Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils
The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S)...
Saved in:
Published in | Geoderma Vol. 332; pp. 100 - 108 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S) soils were collected from agricultural areas in Korea and Vietnam, respectively. The BCs of amur silvergrass residue (AB), paddy straw (PB), and umbrella tree (UB) were applied to the soils at a rate of 30 t ha−1 and incubated at 25 °C for 90 d. Soil carbon (C) mineralization was investigated by a periodic measurement of CO2 efflux. Soil texture strongly influenced the CO2 efflux more than the BC type as indicated by 2–4 folds increase in cumulative CO2-C efflux from the SL soil compared to that from the S soil. For the PB-, AB-, and UB-treated S soils, the values of cation exchange capacity (CEC) were increased by 906%, 180%, and 130%, respectively, compared to that of the control; however, for the PB-treated SL soil, only a 13% increase in CEC was found. The pH in the PB-treated S soil sharply increased by 4.5 units compared to that in the control, due to a high concentration of readily soluble compounds in the PB and the low buffering capacity of the S soil. The S soil was more sensitive to the addition of BCs than the SL soil. A more prominent improvement in soil fertility can be achieved by BC application to the sandy soil having low clay, nutrient, and organic matter contents.
[Display omitted]
•The influence of biochar varied strongly according to the types of feedstock/soil.•The paddy straw biochar caused an abrupt increase in pH in the sandy soil.•The CO2 efflux rates depend more on soil texture than type of biochar.•The sandy soil was more sensitive to the addition of biochar than the sandy loam soil.•Biochar significantly improved the physicochemical properties of the sandy soil. |
---|---|
AbstractList | The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S) soils were collected from agricultural areas in Korea and Vietnam, respectively. The BCs of amur silvergrass residue (AB), paddy straw (PB), and umbrella tree (UB) were applied to the soils at a rate of 30 t ha−1 and incubated at 25 °C for 90 d. Soil carbon (C) mineralization was investigated by a periodic measurement of CO2 efflux. Soil texture strongly influenced the CO2 efflux more than the BC type as indicated by 2–4 folds increase in cumulative CO2-C efflux from the SL soil compared to that from the S soil. For the PB-, AB-, and UB-treated S soils, the values of cation exchange capacity (CEC) were increased by 906%, 180%, and 130%, respectively, compared to that of the control; however, for the PB-treated SL soil, only a 13% increase in CEC was found. The pH in the PB-treated S soil sharply increased by 4.5 units compared to that in the control, due to a high concentration of readily soluble compounds in the PB and the low buffering capacity of the S soil. The S soil was more sensitive to the addition of BCs than the SL soil. A more prominent improvement in soil fertility can be achieved by BC application to the sandy soil having low clay, nutrient, and organic matter contents.
[Display omitted]
•The influence of biochar varied strongly according to the types of feedstock/soil.•The paddy straw biochar caused an abrupt increase in pH in the sandy soil.•The CO2 efflux rates depend more on soil texture than type of biochar.•The sandy soil was more sensitive to the addition of biochar than the sandy loam soil.•Biochar significantly improved the physicochemical properties of the sandy soil. The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S) soils were collected from agricultural areas in Korea and Vietnam, respectively. The BCs of amur silvergrass residue (AB), paddy straw (PB), and umbrella tree (UB) were applied to the soils at a rate of 30 t ha−1 and incubated at 25 °C for 90 d. Soil carbon (C) mineralization was investigated by a periodic measurement of CO2 efflux. Soil texture strongly influenced the CO2 efflux more than the BC type as indicated by 2–4 folds increase in cumulative CO2-C efflux from the SL soil compared to that from the S soil. For the PB-, AB-, and UB-treated S soils, the values of cation exchange capacity (CEC) were increased by 906%, 180%, and 130%, respectively, compared to that of the control; however, for the PB-treated SL soil, only a 13% increase in CEC was found. The pH in the PB-treated S soil sharply increased by 4.5 units compared to that in the control, due to a high concentration of readily soluble compounds in the PB and the low buffering capacity of the S soil. The S soil was more sensitive to the addition of BCs than the SL soil. A more prominent improvement in soil fertility can be achieved by BC application to the sandy soil having low clay, nutrient, and organic matter contents. |
Author | Rizwan, Muhammad Rinklebe, Jörg Awad, Yasser Mahmoud Ok, Yong Sik Lee, Sang Soo Ryu, Changkook El-Naggar, Ali Tsang, Daniel C.W. Yang, Xiao |
Author_xml | – sequence: 1 givenname: Ali surname: El-Naggar fullname: El-Naggar, Ali organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea – sequence: 2 givenname: Sang Soo surname: Lee fullname: Lee, Sang Soo organization: Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea – sequence: 3 givenname: Yasser Mahmoud surname: Awad fullname: Awad, Yasser Mahmoud organization: School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea – sequence: 4 givenname: Xiao surname: Yang fullname: Yang, Xiao organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea – sequence: 5 givenname: Changkook orcidid: 0000-0001-8120-2592 surname: Ryu fullname: Ryu, Changkook organization: School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea – sequence: 6 givenname: Muhammad orcidid: 0000-0002-3513-2041 surname: Rizwan fullname: Rizwan, Muhammad organization: Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan – sequence: 7 givenname: Jörg surname: Rinklebe fullname: Rinklebe, Jörg organization: University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany – sequence: 8 givenname: Daniel C.W. surname: Tsang fullname: Tsang, Daniel C.W. organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 9 givenname: Yong Sik surname: Ok fullname: Ok, Yong Sik email: yongsikok@korea.ac.kr organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea |
BookMark | eNqFUcFO3DAQtRCVutD-QuVjL0nHwXE2Ug8gBC0SUi_crVl70npx7MX2IoHUf6_DlgsXTqOnee_NzJsTdhxiIMa-CGgFCPVt2_6maCnN2HYg1i2oFsRwxFZiPXSN6vrxmK2gMpsBlPjITnLeVjhAByv29yZMfk_BEI8Tz9F5vktxR6k4yhyD5RORzSWa-8xj4BsXzR9MfBcLheLQ8ykmbjBtanN2gRJ694zFVbio3VztHmmu5GWAC9Ni7ellVP7EPkzoM33-X0_Z3fXV3eXP5vbXj5vLi9vGSCFKQxu5sQrOJFEnVd93o7Roe4EgR1pLMgKFkGCph67ee4YKccK1gtoaKj5lXw-2dZeHPeWiZ5cNeY-B4j7rTgg1wigHUanfD1STYs6JJm1ceTmnJHReC9BL6HqrX0PXS-galK6RVrl6I98lN2N6el94fhBSjeHRUdLZuOUt1iUyRdvo3rP4B1LipZY |
CitedBy_id | crossref_primary_10_1080_03650340_2022_2103550 crossref_primary_10_1007_s12517_020_06358_8 crossref_primary_10_3390_su141610086 crossref_primary_10_1186_s13568_024_01686_4 crossref_primary_10_48130_tia_0024_0014 crossref_primary_10_3390_su14137622 crossref_primary_10_3390_molecules28052247 crossref_primary_10_1016_j_jhazmat_2020_123644 crossref_primary_10_1007_s42729_024_01777_y crossref_primary_10_1016_j_jksus_2021_101472 crossref_primary_10_1007_s10653_021_01196_3 crossref_primary_10_1016_j_scitotenv_2022_157262 crossref_primary_10_3390_agronomy14092028 crossref_primary_10_1007_s11368_020_02698_w crossref_primary_10_1016_j_scitotenv_2020_138742 crossref_primary_10_1016_j_scitotenv_2021_150339 crossref_primary_10_1016_j_biortech_2019_122281 crossref_primary_10_3389_fenvs_2023_1324533 crossref_primary_10_1016_j_jenvman_2022_116594 crossref_primary_10_1007_s12517_018_3863_1 crossref_primary_10_1016_j_still_2024_106373 crossref_primary_10_1016_j_envpol_2020_115549 crossref_primary_10_1038_s41598_020_76470_y crossref_primary_10_3389_fmicb_2023_1109272 crossref_primary_10_3390_agronomy14112503 crossref_primary_10_1016_j_scienta_2023_112277 crossref_primary_10_1016_j_cemconcomp_2024_105864 crossref_primary_10_3389_fpls_2024_1479925 crossref_primary_10_3390_agronomy11081529 crossref_primary_10_1016_j_jenvman_2020_110246 crossref_primary_10_1016_j_ecoenv_2021_112148 crossref_primary_10_1515_opag_2020_0021 crossref_primary_10_1016_j_jhazmat_2021_126611 crossref_primary_10_1080_00103624_2020_1869758 crossref_primary_10_1016_j_jclepro_2024_141637 crossref_primary_10_1007_s12517_022_09504_6 crossref_primary_10_1007_s42773_020_00072_0 crossref_primary_10_1016_j_jhazmat_2020_123304 crossref_primary_10_1038_s41598_023_33712_z crossref_primary_10_1016_j_scitotenv_2018_12_026 crossref_primary_10_1080_10643389_2020_1811590 crossref_primary_10_3389_fenvs_2023_1059449 crossref_primary_10_1016_j_jhazmat_2023_133159 crossref_primary_10_1038_s41598_020_65796_2 crossref_primary_10_1007_s10163_021_01294_5 crossref_primary_10_1038_s41598_021_00168_y crossref_primary_10_1007_s42773_020_00084_w crossref_primary_10_3390_su17020642 crossref_primary_10_1007_s12517_019_4557_z crossref_primary_10_1016_j_scitotenv_2019_134112 crossref_primary_10_3390_agronomy10070990 crossref_primary_10_1016_j_scitotenv_2022_158381 crossref_primary_10_1016_j_catena_2025_108810 crossref_primary_10_1016_j_jenvman_2020_111595 crossref_primary_10_1016_j_scitotenv_2020_138752 crossref_primary_10_1016_j_bgtech_2024_100070 crossref_primary_10_1016_j_envres_2022_114248 crossref_primary_10_1016_j_jksus_2022_102505 crossref_primary_10_1007_s10653_023_01617_5 crossref_primary_10_1016_j_jhazmat_2020_124086 crossref_primary_10_3390_su13031460 crossref_primary_10_3390_su13105612 crossref_primary_10_1016_j_rser_2021_111379 crossref_primary_10_1007_s12517_020_05337_3 crossref_primary_10_1007_s12517_018_3861_3 crossref_primary_10_1016_j_jes_2020_07_002 crossref_primary_10_3390_land11122265 crossref_primary_10_1016_j_scitotenv_2022_158562 crossref_primary_10_3390_plants13111492 crossref_primary_10_1016_j_jclepro_2022_130685 crossref_primary_10_1016_j_chemosphere_2022_134304 crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_1016_j_cej_2021_130387 crossref_primary_10_1016_j_scienta_2022_111097 crossref_primary_10_1016_j_jenvman_2021_113128 crossref_primary_10_1016_j_micres_2023_127534 crossref_primary_10_3390_agronomy13112807 crossref_primary_10_1016_j_pce_2023_103508 crossref_primary_10_1080_00103624_2022_2028812 crossref_primary_10_1080_00380768_2019_1624139 crossref_primary_10_1016_j_envpol_2019_113169 crossref_primary_10_2134_agronj2018_07_0447 crossref_primary_10_1016_S1002_0160_20_60094_7 crossref_primary_10_1080_00103624_2021_1919698 crossref_primary_10_2134_jeq2018_10_0384 crossref_primary_10_1007_s12517_018_4056_7 crossref_primary_10_1016_j_scitotenv_2022_153461 crossref_primary_10_3390_agronomy10050683 crossref_primary_10_1016_j_cej_2020_125505 crossref_primary_10_1016_j_still_2022_105345 crossref_primary_10_3389_fenrg_2021_710766 crossref_primary_10_3390_land11040473 crossref_primary_10_1007_s42773_022_00155_0 crossref_primary_10_1038_s41598_025_92816_w crossref_primary_10_1016_j_geoderma_2020_114921 crossref_primary_10_1016_j_scitotenv_2020_136894 crossref_primary_10_1016_j_scitotenv_2020_139003 crossref_primary_10_1007_s42832_024_0267_x crossref_primary_10_1016_j_psep_2023_11_071 crossref_primary_10_1016_j_chemosphere_2019_05_204 crossref_primary_10_1016_j_jhazmat_2020_122277 crossref_primary_10_1016_S1002_0160_21_60041_3 crossref_primary_10_1016_j_biortech_2020_123674 crossref_primary_10_3390_ijerph182111413 crossref_primary_10_3390_agronomy13092203 crossref_primary_10_1016_j_scitotenv_2020_137133 crossref_primary_10_1038_s41598_024_56618_w crossref_primary_10_1111_gcbb_12795 crossref_primary_10_1016_j_scitotenv_2020_136721 crossref_primary_10_1016_j_envres_2023_115927 crossref_primary_10_1016_j_biortech_2019_02_105 crossref_primary_10_1016_j_chemosphere_2023_140282 crossref_primary_10_3390_land11081329 crossref_primary_10_1007_s44246_024_00125_0 crossref_primary_10_1016_j_envint_2019_105015 crossref_primary_10_1016_j_biteb_2019_03_009 crossref_primary_10_1186_s40538_022_00327_x crossref_primary_10_1016_j_jenvman_2019_02_068 crossref_primary_10_1016_j_rser_2019_109582 crossref_primary_10_1016_j_scitotenv_2022_154494 crossref_primary_10_1016_j_scitotenv_2019_134892 crossref_primary_10_1016_j_scitotenv_2020_141614 crossref_primary_10_1016_j_jenvman_2018_12_069 crossref_primary_10_3390_agronomy9060327 crossref_primary_10_1080_10643389_2020_1818497 crossref_primary_10_1088_2631_8695_ad97a1 crossref_primary_10_1016_j_chemosphere_2022_135310 crossref_primary_10_1007_s00374_025_01888_3 crossref_primary_10_1111_sum_12717 crossref_primary_10_3389_fpls_2021_765041 crossref_primary_10_1007_s42729_019_00116_w crossref_primary_10_1016_j_scitotenv_2020_138489 crossref_primary_10_33462_jotaf_1190812 crossref_primary_10_1016_j_biteb_2022_101160 crossref_primary_10_1007_s12517_020_05529_x crossref_primary_10_1007_s10653_024_02271_1 crossref_primary_10_1016_j_jhazmat_2020_124123 crossref_primary_10_1007_s42729_021_00631_9 crossref_primary_10_1016_j_envpol_2023_122080 crossref_primary_10_1007_s42729_023_01370_9 crossref_primary_10_1016_j_jenvman_2024_121421 crossref_primary_10_1016_j_scitotenv_2020_143817 crossref_primary_10_1007_s42773_020_00065_z crossref_primary_10_1007_s13399_020_00923_7 crossref_primary_10_1080_10643389_2023_2221155 crossref_primary_10_3390_agriculture14122165 crossref_primary_10_1016_j_cej_2024_154196 crossref_primary_10_1007_s42729_024_01784_z crossref_primary_10_1016_j_scitotenv_2019_134073 crossref_primary_10_3390_soilsystems9010018 crossref_primary_10_1016_j_cej_2022_136225 crossref_primary_10_1016_j_jenvman_2021_114129 crossref_primary_10_3390_agriculture11040367 crossref_primary_10_3390_toxics9080184 crossref_primary_10_36899_JAPS_2022_5_0537 crossref_primary_10_1007_s42729_020_00252_8 crossref_primary_10_1016_j_scitotenv_2023_162024 crossref_primary_10_54097_hset_v40i_6659 crossref_primary_10_1007_s42398_021_00185_7 crossref_primary_10_1016_j_jece_2021_105714 crossref_primary_10_3390_agronomy11071313 crossref_primary_10_3390_agronomy11050993 crossref_primary_10_57110_jebvn_v3i5_237 crossref_primary_10_1016_j_mlblux_2019_100020 crossref_primary_10_1002_jctb_7421 crossref_primary_10_1080_15226514_2020_1789843 crossref_primary_10_1016_j_scitotenv_2021_149835 crossref_primary_10_1016_j_ibiod_2025_106005 crossref_primary_10_1007_s11368_023_03710_9 crossref_primary_10_1016_j_soilbio_2022_108851 crossref_primary_10_1007_s42729_023_01428_8 crossref_primary_10_3390_pr10101924 crossref_primary_10_1016_j_envpol_2020_114133 crossref_primary_10_1016_j_scitotenv_2021_150035 crossref_primary_10_1016_j_scitotenv_2021_151124 crossref_primary_10_1007_s11368_018_02236_9 crossref_primary_10_1007_s12517_018_4037_x crossref_primary_10_1016_j_jhazmat_2019_120821 crossref_primary_10_1016_j_jhazmat_2021_126421 crossref_primary_10_1016_j_ecoenv_2018_11_111 crossref_primary_10_1016_j_jhazmat_2020_122762 crossref_primary_10_1080_01904167_2023_2203169 crossref_primary_10_1016_j_scitotenv_2022_160478 crossref_primary_10_1016_j_jhazmat_2023_132690 crossref_primary_10_1080_01904167_2024_2369080 crossref_primary_10_1016_j_biortech_2020_123613 crossref_primary_10_3389_fpls_2023_1163451 crossref_primary_10_1016_j_jclepro_2021_127143 crossref_primary_10_1016_j_chemosphere_2022_134942 crossref_primary_10_3390_su17010342 crossref_primary_10_1007_s11356_024_35412_1 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1088_1755_1315_693_1_012082 crossref_primary_10_3390_microorganisms10030547 crossref_primary_10_1007_s00128_021_03271_y crossref_primary_10_1007_s12517_018_4074_5 crossref_primary_10_1016_j_geoderma_2018_09_034 crossref_primary_10_3389_fmicb_2022_972300 crossref_primary_10_1016_j_jenvman_2019_109542 crossref_primary_10_3390_pr7110800 crossref_primary_10_1007_s12517_018_4113_2 crossref_primary_10_1007_s11368_019_02366_8 crossref_primary_10_1016_j_eti_2023_103242 crossref_primary_10_3390_su13136984 crossref_primary_10_1111_sum_12804 crossref_primary_10_1016_j_jenvman_2022_116639 crossref_primary_10_1080_10643389_2021_1894064 crossref_primary_10_3390_agronomy15020393 crossref_primary_10_1371_journal_pone_0304689 crossref_primary_10_1007_s40098_024_00875_z crossref_primary_10_1016_j_jenvman_2019_02_044 crossref_primary_10_1016_j_jenvman_2019_02_042 crossref_primary_10_3389_fenvs_2021_798729 crossref_primary_10_1016_j_chemosphere_2023_140419 crossref_primary_10_1080_10643389_2020_1859271 crossref_primary_10_1016_j_scitotenv_2019_01_193 crossref_primary_10_1016_j_aoas_2019_12_006 crossref_primary_10_1016_j_hybadv_2023_100056 crossref_primary_10_1016_j_envres_2021_112125 crossref_primary_10_1007_s42773_024_00336_z crossref_primary_10_1016_j_catena_2020_105046 crossref_primary_10_1016_j_catena_2024_108396 crossref_primary_10_1007_s40710_022_00617_4 |
Cites_doi | 10.1016/j.fuel.2006.03.008 10.2136/sssaj2008.0232 10.1016/j.ejsobi.2011.09.005 10.1016/j.geoderma.2014.08.010 10.1023/A:1013351617532 10.1007/s13765-015-0103-1 10.1007/s11356-015-5697-7 10.1071/SR07109 10.1016/j.foreco.2017.02.036 10.1111/gcbb.12211 10.1016/j.agee.2011.08.015 10.1080/17583004.2014.973684 10.1016/j.soilbio.2011.10.012 10.1016/j.soilbio.2011.04.018 10.1016/j.carbon.2009.11.020 10.1111/gcbb.12266 10.1016/j.geoderma.2014.11.009 10.1016/j.electacta.2013.09.121 10.1002/jpln.201200282 10.1038/ngeo2154 10.1016/j.fcr.2011.01.014 10.1097/00010694-194311000-00004 10.1080/10643389.2016.1239975 10.1080/03650340.2014.892204 10.1097/00010694-194704000-00001 10.1111/gcbb.12023 10.1016/S1002-0160(15)30044-8 10.1016/j.arabjc.2013.08.001 10.1016/j.chemosphere.2015.05.052 10.1111/ejss.12034 10.3390/su7055875 10.1039/C6RA11671J 10.1016/j.biortech.2012.12.012 10.1002/ldr.2205 10.3390/su9020266 10.1002/jpln.201200652 10.1016/j.biortech.2013.08.135 10.1016/j.scitotenv.2017.12.190 10.1016/j.soilbio.2013.12.021 10.1016/j.soilbio.2008.10.016 10.1002/ldr.2285 10.1002/ldr.2896 10.1016/j.chemosphere.2010.05.026 10.1097/00010694-193109000-00003 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.06.017 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 108 |
ExternalDocumentID | 10_1016_j_geoderma_2018_06_017 S0016706118300715 |
GeographicLocations | Vietnam Korean Peninsula |
GeographicLocations_xml | – name: Vietnam – name: Korean Peninsula |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c411t-eb4bd6034ee24655294dad51a049e84ec1a1140de5026253a6aafa8604ec7253 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Tue Aug 05 10:19:05 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Tue Jul 01 05:04:20 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Raman Soil fertility FTIR Soil amendment Slow pyrolysis Charcoal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-eb4bd6034ee24655294dad51a049e84ec1a1140de5026253a6aafa8604ec7253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8120-2592 0000-0002-3513-2041 |
PQID | 2116909471 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2116909471 crossref_citationtrail_10_1016_j_geoderma_2018_06_017 crossref_primary_10_1016_j_geoderma_2018_06_017 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_06_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-15 |
PublicationDateYYYYMMDD | 2018-12-15 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Park, Ok, Kim, Kang, Cho, Heo, Delaune, Seo (bb0195) 2015; 58 El-Naggar, Awad, Tang, Liu, Niazi, Jien, Tsang, Song, Ok, Lee (bb5000) 2018 Mandal, Sarkar, Bolan, Novak, Ok, Van Zwieten, Singh, Kirkham, Choppala, Spokas, Naidu (bb0185) 2016; 46 Juo, Franzluebbers (bb0120) 2003 Kloss, Zehetner, Wimmer, Buecker, Rempt, Soja (bb0130) 2014; 177 Körschens, Albert, Baumecker, Ellmer, Grunert, Hoffmann, Kismanyoky, Kubat, Kunzova, Marx, Rogasik (bb5015) 2014; 60 Lehmann, Joseph (bb0170) 2009 Li, Hayashi, Li (bb5020) 2006; 85 Sackett, Basiliko, Noyce, Winsborough, Schurman, Ikeda, Thomas (bb0210) 2015; 7 Alburquerque, Calero, Barrón, Torrent, del Campillo, Gallardo, Villar (bb0010) 2014; 177 Solaiman, Anawar (bb0215) 2015; 25 Xu, Hosseini, Bai, Xu, Blumfield, Zhao, Wang, Wallace, Van Zwieten (bb0245) 2015 Veihmeyer, Hendrickson (bb0235) 1931; 32 Trakal, Šigut, Šillerová, Faturíková, Komárek (bb0225) 2014; 7 Symeonakis, Karathanasis, Koukoulas, Panagopoulos (bb0220) 2016; 27 Chan, Van Zwieten, Meszaros, Downie, Joseph (bb0055) 2007; 45 Cely, Tarquis, Paz-Ferreiro, Méndez, Gascó (bb0050) 2014; 6 Butnan, Deenik, Toomsan, Antal, Vityakon (bb0045) 2015; 237 Kolb, Fermanich, Dornbush (bb0135) 2009; 73 Lal (bb0155) 2015; 7 Lee, Ryu, Park, Jung, Hyun (bb0160) 2013; 130 Kuo (bb0140) 1996; vol. 5 Gee, Bauder, Klute (bb0070) 1986; vol. 5 Walkley (bb0240) 1947; 63 Zibilske (bb0265) 1994; vol. 5 Coomes, Miltner (bb0060) 2016 Zhang, Zhang, Song, Song, Hänninen, Wu (bb0260) 2017; 391 Kuzyakov, Bogomolova, Glaser (bb0150) 2014; 70 Haefele, Konboon, Wongboon, Amarante, Maarifat, Pfeiffer, Knoblauch (bb0080) 2011; 121 Yao, Arbestain, Virgel, Blanco, Arostegui, Maciá-Agulló, Macías (bb0250) 2010; 80 Abiven, Schmidt, Lehmann (bb0005) 2014; 7 Lee, Park, Ryu, Gang, Yang, Park, Jung, Hyun (bb0165) 2013; 148 Guide (bb0075) 1999 Igalavithana, Ok, Usman, Al-Wabel, Oleszczuk, Lee (bb0095) 2015 El-Naggar, Shaheen, Ok, Rinklebe (bb5005) 2018; 624 Rhim, Zhang, Fairbrother, Wepasnick, Livi, Bodnar, Nagle (bb5025) 2010; 48 Jones, Murphy, Khalid, Ahmad, Edwards-Jones, Deluca (bb0110) 2011; 43 Liu, Liu, Zhou, Wang, Jin, Wang (bb0180) 2016; 6 Awad, Blagodatskaya, Ok, Kuzyakov (bb0025) 2013; 64 Rizwan, Ali, Qayyum, Ibrahim, Zia-ur-Rehman, Abbas, Ok (bb0205) 2016; 23 Awad, Blagodatskaya, Ok, Kuzyakov (bb0020) 2012; 48 Brown (bb0035) 1943; 56 Mekuria, Langan, Noble, Johnston (bb0190) 2016 Bremner (bb0030) 1996; vol. 5 Igalavithana, Ok, Niazi, Rizwan, Al-Wabel, Usman, Moon, Lee (bb0100) 2017; 9 Wang, Xiong, Kuzyakov (bb5030) 2016; 8 Angst, Sohi (bb0015) 2013; 5 Jones, Rousk, Edwards-Jones, DeLuca, Murphy (bb0115) 2012; 45 Zhang, Ok (bb0255) 2014; 5 Kabata-Pendias (bb0125) 2011 Hinsinger (bb0090) 2001; 237 Jiang, Zhang, Wang, Holm, Rajagopalan, Chen, Ma (bb5010) 2013; 113 El-Naggar, Usman, Al-Omran, Ok, Ahmad, Al-Wabel (bb0065) 2015; 138 Purakayastha, Kumari, Pathak (bb0200) 2015; 239 Bruun, Elberling, Neergaard, Magid (bb0040) 2015; 26 Havlin, Tisdale, Nelson, Beaton (bb0085) 2014 Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bb0145) 2009; 41 USEPA (bb0230) 1996 Jeffery, Verheijen, van der Velde, Bastos (bb0105) 2011; 144 Lee (10.1016/j.geoderma.2018.06.017_bb0160) 2013; 130 Sackett (10.1016/j.geoderma.2018.06.017_bb0210) 2015; 7 Abiven (10.1016/j.geoderma.2018.06.017_bb0005) 2014; 7 Bruun (10.1016/j.geoderma.2018.06.017_bb0040) 2015; 26 Purakayastha (10.1016/j.geoderma.2018.06.017_bb0200) 2015; 239 Zhang (10.1016/j.geoderma.2018.06.017_bb0255) 2014; 5 Zibilske (10.1016/j.geoderma.2018.06.017_bb0265) 1994; vol. 5 Alburquerque (10.1016/j.geoderma.2018.06.017_bb0010) 2014; 177 USEPA (10.1016/j.geoderma.2018.06.017_bb0230) 1996 Lee (10.1016/j.geoderma.2018.06.017_bb0165) 2013; 148 Yao (10.1016/j.geoderma.2018.06.017_bb0250) 2010; 80 Trakal (10.1016/j.geoderma.2018.06.017_bb0225) 2014; 7 Kolb (10.1016/j.geoderma.2018.06.017_bb0135) 2009; 73 Kuzyakov (10.1016/j.geoderma.2018.06.017_bb0145) 2009; 41 Kuo (10.1016/j.geoderma.2018.06.017_bb0140) 1996; vol. 5 Solaiman (10.1016/j.geoderma.2018.06.017_bb0215) 2015; 25 Gee (10.1016/j.geoderma.2018.06.017_bb0070) 1986; vol. 5 Veihmeyer (10.1016/j.geoderma.2018.06.017_bb0235) 1931; 32 Rizwan (10.1016/j.geoderma.2018.06.017_bb0205) 2016; 23 Mekuria (10.1016/j.geoderma.2018.06.017_bb0190) 2016 Cely (10.1016/j.geoderma.2018.06.017_bb0050) 2014; 6 Li (10.1016/j.geoderma.2018.06.017_bb5020) 2006; 85 Walkley (10.1016/j.geoderma.2018.06.017_bb0240) 1947; 63 Haefele (10.1016/j.geoderma.2018.06.017_bb0080) 2011; 121 Awad (10.1016/j.geoderma.2018.06.017_bb0025) 2013; 64 Jones (10.1016/j.geoderma.2018.06.017_bb0110) 2011; 43 Igalavithana (10.1016/j.geoderma.2018.06.017_bb0095) 2015 Kuzyakov (10.1016/j.geoderma.2018.06.017_bb0150) 2014; 70 Awad (10.1016/j.geoderma.2018.06.017_bb0020) 2012; 48 Symeonakis (10.1016/j.geoderma.2018.06.017_bb0220) 2016; 27 Wang (10.1016/j.geoderma.2018.06.017_bb5030) 2016; 8 Kabata-Pendias (10.1016/j.geoderma.2018.06.017_bb0125) 2011 Angst (10.1016/j.geoderma.2018.06.017_bb0015) 2013; 5 Chan (10.1016/j.geoderma.2018.06.017_bb0055) 2007; 45 Coomes (10.1016/j.geoderma.2018.06.017_bb0060) 2016 El-Naggar (10.1016/j.geoderma.2018.06.017_bb0065) 2015; 138 Hinsinger (10.1016/j.geoderma.2018.06.017_bb0090) 2001; 237 Park (10.1016/j.geoderma.2018.06.017_bb0195) 2015; 58 Jiang (10.1016/j.geoderma.2018.06.017_bb5010) 2013; 113 Bremner (10.1016/j.geoderma.2018.06.017_bb0030) 1996; vol. 5 Zhang (10.1016/j.geoderma.2018.06.017_bb0260) 2017; 391 Jones (10.1016/j.geoderma.2018.06.017_bb0115) 2012; 45 Lal (10.1016/j.geoderma.2018.06.017_bb0155) 2015; 7 Kloss (10.1016/j.geoderma.2018.06.017_bb0130) 2014; 177 El-Naggar (10.1016/j.geoderma.2018.06.017_bb5005) 2018; 624 Lehmann (10.1016/j.geoderma.2018.06.017_bb0170) 2009 Mandal (10.1016/j.geoderma.2018.06.017_bb0185) 2016; 46 Havlin (10.1016/j.geoderma.2018.06.017_bb0085) 2014 Butnan (10.1016/j.geoderma.2018.06.017_bb0045) 2015; 237 Igalavithana (10.1016/j.geoderma.2018.06.017_bb0100) 2017; 9 Jeffery (10.1016/j.geoderma.2018.06.017_bb0105) 2011; 144 El-Naggar (10.1016/j.geoderma.2018.06.017_bb5000) 2018 Guide (10.1016/j.geoderma.2018.06.017_bb0075) 1999 Brown (10.1016/j.geoderma.2018.06.017_bb0035) 1943; 56 Liu (10.1016/j.geoderma.2018.06.017_bb0180) 2016; 6 Rhim (10.1016/j.geoderma.2018.06.017_bb5025) 2010; 48 Xu (10.1016/j.geoderma.2018.06.017_bb0245) 2015 Juo (10.1016/j.geoderma.2018.06.017_bb0120) 2003 Körschens (10.1016/j.geoderma.2018.06.017_bb5015) 2014; 60 |
References_xml | – volume: 45 start-page: 629 year: 2007 end-page: 634 ident: bb0055 article-title: Agronomic values of green waste biochar as a soil amendment publication-title: Aust. J. Soil Res. – volume: vol. 5 start-page: 869 year: 1996 end-page: 919 ident: bb0140 article-title: Phosphorus publication-title: Methods of Soil Analysis – volume: 237 start-page: 105 year: 2015 end-page: 116 ident: bb0045 article-title: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy publication-title: Geoderma – volume: 6 start-page: 849 year: 2014 end-page: 868 ident: bb0050 article-title: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar publication-title: Solid Earth Discuss. – volume: 138 start-page: 67 year: 2015 end-page: 73 ident: bb0065 article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar publication-title: Chemosphere – year: 2016 ident: bb0190 article-title: Soil restoration after seven years of exclosure management in northwestern Ethiopia publication-title: Land Degrad. Dev. – start-page: 1 year: 2009 end-page: 12 ident: bb0170 article-title: Biochar for environmental management: an introduction publication-title: Biochar for Environmental Management Science and Technology – volume: 60( start-page: 1485 year: 2014 end-page: 1517 ident: bb5015 article-title: Humus und Klimaänderung-Ergebnisseaus 15 langjährigen Dauerfeldversuchen publication-title: Arch. Agron. Soil Sci. – volume: 7 start-page: 326 year: 2014 end-page: 327 ident: bb0005 article-title: Biochar by design publication-title: Nat. Geosci. – volume: 5 start-page: 221 year: 2013 end-page: 226 ident: bb0015 article-title: Establishing release dynamics for plant nutrients from biochar publication-title: Glob. Change Biol. Bioenergy. – volume: 58 start-page: 751 year: 2015 end-page: 760 ident: bb0195 article-title: Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption publication-title: J. Korean Soc. Appl. Biol. Chem. – volume: 32 start-page: 181 year: 1931 end-page: 194 ident: bb0235 article-title: The moisture equivalent as a measure of the field capacity of soils publication-title: Soil Sci. – volume: 121 start-page: 430 year: 2011 end-page: 440 ident: bb0080 article-title: Effects and fate of biochar from rice residues in rice-based systems publication-title: Field Crop Res. – year: 1999 ident: bb0075 article-title: USDA Agricultural Research Service – volume: 148 start-page: 196 year: 2013 end-page: 201 ident: bb0165 article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C publication-title: Bioresour. Technol. – volume: 5 start-page: 255 year: 2014 end-page: 257 ident: bb0255 article-title: Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration publication-title: Carbon Manage. – volume: 177 start-page: 16 year: 2014 end-page: 25 ident: bb0010 article-title: Effects of biochars produced from different feedstocks on soil properties and sunflower growth publication-title: J. Plant Nutr. Soil Sci. – year: 2015 ident: bb0095 article-title: The Effects of Biochar Amendment on Soil Fertility. Agricultural and Environmental Applications of Biochar: Advances and Barriers – volume: 177 start-page: 3 year: 2014 end-page: 15 ident: bb0130 article-title: Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions publication-title: J. Plant Nutr. Soil Sci. – volume: 80 start-page: 724 year: 2010 end-page: 732 ident: bb0250 article-title: Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor publication-title: Chemosphere – volume: 624 start-page: 1059 year: 2018 end-page: 1071 ident: bb5005 article-title: Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in amining soil under dynamic redox-conditions publication-title: Sci. Total Environ. – volume: 130 start-page: 345 year: 2013 end-page: 350 ident: bb0160 article-title: Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1 publication-title: Bioresour. Technol. – volume: 63 start-page: 251 year: 1947 end-page: 264 ident: bb0240 article-title: A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and inorganic soil constituents publication-title: Soil Sci. – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: bb5030 article-title: Biochar stability in soil: meta‐analysis of decomposition and priming effects publication-title: Glob. Change Biol. Bioenergy. – year: 1996 ident: bb0230 article-title: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Method 3051, Washington DC, USA – volume: 70 start-page: 229 year: 2014 end-page: 236 ident: bb0150 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific publication-title: Soil Biol. Biochem. – year: 2014 ident: bb0085 article-title: Soil Fertility and Nutrient Management: An Introduction to Nutrient Management – volume: 48 start-page: 1 year: 2012 end-page: 10 ident: bb0020 article-title: Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by publication-title: Eur. J. Soil Biol. – volume: vol. 5 start-page: 1085 year: 1996 end-page: 1121 ident: bb0030 article-title: Nitrogen-total publication-title: Methods of Soil Analysis – volume: 7 start-page: 1062 year: 2015 end-page: 1074 ident: bb0210 article-title: Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest publication-title: GCB Bioenergy – volume: 56 start-page: 353 year: 1943 end-page: 357 ident: bb0035 article-title: A rapid method of determining exchangeable hydrogen and total exchangeable bases in soil publication-title: Soil Sci. – volume: 27 start-page: 1562 year: 2016 end-page: 1573 ident: bb0220 article-title: Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: the case of lesvos island publication-title: Land Degrad. Dev. – volume: 9 start-page: 266 year: 2017 ident: bb0100 article-title: Effect of corn residue biochar on the hydraulic properties of sandy loam soil publication-title: Sustain. For. – volume: 46 start-page: 1367 year: 2016 end-page: 1401 ident: bb0185 article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 7 start-page: 43 year: 2014 end-page: 52 ident: bb0225 article-title: Copper removal from aqueous solution using biochar: effect of chemical activation publication-title: Arab. J. Chem. – volume: 237 start-page: 173 year: 2001 end-page: 195 ident: bb0090 article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review publication-title: Plant Soil – volume: vol. 5 start-page: 383 year: 1986 end-page: 411 ident: bb0070 article-title: Particle-size analysis publication-title: Methods of Soil Analysis – volume: 113 start-page: 481 year: 2013 end-page: 489 ident: bb5010 article-title: Highly ordered macroporous woody biochar with ultra-high carbon content assupercapacitor electrodes publication-title: Electrochim. Acta – year: 2011 ident: bb0125 article-title: Trace Elements in Soils and Plants – volume: 23 start-page: 2230 year: 2016 end-page: 2248 ident: bb0205 article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review publication-title: Environ. Sci. Pollut. Res. – volume: 64 start-page: 488 year: 2013 end-page: 499 ident: bb0025 article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of publication-title: Eur. J. Soil Sci. – volume: 6 start-page: 84388 year: 2016 end-page: 84396 ident: bb0180 article-title: Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues publication-title: RSC Adv. – volume: 25 start-page: 631 year: 2015 end-page: 638 ident: bb0215 article-title: Application of biochars for soil constraints: challenges and solutions publication-title: Pedosphere – volume: 26 start-page: 272 year: 2015 end-page: 283 ident: bb0040 article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture publication-title: Land Degrad. Dev. – year: 2018 ident: bb5000 article-title: Biochar influences soil carbon pools and facilitates interactions with soil: Afield investigation publication-title: Land Degrad. Dev. – year: 2015 ident: bb0245 publication-title: Biochar application increases soil available nitrogen and plant-to-soil carbon input – volume: vol. 5 start-page: 835 year: 1994 end-page: 864 ident: bb0265 article-title: Carbon mineralization publication-title: Methods of Soil Analyses, Part 2 Microbiological and Biochemical Properties – volume: 144 start-page: 175 year: 2011 end-page: 187 ident: bb0105 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agric. Ecosyst. Environ. – volume: 73 start-page: 1173 year: 2009 end-page: 1181 ident: bb0135 article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils publication-title: Soil Sci. Soc. Am. J. – volume: 48 start-page: 1012 year: 2010 end-page: 1024 ident: bb5025 article-title: Changes inelectrical and micro structural properties of microcrystalline cellulose as function of carbonization temperature publication-title: Carbon – volume: 43 start-page: 1723 year: 2011 end-page: 1731 ident: bb0110 article-title: Short-term biochar-induced increase in soil CO publication-title: Soil Biol. Biochem. – year: 2003 ident: bb0120 article-title: Tropical Soils: Properties and Management for Sustainable Agriculture – volume: 85 start-page: 1700 year: 2006 end-page: 1707 ident: bb5020 article-title: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal publication-title: Fuel – start-page: 1 year: 2016 end-page: 11 ident: bb0060 article-title: Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems publication-title: Land Degrad. Dev. – volume: 41 start-page: 210 year: 2009 end-page: 219 ident: bb0145 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by publication-title: Soil Biol. Biochem. – volume: 7 start-page: 5875 year: 2015 end-page: 5895 ident: bb0155 article-title: Restoring soil quality to mitigate soil degradation publication-title: Sustain. For. – volume: 45 start-page: 113 year: 2012 end-page: 124 ident: bb0115 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol. Biochem. – volume: 239 start-page: 293 year: 2015 end-page: 303 ident: bb0200 article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues publication-title: Geoderma – volume: 391 start-page: 321 year: 2017 end-page: 329 ident: bb0260 article-title: Biochar enhances nut quality of publication-title: For. Ecol. Manag. – volume: 85 start-page: 1700 year: 2006 ident: 10.1016/j.geoderma.2018.06.017_bb5020 article-title: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal publication-title: Fuel doi: 10.1016/j.fuel.2006.03.008 – volume: 73 start-page: 1173 year: 2009 ident: 10.1016/j.geoderma.2018.06.017_bb0135 article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0232 – volume: 48 start-page: 1 year: 2012 ident: 10.1016/j.geoderma.2018.06.017_bb0020 article-title: Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2011.09.005 – volume: 237 start-page: 105 year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0045 article-title: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy publication-title: Geoderma doi: 10.1016/j.geoderma.2014.08.010 – volume: vol. 5 start-page: 869 year: 1996 ident: 10.1016/j.geoderma.2018.06.017_bb0140 article-title: Phosphorus – volume: 237 start-page: 173 year: 2001 ident: 10.1016/j.geoderma.2018.06.017_bb0090 article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review publication-title: Plant Soil doi: 10.1023/A:1013351617532 – volume: vol. 5 start-page: 835 year: 1994 ident: 10.1016/j.geoderma.2018.06.017_bb0265 article-title: Carbon mineralization – volume: vol. 5 start-page: 383 year: 1986 ident: 10.1016/j.geoderma.2018.06.017_bb0070 article-title: Particle-size analysis – volume: 58 start-page: 751 issue: 5 year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0195 article-title: Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption publication-title: J. Korean Soc. Appl. Biol. Chem. doi: 10.1007/s13765-015-0103-1 – volume: 23 start-page: 2230 year: 2016 ident: 10.1016/j.geoderma.2018.06.017_bb0205 article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5697-7 – volume: 45 start-page: 629 year: 2007 ident: 10.1016/j.geoderma.2018.06.017_bb0055 article-title: Agronomic values of green waste biochar as a soil amendment publication-title: Aust. J. Soil Res. doi: 10.1071/SR07109 – start-page: 1 year: 2009 ident: 10.1016/j.geoderma.2018.06.017_bb0170 article-title: Biochar for environmental management: an introduction – volume: 391 start-page: 321 year: 2017 ident: 10.1016/j.geoderma.2018.06.017_bb0260 article-title: Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.02.036 – volume: 7 start-page: 1062 year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0210 article-title: Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest publication-title: GCB Bioenergy doi: 10.1111/gcbb.12211 – volume: 144 start-page: 175 year: 2011 ident: 10.1016/j.geoderma.2018.06.017_bb0105 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.08.015 – volume: 5 start-page: 255 year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb0255 article-title: Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration publication-title: Carbon Manage. doi: 10.1080/17583004.2014.973684 – volume: 45 start-page: 113 year: 2012 ident: 10.1016/j.geoderma.2018.06.017_bb0115 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.10.012 – volume: 43 start-page: 1723 year: 2011 ident: 10.1016/j.geoderma.2018.06.017_bb0110 article-title: Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.018 – volume: 6 start-page: 849 year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb0050 article-title: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar publication-title: Solid Earth Discuss. – year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb0085 – volume: 48 start-page: 1012 year: 2010 ident: 10.1016/j.geoderma.2018.06.017_bb5025 article-title: Changes inelectrical and micro structural properties of microcrystalline cellulose as function of carbonization temperature publication-title: Carbon doi: 10.1016/j.carbon.2009.11.020 – volume: 8 start-page: 512 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2018.06.017_bb5030 article-title: Biochar stability in soil: meta‐analysis of decomposition and priming effects publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12266 – volume: 239 start-page: 293 year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0200 article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues publication-title: Geoderma doi: 10.1016/j.geoderma.2014.11.009 – volume: 113 start-page: 481 year: 2013 ident: 10.1016/j.geoderma.2018.06.017_bb5010 article-title: Highly ordered macroporous woody biochar with ultra-high carbon content assupercapacitor electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.09.121 – year: 2016 ident: 10.1016/j.geoderma.2018.06.017_bb0190 article-title: Soil restoration after seven years of exclosure management in northwestern Ethiopia publication-title: Land Degrad. Dev. – volume: 177 start-page: 3 year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb0130 article-title: Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200282 – year: 1999 ident: 10.1016/j.geoderma.2018.06.017_bb0075 – volume: vol. 5 start-page: 1085 year: 1996 ident: 10.1016/j.geoderma.2018.06.017_bb0030 article-title: Nitrogen-total – volume: 7 start-page: 326 year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb0005 article-title: Biochar by design publication-title: Nat. Geosci. doi: 10.1038/ngeo2154 – year: 1996 ident: 10.1016/j.geoderma.2018.06.017_bb0230 – volume: 121 start-page: 430 year: 2011 ident: 10.1016/j.geoderma.2018.06.017_bb0080 article-title: Effects and fate of biochar from rice residues in rice-based systems publication-title: Field Crop Res. doi: 10.1016/j.fcr.2011.01.014 – year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0095 – volume: 56 start-page: 353 year: 1943 ident: 10.1016/j.geoderma.2018.06.017_bb0035 article-title: A rapid method of determining exchangeable hydrogen and total exchangeable bases in soil publication-title: Soil Sci. doi: 10.1097/00010694-194311000-00004 – volume: 46 start-page: 1367 year: 2016 ident: 10.1016/j.geoderma.2018.06.017_bb0185 article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2016.1239975 – volume: 60( start-page: 1485 issue: 11 year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb5015 article-title: Humus und Klimaänderung-Ergebnisseaus 15 langjährigen Dauerfeldversuchen publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2014.892204 – volume: 63 start-page: 251 year: 1947 ident: 10.1016/j.geoderma.2018.06.017_bb0240 article-title: A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and inorganic soil constituents publication-title: Soil Sci. doi: 10.1097/00010694-194704000-00001 – volume: 5 start-page: 221 year: 2013 ident: 10.1016/j.geoderma.2018.06.017_bb0015 article-title: Establishing release dynamics for plant nutrients from biochar publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12023 – start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2018.06.017_bb0060 article-title: Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems publication-title: Land Degrad. Dev. – volume: 25 start-page: 631 year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0215 article-title: Application of biochars for soil constraints: challenges and solutions publication-title: Pedosphere doi: 10.1016/S1002-0160(15)30044-8 – volume: 7 start-page: 43 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb0225 article-title: Copper removal from aqueous solution using biochar: effect of chemical activation publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2013.08.001 – volume: 138 start-page: 67 year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0065 article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.052 – year: 2003 ident: 10.1016/j.geoderma.2018.06.017_bb0120 – volume: 64 start-page: 488 year: 2013 ident: 10.1016/j.geoderma.2018.06.017_bb0025 article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12034 – volume: 7 start-page: 5875 year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0155 article-title: Restoring soil quality to mitigate soil degradation publication-title: Sustain. For. doi: 10.3390/su7055875 – volume: 6 start-page: 84388 issue: 87 year: 2016 ident: 10.1016/j.geoderma.2018.06.017_bb0180 article-title: Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues publication-title: RSC Adv. doi: 10.1039/C6RA11671J – volume: 130 start-page: 345 year: 2013 ident: 10.1016/j.geoderma.2018.06.017_bb0160 article-title: Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.012 – volume: 26 start-page: 272 issue: 3 year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0040 article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2205 – volume: 9 start-page: 266 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2018.06.017_bb0100 article-title: Effect of corn residue biochar on the hydraulic properties of sandy loam soil publication-title: Sustain. For. doi: 10.3390/su9020266 – year: 2011 ident: 10.1016/j.geoderma.2018.06.017_bb0125 – volume: 177 start-page: 16 year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb0010 article-title: Effects of biochars produced from different feedstocks on soil properties and sunflower growth publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200652 – volume: 148 start-page: 196 year: 2013 ident: 10.1016/j.geoderma.2018.06.017_bb0165 article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.08.135 – volume: 624 start-page: 1059 year: 2018 ident: 10.1016/j.geoderma.2018.06.017_bb5005 article-title: Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in amining soil under dynamic redox-conditions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.190 – volume: 70 start-page: 229 year: 2014 ident: 10.1016/j.geoderma.2018.06.017_bb0150 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.021 – volume: 41 start-page: 210 year: 2009 ident: 10.1016/j.geoderma.2018.06.017_bb0145 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.016 – volume: 27 start-page: 1562 issue: 6 year: 2016 ident: 10.1016/j.geoderma.2018.06.017_bb0220 article-title: Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: the case of lesvos island publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2285 – year: 2015 ident: 10.1016/j.geoderma.2018.06.017_bb0245 – year: 2018 ident: 10.1016/j.geoderma.2018.06.017_bb5000 article-title: Biochar influences soil carbon pools and facilitates interactions with soil: Afield investigation publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2896 – volume: 80 start-page: 724 year: 2010 ident: 10.1016/j.geoderma.2018.06.017_bb0250 article-title: Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.05.026 – volume: 32 start-page: 181 year: 1931 ident: 10.1016/j.geoderma.2018.06.017_bb0235 article-title: The moisture equivalent as a measure of the field capacity of soils publication-title: Soil Sci. doi: 10.1097/00010694-193109000-00003 |
SSID | ssj0017020 |
Score | 2.6439316 |
Snippet | The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100 |
SubjectTerms | agricultural land biochar buffering capacity carbon carbon dioxide cation exchange capacity Charcoal clay feedstocks FTIR Korean Peninsula mineralization Miscanthus sacchariflorus organic matter Raman rice straw sandy loam soils sandy soils Slow pyrolysis Soil amendment Soil fertility soil texture trees Vietnam |
Title | Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.06.017 https://www.proquest.com/docview/2116909471 |
Volume | 332 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIrykpFYQ-vEDzpWCFRAdCoSm-UkNgqUJOpjhN_OnetUgJAYGBPn7Mh3uYdz9x0h51xkFuyIi3LFecS5EFEqeBKBlpS5Eyxxvur9YSSHj_zuSTy1yFVTC4NplUH3L3W619bhTjfsZrcuCqzxZVKBOQKhREOJheacK5Tyi49VmgdTvQDNyGSET3-pEn4BHmHDMY8_xJY4nr5x2a8G6oeq9vbnZotsBseRDpbvtk1attwhG4PnaQDPsLvk_bbpOEIrR2dVMaE1nrVPETSVmjKnDmwVeHvZ64xWJU2LCouuaF3NMWcIZgcPlmZmmsLgW-HxqEOZpqcu_AGEP0_EBTCPC6aeWL_UbI-Mb67HV8MotFeIMs7YPLIpT3PZS7i1MaKoxX2em1wwA0GDveQ2YwaCpV5uBcRpsUiMNMaZS9mDIQXX-6RdVqU9IDRGkD-XcqfilGMTdZNZB2yxJlGxVLJDRLOlOgvQ49gBY6KbHLMX3bBCIys0Jtsx1SHdFV29BN_4k6LfcEx_EyMNFuJP2rOGxRq-MfxxYkpbLWYagmTZhzhYscN_zH9E1vEKc2GYOCbt-XRhT8CjmaenXmRPydrg9n44-gQviPgu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED44ztB0CNI8UCd9MEBXwabERzwaRgI7D08ukI2gJDJQ4kiG7Yz9772jqaApCmToKBFHCjzqXrz7DuCHkIVDPeKTUguRCCFlkkuRJSglVeklz3yoer-bqclPcX0v7zswbmthKK0yyv6tTA_SOr7px93sL6uKany50qiO8FCSopQ7sEvoVLILu6PpzWT2epmgBxGdkauECP4oFH5ENlHPsQBBxLdQnqF32T911F_SOqigqwPYj7YjG20_7xN0XH0IH0cPq4if4Y7g17RtOsIaz9ZNtWBLCrevCDeV2bpkHtUVGnzF05o1Ncurhuqu2LLZUNoQzo5GLCvsKsfB5ypAUsdKzUBdhRhECCnSApTKhVMvXFhqfQzzq8v5eJLEDgtJITjfJC4XeakGmXAuJSC1dChKW0pu0W9wF8IV3KK_NCidRFctlZlV1np7oQY4pPH5BLp1U7vPwFLC-fO58DrNBfVRt4XzyBlnM50qrXog2y01RUQfpyYYC9OmmT2alhWGWGEo347rHvRf6ZZb_I13KYYtx8ybk2RQSbxLe96y2OBvRncntnbNy9qgn6yG6Aprfvof83-HD5P53a25nc5uzmCPRig1hssv0N2sXtxXNHA2-bd4gH8Dpkb63w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+soil+properties+and+feedstocks+on+biochar+potential+for+carbon+mineralization+and+improvement+of+infertile+soils&rft.jtitle=Geoderma&rft.au=El-Naggar%2C+Ali&rft.au=Lee%2C+Sang+Soo&rft.au=Awad%2C+Yasser+Mahmoud&rft.au=Yang%2C+Xiao&rft.date=2018-12-15&rft.issn=0016-7061&rft.volume=332&rft.spage=100&rft.epage=108&rft_id=info:doi/10.1016%2Fj.geoderma.2018.06.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2018_06_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |