, Nicholas J., Jones, Brian, Venkatraman, Shankar, Young, Mary Beth, Sachs, Nancy, Jacobson, Marlene A., Hutson, Peter H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2009
American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiple studies indicate that N-methyl-d-aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for improving NMDA receptor function is to enhance occupancy of the glycine modulatory site on the NMDA receptor by increasing the availability of the endogenous coagonists d-serine. Here, we characterized a novel d-amino acid oxidase (DAAO) inhibitor, compound 8 [4 H-thieno [3,2-b]pyrrole-5-carboxylic acid] and compared it with d-serine. Compound 8 is a moderately potent inhibitor of human (IC50, 145 nM) and rat (IC50, 114 nM) DAAO in vitro. In rats, compound 8 (200 mg/kg) decreased kidney DAAO activity by ∼96% and brain DAAO activity by ∼80%. This marked decrease in DAAO activity resulted in a significant (p < 0.001) elevation in both plasma (220% of control) and cerebrospinal fluid (CSF; 175% of control) d-serine concentration. However, compound 8 failed to significantly influence amphetamine-induced psychomotor activity, nucleus accumbens dopamine release, or an MK-801 (dizocilpine maleate)-induced deficit in novel object recognition in rats. In contrast, high doses of d-serine attenuated both amphetamine-induced psychomotor activity and dopamine release and also improved performance in novel object recognition. Behaviorally efficacious doses of d-serine (1280 mg/kg) increased CSF levels of d-serine 40-fold above that achieved by the maximal dose of compound 8. These findings demonstrate that pharmacological inhibition of DAAO significantly increases d-serine concentration in the periphery and central nervous system. However, acute inhibition of DAAO appears not to be sufficient to increase d-serine to concentrations required to produce antipsychotic and cognitive enhancing effects similar to those observed after administration of high doses of exogenous d-serine.
AbstractList Multiple studies indicate that N -methyl- d -aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for improving NMDA receptor function is to enhance occupancy of the glycine modulatory site on the NMDA receptor by increasing the availability of the endogenous coagonists d -serine. Here, we characterized a novel d -amino acid oxidase (DAAO) inhibitor, compound 8 [4 H -thieno [3,2- b ]pyrrole-5-carboxylic acid] and compared it with d -serine. Compound 8 is a moderately potent inhibitor of human (IC 50 , 145 nM) and rat (IC 50 , 114 nM) DAAO in vitro. In rats, compound 8 (200 mg/kg) decreased kidney DAAO activity by ∼96% and brain DAAO activity by ∼80%. This marked decrease in DAAO activity resulted in a significant ( p < 0.001) elevation in both plasma (220% of control) and cerebrospinal fluid (CSF; 175% of control) d -serine concentration. However, compound 8 failed to significantly influence amphetamine-induced psychomotor activity, nucleus accumbens dopamine release, or an MK-801 (dizocilpine maleate)-induced deficit in novel object recognition in rats. In contrast, high doses of d -serine attenuated both amphetamine-induced psychomotor activity and dopamine release and also improved performance in novel object recognition. Behaviorally efficacious doses of d -serine (1280 mg/kg) increased CSF levels of d -serine 40-fold above that achieved by the maximal dose of compound 8. These findings demonstrate that pharmacological inhibition of DAAO significantly increases d -serine concentration in the periphery and central nervous system. However, acute inhibition of DAAO appears not to be sufficient to increase d -serine to concentrations required to produce antipsychotic and cognitive enhancing effects similar to those observed after administration of high doses of exogenous d -serine.
Multiple studies indicate that N-methyl-d-aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for improving NMDA receptor function is to enhance occupancy of the glycine modulatory site on the NMDA receptor by increasing the availability of the endogenous coagonists d-serine. Here, we characterized a novel d-amino acid oxidase (DAAO) inhibitor, compound 8 [4 H-thieno [3,2-b]pyrrole-5-carboxylic acid] and compared it with d-serine. Compound 8 is a moderately potent inhibitor of human (IC50, 145 nM) and rat (IC50, 114 nM) DAAO in vitro. In rats, compound 8 (200 mg/kg) decreased kidney DAAO activity by ∼96% and brain DAAO activity by ∼80%. This marked decrease in DAAO activity resulted in a significant (p < 0.001) elevation in both plasma (220% of control) and cerebrospinal fluid (CSF; 175% of control) d-serine concentration. However, compound 8 failed to significantly influence amphetamine-induced psychomotor activity, nucleus accumbens dopamine release, or an MK-801 (dizocilpine maleate)-induced deficit in novel object recognition in rats. In contrast, high doses of d-serine attenuated both amphetamine-induced psychomotor activity and dopamine release and also improved performance in novel object recognition. Behaviorally efficacious doses of d-serine (1280 mg/kg) increased CSF levels of d-serine 40-fold above that achieved by the maximal dose of compound 8. These findings demonstrate that pharmacological inhibition of DAAO significantly increases d-serine concentration in the periphery and central nervous system. However, acute inhibition of DAAO appears not to be sufficient to increase d-serine to concentrations required to produce antipsychotic and cognitive enhancing effects similar to those observed after administration of high doses of exogenous d-serine.
Multiple studies indicate that N-methyl-D-aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for improving NMDA receptor function is to enhance occupancy of the glycine modulatory site on the NMDA receptor by increasing the availability of the endogenous coagonists D-serine. Here, we characterized a novel D-amino acid oxidase (DAAO) inhibitor, compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and compared it with D-serine. Compound 8 is a moderately potent inhibitor of human (IC(50), 145 nM) and rat (IC(50), 114 nM) DAAO in vitro. In rats, compound 8 (200 mg/kg) decreased kidney DAAO activity by approximately 96% and brain DAAO activity by approximately 80%. This marked decrease in DAAO activity resulted in a significant (p < 0.001) elevation in both plasma (220% of control) and cerebrospinal fluid (CSF; 175% of control) D-serine concentration. However, compound 8 failed to significantly influence amphetamine-induced psychomotor activity, nucleus accumbens dopamine release, or an MK-801 (dizocilpine maleate)-induced deficit in novel object recognition in rats. In contrast, high doses of D-serine attenuated both amphetamine-induced psychomotor activity and dopamine release and also improved performance in novel object recognition. Behaviorally efficacious doses of D-serine (1280 mg/kg) increased CSF levels of D-serine 40-fold above that achieved by the maximal dose of compound 8. These findings demonstrate that pharmacological inhibition of DAAO significantly increases D-serine concentration in the periphery and central nervous system. However, acute inhibition of DAAO appears not to be sufficient to increase D-serine to concentrations required to produce antipsychotic and cognitive enhancing effects similar to those observed after administration of high doses of exogenous D-serine.
Author Sparey, Tim
Mullins, Chadwick M.
Hinchliffe, Richard M.
Jones, Brian
McNaughton, Caitlyn H.
Uslaner, Jason M.
Pascarella, Danette M.
Jacobson, Marlene A.
Yao, Lihang
Venkatraman, Shankar
Brandon, Nicholas J.
Surles, Nathan O.
Huszar, Sarah L.
Hutson, Peter H.
Young, Mary Beth
Kandebo, Monika
Sachs, Nancy
Smith, Sean M.
Author_xml – sequence: 1
  givenname: Sean M.
  surname: Smith
  fullname: Smith, Sean M.
  email: sean_smith2@merck.com
– sequence: 2
  givenname: Jason M.
  surname: Uslaner
  fullname: Uslaner, Jason M.
– sequence: 3
  givenname: Lihang
  surname: Yao
  fullname: Yao, Lihang
– sequence: 4
  givenname: Chadwick M.
  surname: Mullins
  fullname: Mullins, Chadwick M.
– sequence: 5
  givenname: Nathan O.
  surname: Surles
  fullname: Surles, Nathan O.
– sequence: 6
  givenname: Sarah L.
  surname: Huszar
  fullname: Huszar, Sarah L.
– sequence: 7
  givenname: Caitlyn H.
  surname: McNaughton
  fullname: McNaughton, Caitlyn H.
– sequence: 8
  givenname: Danette M.
  surname: Pascarella
  fullname: Pascarella, Danette M.
– sequence: 9
  givenname: Monika
  surname: Kandebo
  fullname: Kandebo, Monika
– sequence: 10
  givenname: Richard M.
  surname: Hinchliffe
  fullname: Hinchliffe, Richard M.
– sequence: 11
  givenname: Tim
  surname: Sparey
  fullname: Sparey, Tim
– sequence: 12
  givenname: Nicholas J.
  surname: Brandon
  fullname: Brandon, Nicholas J.
– sequence: 13
  givenname: Brian
  surname: Jones
  fullname: Jones, Brian
– sequence: 14
  givenname: Shankar
  surname: Venkatraman
  fullname: Venkatraman, Shankar
– sequence: 15
  givenname: Mary Beth
  surname: Young
  fullname: Young, Mary Beth
– sequence: 16
  givenname: Nancy
  surname: Sachs
  fullname: Sachs, Nancy
– sequence: 17
  givenname: Marlene A.
  surname: Jacobson
  fullname: Jacobson, Marlene A.
– sequence: 18
  givenname: Peter H.
  surname: Hutson
  fullname: Hutson, Peter H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19088300$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFMzfkEye89b9kneOyKrRS1R5YTlVlOfa4cZXEkZPddr8JHxe3ASEhwWk0o997I713go762ANC7xldMsbl2cMA05JRtWRypZR8hRas4IxQRsURWlDKORFFWRyjk3F8oJRJWYo36JhVVClB6QL92DaAP0Nj9iEm02LTO3wNuxRtA12w-XLuPdhpxNFjg6_jHlrsyLoLfcRrGxy-eQrOjIAv-ybUYYoJb2I3xF02UvhW4guybQJk-lZ84qS-Gw4pxRZIQaxJdXw6tMG-ON29PHfkG6TQw1v02pt2hHe_5in6_uV8u7kgVzdfLzfrK2IlYxOB2kshKgEF-BV3zHqvhJRiZcAYZmwFXoArDVspY2XJufKF5Yb6ojTe1Uqcog-z77CrO3B6SKEz6aB_R5SBsxmwKY5jAv8Hofq5BP1cQl6UnkvIiuIvhQ2TmULsp2RC-x_dx1nXhPvmMSTQQ2NSZ2xs4_1BC6600BVnGaxmEHIw-wBJjzZHbMFlkZ20i-GfT34Co0qtUA
CitedBy_id crossref_primary_10_1124_jpet_110_172353
crossref_primary_10_1016_j_biopsych_2013_08_010
crossref_primary_10_1007_s10822_018_0097_y
crossref_primary_10_1523_JNEUROSCI_4505_11_2012
crossref_primary_10_1016_j_bcp_2009_06_108
crossref_primary_10_1016_j_ejphar_2012_02_033
crossref_primary_10_1111_ejn_12880
crossref_primary_10_1016_j_jpba_2015_02_013
crossref_primary_10_1007_s40263_022_00959_5
crossref_primary_10_1038_mp_2009_99
crossref_primary_10_3390_biom12070909
crossref_primary_10_1038_npp_2015_319
crossref_primary_10_1586_ern_12_65
crossref_primary_10_1007_s11064_016_1838_8
crossref_primary_10_1124_pr_109_002451
crossref_primary_10_1042_BST20130184
crossref_primary_10_1002_prp2_7
crossref_primary_10_1007_s00726_012_1345_4
crossref_primary_10_1021_jm400095b
crossref_primary_10_1111_j_1476_5381_2011_01680_x
crossref_primary_10_1124_jpet_118_251116
crossref_primary_10_1254_fpj_136_128
crossref_primary_10_1016_j_neuroscience_2010_06_006
crossref_primary_10_1016_j_neuint_2012_03_008
crossref_primary_10_1007_s00406_012_0313_z
crossref_primary_10_1016_j_ab_2011_08_018
crossref_primary_10_5582_bst_2014_01034
crossref_primary_10_1111_bph_14764
crossref_primary_10_1111_j_1601_183X_2009_00529_x
crossref_primary_10_1016_j_neubiorev_2009_08_002
crossref_primary_10_1017_S1461145711001386
crossref_primary_10_1016_j_neuropharm_2011_06_029
crossref_primary_10_1097_ALN_0b013e3182a66d2a
crossref_primary_10_1021_jm4002583
crossref_primary_10_3389_fmolb_2017_00080
crossref_primary_10_1080_17460441_2018_1524459
crossref_primary_10_1038_npp_2010_158
crossref_primary_10_3389_fpsyt_2021_742058
crossref_primary_10_1021_acs_jmedchem_2c00118
crossref_primary_10_1111_ejn_12667
crossref_primary_10_1007_s00213_011_2536_5
crossref_primary_10_1016_j_tox_2009_09_005
crossref_primary_10_1016_j_nlm_2009_07_004
crossref_primary_10_1039_C8RA00094H
crossref_primary_10_1016_j_ejmech_2011_04_023
crossref_primary_10_1111_ejn_13192
crossref_primary_10_1002_syn_21637
crossref_primary_10_3389_fphys_2020_543564
crossref_primary_10_1002_bmc_3559
crossref_primary_10_1093_ijnp_pyaa095
crossref_primary_10_1021_ml300212a
crossref_primary_10_1124_dmd_112_046482
crossref_primary_10_1016_j_bcp_2010_11_009
crossref_primary_10_1016_j_neuropharm_2011_01_030
crossref_primary_10_1016_j_bmc_2018_02_004
crossref_primary_10_31887_DCNS_2010_12_3_jcoyle
crossref_primary_10_1039_C8AY02471E
crossref_primary_10_1111_j_1471_4159_2011_07313_x
crossref_primary_10_1016_j_ejphar_2022_174930
crossref_primary_10_1021_acschembio_6b00913
crossref_primary_10_1074_jbc_M111_262063
crossref_primary_10_1016_j_ejmech_2016_04_017
crossref_primary_10_3389_fnsyn_2014_00011
crossref_primary_10_1016_j_neuropharm_2009_07_022
Cites_doi 10.1016/j.mcn.2006.05.003
10.1523/JNEUROSCI.23-20-07586.2003
10.1177/1087057106288181
10.1016/j.pnpbp.2005.04.023
10.1517/14728214.10.4.827
10.1016/S0006-3223(98)00279-0
10.1038/sj.npp.1300772
10.1016/0896-6273(92)90207-T
10.1001/archpsyc.60.6.572
10.1038/sj.mp.4001421
10.1016/j.biopsych.2003.09.012
10.1111/j.1460-9568.2007.05769.x
10.1016/0165-6147(93)90108-V
10.1093/genetics/103.2.277
10.1016/j.pnpbp.2003.09.004
10.1073/pnas.182412499
10.1016/j.biopsych.2007.04.038
10.1016/j.neures.2005.05.008
10.1001/archpsyc.56.1.29
10.1016/S0026-895X(25)09633-6
10.1016/j.bmcl.2008.04.020
10.1016/S0021-9258(19)74201-X
10.1192/bjp.169.5.610
10.1016/S0006-8993(02)03466-2
10.1016/S0378-4347(01)00131-1
10.1016/0304-3940(93)90476-2
10.1016/S0893-133X(01)00243-3
10.1073/pnas.97.9.4926
10.1016/S0896-6273(03)00757-8
10.1001/archpsyc.1994.03950030035004
10.1111/j.1460-9568.2007.05446.x
10.1093/cercor/bhh147
10.1016/0020-711X(92)90322-R
10.1176/appi.ajp.159.3.480
10.1016/j.biopsych.2005.06.032
10.1016/j.euroneuro.2007.06.006
10.1016/0378-4347(92)80300-F
10.1038/325529a0
10.1152/ajprenal.00441.2006
ContentType Journal Article
Copyright 2009 American Society for Pharmacology and Experimental Therapeutics
Copyright_xml – notice: 2009 American Society for Pharmacology and Experimental Therapeutics
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1124/jpet.108.147884
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-0103
EndPage 930
ExternalDocumentID 19088300
10_1124_jpet_108_147884
328_3_921
S0022356524348463
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
2WC
3O-
4.4
53G
5GY
5RE
5VS
8WZ
A6W
AAJMC
AALRI
AAXUO
AAYOK
ABCQX
ABIVO
ABJNI
ABOCM
ABSQV
ACGFO
ACGFS
ACNCT
ADBBV
ADCOW
ADIYS
AENEX
AERNN
AFFNX
AFHIN
AFOSN
AGFXO
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
INIJC
KQ8
L7B
LSO
M41
MJL
MVM
O9-
OHT
OK1
P2P
PKN
R.V
R0Z
RHF
RHI
ROL
RPT
TR2
UQL
VH1
W2D
W8F
WH7
WOQ
X7M
YBU
YHG
YQT
ZGI
ZXP
-
0R
55
8RP
AALRV
ABFLS
ABSGY
ABZEH
ACDCL
ADACO
ADBIT
ADKFC
AETEA
AIKQT
DL
FH7
HZ
O0-
X
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c411t-ebf43393e5ef72d1cff834437aeaa1ac9ef3ed6a178ac46228f5c2a0f56afdb83
ISSN 0022-3565
IngestDate Sat Mar 08 01:25:19 EST 2025
Wed Aug 20 07:40:13 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
Tue Jan 05 21:16:53 EST 2021
Sat Feb 22 15:44:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-ebf43393e5ef72d1cff834437aeaa1ac9ef3ed6a178ac46228f5c2a0f56afdb83
PMID 19088300
PageCount 10
ParticipantIDs pubmed_primary_19088300
crossref_primary_10_1124_jpet_108_147884
crossref_citationtrail_10_1124_jpet_108_147884
highwire_pharmacology_328_3_921
elsevier_sciencedirect_doi_10_1124_jpet_108_147884
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate March 2009
20090301
2009-03-00
2009-Mar
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: March 2009
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of pharmacology and experimental therapeutics
PublicationTitleAlternate J Pharmacol Exp Ther
PublicationYear 2009
Publisher Elsevier Inc
American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: Elsevier Inc
– name: American Society for Pharmacology and Experimental Therapeutics
References 519-524.
Tsai G, Lane HY, Yang P, Chong MY, and Lange N (2004) Glycine transporter I inhibitor
Hashimoto A, Nishikawa T, Konno R, Niwa A, Oka T, and Takahashi K (1993) Free
13675-13680.
34-38.
aspartate oxidase: effects of
26941-26949.
199-214.
1081-1090.
12-35.
203-207.
Konno R and Yasumura Y (1983) Mouse mutant deficient in
methyl-
aspartic acid
7th ed. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Washington, DC.
Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC, Tullius M, Kovalenko S, Bogaert AV, Maier W, et al. (2004) Examination of G72 and
methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia.
Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, Wittmann M, Lemaire W, and Conn PJ (2003) The glycine transporter type 1 inhibitor
230-234.
amino acid oxidase.
29-36.
Alanine added to antipsychotics for the treatment of schizophrenia.
Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia.
Adage T, Trillat AC, Quattropani A, Perrin D, Cavarec L, Shaw J, Guerassimenko O, Giachetti C, Gréco B, Chumakov I, et al. (2008) In vitro and in vivo pharmacological profile of AS057278, a selective
Javitt DC (1987) Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia.
serine and
serine reuptake in the mouse CNS.
Amino-acid oxidase and its physiological function.
amino acid oxidase and
Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, and Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers.
aminoacid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder.
20-25.
amino acid oxidase (DAO) inhibitors.
452-456.
Krug AW, Völker K, Dantzler WH, and Silbernagl S (2007) Why is
McBain CJ, Kleckner NW, Wyrick S, and Dingledine R (1989) Structural requirements for activation of the glycine coagonist site of
aspartate receptors expressed in Xenopus oocytes.
Maekawa M, Watanabe M, Yamaguchi S, Konno R, and Hori Y (2005) Spatial learning and long-term potentiation of mutant mice lacking
529-531.
3386-3391.
amino acid oxidase activity and its implications for schizophrenia.
Konno R and Yasumura Y (1992)
881-884.
Tsai GE, Yang P, Chang YC, and Chong MY (2006)
alanine in the brain of mutant mice lacking
Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, et al. (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic.
572-576.
amino acid oxidase in schizophrenia.
serine in several brain areas and periphery of rat.
Institute of Laboratory Animal Resources (1996)
serine nephrotoxic and alpha-aminoisobutyric acid protective?
Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, and Iyo M (2005) Reduced
480-482.
Serine is an endogenous ligand for the glycine site of the
Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ, Chiu CS, Konno R, Hutson PH, and Brandon NJ (2006) Behavioral and biochemical characterization of a mutant mouse strain lacking
455-467.
41-48.
serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients.
amino-acid oxidase.
Johnson JW and Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons.
Serine added to antipsychotics for the treatment of schizophrenia.
277-285.
7586-7591.
827-844.
214-220.
Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, et al. (2002) Genetic and physiological data implicating the new human gene G72 and the gene for
amino acids.
Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, and Javitt DC (2002) Placebo-controlled trial of
Hashimoto A (2002) Effect of the intracerebroventricular and systemic administration of
Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia.
serine
D’Aniello A, D’Onofrio G, Pischetola M, D’Aniello G, Vetere A, Petrucelli L, and Fisher GH (1993) Biological role of
cysteine and
aspartate receptor hypofunction hypothesis of schizophrenia.
200-214.
serine in patients with schizophrenia: evidence in support of the
phthaldialdehyde.
9-12.
Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, and Kelly D (1996) Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia.
Hashimoto A, Nishikawa T, Oka T, Takahashi K, and Hayashi T (1992) Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with
tert.-butyloxycarbonyl-
Rutter AR, Fradley RL, Garrett EM, Chapman KL, Lawrence JM, Rosahl TW, and Patel S (2007) Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating
119-125.
1757-1766.
481-487.
Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, and Tsai GE (2008) Sarcosine
aspartate, and
610-617.
556-565.
1081-1089.
324-334.
4926-4931.
Sparey T, Abeywickrema P, Almond S, Brandon N, Byrne N, Campbell A, Hutson PH, Jacobson M, Jones B, Munshi S, et al. (2008) The discovery of fused pyrrole carboxylic acids as novel, potent
33-36.
and
amino acid oxidase inhibitor with potential anti-psychotic properties.
cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia.
methylglycine) treatment for acute schizophrenia: a randomized, double-blind study.
aspartate receptor.
Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, and Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
alanine in the central nervous system and serum in mutant mice lacking
Kemp JA and Leeson PD (1993) The glycine site of the NMDA receptor-five years on.
448-459.
F382-F390.
Smith KE, Borden LA, Hartig PR, Branchek T, and Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors.
Tsai G, Yang P, Chung LC, Lange N, and Coyle JT (1998)
Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ, and Burnet PW (2007)
1657-1669.
Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, et al. (2003) Decreased serum levels of
Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, and Zaitsu K (2001) Determination of free
Cubelos B, Giménez C, and Zafra F (2005) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain.
927-935.
Heresco-Levy U (2005) Glutamatergic neurotransmission modulators as emerging new drugs for schizophrenia.
Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, and Snyder SH (2000)
767-769.
Kapur S and Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors.
[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior.
Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, and Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia.
Brandish PE, Chiu CS, Schneeweis J, Brandon NJ, Leech CL, Kornienko O, Scolnick EM, Strulovici B, and Zheng W (2006) A cell-based ultra-high-throughput screening assay for identifying inhibitors of
amino acid oxidase activity.
1963-1985.
serine on the concentrations of
10.1124/jpet.108.147884_bib18
10.1124/jpet.108.147884_bib17
10.1124/jpet.108.147884_bib39
10.1124/jpet.108.147884_bib16
10.1124/jpet.108.147884_bib38
10.1124/jpet.108.147884_bib15
10.1124/jpet.108.147884_bib37
10.1124/jpet.108.147884_bib19
10.1124/jpet.108.147884_bib5
10.1124/jpet.108.147884_bib10
10.1124/jpet.108.147884_bib32
10.1124/jpet.108.147884_bib4
10.1124/jpet.108.147884_bib31
10.1124/jpet.108.147884_bib7
10.1124/jpet.108.147884_bib30
10.1124/jpet.108.147884_bib6
10.1124/jpet.108.147884_bib9
10.1124/jpet.108.147884_bib14
10.1124/jpet.108.147884_bib36
10.1124/jpet.108.147884_bib8
10.1124/jpet.108.147884_bib13
10.1124/jpet.108.147884_bib35
10.1124/jpet.108.147884_bib12
10.1124/jpet.108.147884_bib34
10.1124/jpet.108.147884_bib11
10.1124/jpet.108.147884_bib33
10.1124/jpet.108.147884_bib1
10.1124/jpet.108.147884_bib3
10.1124/jpet.108.147884_bib2
10.1124/jpet.108.147884_bib29
10.1124/jpet.108.147884_bib28
10.1124/jpet.108.147884_bib27
10.1124/jpet.108.147884_bib26
10.1124/jpet.108.147884_bib21
10.1124/jpet.108.147884_bib20
10.1124/jpet.108.147884_bib41
10.1124/jpet.108.147884_bib40
10.1124/jpet.108.147884_bib25
10.1124/jpet.108.147884_bib24
10.1124/jpet.108.147884_bib23
10.1124/jpet.108.147884_bib22
References_xml – reference: 9-12.
– reference: Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, and Snyder SH (2000)
– reference: Tsai G, Lane HY, Yang P, Chong MY, and Lange N (2004) Glycine transporter I inhibitor,
– reference: Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ, and Burnet PW (2007)
– reference: Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, and Tsai GE (2008) Sarcosine (
– reference: Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, and Zaitsu K (2001) Determination of free
– reference: 33-36.
– reference: -methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia.
– reference: Hashimoto A, Nishikawa T, Oka T, Takahashi K, and Hayashi T (1992) Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with
– reference: Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, et al. (2002) Genetic and physiological data implicating the new human gene G72 and the gene for
– reference: Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, and Iyo M (2005) Reduced
– reference: -Amino-acid oxidase and its physiological function.
– reference: -cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia.
– reference: McBain CJ, Kleckner NW, Wyrick S, and Dingledine R (1989) Structural requirements for activation of the glycine coagonist site of
– reference: 230-234.
– reference: Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, Wittmann M, Lemaire W, and Conn PJ (2003) The glycine transporter type 1 inhibitor
– reference: 881-884.
– reference: -amino acid oxidase activity and its implications for schizophrenia.
– reference: -serine nephrotoxic and alpha-aminoisobutyric acid protective?
– reference: -aminoacid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder.
– reference: 481-487.
– reference: 455-467.
– reference: -[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior.
– reference: Konno R and Yasumura Y (1992)
– reference: Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, and Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia.
– reference: - and
– reference: -serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients.
– reference: 1757-1766.
– reference: 34-38.
– reference: Tsai GE, Yang P, Chang YC, and Chong MY (2006)
– reference: 13675-13680.
– reference: 1081-1090.
– reference: 452-456.
– reference: 324-334.
– reference: -phthaldialdehyde.
– reference: -serine and
– reference: 927-935.
– reference: -serine in patients with schizophrenia: evidence in support of the
– reference: Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia.
– reference: Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, and Javitt DC (2002) Placebo-controlled trial of
– reference: 199-214.
– reference: -aspartate receptor hypofunction hypothesis of schizophrenia.
– reference: 827-844.
– reference: 41-48.
– reference: 20-25.
– reference: Kapur S and Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors.
– reference: Javitt DC (1987) Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia.
– reference: -Serine added to antipsychotics for the treatment of schizophrenia.
– reference: Institute of Laboratory Animal Resources (1996)
– reference: -aspartate receptors expressed in Xenopus oocytes.
– reference: 1963-1985.
– reference: 12-35.
– reference: 26941-26949.
– reference: Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, et al. (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic.
– reference: -aspartate oxidase: effects of
– reference: -tert.-butyloxycarbonyl-
– reference: Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, and Kelly D (1996) Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia.
– reference: Adage T, Trillat AC, Quattropani A, Perrin D, Cavarec L, Shaw J, Guerassimenko O, Giachetti C, Gréco B, Chumakov I, et al. (2008) In vitro and in vivo pharmacological profile of AS057278, a selective
– reference: -aspartic acid,
– reference: -cysteine and
– reference: 203-207.
– reference: Sparey T, Abeywickrema P, Almond S, Brandon N, Byrne N, Campbell A, Hutson PH, Jacobson M, Jones B, Munshi S, et al. (2008) The discovery of fused pyrrole carboxylic acids as novel, potent
– reference: 3386-3391.
– reference: Cubelos B, Giménez C, and Zafra F (2005) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain.
– reference: 200-214.
– reference: 519-524.
– reference: -serine reuptake in the mouse CNS.
– reference: 7586-7591.
– reference: -amino acid oxidase and
– reference: Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, and Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
– reference: 480-482.
– reference: -alanine in the brain of mutant mice lacking
– reference: Smith KE, Borden LA, Hartig PR, Branchek T, and Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors.
– reference: -amino acid oxidase inhibitor with potential anti-psychotic properties.
– reference: 448-459.
– reference: Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, et al. (2003) Decreased serum levels of
– reference: -amino acid oxidase in schizophrenia.
– reference: -serine on the concentrations of
– reference: -amino-acid oxidase.
– reference: -aspartate receptor.
– reference: -amino acid oxidase (DAO) inhibitors.
– reference: Hashimoto A, Nishikawa T, Konno R, Niwa A, Oka T, and Takahashi K (1993) Free
– reference: Konno R and Yasumura Y (1983) Mouse mutant deficient in
– reference: Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ, Chiu CS, Konno R, Hutson PH, and Brandon NJ (2006) Behavioral and biochemical characterization of a mutant mouse strain lacking
– reference: F382-F390.
– reference: -methylglycine) treatment for acute schizophrenia: a randomized, double-blind study.
– reference: 4926-4931.
– reference: 214-220.
– reference: , 7th ed. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Washington, DC.
– reference: 1657-1669.
– reference: D’Aniello A, D’Onofrio G, Pischetola M, D’Aniello G, Vetere A, Petrucelli L, and Fisher GH (1993) Biological role of
– reference: -Alanine added to antipsychotics for the treatment of schizophrenia.
– reference: Tsai G, Yang P, Chung LC, Lange N, and Coyle JT (1998)
– reference: 277-285.
– reference: 119-125.
– reference: Brandish PE, Chiu CS, Schneeweis J, Brandon NJ, Leech CL, Kornienko O, Scolnick EM, Strulovici B, and Zheng W (2006) A cell-based ultra-high-throughput screening assay for identifying inhibitors of
– reference: Krug AW, Völker K, Dantzler WH, and Silbernagl S (2007) Why is
– reference: -serine in several brain areas and periphery of rat.
– reference: Rutter AR, Fradley RL, Garrett EM, Chapman KL, Lawrence JM, Rosahl TW, and Patel S (2007) Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating
– reference: -methyl-
– reference: Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC, Tullius M, Kovalenko S, Bogaert AV, Maier W, et al. (2004) Examination of G72 and
– reference: -alanine in the central nervous system and serum in mutant mice lacking
– reference: 767-769.
– reference: -Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia.
– reference: 610-617.
– reference: Maekawa M, Watanabe M, Yamaguchi S, Konno R, and Hori Y (2005) Spatial learning and long-term potentiation of mutant mice lacking
– reference: 1081-1089.
– reference: -serine,
– reference: -Serine is an endogenous ligand for the glycine site of the
– reference: Johnson JW and Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons.
– reference: 29-36.
– reference: Hashimoto A (2002) Effect of the intracerebroventricular and systemic administration of
– reference: -amino acid oxidase.
– reference: Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, and Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers.
– reference: 572-576.
– reference: Heresco-Levy U (2005) Glutamatergic neurotransmission modulators as emerging new drugs for schizophrenia.
– reference: -aspartate, and
– reference: -amino acids.
– reference: -amino acid oxidase activity.
– reference: 556-565.
– reference: Kemp JA and Leeson PD (1993) The glycine site of the NMDA receptor-five years on.
– reference: : 529-531.
– ident: 10.1124/jpet.108.147884_bib2
  doi: 10.1016/j.mcn.2006.05.003
– ident: 10.1124/jpet.108.147884_bib22
  doi: 10.1523/JNEUROSCI.23-20-07586.2003
– ident: 10.1124/jpet.108.147884_bib3
  doi: 10.1177/1087057106288181
– ident: 10.1124/jpet.108.147884_bib11
  doi: 10.1016/j.pnpbp.2005.04.023
– ident: 10.1124/jpet.108.147884_bib13
  doi: 10.1517/14728214.10.4.827
– ident: 10.1124/jpet.108.147884_bib40
  doi: 10.1016/S0006-3223(98)00279-0
– ident: 10.1124/jpet.108.147884_bib7
  doi: 10.1038/sj.npp.1300772
– ident: 10.1124/jpet.108.147884_bib36
  doi: 10.1016/0896-6273(92)90207-T
– ident: 10.1124/jpet.108.147884_bib18
– ident: 10.1124/jpet.108.147884_bib12
  doi: 10.1001/archpsyc.60.6.572
– ident: 10.1124/jpet.108.147884_bib35
  doi: 10.1038/sj.mp.4001421
– ident: 10.1124/jpet.108.147884_bib38
  doi: 10.1016/j.biopsych.2003.09.012
– ident: 10.1124/jpet.108.147884_bib41
  doi: 10.1111/j.1460-9568.2007.05769.x
– ident: 10.1124/jpet.108.147884_bib21
  doi: 10.1016/0165-6147(93)90108-V
– ident: 10.1124/jpet.108.147884_bib23
  doi: 10.1093/genetics/103.2.277
– ident: 10.1124/jpet.108.147884_bib20
  doi: 10.1016/j.pnpbp.2003.09.004
– ident: 10.1124/jpet.108.147884_bib4
  doi: 10.1073/pnas.182412499
– ident: 10.1124/jpet.108.147884_bib28
  doi: 10.1016/j.biopsych.2007.04.038
– ident: 10.1124/jpet.108.147884_bib29
  doi: 10.1016/j.neures.2005.05.008
– ident: 10.1124/jpet.108.147884_bib16
  doi: 10.1001/archpsyc.56.1.29
– ident: 10.1124/jpet.108.147884_bib30
  doi: 10.1016/S0026-895X(25)09633-6
– ident: 10.1124/jpet.108.147884_bib37
  doi: 10.1016/j.bmcl.2008.04.020
– ident: 10.1124/jpet.108.147884_bib6
  doi: 10.1016/S0021-9258(19)74201-X
– ident: 10.1124/jpet.108.147884_bib15
  doi: 10.1192/bjp.169.5.610
– ident: 10.1124/jpet.108.147884_bib8
  doi: 10.1016/S0006-8993(02)03466-2
– ident: 10.1124/jpet.108.147884_bib32
  doi: 10.1016/S0378-4347(01)00131-1
– ident: 10.1124/jpet.108.147884_bib9
  doi: 10.1016/0304-3940(93)90476-2
– ident: 10.1124/jpet.108.147884_bib17
– ident: 10.1124/jpet.108.147884_bib27
  doi: 10.1016/S0893-133X(01)00243-3
– ident: 10.1124/jpet.108.147884_bib33
  doi: 10.1073/pnas.97.9.4926
– ident: 10.1124/jpet.108.147884_bib31
  doi: 10.1016/S0896-6273(03)00757-8
– ident: 10.1124/jpet.108.147884_bib26
  doi: 10.1001/archpsyc.1994.03950030035004
– ident: 10.1124/jpet.108.147884_bib34
  doi: 10.1111/j.1460-9568.2007.05446.x
– ident: 10.1124/jpet.108.147884_bib5
  doi: 10.1093/cercor/bhh147
– ident: 10.1124/jpet.108.147884_bib24
  doi: 10.1016/0020-711X(92)90322-R
– ident: 10.1124/jpet.108.147884_bib14
  doi: 10.1176/appi.ajp.159.3.480
– ident: 10.1124/jpet.108.147884_bib39
  doi: 10.1016/j.biopsych.2005.06.032
– ident: 10.1124/jpet.108.147884_bib1
  doi: 10.1016/j.euroneuro.2007.06.006
– ident: 10.1124/jpet.108.147884_bib10
  doi: 10.1016/0378-4347(92)80300-F
– ident: 10.1124/jpet.108.147884_bib19
  doi: 10.1038/325529a0
– ident: 10.1124/jpet.108.147884_bib25
  doi: 10.1152/ajprenal.00441.2006
SSID ssj0014463
Score 2.2554567
Snippet Multiple studies indicate that N-methyl-d-aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for...
Multiple studies indicate that N -methyl- d -aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach...
Multiple studies indicate that N-methyl-D-aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for...
SourceID pubmed
crossref
highwire
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 921
SubjectTerms Aged
Animals
D-Amino-Acid Oxidase - pharmacology
Dizocilpine Maleate - pharmacology
Habituation, Psychophysiologic
Humans
Male
Models, Molecular
Pyrroles - pharmacology
Rats
Rats, Wistar
Recognition, Psychology - drug effects
Schizophrenia - blood
Schizophrenia - cerebrospinal fluid
Serine - blood
Serine - cerebrospinal fluid
Serine - pharmacology
Thiophenes - chemistry
Thiophenes - pharmacology
Title The Behavioral and Neurochemical Effects of a Novel d-Amino Acid Oxidase Inhibitor Compound 8 [4 H-Thieno [3,2-b]pyrrole-5-carboxylic Acid] and d-Serine
URI https://dx.doi.org/10.1124/jpet.108.147884
http://jpet.aspetjournals.org/content/328/3/921.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19088300
Volume 328
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFcadc_cAmpNQjsZ0meexgqAIxhtZKQ9MUOU6sVRpNVTq08kv4c_wXzolza1kl2EvU5uZI32f7-Pic7xDySniZQtca02HEmYx4yEKVeizw06yvjER9EYy2OOgPx_LDsX_c6fxuRS1dLJJd_fPKvJLroArnAFfMkv0PZOuXwgn4DfjCERCG4z9jvNfk2aMPvBDb0JUKwH4TraGcg_xHdu6kbPBtMs2dgZ6kzufLSQrTGIwSZ5ME-va8GB-w0pITOtv-nnSGbHQGvT_HfwLw4CzZ9t_NlnMMS2Q-02qe5JdLlMrGN8K14jNSdlTkFbZt3yYLrbB_Z41ottWAWik20MoLq63-2gt0hNsHn3ar8-PvGLE7t0G_WFGxufRV5dbzgH7xhlwoRF5qK6gUi8lXj1T-j6gJALNOuSoxZyVutExSsGUoqoFe8LDFaNEatiObpV1aAJHdKfp7cuESJxdYzWBkJswxQWjL260pduMGOMfGuRQS7Dtxg9zksIrBYfjjl2aTC1biohazh9tL5Slo5s1aI5uMplrTem1RVBhHozvkdokqHViK3iWdbHqP7BxahJc9Omqh2aM79LCF_X3yCy7ThscUyEBXeExLHtPcUEULHtOSxxRZR0se05rHtOIxDemJpBWL6YnoAYNPr-Jv8abTovGKvQ_I-P3-6O2QlRVDmJaet2BZYqQQkcj8zAQ89bQxWEdGBCpTylM6yozI0r7yglBp2ec8NL7myjU-jEtpEoqHZGuaT7PHhKokTXRfa9c1UvqBp0yS-hGMY6ofRIFrumS3giTWpZw-VnU5j4tlNZcxYoj6u7HFsEte1w_MrJLM5lt5hXFcGsLWwI2BipsfelmxIW734BhoH4sYKN4ljyxJmvYxylG47pPrNPiU3Gr64zOytZhfZM_BQl8kLwqe_wFtNudH
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Behavioral+and+Neurochemical+Effects+of+a+Novel+d-Amino+Acid+Oxidase+Inhibitor+Compound+8+%5B4+H-Thieno+%5B3%2C2-b%5Dpyrrole-5-carboxylic+Acid%5D+and+d-Serine&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=Smith%2C+Sean+M.&rft.au=Uslaner%2C+Jason+M.&rft.au=Yao%2C+Lihang&rft.au=Mullins%2C+Chadwick+M.&rft.date=2009-03-01&rft.pub=Elsevier+Inc&rft.issn=0022-3565&rft.volume=328&rft.issue=3&rft.spage=921&rft.epage=930&rft_id=info:doi/10.1124%2Fjpet.108.147884&rft.externalDocID=S0022356524348463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon