Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils

The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S)...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 332; pp. 100 - 108
Main Authors El-Naggar, Ali, Lee, Sang Soo, Awad, Yasser Mahmoud, Yang, Xiao, Ryu, Changkook, Rizwan, Muhammad, Rinklebe, Jörg, Tsang, Daniel C.W., Ok, Yong Sik
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S) soils were collected from agricultural areas in Korea and Vietnam, respectively. The BCs of amur silvergrass residue (AB), paddy straw (PB), and umbrella tree (UB) were applied to the soils at a rate of 30 t ha−1 and incubated at 25 °C for 90 d. Soil carbon (C) mineralization was investigated by a periodic measurement of CO2 efflux. Soil texture strongly influenced the CO2 efflux more than the BC type as indicated by 2–4 folds increase in cumulative CO2-C efflux from the SL soil compared to that from the S soil. For the PB-, AB-, and UB-treated S soils, the values of cation exchange capacity (CEC) were increased by 906%, 180%, and 130%, respectively, compared to that of the control; however, for the PB-treated SL soil, only a 13% increase in CEC was found. The pH in the PB-treated S soil sharply increased by 4.5 units compared to that in the control, due to a high concentration of readily soluble compounds in the PB and the low buffering capacity of the S soil. The S soil was more sensitive to the addition of BCs than the SL soil. A more prominent improvement in soil fertility can be achieved by BC application to the sandy soil having low clay, nutrient, and organic matter contents. [Display omitted] •The influence of biochar varied strongly according to the types of feedstock/soil.•The paddy straw biochar caused an abrupt increase in pH in the sandy soil.•The CO2 efflux rates depend more on soil texture than type of biochar.•The sandy soil was more sensitive to the addition of biochar than the sandy loam soil.•Biochar significantly improved the physicochemical properties of the sandy soil.
AbstractList The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S) soils were collected from agricultural areas in Korea and Vietnam, respectively. The BCs of amur silvergrass residue (AB), paddy straw (PB), and umbrella tree (UB) were applied to the soils at a rate of 30 t ha−1 and incubated at 25 °C for 90 d. Soil carbon (C) mineralization was investigated by a periodic measurement of CO2 efflux. Soil texture strongly influenced the CO2 efflux more than the BC type as indicated by 2–4 folds increase in cumulative CO2-C efflux from the SL soil compared to that from the S soil. For the PB-, AB-, and UB-treated S soils, the values of cation exchange capacity (CEC) were increased by 906%, 180%, and 130%, respectively, compared to that of the control; however, for the PB-treated SL soil, only a 13% increase in CEC was found. The pH in the PB-treated S soil sharply increased by 4.5 units compared to that in the control, due to a high concentration of readily soluble compounds in the PB and the low buffering capacity of the S soil. The S soil was more sensitive to the addition of BCs than the SL soil. A more prominent improvement in soil fertility can be achieved by BC application to the sandy soil having low clay, nutrient, and organic matter contents. [Display omitted] •The influence of biochar varied strongly according to the types of feedstock/soil.•The paddy straw biochar caused an abrupt increase in pH in the sandy soil.•The CO2 efflux rates depend more on soil texture than type of biochar.•The sandy soil was more sensitive to the addition of biochar than the sandy loam soil.•Biochar significantly improved the physicochemical properties of the sandy soil.
The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S) soils were collected from agricultural areas in Korea and Vietnam, respectively. The BCs of amur silvergrass residue (AB), paddy straw (PB), and umbrella tree (UB) were applied to the soils at a rate of 30 t ha−1 and incubated at 25 °C for 90 d. Soil carbon (C) mineralization was investigated by a periodic measurement of CO2 efflux. Soil texture strongly influenced the CO2 efflux more than the BC type as indicated by 2–4 folds increase in cumulative CO2-C efflux from the SL soil compared to that from the S soil. For the PB-, AB-, and UB-treated S soils, the values of cation exchange capacity (CEC) were increased by 906%, 180%, and 130%, respectively, compared to that of the control; however, for the PB-treated SL soil, only a 13% increase in CEC was found. The pH in the PB-treated S soil sharply increased by 4.5 units compared to that in the control, due to a high concentration of readily soluble compounds in the PB and the low buffering capacity of the S soil. The S soil was more sensitive to the addition of BCs than the SL soil. A more prominent improvement in soil fertility can be achieved by BC application to the sandy soil having low clay, nutrient, and organic matter contents.
Author Rizwan, Muhammad
Rinklebe, Jörg
Awad, Yasser Mahmoud
Ok, Yong Sik
Lee, Sang Soo
Ryu, Changkook
El-Naggar, Ali
Tsang, Daniel C.W.
Yang, Xiao
Author_xml – sequence: 1
  givenname: Ali
  surname: El-Naggar
  fullname: El-Naggar, Ali
  organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
– sequence: 2
  givenname: Sang Soo
  surname: Lee
  fullname: Lee, Sang Soo
  organization: Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
– sequence: 3
  givenname: Yasser Mahmoud
  surname: Awad
  fullname: Awad, Yasser Mahmoud
  organization: School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
– sequence: 4
  givenname: Xiao
  surname: Yang
  fullname: Yang, Xiao
  organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
– sequence: 5
  givenname: Changkook
  orcidid: 0000-0001-8120-2592
  surname: Ryu
  fullname: Ryu, Changkook
  organization: School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
– sequence: 6
  givenname: Muhammad
  orcidid: 0000-0002-3513-2041
  surname: Rizwan
  fullname: Rizwan, Muhammad
  organization: Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
– sequence: 7
  givenname: Jörg
  surname: Rinklebe
  fullname: Rinklebe, Jörg
  organization: University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
– sequence: 8
  givenname: Daniel C.W.
  surname: Tsang
  fullname: Tsang, Daniel C.W.
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 9
  givenname: Yong Sik
  surname: Ok
  fullname: Ok, Yong Sik
  email: yongsikok@korea.ac.kr
  organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
BookMark eNqFUcFO3DAQtRCVutD-QuVjL0nHwXE2Ug8gBC0SUi_crVl70npx7MX2IoHUf6_DlgsXTqOnee_NzJsTdhxiIMa-CGgFCPVt2_6maCnN2HYg1i2oFsRwxFZiPXSN6vrxmK2gMpsBlPjITnLeVjhAByv29yZMfk_BEI8Tz9F5vktxR6k4yhyD5RORzSWa-8xj4BsXzR9MfBcLheLQ8ykmbjBtanN2gRJ694zFVbio3VztHmmu5GWAC9Ni7ellVP7EPkzoM33-X0_Z3fXV3eXP5vbXj5vLi9vGSCFKQxu5sQrOJFEnVd93o7Roe4EgR1pLMgKFkGCph67ee4YKccK1gtoaKj5lXw-2dZeHPeWiZ5cNeY-B4j7rTgg1wigHUanfD1STYs6JJm1ceTmnJHReC9BL6HqrX0PXS-galK6RVrl6I98lN2N6el94fhBSjeHRUdLZuOUt1iUyRdvo3rP4B1LipZY
CitedBy_id crossref_primary_10_1080_03650340_2022_2103550
crossref_primary_10_1007_s12517_020_06358_8
crossref_primary_10_3390_su141610086
crossref_primary_10_1186_s13568_024_01686_4
crossref_primary_10_48130_tia_0024_0014
crossref_primary_10_3390_su14137622
crossref_primary_10_3390_molecules28052247
crossref_primary_10_1016_j_jhazmat_2020_123644
crossref_primary_10_1007_s42729_024_01777_y
crossref_primary_10_1016_j_jksus_2021_101472
crossref_primary_10_1007_s10653_021_01196_3
crossref_primary_10_1016_j_scitotenv_2022_157262
crossref_primary_10_3390_agronomy14092028
crossref_primary_10_1007_s11368_020_02698_w
crossref_primary_10_1016_j_scitotenv_2020_138742
crossref_primary_10_1016_j_scitotenv_2021_150339
crossref_primary_10_1016_j_biortech_2019_122281
crossref_primary_10_3389_fenvs_2023_1324533
crossref_primary_10_1016_j_jenvman_2022_116594
crossref_primary_10_1007_s12517_018_3863_1
crossref_primary_10_1016_j_still_2024_106373
crossref_primary_10_1016_j_envpol_2020_115549
crossref_primary_10_1038_s41598_020_76470_y
crossref_primary_10_3389_fmicb_2023_1109272
crossref_primary_10_3390_agronomy14112503
crossref_primary_10_1016_j_scienta_2023_112277
crossref_primary_10_1016_j_cemconcomp_2024_105864
crossref_primary_10_3389_fpls_2024_1479925
crossref_primary_10_3390_agronomy11081529
crossref_primary_10_1016_j_jenvman_2020_110246
crossref_primary_10_1016_j_ecoenv_2021_112148
crossref_primary_10_1515_opag_2020_0021
crossref_primary_10_1016_j_jhazmat_2021_126611
crossref_primary_10_1080_00103624_2020_1869758
crossref_primary_10_1016_j_jclepro_2024_141637
crossref_primary_10_1007_s12517_022_09504_6
crossref_primary_10_1007_s42773_020_00072_0
crossref_primary_10_1016_j_jhazmat_2020_123304
crossref_primary_10_1038_s41598_023_33712_z
crossref_primary_10_1016_j_scitotenv_2018_12_026
crossref_primary_10_1080_10643389_2020_1811590
crossref_primary_10_3389_fenvs_2023_1059449
crossref_primary_10_1016_j_jhazmat_2023_133159
crossref_primary_10_1038_s41598_020_65796_2
crossref_primary_10_1007_s10163_021_01294_5
crossref_primary_10_1038_s41598_021_00168_y
crossref_primary_10_1007_s42773_020_00084_w
crossref_primary_10_3390_su17020642
crossref_primary_10_1007_s12517_019_4557_z
crossref_primary_10_1016_j_scitotenv_2019_134112
crossref_primary_10_3390_agronomy10070990
crossref_primary_10_1016_j_scitotenv_2022_158381
crossref_primary_10_1016_j_catena_2025_108810
crossref_primary_10_1016_j_jenvman_2020_111595
crossref_primary_10_1016_j_scitotenv_2020_138752
crossref_primary_10_1016_j_bgtech_2024_100070
crossref_primary_10_1016_j_envres_2022_114248
crossref_primary_10_1016_j_jksus_2022_102505
crossref_primary_10_1007_s10653_023_01617_5
crossref_primary_10_1016_j_jhazmat_2020_124086
crossref_primary_10_3390_su13031460
crossref_primary_10_3390_su13105612
crossref_primary_10_1016_j_rser_2021_111379
crossref_primary_10_1007_s12517_020_05337_3
crossref_primary_10_1007_s12517_018_3861_3
crossref_primary_10_1016_j_jes_2020_07_002
crossref_primary_10_3390_land11122265
crossref_primary_10_1016_j_scitotenv_2022_158562
crossref_primary_10_3390_plants13111492
crossref_primary_10_1016_j_jclepro_2022_130685
crossref_primary_10_1016_j_chemosphere_2022_134304
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_1016_j_cej_2021_130387
crossref_primary_10_1016_j_scienta_2022_111097
crossref_primary_10_1016_j_jenvman_2021_113128
crossref_primary_10_1016_j_micres_2023_127534
crossref_primary_10_3390_agronomy13112807
crossref_primary_10_1016_j_pce_2023_103508
crossref_primary_10_1080_00103624_2022_2028812
crossref_primary_10_1080_00380768_2019_1624139
crossref_primary_10_1016_j_envpol_2019_113169
crossref_primary_10_2134_agronj2018_07_0447
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1080_00103624_2021_1919698
crossref_primary_10_2134_jeq2018_10_0384
crossref_primary_10_1007_s12517_018_4056_7
crossref_primary_10_1016_j_scitotenv_2022_153461
crossref_primary_10_3390_agronomy10050683
crossref_primary_10_1016_j_cej_2020_125505
crossref_primary_10_1016_j_still_2022_105345
crossref_primary_10_3389_fenrg_2021_710766
crossref_primary_10_3390_land11040473
crossref_primary_10_1007_s42773_022_00155_0
crossref_primary_10_1038_s41598_025_92816_w
crossref_primary_10_1016_j_geoderma_2020_114921
crossref_primary_10_1016_j_scitotenv_2020_136894
crossref_primary_10_1016_j_scitotenv_2020_139003
crossref_primary_10_1007_s42832_024_0267_x
crossref_primary_10_1016_j_psep_2023_11_071
crossref_primary_10_1016_j_chemosphere_2019_05_204
crossref_primary_10_1016_j_jhazmat_2020_122277
crossref_primary_10_1016_S1002_0160_21_60041_3
crossref_primary_10_1016_j_biortech_2020_123674
crossref_primary_10_3390_ijerph182111413
crossref_primary_10_3390_agronomy13092203
crossref_primary_10_1016_j_scitotenv_2020_137133
crossref_primary_10_1038_s41598_024_56618_w
crossref_primary_10_1111_gcbb_12795
crossref_primary_10_1016_j_scitotenv_2020_136721
crossref_primary_10_1016_j_envres_2023_115927
crossref_primary_10_1016_j_biortech_2019_02_105
crossref_primary_10_1016_j_chemosphere_2023_140282
crossref_primary_10_3390_land11081329
crossref_primary_10_1007_s44246_024_00125_0
crossref_primary_10_1016_j_envint_2019_105015
crossref_primary_10_1016_j_biteb_2019_03_009
crossref_primary_10_1186_s40538_022_00327_x
crossref_primary_10_1016_j_jenvman_2019_02_068
crossref_primary_10_1016_j_rser_2019_109582
crossref_primary_10_1016_j_scitotenv_2022_154494
crossref_primary_10_1016_j_scitotenv_2019_134892
crossref_primary_10_1016_j_scitotenv_2020_141614
crossref_primary_10_1016_j_jenvman_2018_12_069
crossref_primary_10_3390_agronomy9060327
crossref_primary_10_1080_10643389_2020_1818497
crossref_primary_10_1088_2631_8695_ad97a1
crossref_primary_10_1016_j_chemosphere_2022_135310
crossref_primary_10_1007_s00374_025_01888_3
crossref_primary_10_1111_sum_12717
crossref_primary_10_3389_fpls_2021_765041
crossref_primary_10_1007_s42729_019_00116_w
crossref_primary_10_1016_j_scitotenv_2020_138489
crossref_primary_10_33462_jotaf_1190812
crossref_primary_10_1016_j_biteb_2022_101160
crossref_primary_10_1007_s12517_020_05529_x
crossref_primary_10_1007_s10653_024_02271_1
crossref_primary_10_1016_j_jhazmat_2020_124123
crossref_primary_10_1007_s42729_021_00631_9
crossref_primary_10_1016_j_envpol_2023_122080
crossref_primary_10_1007_s42729_023_01370_9
crossref_primary_10_1016_j_jenvman_2024_121421
crossref_primary_10_1016_j_scitotenv_2020_143817
crossref_primary_10_1007_s42773_020_00065_z
crossref_primary_10_1007_s13399_020_00923_7
crossref_primary_10_1080_10643389_2023_2221155
crossref_primary_10_3390_agriculture14122165
crossref_primary_10_1016_j_cej_2024_154196
crossref_primary_10_1007_s42729_024_01784_z
crossref_primary_10_1016_j_scitotenv_2019_134073
crossref_primary_10_3390_soilsystems9010018
crossref_primary_10_1016_j_cej_2022_136225
crossref_primary_10_1016_j_jenvman_2021_114129
crossref_primary_10_3390_agriculture11040367
crossref_primary_10_3390_toxics9080184
crossref_primary_10_36899_JAPS_2022_5_0537
crossref_primary_10_1007_s42729_020_00252_8
crossref_primary_10_1016_j_scitotenv_2023_162024
crossref_primary_10_54097_hset_v40i_6659
crossref_primary_10_1007_s42398_021_00185_7
crossref_primary_10_1016_j_jece_2021_105714
crossref_primary_10_3390_agronomy11071313
crossref_primary_10_3390_agronomy11050993
crossref_primary_10_57110_jebvn_v3i5_237
crossref_primary_10_1016_j_mlblux_2019_100020
crossref_primary_10_1002_jctb_7421
crossref_primary_10_1080_15226514_2020_1789843
crossref_primary_10_1016_j_scitotenv_2021_149835
crossref_primary_10_1016_j_ibiod_2025_106005
crossref_primary_10_1007_s11368_023_03710_9
crossref_primary_10_1016_j_soilbio_2022_108851
crossref_primary_10_1007_s42729_023_01428_8
crossref_primary_10_3390_pr10101924
crossref_primary_10_1016_j_envpol_2020_114133
crossref_primary_10_1016_j_scitotenv_2021_150035
crossref_primary_10_1016_j_scitotenv_2021_151124
crossref_primary_10_1007_s11368_018_02236_9
crossref_primary_10_1007_s12517_018_4037_x
crossref_primary_10_1016_j_jhazmat_2019_120821
crossref_primary_10_1016_j_jhazmat_2021_126421
crossref_primary_10_1016_j_ecoenv_2018_11_111
crossref_primary_10_1016_j_jhazmat_2020_122762
crossref_primary_10_1080_01904167_2023_2203169
crossref_primary_10_1016_j_scitotenv_2022_160478
crossref_primary_10_1016_j_jhazmat_2023_132690
crossref_primary_10_1080_01904167_2024_2369080
crossref_primary_10_1016_j_biortech_2020_123613
crossref_primary_10_3389_fpls_2023_1163451
crossref_primary_10_1016_j_jclepro_2021_127143
crossref_primary_10_1016_j_chemosphere_2022_134942
crossref_primary_10_3390_su17010342
crossref_primary_10_1007_s11356_024_35412_1
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1088_1755_1315_693_1_012082
crossref_primary_10_3390_microorganisms10030547
crossref_primary_10_1007_s00128_021_03271_y
crossref_primary_10_1007_s12517_018_4074_5
crossref_primary_10_1016_j_geoderma_2018_09_034
crossref_primary_10_3389_fmicb_2022_972300
crossref_primary_10_1016_j_jenvman_2019_109542
crossref_primary_10_3390_pr7110800
crossref_primary_10_1007_s12517_018_4113_2
crossref_primary_10_1007_s11368_019_02366_8
crossref_primary_10_1016_j_eti_2023_103242
crossref_primary_10_3390_su13136984
crossref_primary_10_1111_sum_12804
crossref_primary_10_1016_j_jenvman_2022_116639
crossref_primary_10_1080_10643389_2021_1894064
crossref_primary_10_3390_agronomy15020393
crossref_primary_10_1371_journal_pone_0304689
crossref_primary_10_1007_s40098_024_00875_z
crossref_primary_10_1016_j_jenvman_2019_02_044
crossref_primary_10_1016_j_jenvman_2019_02_042
crossref_primary_10_3389_fenvs_2021_798729
crossref_primary_10_1016_j_chemosphere_2023_140419
crossref_primary_10_1080_10643389_2020_1859271
crossref_primary_10_1016_j_scitotenv_2019_01_193
crossref_primary_10_1016_j_aoas_2019_12_006
crossref_primary_10_1016_j_hybadv_2023_100056
crossref_primary_10_1016_j_envres_2021_112125
crossref_primary_10_1007_s42773_024_00336_z
crossref_primary_10_1016_j_catena_2020_105046
crossref_primary_10_1016_j_catena_2024_108396
crossref_primary_10_1007_s40710_022_00617_4
Cites_doi 10.1016/j.fuel.2006.03.008
10.2136/sssaj2008.0232
10.1016/j.ejsobi.2011.09.005
10.1016/j.geoderma.2014.08.010
10.1023/A:1013351617532
10.1007/s13765-015-0103-1
10.1007/s11356-015-5697-7
10.1071/SR07109
10.1016/j.foreco.2017.02.036
10.1111/gcbb.12211
10.1016/j.agee.2011.08.015
10.1080/17583004.2014.973684
10.1016/j.soilbio.2011.10.012
10.1016/j.soilbio.2011.04.018
10.1016/j.carbon.2009.11.020
10.1111/gcbb.12266
10.1016/j.geoderma.2014.11.009
10.1016/j.electacta.2013.09.121
10.1002/jpln.201200282
10.1038/ngeo2154
10.1016/j.fcr.2011.01.014
10.1097/00010694-194311000-00004
10.1080/10643389.2016.1239975
10.1080/03650340.2014.892204
10.1097/00010694-194704000-00001
10.1111/gcbb.12023
10.1016/S1002-0160(15)30044-8
10.1016/j.arabjc.2013.08.001
10.1016/j.chemosphere.2015.05.052
10.1111/ejss.12034
10.3390/su7055875
10.1039/C6RA11671J
10.1016/j.biortech.2012.12.012
10.1002/ldr.2205
10.3390/su9020266
10.1002/jpln.201200652
10.1016/j.biortech.2013.08.135
10.1016/j.scitotenv.2017.12.190
10.1016/j.soilbio.2013.12.021
10.1016/j.soilbio.2008.10.016
10.1002/ldr.2285
10.1002/ldr.2896
10.1016/j.chemosphere.2010.05.026
10.1097/00010694-193109000-00003
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2018.06.017
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 108
ExternalDocumentID 10_1016_j_geoderma_2018_06_017
S0016706118300715
GeographicLocations Vietnam
Korean Peninsula
GeographicLocations_xml – name: Vietnam
– name: Korean Peninsula
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c411t-eb4bd6034ee24655294dad51a049e84ec1a1140de5026253a6aafa8604ec7253
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Tue Aug 05 10:19:05 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Tue Jul 01 05:04:20 EDT 2025
Fri Feb 23 02:30:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Raman
Soil fertility
FTIR
Soil amendment
Slow pyrolysis
Charcoal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-eb4bd6034ee24655294dad51a049e84ec1a1140de5026253a6aafa8604ec7253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8120-2592
0000-0002-3513-2041
PQID 2116909471
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2116909471
crossref_citationtrail_10_1016_j_geoderma_2018_06_017
crossref_primary_10_1016_j_geoderma_2018_06_017
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_06_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-15
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Park, Ok, Kim, Kang, Cho, Heo, Delaune, Seo (bb0195) 2015; 58
El-Naggar, Awad, Tang, Liu, Niazi, Jien, Tsang, Song, Ok, Lee (bb5000) 2018
Mandal, Sarkar, Bolan, Novak, Ok, Van Zwieten, Singh, Kirkham, Choppala, Spokas, Naidu (bb0185) 2016; 46
Juo, Franzluebbers (bb0120) 2003
Kloss, Zehetner, Wimmer, Buecker, Rempt, Soja (bb0130) 2014; 177
Körschens, Albert, Baumecker, Ellmer, Grunert, Hoffmann, Kismanyoky, Kubat, Kunzova, Marx, Rogasik (bb5015) 2014; 60
Lehmann, Joseph (bb0170) 2009
Li, Hayashi, Li (bb5020) 2006; 85
Sackett, Basiliko, Noyce, Winsborough, Schurman, Ikeda, Thomas (bb0210) 2015; 7
Alburquerque, Calero, Barrón, Torrent, del Campillo, Gallardo, Villar (bb0010) 2014; 177
Solaiman, Anawar (bb0215) 2015; 25
Xu, Hosseini, Bai, Xu, Blumfield, Zhao, Wang, Wallace, Van Zwieten (bb0245) 2015
Veihmeyer, Hendrickson (bb0235) 1931; 32
Trakal, Šigut, Šillerová, Faturíková, Komárek (bb0225) 2014; 7
Symeonakis, Karathanasis, Koukoulas, Panagopoulos (bb0220) 2016; 27
Chan, Van Zwieten, Meszaros, Downie, Joseph (bb0055) 2007; 45
Cely, Tarquis, Paz-Ferreiro, Méndez, Gascó (bb0050) 2014; 6
Butnan, Deenik, Toomsan, Antal, Vityakon (bb0045) 2015; 237
Kolb, Fermanich, Dornbush (bb0135) 2009; 73
Lal (bb0155) 2015; 7
Lee, Ryu, Park, Jung, Hyun (bb0160) 2013; 130
Kuo (bb0140) 1996; vol. 5
Gee, Bauder, Klute (bb0070) 1986; vol. 5
Walkley (bb0240) 1947; 63
Zibilske (bb0265) 1994; vol. 5
Coomes, Miltner (bb0060) 2016
Zhang, Zhang, Song, Song, Hänninen, Wu (bb0260) 2017; 391
Kuzyakov, Bogomolova, Glaser (bb0150) 2014; 70
Haefele, Konboon, Wongboon, Amarante, Maarifat, Pfeiffer, Knoblauch (bb0080) 2011; 121
Yao, Arbestain, Virgel, Blanco, Arostegui, Maciá-Agulló, Macías (bb0250) 2010; 80
Abiven, Schmidt, Lehmann (bb0005) 2014; 7
Lee, Park, Ryu, Gang, Yang, Park, Jung, Hyun (bb0165) 2013; 148
Guide (bb0075) 1999
Igalavithana, Ok, Usman, Al-Wabel, Oleszczuk, Lee (bb0095) 2015
El-Naggar, Shaheen, Ok, Rinklebe (bb5005) 2018; 624
Rhim, Zhang, Fairbrother, Wepasnick, Livi, Bodnar, Nagle (bb5025) 2010; 48
Jones, Murphy, Khalid, Ahmad, Edwards-Jones, Deluca (bb0110) 2011; 43
Liu, Liu, Zhou, Wang, Jin, Wang (bb0180) 2016; 6
Awad, Blagodatskaya, Ok, Kuzyakov (bb0025) 2013; 64
Rizwan, Ali, Qayyum, Ibrahim, Zia-ur-Rehman, Abbas, Ok (bb0205) 2016; 23
Awad, Blagodatskaya, Ok, Kuzyakov (bb0020) 2012; 48
Brown (bb0035) 1943; 56
Mekuria, Langan, Noble, Johnston (bb0190) 2016
Bremner (bb0030) 1996; vol. 5
Igalavithana, Ok, Niazi, Rizwan, Al-Wabel, Usman, Moon, Lee (bb0100) 2017; 9
Wang, Xiong, Kuzyakov (bb5030) 2016; 8
Angst, Sohi (bb0015) 2013; 5
Jones, Rousk, Edwards-Jones, DeLuca, Murphy (bb0115) 2012; 45
Zhang, Ok (bb0255) 2014; 5
Kabata-Pendias (bb0125) 2011
Hinsinger (bb0090) 2001; 237
Jiang, Zhang, Wang, Holm, Rajagopalan, Chen, Ma (bb5010) 2013; 113
El-Naggar, Usman, Al-Omran, Ok, Ahmad, Al-Wabel (bb0065) 2015; 138
Purakayastha, Kumari, Pathak (bb0200) 2015; 239
Bruun, Elberling, Neergaard, Magid (bb0040) 2015; 26
Havlin, Tisdale, Nelson, Beaton (bb0085) 2014
Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bb0145) 2009; 41
USEPA (bb0230) 1996
Jeffery, Verheijen, van der Velde, Bastos (bb0105) 2011; 144
Lee (10.1016/j.geoderma.2018.06.017_bb0160) 2013; 130
Sackett (10.1016/j.geoderma.2018.06.017_bb0210) 2015; 7
Abiven (10.1016/j.geoderma.2018.06.017_bb0005) 2014; 7
Bruun (10.1016/j.geoderma.2018.06.017_bb0040) 2015; 26
Purakayastha (10.1016/j.geoderma.2018.06.017_bb0200) 2015; 239
Zhang (10.1016/j.geoderma.2018.06.017_bb0255) 2014; 5
Zibilske (10.1016/j.geoderma.2018.06.017_bb0265) 1994; vol. 5
Alburquerque (10.1016/j.geoderma.2018.06.017_bb0010) 2014; 177
USEPA (10.1016/j.geoderma.2018.06.017_bb0230) 1996
Lee (10.1016/j.geoderma.2018.06.017_bb0165) 2013; 148
Yao (10.1016/j.geoderma.2018.06.017_bb0250) 2010; 80
Trakal (10.1016/j.geoderma.2018.06.017_bb0225) 2014; 7
Kolb (10.1016/j.geoderma.2018.06.017_bb0135) 2009; 73
Kuzyakov (10.1016/j.geoderma.2018.06.017_bb0145) 2009; 41
Kuo (10.1016/j.geoderma.2018.06.017_bb0140) 1996; vol. 5
Solaiman (10.1016/j.geoderma.2018.06.017_bb0215) 2015; 25
Gee (10.1016/j.geoderma.2018.06.017_bb0070) 1986; vol. 5
Veihmeyer (10.1016/j.geoderma.2018.06.017_bb0235) 1931; 32
Rizwan (10.1016/j.geoderma.2018.06.017_bb0205) 2016; 23
Mekuria (10.1016/j.geoderma.2018.06.017_bb0190) 2016
Cely (10.1016/j.geoderma.2018.06.017_bb0050) 2014; 6
Li (10.1016/j.geoderma.2018.06.017_bb5020) 2006; 85
Walkley (10.1016/j.geoderma.2018.06.017_bb0240) 1947; 63
Haefele (10.1016/j.geoderma.2018.06.017_bb0080) 2011; 121
Awad (10.1016/j.geoderma.2018.06.017_bb0025) 2013; 64
Jones (10.1016/j.geoderma.2018.06.017_bb0110) 2011; 43
Igalavithana (10.1016/j.geoderma.2018.06.017_bb0095) 2015
Kuzyakov (10.1016/j.geoderma.2018.06.017_bb0150) 2014; 70
Awad (10.1016/j.geoderma.2018.06.017_bb0020) 2012; 48
Symeonakis (10.1016/j.geoderma.2018.06.017_bb0220) 2016; 27
Wang (10.1016/j.geoderma.2018.06.017_bb5030) 2016; 8
Kabata-Pendias (10.1016/j.geoderma.2018.06.017_bb0125) 2011
Angst (10.1016/j.geoderma.2018.06.017_bb0015) 2013; 5
Chan (10.1016/j.geoderma.2018.06.017_bb0055) 2007; 45
Coomes (10.1016/j.geoderma.2018.06.017_bb0060) 2016
El-Naggar (10.1016/j.geoderma.2018.06.017_bb0065) 2015; 138
Hinsinger (10.1016/j.geoderma.2018.06.017_bb0090) 2001; 237
Park (10.1016/j.geoderma.2018.06.017_bb0195) 2015; 58
Jiang (10.1016/j.geoderma.2018.06.017_bb5010) 2013; 113
Bremner (10.1016/j.geoderma.2018.06.017_bb0030) 1996; vol. 5
Zhang (10.1016/j.geoderma.2018.06.017_bb0260) 2017; 391
Jones (10.1016/j.geoderma.2018.06.017_bb0115) 2012; 45
Lal (10.1016/j.geoderma.2018.06.017_bb0155) 2015; 7
Kloss (10.1016/j.geoderma.2018.06.017_bb0130) 2014; 177
El-Naggar (10.1016/j.geoderma.2018.06.017_bb5005) 2018; 624
Lehmann (10.1016/j.geoderma.2018.06.017_bb0170) 2009
Mandal (10.1016/j.geoderma.2018.06.017_bb0185) 2016; 46
Havlin (10.1016/j.geoderma.2018.06.017_bb0085) 2014
Butnan (10.1016/j.geoderma.2018.06.017_bb0045) 2015; 237
Igalavithana (10.1016/j.geoderma.2018.06.017_bb0100) 2017; 9
Jeffery (10.1016/j.geoderma.2018.06.017_bb0105) 2011; 144
El-Naggar (10.1016/j.geoderma.2018.06.017_bb5000) 2018
Guide (10.1016/j.geoderma.2018.06.017_bb0075) 1999
Brown (10.1016/j.geoderma.2018.06.017_bb0035) 1943; 56
Liu (10.1016/j.geoderma.2018.06.017_bb0180) 2016; 6
Rhim (10.1016/j.geoderma.2018.06.017_bb5025) 2010; 48
Xu (10.1016/j.geoderma.2018.06.017_bb0245) 2015
Juo (10.1016/j.geoderma.2018.06.017_bb0120) 2003
Körschens (10.1016/j.geoderma.2018.06.017_bb5015) 2014; 60
References_xml – volume: 45
  start-page: 629
  year: 2007
  end-page: 634
  ident: bb0055
  article-title: Agronomic values of green waste biochar as a soil amendment
  publication-title: Aust. J. Soil Res.
– volume: vol. 5
  start-page: 869
  year: 1996
  end-page: 919
  ident: bb0140
  article-title: Phosphorus
  publication-title: Methods of Soil Analysis
– volume: 237
  start-page: 105
  year: 2015
  end-page: 116
  ident: bb0045
  article-title: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy
  publication-title: Geoderma
– volume: 6
  start-page: 849
  year: 2014
  end-page: 868
  ident: bb0050
  article-title: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar
  publication-title: Solid Earth Discuss.
– volume: 138
  start-page: 67
  year: 2015
  end-page: 73
  ident: bb0065
  article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar
  publication-title: Chemosphere
– year: 2016
  ident: bb0190
  article-title: Soil restoration after seven years of exclosure management in northwestern Ethiopia
  publication-title: Land Degrad. Dev.
– start-page: 1
  year: 2009
  end-page: 12
  ident: bb0170
  article-title: Biochar for environmental management: an introduction
  publication-title: Biochar for Environmental Management Science and Technology
– volume: 60(
  start-page: 1485
  year: 2014
  end-page: 1517
  ident: bb5015
  article-title: Humus und Klimaänderung-Ergebnisseaus 15 langjährigen Dauerfeldversuchen
  publication-title: Arch. Agron. Soil Sci.
– volume: 7
  start-page: 326
  year: 2014
  end-page: 327
  ident: bb0005
  article-title: Biochar by design
  publication-title: Nat. Geosci.
– volume: 5
  start-page: 221
  year: 2013
  end-page: 226
  ident: bb0015
  article-title: Establishing release dynamics for plant nutrients from biochar
  publication-title: Glob. Change Biol. Bioenergy.
– volume: 58
  start-page: 751
  year: 2015
  end-page: 760
  ident: bb0195
  article-title: Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption
  publication-title: J. Korean Soc. Appl. Biol. Chem.
– volume: 32
  start-page: 181
  year: 1931
  end-page: 194
  ident: bb0235
  article-title: The moisture equivalent as a measure of the field capacity of soils
  publication-title: Soil Sci.
– volume: 121
  start-page: 430
  year: 2011
  end-page: 440
  ident: bb0080
  article-title: Effects and fate of biochar from rice residues in rice-based systems
  publication-title: Field Crop Res.
– year: 1999
  ident: bb0075
  article-title: USDA Agricultural Research Service
– volume: 148
  start-page: 196
  year: 2013
  end-page: 201
  ident: bb0165
  article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 255
  year: 2014
  end-page: 257
  ident: bb0255
  article-title: Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration
  publication-title: Carbon Manage.
– volume: 177
  start-page: 16
  year: 2014
  end-page: 25
  ident: bb0010
  article-title: Effects of biochars produced from different feedstocks on soil properties and sunflower growth
  publication-title: J. Plant Nutr. Soil Sci.
– year: 2015
  ident: bb0095
  article-title: The Effects of Biochar Amendment on Soil Fertility. Agricultural and Environmental Applications of Biochar: Advances and Barriers
– volume: 177
  start-page: 3
  year: 2014
  end-page: 15
  ident: bb0130
  article-title: Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 80
  start-page: 724
  year: 2010
  end-page: 732
  ident: bb0250
  article-title: Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor
  publication-title: Chemosphere
– volume: 624
  start-page: 1059
  year: 2018
  end-page: 1071
  ident: bb5005
  article-title: Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in amining soil under dynamic redox-conditions
  publication-title: Sci. Total Environ.
– volume: 130
  start-page: 345
  year: 2013
  end-page: 350
  ident: bb0160
  article-title: Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1
  publication-title: Bioresour. Technol.
– volume: 63
  start-page: 251
  year: 1947
  end-page: 264
  ident: bb0240
  article-title: A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and inorganic soil constituents
  publication-title: Soil Sci.
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  ident: bb5030
  article-title: Biochar stability in soil: meta‐analysis of decomposition and priming effects
  publication-title: Glob. Change Biol. Bioenergy.
– year: 1996
  ident: bb0230
  article-title: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Method 3051, Washington DC, USA
– volume: 70
  start-page: 229
  year: 2014
  end-page: 236
  ident: bb0150
  article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific
  publication-title: Soil Biol. Biochem.
– year: 2014
  ident: bb0085
  article-title: Soil Fertility and Nutrient Management: An Introduction to Nutrient Management
– volume: 48
  start-page: 1
  year: 2012
  end-page: 10
  ident: bb0020
  article-title: Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by
  publication-title: Eur. J. Soil Biol.
– volume: vol. 5
  start-page: 1085
  year: 1996
  end-page: 1121
  ident: bb0030
  article-title: Nitrogen-total
  publication-title: Methods of Soil Analysis
– volume: 7
  start-page: 1062
  year: 2015
  end-page: 1074
  ident: bb0210
  article-title: Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest
  publication-title: GCB Bioenergy
– volume: 56
  start-page: 353
  year: 1943
  end-page: 357
  ident: bb0035
  article-title: A rapid method of determining exchangeable hydrogen and total exchangeable bases in soil
  publication-title: Soil Sci.
– volume: 27
  start-page: 1562
  year: 2016
  end-page: 1573
  ident: bb0220
  article-title: Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: the case of lesvos island
  publication-title: Land Degrad. Dev.
– volume: 9
  start-page: 266
  year: 2017
  ident: bb0100
  article-title: Effect of corn residue biochar on the hydraulic properties of sandy loam soil
  publication-title: Sustain. For.
– volume: 46
  start-page: 1367
  year: 2016
  end-page: 1401
  ident: bb0185
  article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 7
  start-page: 43
  year: 2014
  end-page: 52
  ident: bb0225
  article-title: Copper removal from aqueous solution using biochar: effect of chemical activation
  publication-title: Arab. J. Chem.
– volume: 237
  start-page: 173
  year: 2001
  end-page: 195
  ident: bb0090
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review
  publication-title: Plant Soil
– volume: vol. 5
  start-page: 383
  year: 1986
  end-page: 411
  ident: bb0070
  article-title: Particle-size analysis
  publication-title: Methods of Soil Analysis
– volume: 113
  start-page: 481
  year: 2013
  end-page: 489
  ident: bb5010
  article-title: Highly ordered macroporous woody biochar with ultra-high carbon content assupercapacitor electrodes
  publication-title: Electrochim. Acta
– year: 2011
  ident: bb0125
  article-title: Trace Elements in Soils and Plants
– volume: 23
  start-page: 2230
  year: 2016
  end-page: 2248
  ident: bb0205
  article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review
  publication-title: Environ. Sci. Pollut. Res.
– volume: 64
  start-page: 488
  year: 2013
  end-page: 499
  ident: bb0025
  article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of
  publication-title: Eur. J. Soil Sci.
– volume: 6
  start-page: 84388
  year: 2016
  end-page: 84396
  ident: bb0180
  article-title: Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues
  publication-title: RSC Adv.
– volume: 25
  start-page: 631
  year: 2015
  end-page: 638
  ident: bb0215
  article-title: Application of biochars for soil constraints: challenges and solutions
  publication-title: Pedosphere
– volume: 26
  start-page: 272
  year: 2015
  end-page: 283
  ident: bb0040
  article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture
  publication-title: Land Degrad. Dev.
– year: 2018
  ident: bb5000
  article-title: Biochar influences soil carbon pools and facilitates interactions with soil: Afield investigation
  publication-title: Land Degrad. Dev.
– year: 2015
  ident: bb0245
  publication-title: Biochar application increases soil available nitrogen and plant-to-soil carbon input
– volume: vol. 5
  start-page: 835
  year: 1994
  end-page: 864
  ident: bb0265
  article-title: Carbon mineralization
  publication-title: Methods of Soil Analyses, Part 2 Microbiological and Biochemical Properties
– volume: 144
  start-page: 175
  year: 2011
  end-page: 187
  ident: bb0105
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agric. Ecosyst. Environ.
– volume: 73
  start-page: 1173
  year: 2009
  end-page: 1181
  ident: bb0135
  article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 48
  start-page: 1012
  year: 2010
  end-page: 1024
  ident: bb5025
  article-title: Changes inelectrical and micro structural properties of microcrystalline cellulose as function of carbonization temperature
  publication-title: Carbon
– volume: 43
  start-page: 1723
  year: 2011
  end-page: 1731
  ident: bb0110
  article-title: Short-term biochar-induced increase in soil CO
  publication-title: Soil Biol. Biochem.
– year: 2003
  ident: bb0120
  article-title: Tropical Soils: Properties and Management for Sustainable Agriculture
– volume: 85
  start-page: 1700
  year: 2006
  end-page: 1707
  ident: bb5020
  article-title: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal
  publication-title: Fuel
– start-page: 1
  year: 2016
  end-page: 11
  ident: bb0060
  article-title: Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems
  publication-title: Land Degrad. Dev.
– volume: 41
  start-page: 210
  year: 2009
  end-page: 219
  ident: bb0145
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by
  publication-title: Soil Biol. Biochem.
– volume: 7
  start-page: 5875
  year: 2015
  end-page: 5895
  ident: bb0155
  article-title: Restoring soil quality to mitigate soil degradation
  publication-title: Sustain. For.
– volume: 45
  start-page: 113
  year: 2012
  end-page: 124
  ident: bb0115
  article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial
  publication-title: Soil Biol. Biochem.
– volume: 239
  start-page: 293
  year: 2015
  end-page: 303
  ident: bb0200
  article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues
  publication-title: Geoderma
– volume: 391
  start-page: 321
  year: 2017
  end-page: 329
  ident: bb0260
  article-title: Biochar enhances nut quality of
  publication-title: For. Ecol. Manag.
– volume: 85
  start-page: 1700
  year: 2006
  ident: 10.1016/j.geoderma.2018.06.017_bb5020
  article-title: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.03.008
– volume: 73
  start-page: 1173
  year: 2009
  ident: 10.1016/j.geoderma.2018.06.017_bb0135
  article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0232
– volume: 48
  start-page: 1
  year: 2012
  ident: 10.1016/j.geoderma.2018.06.017_bb0020
  article-title: Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2011.09.005
– volume: 237
  start-page: 105
  year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0045
  article-title: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.08.010
– volume: vol. 5
  start-page: 869
  year: 1996
  ident: 10.1016/j.geoderma.2018.06.017_bb0140
  article-title: Phosphorus
– volume: 237
  start-page: 173
  year: 2001
  ident: 10.1016/j.geoderma.2018.06.017_bb0090
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review
  publication-title: Plant Soil
  doi: 10.1023/A:1013351617532
– volume: vol. 5
  start-page: 835
  year: 1994
  ident: 10.1016/j.geoderma.2018.06.017_bb0265
  article-title: Carbon mineralization
– volume: vol. 5
  start-page: 383
  year: 1986
  ident: 10.1016/j.geoderma.2018.06.017_bb0070
  article-title: Particle-size analysis
– volume: 58
  start-page: 751
  issue: 5
  year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0195
  article-title: Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption
  publication-title: J. Korean Soc. Appl. Biol. Chem.
  doi: 10.1007/s13765-015-0103-1
– volume: 23
  start-page: 2230
  year: 2016
  ident: 10.1016/j.geoderma.2018.06.017_bb0205
  article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5697-7
– volume: 45
  start-page: 629
  year: 2007
  ident: 10.1016/j.geoderma.2018.06.017_bb0055
  article-title: Agronomic values of green waste biochar as a soil amendment
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR07109
– start-page: 1
  year: 2009
  ident: 10.1016/j.geoderma.2018.06.017_bb0170
  article-title: Biochar for environmental management: an introduction
– volume: 391
  start-page: 321
  year: 2017
  ident: 10.1016/j.geoderma.2018.06.017_bb0260
  article-title: Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.02.036
– volume: 7
  start-page: 1062
  year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0210
  article-title: Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12211
– volume: 144
  start-page: 175
  year: 2011
  ident: 10.1016/j.geoderma.2018.06.017_bb0105
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.08.015
– volume: 5
  start-page: 255
  year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb0255
  article-title: Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration
  publication-title: Carbon Manage.
  doi: 10.1080/17583004.2014.973684
– volume: 45
  start-page: 113
  year: 2012
  ident: 10.1016/j.geoderma.2018.06.017_bb0115
  article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.10.012
– volume: 43
  start-page: 1723
  year: 2011
  ident: 10.1016/j.geoderma.2018.06.017_bb0110
  article-title: Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.018
– volume: 6
  start-page: 849
  year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb0050
  article-title: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar
  publication-title: Solid Earth Discuss.
– year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb0085
– volume: 48
  start-page: 1012
  year: 2010
  ident: 10.1016/j.geoderma.2018.06.017_bb5025
  article-title: Changes inelectrical and micro structural properties of microcrystalline cellulose as function of carbonization temperature
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.11.020
– volume: 8
  start-page: 512
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2018.06.017_bb5030
  article-title: Biochar stability in soil: meta‐analysis of decomposition and priming effects
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12266
– volume: 239
  start-page: 293
  year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0200
  article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.11.009
– volume: 113
  start-page: 481
  year: 2013
  ident: 10.1016/j.geoderma.2018.06.017_bb5010
  article-title: Highly ordered macroporous woody biochar with ultra-high carbon content assupercapacitor electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.09.121
– year: 2016
  ident: 10.1016/j.geoderma.2018.06.017_bb0190
  article-title: Soil restoration after seven years of exclosure management in northwestern Ethiopia
  publication-title: Land Degrad. Dev.
– volume: 177
  start-page: 3
  year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb0130
  article-title: Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200282
– year: 1999
  ident: 10.1016/j.geoderma.2018.06.017_bb0075
– volume: vol. 5
  start-page: 1085
  year: 1996
  ident: 10.1016/j.geoderma.2018.06.017_bb0030
  article-title: Nitrogen-total
– volume: 7
  start-page: 326
  year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb0005
  article-title: Biochar by design
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2154
– year: 1996
  ident: 10.1016/j.geoderma.2018.06.017_bb0230
– volume: 121
  start-page: 430
  year: 2011
  ident: 10.1016/j.geoderma.2018.06.017_bb0080
  article-title: Effects and fate of biochar from rice residues in rice-based systems
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2011.01.014
– year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0095
– volume: 56
  start-page: 353
  year: 1943
  ident: 10.1016/j.geoderma.2018.06.017_bb0035
  article-title: A rapid method of determining exchangeable hydrogen and total exchangeable bases in soil
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194311000-00004
– volume: 46
  start-page: 1367
  year: 2016
  ident: 10.1016/j.geoderma.2018.06.017_bb0185
  article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2016.1239975
– volume: 60(
  start-page: 1485
  issue: 11
  year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb5015
  article-title: Humus und Klimaänderung-Ergebnisseaus 15 langjährigen Dauerfeldversuchen
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2014.892204
– volume: 63
  start-page: 251
  year: 1947
  ident: 10.1016/j.geoderma.2018.06.017_bb0240
  article-title: A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and inorganic soil constituents
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194704000-00001
– volume: 5
  start-page: 221
  year: 2013
  ident: 10.1016/j.geoderma.2018.06.017_bb0015
  article-title: Establishing release dynamics for plant nutrients from biochar
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12023
– start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2018.06.017_bb0060
  article-title: Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems
  publication-title: Land Degrad. Dev.
– volume: 25
  start-page: 631
  year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0215
  article-title: Application of biochars for soil constraints: challenges and solutions
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30044-8
– volume: 7
  start-page: 43
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb0225
  article-title: Copper removal from aqueous solution using biochar: effect of chemical activation
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2013.08.001
– volume: 138
  start-page: 67
  year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0065
  article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.052
– year: 2003
  ident: 10.1016/j.geoderma.2018.06.017_bb0120
– volume: 64
  start-page: 488
  year: 2013
  ident: 10.1016/j.geoderma.2018.06.017_bb0025
  article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12034
– volume: 7
  start-page: 5875
  year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0155
  article-title: Restoring soil quality to mitigate soil degradation
  publication-title: Sustain. For.
  doi: 10.3390/su7055875
– volume: 6
  start-page: 84388
  issue: 87
  year: 2016
  ident: 10.1016/j.geoderma.2018.06.017_bb0180
  article-title: Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues
  publication-title: RSC Adv.
  doi: 10.1039/C6RA11671J
– volume: 130
  start-page: 345
  year: 2013
  ident: 10.1016/j.geoderma.2018.06.017_bb0160
  article-title: Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.012
– volume: 26
  start-page: 272
  issue: 3
  year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0040
  article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2205
– volume: 9
  start-page: 266
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2018.06.017_bb0100
  article-title: Effect of corn residue biochar on the hydraulic properties of sandy loam soil
  publication-title: Sustain. For.
  doi: 10.3390/su9020266
– year: 2011
  ident: 10.1016/j.geoderma.2018.06.017_bb0125
– volume: 177
  start-page: 16
  year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb0010
  article-title: Effects of biochars produced from different feedstocks on soil properties and sunflower growth
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200652
– volume: 148
  start-page: 196
  year: 2013
  ident: 10.1016/j.geoderma.2018.06.017_bb0165
  article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.08.135
– volume: 624
  start-page: 1059
  year: 2018
  ident: 10.1016/j.geoderma.2018.06.017_bb5005
  article-title: Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in amining soil under dynamic redox-conditions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.190
– volume: 70
  start-page: 229
  year: 2014
  ident: 10.1016/j.geoderma.2018.06.017_bb0150
  article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.12.021
– volume: 41
  start-page: 210
  year: 2009
  ident: 10.1016/j.geoderma.2018.06.017_bb0145
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.10.016
– volume: 27
  start-page: 1562
  issue: 6
  year: 2016
  ident: 10.1016/j.geoderma.2018.06.017_bb0220
  article-title: Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: the case of lesvos island
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2285
– year: 2015
  ident: 10.1016/j.geoderma.2018.06.017_bb0245
– year: 2018
  ident: 10.1016/j.geoderma.2018.06.017_bb5000
  article-title: Biochar influences soil carbon pools and facilitates interactions with soil: Afield investigation
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2896
– volume: 80
  start-page: 724
  year: 2010
  ident: 10.1016/j.geoderma.2018.06.017_bb0250
  article-title: Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.05.026
– volume: 32
  start-page: 181
  year: 1931
  ident: 10.1016/j.geoderma.2018.06.017_bb0235
  article-title: The moisture equivalent as a measure of the field capacity of soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193109000-00003
SSID ssj0017020
Score 2.6439316
Snippet The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100
SubjectTerms agricultural land
biochar
buffering capacity
carbon
carbon dioxide
cation exchange capacity
Charcoal
clay
feedstocks
FTIR
Korean Peninsula
mineralization
Miscanthus sacchariflorus
organic matter
Raman
rice straw
sandy loam soils
sandy soils
Slow pyrolysis
Soil amendment
Soil fertility
soil texture
trees
Vietnam
Title Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils
URI https://dx.doi.org/10.1016/j.geoderma.2018.06.017
https://www.proquest.com/docview/2116909471
Volume 332
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIrykpFYQ-vEDzpWCFRAdCoSm-UkNgqUJOpjhN_OnetUgJAYGBPn7Mh3uYdz9x0h51xkFuyIi3LFecS5EFEqeBKBlpS5Eyxxvur9YSSHj_zuSTy1yFVTC4NplUH3L3W619bhTjfsZrcuCqzxZVKBOQKhREOJheacK5Tyi49VmgdTvQDNyGSET3-pEn4BHmHDMY8_xJY4nr5x2a8G6oeq9vbnZotsBseRDpbvtk1attwhG4PnaQDPsLvk_bbpOEIrR2dVMaE1nrVPETSVmjKnDmwVeHvZ64xWJU2LCouuaF3NMWcIZgcPlmZmmsLgW-HxqEOZpqcu_AGEP0_EBTCPC6aeWL_UbI-Mb67HV8MotFeIMs7YPLIpT3PZS7i1MaKoxX2em1wwA0GDveQ2YwaCpV5uBcRpsUiMNMaZS9mDIQXX-6RdVqU9IDRGkD-XcqfilGMTdZNZB2yxJlGxVLJDRLOlOgvQ49gBY6KbHLMX3bBCIys0Jtsx1SHdFV29BN_4k6LfcEx_EyMNFuJP2rOGxRq-MfxxYkpbLWYagmTZhzhYscN_zH9E1vEKc2GYOCbt-XRhT8CjmaenXmRPydrg9n44-gQviPgu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED44ztB0CNI8UCd9MEBXwabERzwaRgI7D08ukI2gJDJQ4kiG7Yz9772jqaApCmToKBFHCjzqXrz7DuCHkIVDPeKTUguRCCFlkkuRJSglVeklz3yoer-bqclPcX0v7zswbmthKK0yyv6tTA_SOr7px93sL6uKany50qiO8FCSopQ7sEvoVLILu6PpzWT2epmgBxGdkauECP4oFH5ENlHPsQBBxLdQnqF32T911F_SOqigqwPYj7YjG20_7xN0XH0IH0cPq4if4Y7g17RtOsIaz9ZNtWBLCrevCDeV2bpkHtUVGnzF05o1Ncurhuqu2LLZUNoQzo5GLCvsKsfB5ypAUsdKzUBdhRhECCnSApTKhVMvXFhqfQzzq8v5eJLEDgtJITjfJC4XeakGmXAuJSC1dChKW0pu0W9wF8IV3KK_NCidRFctlZlV1np7oQY4pPH5BLp1U7vPwFLC-fO58DrNBfVRt4XzyBlnM50qrXog2y01RUQfpyYYC9OmmT2alhWGWGEo347rHvRf6ZZb_I13KYYtx8ybk2RQSbxLe96y2OBvRncntnbNy9qgn6yG6Aprfvof83-HD5P53a25nc5uzmCPRig1hssv0N2sXtxXNHA2-bd4gH8Dpkb63w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+soil+properties+and+feedstocks+on+biochar+potential+for+carbon+mineralization+and+improvement+of+infertile+soils&rft.jtitle=Geoderma&rft.au=El-Naggar%2C+Ali&rft.au=Lee%2C+Sang+Soo&rft.au=Awad%2C+Yasser+Mahmoud&rft.au=Yang%2C+Xiao&rft.date=2018-12-15&rft.issn=0016-7061&rft.volume=332&rft.spage=100&rft.epage=108&rft_id=info:doi/10.1016%2Fj.geoderma.2018.06.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2018_06_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon