How Does the Accuracy of Intracranial Volume Measurements Affect Normalized Brain Volumes? Sample Size Estimates Based on 966 Subjects from the HUNT MRI Cohort

The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or de...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of neuroradiology : AJNR Vol. 36; no. 8; pp. 1450 - 1456
Main Authors Hansen, T.I., Brezova, V., Eikenes, L., Håberg, A., Vangberg, T.R.
Format Journal Article
LanguageEnglish
Published United States American Society of Neuroradiology 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power. We describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates. The proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size. Accurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data.
AbstractList The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power. We describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates. The proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size. Accurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data.
The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power.BACKGROUND AND PURPOSEThe intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power.We describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates.MATERIALS AND METHODSWe describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates.The proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size.RESULTSThe proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size.Accurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data.CONCLUSIONSAccurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data.
BACKGROUND AND PURPOSE:The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power.MATERIALS AND METHODS:We describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates.RESULTS:The proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size.CONCLUSIONS:Accurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data.
Author Eikenes, L.
Vangberg, T.R.
Brezova, V.
Håberg, A.
Hansen, T.I.
Author_xml – sequence: 1
  givenname: T.I.
  surname: Hansen
  fullname: Hansen, T.I.
– sequence: 2
  givenname: V.
  surname: Brezova
  fullname: Brezova, V.
– sequence: 3
  givenname: L.
  surname: Eikenes
  fullname: Eikenes, L.
– sequence: 4
  givenname: A.
  surname: Håberg
  fullname: Håberg, A.
– sequence: 5
  givenname: T.R.
  orcidid: 0000-0003-4808-5464
  surname: Vangberg
  fullname: Vangberg, T.R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25857759$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9uFCEUxompsdvWGx_AcGlMpgIzMMONZru27ib9k7it8Y4wDLhsZmAFRlNfpq8q266NGhOvOOT8zsd3wncA9px3GoAXGB2XuK7eyLULx9OKcP4ETDAvWcEp_7wHJghzWjCMmn1wEOMaIUR5TZ6BfUIbWteUT8Dd3H-H772OMK00nCo1BqluoTdw4VIug3RW9vCT78dBwwst4xj0oF2KcGqMVgle-jDI3v7QHTwJ0rodG9_BpRw2vYbL3IOnMdlBpvzOiYwZ9Q5yxuBybNdZJEIT_HBvYX5zeQ0vPi7gzK98SEfgqZF91M935yG4OTu9ns2L86sPi9n0vFAVxqlQ3FQdJpKUiJGyzFdGMG67ihJpOGGS8K41HaYI09Y0HeMlb8uaNy3hpDWqPARvH3Q3YzvoTunt9r3YhOw63Aovrfiz4-xKfPHfRM1ZxXiTBV7tBIL_OuqYxGCj0n0vnfZjFLhBDeM1q8j_0RpVJSWI0oy-_N3Wo59fH5iB1w-ACj7GoM0jgpHYpkNs0yHu05Fh9BesbJLJ-u1Ktv_XyE-gIL7z
CitedBy_id crossref_primary_10_1016_j_nicl_2016_05_017
crossref_primary_10_1038_s41598_019_45859_9
crossref_primary_10_1016_j_neuroimage_2018_03_022
crossref_primary_10_1016_j_neuroimage_2019_116158
crossref_primary_10_1002_hbm_24463
crossref_primary_10_1016_j_neuroimage_2020_116608
crossref_primary_10_1002_vms3_70111
crossref_primary_10_1016_j_exger_2017_07_004
crossref_primary_10_1177_0271678X20980652
crossref_primary_10_3174_ajnr_A4760
crossref_primary_10_1016_j_neurobiolaging_2015_05_023
crossref_primary_10_1007_s00234_024_03354_7
crossref_primary_10_1016_j_compmedimag_2022_102039
crossref_primary_10_18632_aging_203843
crossref_primary_10_1186_s41747_018_0055_4
crossref_primary_10_1186_s10194_019_1028_6
crossref_primary_10_3389_fpsyt_2021_617997
crossref_primary_10_1093_brain_awae059
crossref_primary_10_1177_0333102418764891
crossref_primary_10_1038_s41598_023_36646_8
crossref_primary_10_3389_fnins_2016_00439
crossref_primary_10_1016_j_celrep_2023_112854
crossref_primary_10_1007_s00429_017_1493_0
crossref_primary_10_1007_s11060_022_04120_6
crossref_primary_10_1212_WNL_0000000000201417
crossref_primary_10_1016_j_neuroimage_2016_06_008
crossref_primary_10_2147_CIA_S318679
crossref_primary_10_1038_s41598_020_65040_x
crossref_primary_10_1016_j_brainres_2025_149574
crossref_primary_10_1016_j_nicl_2019_101857
crossref_primary_10_1016_j_neurobiolaging_2018_05_006
crossref_primary_10_3390_nu13041275
crossref_primary_10_1016_j_nicl_2023_103533
crossref_primary_10_1007_s00234_018_2121_2
crossref_primary_10_1089_can_2021_0099
crossref_primary_10_1093_brain_awx341
crossref_primary_10_1177_0333102418780632
crossref_primary_10_3174_ajnr_A5943
crossref_primary_10_1016_j_neurop_2021_05_005
crossref_primary_10_3389_fnbeh_2019_00053
crossref_primary_10_1016_j_ynirp_2022_100091
crossref_primary_10_1007_s00234_021_02779_8
crossref_primary_10_1002_hbm_23432
crossref_primary_10_1016_j_nicl_2019_101780
crossref_primary_10_1016_j_neuroimage_2022_119226
crossref_primary_10_1126_sciadv_ade1474
crossref_primary_10_1001_jamaneurol_2019_4501
crossref_primary_10_1016_j_psyneuen_2018_09_014
crossref_primary_10_1038_s41598_018_33530_8
crossref_primary_10_3171_2017_6_JNS162784
crossref_primary_10_1093_braincomms_fcac225
crossref_primary_10_1007_s40520_020_01683_0
crossref_primary_10_3389_fneur_2023_1221892
crossref_primary_10_1007_s12011_020_02376_5
crossref_primary_10_1080_14737175_2021_1956904
crossref_primary_10_1002_hbm_26093
crossref_primary_10_1007_s00330_019_06276_8
crossref_primary_10_1007_s13311_021_01030_9
crossref_primary_10_1155_2021_9820145
crossref_primary_10_3233_JAD_190834
crossref_primary_10_6061_clinics_2020_e2245
crossref_primary_10_1016_j_ynirp_2021_100006
crossref_primary_10_1038_s41380_020_00923_z
crossref_primary_10_1038_s41598_024_65944_y
crossref_primary_10_3389_fnagi_2022_859383
crossref_primary_10_1016_j_mri_2022_01_004
crossref_primary_10_1093_neuonc_noy043
crossref_primary_10_1002_ana_25214
crossref_primary_10_3233_JAD_230124
Cites_doi 10.1111/j.1365-2990.1977.tb00595.x
10.1016/j.neuroimage.2013.06.068
10.1037/0033-2909.86.2.420
10.1016/j.pscychresns.2003.10.003
10.1016/j.neuroimage.2004.03.037
10.1016/S0165-1781(05)80006-X
10.1148/radiology.172.2.2748838
10.1016/j.neuroimage.2004.07.016
10.1016/j.pscychresns.2011.01.007
10.1016/j.neuroimage.2010.10.023
10.1016/j.neuroimage.2010.06.025
10.1037/0033-2909.112.1.155
10.1016/j.neuroimage.2009.10.056
10.2307/1932409
10.1111/j.1552-6569.2008.00246.x
10.1016/j.neuroimage.2010.01.064
10.1086/427117
10.1016/j.neuroimage.2006.01.015
10.1016/j.neuroimage.2004.06.018
10.1016/j.neuroimage.2005.02.018
10.1016/S0896-6273(02)00569-X
ContentType Journal Article
Copyright 2015 by American Journal of Neuroradiology.
2015 by American Journal of Neuroradiology 2015 American Journal of Neuroradiology
Copyright_xml – notice: 2015 by American Journal of Neuroradiology.
– notice: 2015 by American Journal of Neuroradiology 2015 American Journal of Neuroradiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.3174/ajnr.A4299
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1936-959X
EndPage 1456
ExternalDocumentID PMC7964698
25857759
10_3174_ajnr_A4299
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.GJ
23M
2WC
53G
5GY
5RE
5VS
6J9
AAEJM
AAYXX
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFHIN
AFRAH
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
E3Z
EBS
EJD
EMOBN
F5P
F9R
GX1
H13
INIJC
KQ8
MV1
N9A
OK1
P2P
P6G
R0Z
RHI
RPM
TNE
TR2
UDS
W8F
WOQ
WOW
X7M
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c411t-c9f4d12a2306233c9f6211bd452af926a29dbfd15015bf8d6939b3798b292bfc3
ISSN 0195-6108
1936-959X
IngestDate Thu Aug 21 18:33:58 EDT 2025
Fri Jul 11 09:46:38 EDT 2025
Fri Jul 11 04:27:38 EDT 2025
Mon Jul 21 05:57:46 EDT 2025
Tue Jul 01 01:44:52 EDT 2025
Thu Apr 24 22:49:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2015 by American Journal of Neuroradiology.
Indicates open access to non-subscribers at www.ajnr.org
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-c9f4d12a2306233c9f6211bd452af926a29dbfd15015bf8d6939b3798b292bfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
T.I.H. and V.B. contributed equally (shared first authorship).
ORCID 0000-0003-4808-5464
OpenAccessLink http://www.ajnr.org/content/ajnr/36/8/1450.full.pdf
PMID 25857759
PQID 1704352055
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7964698
proquest_miscellaneous_1808697642
proquest_miscellaneous_1704352055
pubmed_primary_25857759
crossref_primary_10_3174_ajnr_A4299
crossref_citationtrail_10_3174_ajnr_A4299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-00
2015-Aug
20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of neuroradiology : AJNR
PublicationTitleAlternate AJNR Am J Neuroradiol
PublicationYear 2015
Publisher American Society of Neuroradiology
Publisher_xml – name: American Society of Neuroradiology
References 2018022716550993000_36.8.1450.1
2018022716550993000_36.8.1450.18
2018022716550993000_36.8.1450.17
2018022716550993000_36.8.1450.19
2018022716550993000_36.8.1450.3
2018022716550993000_36.8.1450.14
2018022716550993000_36.8.1450.2
Whitwell (2018022716550993000_36.8.1450.11) 2001; 22
2018022716550993000_36.8.1450.13
2018022716550993000_36.8.1450.5
2018022716550993000_36.8.1450.16
2018022716550993000_36.8.1450.4
2018022716550993000_36.8.1450.15
2018022716550993000_36.8.1450.7
2018022716550993000_36.8.1450.10
2018022716550993000_36.8.1450.21
2018022716550993000_36.8.1450.6
2018022716550993000_36.8.1450.20
2018022716550993000_36.8.1450.9
2018022716550993000_36.8.1450.12
2018022716550993000_36.8.1450.8
2018022716550993000_36.8.1450.22
References_xml – ident: 2018022716550993000_36.8.1450.2
  doi: 10.1111/j.1365-2990.1977.tb00595.x
– ident: 2018022716550993000_36.8.1450.5
  doi: 10.1016/j.neuroimage.2013.06.068
– ident: 2018022716550993000_36.8.1450.15
  doi: 10.1037/0033-2909.86.2.420
– ident: 2018022716550993000_36.8.1450.21
  doi: 10.1016/j.pscychresns.2003.10.003
– ident: 2018022716550993000_36.8.1450.9
  doi: 10.1016/j.neuroimage.2004.03.037
– ident: 2018022716550993000_36.8.1450.19
  doi: 10.1016/S0165-1781(05)80006-X
– ident: 2018022716550993000_36.8.1450.6
  doi: 10.1148/radiology.172.2.2748838
– ident: 2018022716550993000_36.8.1450.17
  doi: 10.1016/j.neuroimage.2004.07.016
– ident: 2018022716550993000_36.8.1450.8
  doi: 10.1016/j.pscychresns.2011.01.007
– ident: 2018022716550993000_36.8.1450.13
  doi: 10.1016/j.neuroimage.2010.10.023
– ident: 2018022716550993000_36.8.1450.1
  doi: 10.1016/j.neuroimage.2010.06.025
– ident: 2018022716550993000_36.8.1450.20
  doi: 10.1037/0033-2909.112.1.155
– ident: 2018022716550993000_36.8.1450.7
  doi: 10.1016/j.neuroimage.2009.10.056
– ident: 2018022716550993000_36.8.1450.14
  doi: 10.2307/1932409
– ident: 2018022716550993000_36.8.1450.22
  doi: 10.1111/j.1552-6569.2008.00246.x
– ident: 2018022716550993000_36.8.1450.4
  doi: 10.1016/j.neuroimage.2010.01.064
– ident: 2018022716550993000_36.8.1450.18
  doi: 10.1086/427117
– ident: 2018022716550993000_36.8.1450.10
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: 2018022716550993000_36.8.1450.3
  doi: 10.1016/j.neuroimage.2004.06.018
– volume: 22
  start-page: 1483
  year: 2001
  ident: 2018022716550993000_36.8.1450.11
  article-title: Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging
  publication-title: AJNR Am J Neuroradiol
– ident: 2018022716550993000_36.8.1450.12
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: 2018022716550993000_36.8.1450.16
  doi: 10.1016/S0896-6273(02)00569-X
SSID ssj0005972
Score 2.4291775
Snippet The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume...
BACKGROUND AND PURPOSE:The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1450
SubjectTerms Adult Brain
Aged
Brain - anatomy & histology
Female
Humans
Magnetic Resonance Imaging - methods
Male
Middle Aged
Organ Size
Reference Values
Sample Size
Title How Does the Accuracy of Intracranial Volume Measurements Affect Normalized Brain Volumes? Sample Size Estimates Based on 966 Subjects from the HUNT MRI Cohort
URI https://www.ncbi.nlm.nih.gov/pubmed/25857759
https://www.proquest.com/docview/1704352055
https://www.proquest.com/docview/1808697642
https://pubmed.ncbi.nlm.nih.gov/PMC7964698
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIiFeEDfh0iLgAUVu47XXxxNKIFUoSiRKgvpm7fpQUxq7ysFD_gw_gD_JzO76KgUBL5FjT-xE82VmZ3bmG0JegUfxOEsCK0hFaLmJzKxAQrAiHTCG6HCE6q-YTL3x3D064Sedzo9G1dJ2I_fj3ZV9Jf-jVTgHesUu2X_QbHVTOAHHoF94BQ3D61_pGOfBvS-QpAH7Q-J4u8Lh7bo5BA7BDWE-_IsyQL1JnQ1c40YOkhZPccV6vtjBqnOIsyKM7Pq1c9j7LJaq0BCu9kZgCJa4Ku0NwesluMMAAQxanTNVDVI1qYzn01lvcvwB7Mxp0c77V3tDDbIKxaa5EolhglJZyqPpcW0Wc5MgmtXZ3eEq3RXfRKtAd7T4mpqZA3UyXdUA8LJ-bdDMb9i8qq4D96Rtcuh4VsjVxN3KaGvWFAPOoGGBbVcT2V52DbBOctHvneWr_QE64aYQ_LyLpQIJg_DJ9w1JeZuIu7x0jVxnEJPguIyPn2pqeojMmOa_xUcd1A9Cvmnz0fbi55eI5nJhbmOlM7tNbpkQhQ403u6QTprfJTcmpgjjHvkOsKMIOwoapyXsaJHRJuyohhJtwo5q2NEadlTBzsiu31INOoqgoxXoqAIdLXIKoKMl6CiCTn0FBB0F0FENuvtkfjiavRtbZs6HFbu2vbHiMHMTmwmMhpnjwFuP2bZMXM5EFjJPsBBsSAKhi81lFiRe6ITS8cNAspDJLHYekL28yNNHhDpSwm0CzgWL3b6IpSt8X2QeBOqZIxPeJW9KBUSxIcHHWSznEQTDqLcI9RYpvXXJy0r2QlO_XCn1otRjBJYZt9tEnhbbdWT7fYhFWJ_zP8gE_cCDiMBlXfJQ6756VgmaLvFbqKgEkBm-fSVfnCqGeOwv98Lg8W_v-YTcrP9rT8neZrVNn8HqeiOfK1T_BGn303Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Does+the+Accuracy+of+Intracranial+Volume+Measurements+Affect+Normalized+Brain+Volumes%3F+Sample+Size+Estimates+Based+on+966+Subjects+from+the+HUNT+MRI+Cohort&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Hansen%2C+T+I&rft.au=Brezova%2C+V&rft.au=Eikenes%2C+L&rft.au=H%C3%A5berg%2C+A&rft.date=2015-08-01&rft.eissn=1936-959X&rft.volume=36&rft.issue=8&rft.spage=1450&rft_id=info:doi/10.3174%2Fajnr.A4299&rft_id=info%3Apmid%2F25857759&rft.externalDocID=25857759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon