First Clinical Results of Fluorescence Lifetime-enhanced Tumor Imaging Using Receptor-targeted Fluorescent Probes

Fluorescence molecular imaging, using cancer-targeted near infrared (NIR) fluorescent probes, offers the promise of accurate tumor delineation during surgeries and the detection of cancer specific molecular expression in vivo. However, nonspecific probe accumulation in normal tissue results in poor...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 28; no. 11; pp. 2373 - 2384
Main Authors Pal, Rahul, Hom, Marisa E., van den Berg, Nynke S., Lwin, Thinzar M., Lee, Yu-Jin, Prilutskiy, Andrey, Faquin, William, Yang, Eric, Saladi, Srinivas V., Varvares, Mark A., Rosenthal, Eben L., Kumar, Anand T.N.
Format Journal Article
LanguageEnglish
Published United States 01.06.2022
Subjects
Online AccessGet full text
ISSN1078-0432
1557-3265
1557-3265
DOI10.1158/1078-0432.CCR-21-3429

Cover

Loading…
Abstract Fluorescence molecular imaging, using cancer-targeted near infrared (NIR) fluorescent probes, offers the promise of accurate tumor delineation during surgeries and the detection of cancer specific molecular expression in vivo. However, nonspecific probe accumulation in normal tissue results in poor tumor fluorescence contrast, precluding widespread clinical adoption of novel imaging agents. Here we present the first clinical evidence that fluorescence lifetime (FLT) imaging can provide tumor specificity at the cellular level in patients systemically injected with panitumumab-IRDye800CW, an EGFR-targeted NIR fluorescent probe. We performed wide-field and microscopic FLT imaging of resection specimens from patients injected with panitumumab-IRDye800CW under an FDA directed clinical trial. We show that the FLT within EGFR-overexpressing cancer cells is significantly longer than the FLT of normal tissue, providing high sensitivity (>98%) and specificity (>98%) for tumor versus normal tissue classification, despite the presence of significant nonspecific probe accumulation. We further show microscopic evidence that the mean tissue FLT is spatially correlated (r > 0.85) with tumor-specific EGFR expression in tissue and is consistent across multiple patients. These tumor cell-specific FLT changes can be detected through thick biological tissue, allowing highly specific tumor detection and noninvasive monitoring of tumor EFGR expression in vivo. Our data indicate that FLT imaging is a promising approach for enhancing tumor contrast using an antibody-targeted NIR probe with a proven safety profile in humans, suggesting a strong potential for clinical applications in image guided surgery, cancer diagnostics, and staging.
AbstractList Fluorescence molecular imaging, using cancer-targeted near infrared (NIR) fluorescent probes, offers the promise of accurate tumor delineation during surgeries and the detection of cancer specific molecular expression in vivo. However, nonspecific probe accumulation in normal tissue results in poor tumor fluorescence contrast, precluding widespread clinical adoption of novel imaging agents. Here we present the first clinical evidence that fluorescence lifetime (FLT) imaging can provide tumor specificity at the cellular level in patients systemically injected with panitumumab-IRDye800CW, an EGFR-targeted NIR fluorescent probe.PURPOSEFluorescence molecular imaging, using cancer-targeted near infrared (NIR) fluorescent probes, offers the promise of accurate tumor delineation during surgeries and the detection of cancer specific molecular expression in vivo. However, nonspecific probe accumulation in normal tissue results in poor tumor fluorescence contrast, precluding widespread clinical adoption of novel imaging agents. Here we present the first clinical evidence that fluorescence lifetime (FLT) imaging can provide tumor specificity at the cellular level in patients systemically injected with panitumumab-IRDye800CW, an EGFR-targeted NIR fluorescent probe.We performed wide-field and microscopic FLT imaging of resection specimens from patients injected with panitumumab-IRDye800CW under an FDA directed clinical trial.EXPERIMENTAL DESIGNWe performed wide-field and microscopic FLT imaging of resection specimens from patients injected with panitumumab-IRDye800CW under an FDA directed clinical trial.We show that the FLT within EGFR-overexpressing cancer cells is significantly longer than the FLT of normal tissue, providing high sensitivity (>98%) and specificity (>98%) for tumor versus normal tissue classification, despite the presence of significant nonspecific probe accumulation. We further show microscopic evidence that the mean tissue FLT is spatially correlated (r > 0.85) with tumor-specific EGFR expression in tissue and is consistent across multiple patients. These tumor cell-specific FLT changes can be detected through thick biological tissue, allowing highly specific tumor detection and noninvasive monitoring of tumor EFGR expression in vivo.RESULTSWe show that the FLT within EGFR-overexpressing cancer cells is significantly longer than the FLT of normal tissue, providing high sensitivity (>98%) and specificity (>98%) for tumor versus normal tissue classification, despite the presence of significant nonspecific probe accumulation. We further show microscopic evidence that the mean tissue FLT is spatially correlated (r > 0.85) with tumor-specific EGFR expression in tissue and is consistent across multiple patients. These tumor cell-specific FLT changes can be detected through thick biological tissue, allowing highly specific tumor detection and noninvasive monitoring of tumor EFGR expression in vivo.Our data indicate that FLT imaging is a promising approach for enhancing tumor contrast using an antibody-targeted NIR probe with a proven safety profile in humans, suggesting a strong potential for clinical applications in image guided surgery, cancer diagnostics, and staging.CONCLUSIONSOur data indicate that FLT imaging is a promising approach for enhancing tumor contrast using an antibody-targeted NIR probe with a proven safety profile in humans, suggesting a strong potential for clinical applications in image guided surgery, cancer diagnostics, and staging.
Fluorescence molecular imaging, using cancer-targeted near infrared (NIR) fluorescent probes, offers the promise of accurate tumor delineation during surgeries and the detection of cancer specific molecular expression in vivo. However, nonspecific probe accumulation in normal tissue results in poor tumor fluorescence contrast, precluding widespread clinical adoption of novel imaging agents. Here we present the first clinical evidence that fluorescence lifetime (FLT) imaging can provide tumor specificity at the cellular level in patients systemically injected with panitumumab-IRDye800CW, an EGFR-targeted NIR fluorescent probe. We performed wide-field and microscopic FLT imaging of resection specimens from patients injected with panitumumab-IRDye800CW under an FDA directed clinical trial. We show that the FLT within EGFR-overexpressing cancer cells is significantly longer than the FLT of normal tissue, providing high sensitivity (>98%) and specificity (>98%) for tumor versus normal tissue classification, despite the presence of significant nonspecific probe accumulation. We further show microscopic evidence that the mean tissue FLT is spatially correlated (r > 0.85) with tumor-specific EGFR expression in tissue and is consistent across multiple patients. These tumor cell-specific FLT changes can be detected through thick biological tissue, allowing highly specific tumor detection and noninvasive monitoring of tumor EFGR expression in vivo. Our data indicate that FLT imaging is a promising approach for enhancing tumor contrast using an antibody-targeted NIR probe with a proven safety profile in humans, suggesting a strong potential for clinical applications in image guided surgery, cancer diagnostics, and staging.
Author Lee, Yu-Jin
Prilutskiy, Andrey
Saladi, Srinivas V.
van den Berg, Nynke S.
Faquin, William
Hom, Marisa E.
Lwin, Thinzar M.
Varvares, Mark A.
Rosenthal, Eben L.
Yang, Eric
Pal, Rahul
Kumar, Anand T.N.
AuthorAffiliation 4 Department of Otolaryngology, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford CA
2 Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA
6 Intuitive Surgical, 1020 Kifer Road Sunnyvale, CA
1 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 13 th Street, Building 149, Charlestown MA 02129
5 Department of Otolaryngology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232
9 Department of Pathology, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford CA
3 Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, 55 Fruit Street, Boston MA
7 Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA
8 Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison WI
AuthorAffiliation_xml – name: 9 Department of Pathology, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford CA
– name: 4 Department of Otolaryngology, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford CA
– name: 8 Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison WI
– name: 3 Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, 55 Fruit Street, Boston MA
– name: 1 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 13 th Street, Building 149, Charlestown MA 02129
– name: 6 Intuitive Surgical, 1020 Kifer Road Sunnyvale, CA
– name: 7 Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA
– name: 2 Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA
– name: 5 Department of Otolaryngology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232
Author_xml – sequence: 1
  givenname: Rahul
  surname: Pal
  fullname: Pal, Rahul
– sequence: 2
  givenname: Marisa E.
  surname: Hom
  fullname: Hom, Marisa E.
– sequence: 3
  givenname: Nynke S.
  surname: van den Berg
  fullname: van den Berg, Nynke S.
– sequence: 4
  givenname: Thinzar M.
  surname: Lwin
  fullname: Lwin, Thinzar M.
– sequence: 5
  givenname: Yu-Jin
  surname: Lee
  fullname: Lee, Yu-Jin
– sequence: 6
  givenname: Andrey
  orcidid: 0000-0002-4520-8871
  surname: Prilutskiy
  fullname: Prilutskiy, Andrey
– sequence: 7
  givenname: William
  orcidid: 0000-0002-9043-7171
  surname: Faquin
  fullname: Faquin, William
– sequence: 8
  givenname: Eric
  surname: Yang
  fullname: Yang, Eric
– sequence: 9
  givenname: Srinivas V.
  orcidid: 0000-0001-8147-4379
  surname: Saladi
  fullname: Saladi, Srinivas V.
– sequence: 10
  givenname: Mark A.
  surname: Varvares
  fullname: Varvares, Mark A.
– sequence: 11
  givenname: Eben L.
  orcidid: 0000-0003-0294-5203
  surname: Rosenthal
  fullname: Rosenthal, Eben L.
– sequence: 12
  givenname: Anand T.N.
  orcidid: 0000-0002-8745-9599
  surname: Kumar
  fullname: Kumar, Anand T.N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35302604$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtr3DAQFiGlef6EFh97Uaqn7aVQKKbbBBZaluQsZGm8UZGtjSQH-u8rk2yT9tDLaBh9D2m-M3Q8hQkQekfJFaWy_UhJ02IiOLvqui1mFHPBVkfolErZYM5qeVz6A-YEnaX0kxAqKBFv0QmXnLCaiFP0sHYx5arzbnJG-2oLafY5VWGo1n4OEZKByUC1cQNkNwKG6V6Xga1u5zHE6mbUOzftqru01C0Y2OcQcdZxB7mgXkRy9SOGHtIFejNon-Dy-TxHd-uvt9013nz_dtN92WAjKM3YykY3rW17ZrUAQwZuqRCWiVZyW_eGNKztqQY5rGzfCjJoQ7mUA9EaWhCSn6PPT7r7uR_BLi-I2qt9dKOOv1TQTv19M7l7tQuPakXrpqmbIvDhWSCGhxlSVqMrH_FeTxDmpFhdtkn4itUF-v611x-Tw54L4NMTwMSQUoRBGZd1dmGxdl5RopZU1ZKYWhJTJVXFqFpSLWz5D_tg8H_eb4uEqNE
CitedBy_id crossref_primary_10_1016_j_isci_2024_110102
crossref_primary_10_1038_s41551_023_01105_2
crossref_primary_10_3390_bios14100501
crossref_primary_10_1158_0008_5472_CAN_24_0880
crossref_primary_10_1364_BOE_459935
crossref_primary_10_1364_AO_495129
crossref_primary_10_1016_j_ccr_2022_214808
crossref_primary_10_1016_j_addr_2023_114821
crossref_primary_10_1007_s11307_022_01772_8
crossref_primary_10_1021_acs_bioconjchem_4c00266
crossref_primary_10_1148_rycan_230178
crossref_primary_10_1002_adfm_202314278
crossref_primary_10_3390_s25020450
Cites_doi 10.1038/s41551-020-0528-7
10.1007/s11307-016-1022-1
10.1002/lio2.84
10.1002/jso.25468
10.1016/S2468-1253(17)30395-3
10.1158/1078-0432.CCR-15-2640
10.1002/tbio.201900017
10.1016/j.jss.2019.01.065
10.1002/cjp2.40
10.1001/archoto.2009.216
10.1117/1.3258838
10.1007/s11307-015-0851-7
10.1007/978-1-4757-3061-6
10.1117/1.3086607
10.1021/jp503804y
10.7150/thno.60582
10.1117/1.3469797
10.1126/science.1125949
10.1117/1.JBO.26.3.030901
10.1364/OE.15.006696
10.1158/1078-0432.CCR-14-3284
10.1200/JCO.2005.04.8306
10.1007/s11307-020-01536-2
10.1007/s10549-018-4845-4
10.1364/OE.14.012255
10.3389/fchem.2019.00825
10.1016/j.oraloncology.2018.11.012
10.7150/thno.24487
10.1117/1.JBO.24.12.120901
10.1117/1.JBO.26.5.050901
10.1155/2019/7561862
10.1117/1.JBO.21.8.080901
10.1007/s11912-003-0101-z
10.1158/1078-0432.CCR-19-1686
10.18632/oncotarget.8282
10.1117/1.1584442
10.1158/1535-7163.MCT-06-0741
10.1117/1.JBO.17.5.056001
10.1364/OL.41.005337
10.1021/cr900343z
10.1148/radiol.10100258
10.1158/0008-5472.CAN-16-3217
10.1093/annonc/mdh011
10.1117/1.2070148
10.1148/radiol.2463070962
10.4049/jimmunol.178.11.7467
10.1158/1078-0432.CCR-13-1826
10.1158/1078-0432.CCR-19-0319
10.3892/ol.2017.6221
10.1158/0008-5472.CAN-14-3001
ContentType Journal Article
Copyright 2022 American Association for Cancer Research.
Copyright_xml – notice: 2022 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/1078-0432.CCR-21-3429
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 2384
ExternalDocumentID PMC9167767
35302604
10_1158_1078_0432_CCR_21_3429
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA211084
– fundername: NCI NIH HHS
  grantid: R01 CA260857
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WOQ
YKV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c411t-d57a78d8b2da4ec0f3d144d24853d6bc0728b1ae5f9db840fac1355f0aae8e453
ISSN 1078-0432
1557-3265
IngestDate Thu Aug 21 18:38:53 EDT 2025
Fri Sep 05 10:39:48 EDT 2025
Thu Apr 03 06:57:01 EDT 2025
Tue Jul 01 01:30:44 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2022 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-d57a78d8b2da4ec0f3d144d24853d6bc0728b1ae5f9db840fac1355f0aae8e453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4520-8871
0000-0002-9043-7171
0000-0003-0294-5203
0000-0001-8147-4379
0000-0002-8745-9599
OpenAccessLink https://aacrjournals.org/clincancerres/article-pdf/28/11/2373/3149517/2373.pdf
PMID 35302604
PQID 2641003926
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9167767
proquest_miscellaneous_2641003926
pubmed_primary_35302604
crossref_citationtrail_10_1158_1078_0432_CCR_21_3429
crossref_primary_10_1158_1078_0432_CCR_21_3429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2022
References Pogue (2022060107105619400_bib27) 2021; 26
Xu (2022060107105619400_bib23) 2017; 14
Lu (2022060107105619400_bib50) 2020
Lofgren (2022060107105619400_bib24) 2007; 178
Pomerantz (2022060107105619400_bib21) 2003; 5
Cilliers (2022060107105619400_bib44) 2015; 17
Xu (2022060107105619400_bib34) 2009; 14
Moore (2022060107105619400_bib25) 2017; 19
Corlu (2022060107105619400_bib8) 2007; 15
Lakowicz (2022060107105619400_bib30) 1999
Tummers (2022060107105619400_bib14) 2016; 7
Warram (2022060107105619400_bib18) 2016; 2
Zhou (2022060107105619400_bib48) 2021; 11
Berezin (2022060107105619400_bib29) 2010; 110
Bloch (2022060107105619400_bib38) 2005; 10
Dsouza (2022060107105619400_bib4) 2016; 21
Weissleder (2022060107105619400_bib6) 2006; 312
Kalyankrishna (2022060107105619400_bib47) 2006; 24
Rosenthal (2022060107105619400_bib10) 2015; 21
Lee (2022060107105619400_bib5) 2019; 24
Hou (2022060107105619400_bib43) 2016; 41
Azari (2022060107105619400_bib1) 2021; 26
Bacskai (2022060107105619400_bib37) 2003; 8
Nothdurft (2022060107105619400_bib39) 2009; 14
Pei (2022060107105619400_bib32) 2021; 23
Shen (2022060107105619400_bib15) 2020; 4
Kumar (2022060107105619400_bib35) 2006; 14
Gao (2022060107105619400_bib3) 2018; 8
Ardeshirpour (2022060107105619400_bib51) 2014; 20
Teraphongphom (2022060107105619400_bib19) 2017; 2
Van Keulen (2022060107105619400_bib2) 2019; 88
Hoogstins (2022060107105619400_bib13) 2016; 22
Raymond (2022060107105619400_bib33) 2010; 15
Sevick-Muraca (2022060107105619400_bib7) 2008; 246
Van Keulen (2022060107105619400_bib17) 2019; 25
Rice (2022060107105619400_bib36) 2015; 75
Chowdhury (2022060107105619400_bib45) 2015; 119
Selvaggi (2022060107105619400_bib22) 2004; 15
Miao (2022060107105619400_bib46) 2019; 7
Rosenthal (2022060107105619400_bib20) 2007; 6
Poellinger (2022060107105619400_bib9) 2011; 258
Boogerd (2022060107105619400_bib11) 2018; 3
Goergen (2022060107105619400_bib40) 2012; 17
Li (2022060107105619400_bib26) 2019; 2019
Pal (2022060107105619400_bib31) 2019; 25
Weyers (2022060107105619400_bib42) 2019; 1
Tummers (2022060107105619400_bib28) 2017; 77
Marston (2022060107105619400_bib49) 2019; 239
Farwell (2022060107105619400_bib41) 2010; 136
Smith (2022060107105619400_bib16) 2018; 171
Samkoe (2022060107105619400_bib12) 2019; 119
References_xml – volume: 4
  start-page: 298
  year: 2020
  ident: 2022060107105619400_bib15
  article-title: Selective imaging of solid tumours via the calcium-dependent high-affinity binding of a cyclic octapeptide to phosphorylated Annexin A2
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-0528-7
– volume: 19
  start-page: 610
  year: 2017
  ident: 2022060107105619400_bib25
  article-title: Effects of an unlabeled loading dose on tumor-specific uptake of a fluorescently labeled antibody for optical surgical navigation
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-016-1022-1
– volume: 2
  start-page: 447
  year: 2017
  ident: 2022060107105619400_bib19
  article-title: Specimen mapping in head and neck cancer using fluorescence imaging
  publication-title: Laryngoscope Investig Otolaryngol
  doi: 10.1002/lio2.84
– volume: 119
  start-page: 1077
  year: 2019
  ident: 2022060107105619400_bib12
  article-title: Preclinical imaging of epidermal growth factor receptor with ABY-029 in soft-tissue sarcoma for fluorescence-guided surgery and tumor detection
  publication-title: J Surg Oncol
  doi: 10.1002/jso.25468
– volume: 3
  start-page: 181
  year: 2018
  ident: 2022060107105619400_bib11
  article-title: Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study
  publication-title: Lancet Gastroenter Hepatol
  doi: 10.1016/S2468-1253(17)30395-3
– volume: 22
  start-page: 2929
  year: 2016
  ident: 2022060107105619400_bib13
  article-title: A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-2640
– volume: 1
  start-page: e201900017
  year: 2019
  ident: 2022060107105619400_bib42
  article-title: Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery
  publication-title: Transl Biophotonics
  doi: 10.1002/tbio.201900017
– volume: 239
  start-page: 44
  year: 2019
  ident: 2022060107105619400_bib49
  article-title: Panitumumab-IRDye800CW for fluorescence-guided surgical resection of colorectal cancer
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2019.01.065
– volume: 2
  start-page: 104
  year: 2016
  ident: 2022060107105619400_bib18
  article-title: Fluorescence imaging to localize head and neck squamous cell carcinoma for enhanced pathological assessment
  publication-title: J pathol Clin Res
  doi: 10.1002/cjp2.40
– volume: 136
  start-page: 126
  year: 2010
  ident: 2022060107105619400_bib41
  article-title: Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: validation in the hamster buccal pouch model
  publication-title: Arch Otolaryngol Head Neck Surg
  doi: 10.1001/archoto.2009.216
– volume: 14
  start-page: 064011
  year: 2009
  ident: 2022060107105619400_bib34
  article-title: In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique
  publication-title: J Biomed Opt
  doi: 10.1117/1.3258838
– volume: 17
  start-page: 757
  year: 2015
  ident: 2022060107105619400_bib44
  article-title: Residualization rates of near-infrared dyes for the rational design of molecular imaging agents
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-015-0851-7
– volume-title: Principles of fluorescence spectroscopy
  year: 1999
  ident: 2022060107105619400_bib30
  doi: 10.1007/978-1-4757-3061-6
– volume: 14
  start-page: 7
  year: 2009
  ident: 2022060107105619400_bib39
  article-title: In vivo fluorescence lifetime tomography
  publication-title: J Biomed Opt
  doi: 10.1117/1.3086607
– volume: 119
  start-page: 2149
  year: 2015
  ident: 2022060107105619400_bib45
  article-title: Excited state proton transfer in the lysosome of live lung cells: normal and cancer cells
  publication-title: J Phys Chem B
  doi: 10.1021/jp503804y
– volume: 11
  start-page: 7130
  year: 2021
  ident: 2022060107105619400_bib48
  article-title: EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial
  publication-title: Theranostics
  doi: 10.7150/thno.60582
– volume: 15
  start-page: 046011
  year: 2010
  ident: 2022060107105619400_bib33
  article-title: Lifetime-based tomographic multiplexing
  publication-title: J Biomed Opt
  doi: 10.1117/1.3469797
– volume: 312
  start-page: 1168
  year: 2006
  ident: 2022060107105619400_bib6
  article-title: Molecular imaging in cancer
  publication-title: Science
  doi: 10.1126/science.1125949
– volume: 26
  start-page: 030901
  year: 2021
  ident: 2022060107105619400_bib27
  article-title: Review of successful pathways for regulatory approvals in open-field fluorescence-guided surgery
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.26.3.030901
– volume: 15
  start-page: 6696
  year: 2007
  ident: 2022060107105619400_bib8
  article-title: Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans
  publication-title: Opt Express
  doi: 10.1364/OE.15.006696
– volume: 21
  start-page: 3658
  year: 2015
  ident: 2022060107105619400_bib10
  article-title: Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer
  publication-title: Clinical Cancer Res
  doi: 10.1158/1078-0432.CCR-14-3284
– volume: 24
  start-page: 2666
  year: 2006
  ident: 2022060107105619400_bib47
  article-title: Epidermal growth factor receptor biology in head and neck cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.04.8306
– volume: 23
  start-page: 109
  year: 2021
  ident: 2022060107105619400_bib32
  article-title: Safety and stability of antibody-dye conjugate in optical molecular imaging
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-020-01536-2
– volume: 171
  start-page: 413
  year: 2018
  ident: 2022060107105619400_bib16
  article-title: Real-time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin-activated fluorescent imaging system
  publication-title: Breast Cancer Rese Treat
  doi: 10.1007/s10549-018-4845-4
– volume: 14
  start-page: 12255
  year: 2006
  ident: 2022060107105619400_bib35
  article-title: Time resolved fluorescence tomography of turbid media based on lifetime contrast
  publication-title: Opt Express
  doi: 10.1364/OE.14.012255
– volume: 7
  start-page: 825
  year: 2019
  ident: 2022060107105619400_bib46
  article-title: Functionalized BODIPYs as fluorescent molecular rotors for viscosity detection
  publication-title: Front Chem
  doi: 10.3389/fchem.2019.00825
– start-page: 753
  volume-title: Lancet Gastroenter Hepatol
  year: 2020
  ident: 2022060107105619400_bib50
  article-title: Tumour-specific fluorescence-guided surgery for pancreatic cancer using panitumumab-IRDye800CW: a phase 1 single-centre, open-label, single-arm, dose-escalation study
– volume: 88
  start-page: 58
  year: 2019
  ident: 2022060107105619400_bib2
  article-title: Rapid, non-invasive fluorescence margin assessment: Optical specimen mapping in oral squamous cell carcinoma
  publication-title: Oral Oncol
  doi: 10.1016/j.oraloncology.2018.11.012
– volume: 8
  start-page: 2488
  year: 2018
  ident: 2022060107105619400_bib3
  article-title: Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers
  publication-title: Theranostics
  doi: 10.7150/thno.24487
– volume: 24
  start-page: 120901
  year: 2019
  ident: 2022060107105619400_bib5
  article-title: Review of clinical trials in intraoperative molecular imaging during cancer surgery
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.24.12.120901
– volume: 26
  start-page: 050901
  year: 2021
  ident: 2022060107105619400_bib1
  article-title: Intraoperative molecular imaging clinical trials: a review of 2020 conference proceedings
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.26.5.050901
– volume: 2019
  start-page: 7561862
  year: 2019
  ident: 2022060107105619400_bib26
  article-title: Paired-agent fluorescence molecular imaging of sentinel lymph nodes using indocyanine green as a control agent for antibody-based targeted agents
  publication-title: Contrast Media Mol Imaging
  doi: 10.1155/2019/7561862
– volume: 21
  start-page: 080901
  year: 2016
  ident: 2022060107105619400_bib4
  article-title: Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.21.8.080901
– volume: 5
  start-page: 140
  year: 2003
  ident: 2022060107105619400_bib21
  article-title: The role of epidermal growth factor receptor in head and neck squamous cell carcinoma
  publication-title: Curr Oncol Rep
  doi: 10.1007/s11912-003-0101-z
– volume: 25
  start-page: 6653
  year: 2019
  ident: 2022060107105619400_bib31
  article-title: Fluorescence lifetime-based tumor contrast enhancement using an EGFR antibody–labeled near-infrared fluorophore
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-19-1686
– volume: 7
  start-page: 32144
  year: 2016
  ident: 2022060107105619400_bib14
  article-title: Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8282
– volume: 8
  start-page: 368
  year: 2003
  ident: 2022060107105619400_bib37
  article-title: Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques
  publication-title: J Biomed Opt
  doi: 10.1117/1.1584442
– volume: 6
  start-page: 1230
  year: 2007
  ident: 2022060107105619400_bib20
  article-title: Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-06-0741
– volume: 17
  start-page: 056001
  year: 2012
  ident: 2022060107105619400_bib40
  article-title: In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.17.5.056001
– volume: 41
  start-page: 5337
  year: 2016
  ident: 2022060107105619400_bib43
  article-title: Comparison of tomographic spectral and lifetime multiplexing
  publication-title: Opt Lett
  doi: 10.1364/OL.41.005337
– volume: 110
  start-page: 2641
  year: 2010
  ident: 2022060107105619400_bib29
  article-title: Fluorescence lifetime measurements and biological imaging
  publication-title: Chem Rev
  doi: 10.1021/cr900343z
– volume: 258
  start-page: 409
  year: 2011
  ident: 2022060107105619400_bib9
  article-title: Breast cancer: early- and late-fluorescence near-infrared imaging with indocyanine green—a preliminary study
  publication-title: Radiology
  doi: 10.1148/radiol.10100258
– volume: 77
  start-page: 2197
  year: 2017
  ident: 2022060107105619400_bib28
  article-title: Regulatory aspects of optical methods and exogenous targets for cancer detection
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-3217
– volume: 15
  start-page: 28
  year: 2004
  ident: 2022060107105619400_bib22
  article-title: Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdh011
– volume: 10
  start-page: 054003
  year: 2005
  ident: 2022060107105619400_bib38
  article-title: Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice
  publication-title: J Biomed Opt
  doi: 10.1117/1.2070148
– volume: 246
  start-page: 734
  year: 2008
  ident: 2022060107105619400_bib7
  article-title: Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared flurophore: Feasibility study
  publication-title: Radiology
  doi: 10.1148/radiol.2463070962
– volume: 178
  start-page: 7467
  year: 2007
  ident: 2022060107105619400_bib24
  article-title: Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.11.7467
– volume: 20
  start-page: 3531
  year: 2014
  ident: 2022060107105619400_bib51
  article-title: In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-1826
– volume: 25
  start-page: 4656
  year: 2019
  ident: 2022060107105619400_bib17
  article-title: The Sentinel margin: intraoperative ex vivo specimen mapping using relative fluorescence intensity
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-19-0319
– volume: 14
  start-page: 512
  year: 2017
  ident: 2022060107105619400_bib23
  article-title: Epidermal growth factor receptor in glioblastoma
  publication-title: Oncol Lett
  doi: 10.3892/ol.2017.6221
– volume: 75
  start-page: 1236
  year: 2015
  ident: 2022060107105619400_bib36
  article-title: In vivo tomographic imaging of deep seated cancer using fluorescence lifetime contrast
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3001
SSID ssj0014104
Score 2.4843495
Snippet Fluorescence molecular imaging, using cancer-targeted near infrared (NIR) fluorescent probes, offers the promise of accurate tumor delineation during surgeries...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2373
SubjectTerms Cell Line, Tumor
ErbB Receptors - genetics
ErbB Receptors - metabolism
Fluorescence
Fluorescent Dyes - metabolism
Humans
Neoplasms - diagnostic imaging
Neoplasms - metabolism
Optical Imaging - methods
Panitumumab
Title First Clinical Results of Fluorescence Lifetime-enhanced Tumor Imaging Using Receptor-targeted Fluorescent Probes
URI https://www.ncbi.nlm.nih.gov/pubmed/35302604
https://www.proquest.com/docview/2641003926
https://pubmed.ncbi.nlm.nih.gov/PMC9167767
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tj9JAEN7gmRi_GN_Ft6yJ35pit93C8lHJETTexSCX8K3ZbreBCO0JbYz3v_x_znS3pRxEPb8Q0pdpwzxMZ7bPPEPIWxn4ieJ-6iZsqFyuPelKBVhmmotY8DQVAXYjn533Jxf80zycdzq_Wqylsoh76upoX8n_eBW2gV-xS_YGnm2Mwgb4Dv6FT_AwfP6Tj8dLyN2cUd3cONXbcmW4GeNVmW8qpSZs2VmmGmfIuzpbmBf-s3Kdb5yPazOiyNAGIIHUl1CBu4YcDkftjBTYUBBbumGta1BfVqHNjWNlg5rl5S_VKAFnKhc77uEkX9sGoeVWOqe9ejs2UUEAdD5Ystn5z-ybdr42-z__MFIHOGX0CpWHeu3VCih0G1aVDbAeKvpyu6apbdANIdD5ZmZEHZV90UYfa8fYwAw_sc9ryDn48WdBKKplCXvB3mg0dX3mBtwusexpb197JjZMxapGCkWEZiI0E4GZyGcRmrlFbvtQnVQTQ-YNswiZs9xQXc2VbeMYmHl39G72U6KDOuc6XbeV_8zuk3u2cKHvDQofkI7OHpI7Z5aa8Yh8r8BIa1RQC0aap7QNRnoARlqBkVow0gqM9ACMLSMFNWB8TC7Gp7PRxLXzPFzFGSvcJBzIgUhE7CeSa-WlQQLlfIKiekHSj5U38EXMpA7TYQJxwkulYpAOp56UWmgeBk_ISZZn-hmhDHIqFfB4MBwmPJAsDpERIMFGyplmokt4_ZNGyord48yVVfRHh3ZJrznt0qi9_O2EN7W_IojL-LJNZjovtxEUGgwb3_1-lzw1_mtMBjiqq-_xLhnsebY5ADXf9_dky0Wl_Q7VHOpvPb_pjb4gd3d_x5fkpNiU-hWk00X8ugLvb_-KxwQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+Clinical+Results+of+Fluorescence+Lifetime-enhanced+Tumor+Imaging+Using+Receptor-targeted+Fluorescent+Probes&rft.jtitle=Clinical+cancer+research&rft.au=Pal%2C+Rahul&rft.au=Hom%2C+Marisa+E.&rft.au=van+den+Berg%2C+Nynke+S.&rft.au=Lwin%2C+Thinzar+M.&rft.date=2022-06-01&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=28&rft.issue=11&rft.spage=2373&rft.epage=2384&rft_id=info:doi/10.1158%2F1078-0432.CCR-21-3429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_21_3429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon