How Does the Accuracy of Intracranial Volume Measurements Affect Normalized Brain Volumes? Sample Size Estimates Based on 966 Subjects from the HUNT MRI Cohort
The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or de...
Saved in:
Published in | American journal of neuroradiology : AJNR Vol. 36; no. 8; pp. 1450 - 1456 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Neuroradiology
01.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power.
We describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates.
The proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size.
Accurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data. |
---|---|
AbstractList | The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power.
We describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates.
The proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size.
Accurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data. The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power.BACKGROUND AND PURPOSEThe intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power.We describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates.MATERIALS AND METHODSWe describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates.The proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size.RESULTSThe proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size.Accurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data.CONCLUSIONSAccurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data. BACKGROUND AND PURPOSE:The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume measurements are important because errors will be propagated to the corrected regional brain volume measurements, possibly leading to biased data or decreased power. Our aims were to describe a fully automatic SPM-based method for estimating the intracranial volume and to explore the practical implications of different methods for obtaining the intracranial volume and normalization methods on statistical power.MATERIALS AND METHODS:We describe a method for calculating the intracranial volume that can use either T1-weighted or both T1- and T2-weighted MR images. The accuracy of the method was compared with manual measurements and automatic estimates by FreeSurfer and SPM-based methods. Sample size calculations on intracranial volume-corrected regional brain volumes with intracranial volume estimates from FreeSurfer, SPM, and our proposed method were used to explore the benefits of accurate intracranial volume estimates.RESULTS:The proposed method for estimating the intracranial volume compared favorably with the other methods evaluated here, with mean and absolute differences in manual measurements of -0.1% and 2.2%, respectively, and an intraclass correlation coefficient of 0.97 when using T1-weighted images. Using both T1- and T2-weighted images for estimating the intracranial volume slightly improved the accuracy. Sample size calculations showed that both the accuracy of intracranial volume estimates and the method for correcting the regional volume measurements affected the sample size.CONCLUSIONS:Accurate intracranial volume estimates are most important for ratio-corrected regional brain volumes, for which our proposed method can provide increased power in intracranial volume-corrected regional brain volume data. |
Author | Eikenes, L. Vangberg, T.R. Brezova, V. Håberg, A. Hansen, T.I. |
Author_xml | – sequence: 1 givenname: T.I. surname: Hansen fullname: Hansen, T.I. – sequence: 2 givenname: V. surname: Brezova fullname: Brezova, V. – sequence: 3 givenname: L. surname: Eikenes fullname: Eikenes, L. – sequence: 4 givenname: A. surname: Håberg fullname: Håberg, A. – sequence: 5 givenname: T.R. orcidid: 0000-0003-4808-5464 surname: Vangberg fullname: Vangberg, T.R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25857759$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9uFCEUxompsdvWGx_AcGlMpgIzMMONZru27ib9k7it8Y4wDLhsZmAFRlNfpq8q266NGhOvOOT8zsd3wncA9px3GoAXGB2XuK7eyLULx9OKcP4ETDAvWcEp_7wHJghzWjCMmn1wEOMaIUR5TZ6BfUIbWteUT8Dd3H-H772OMK00nCo1BqluoTdw4VIug3RW9vCT78dBwwst4xj0oF2KcGqMVgle-jDI3v7QHTwJ0rodG9_BpRw2vYbL3IOnMdlBpvzOiYwZ9Q5yxuBybNdZJEIT_HBvYX5zeQ0vPi7gzK98SEfgqZF91M935yG4OTu9ns2L86sPi9n0vFAVxqlQ3FQdJpKUiJGyzFdGMG67ihJpOGGS8K41HaYI09Y0HeMlb8uaNy3hpDWqPARvH3Q3YzvoTunt9r3YhOw63Aovrfiz4-xKfPHfRM1ZxXiTBV7tBIL_OuqYxGCj0n0vnfZjFLhBDeM1q8j_0RpVJSWI0oy-_N3Wo59fH5iB1w-ACj7GoM0jgpHYpkNs0yHu05Fh9BesbJLJ-u1Ktv_XyE-gIL7z |
CitedBy_id | crossref_primary_10_1016_j_nicl_2016_05_017 crossref_primary_10_1038_s41598_019_45859_9 crossref_primary_10_1016_j_neuroimage_2018_03_022 crossref_primary_10_1016_j_neuroimage_2019_116158 crossref_primary_10_1002_hbm_24463 crossref_primary_10_1016_j_neuroimage_2020_116608 crossref_primary_10_1002_vms3_70111 crossref_primary_10_1016_j_exger_2017_07_004 crossref_primary_10_1177_0271678X20980652 crossref_primary_10_3174_ajnr_A4760 crossref_primary_10_1016_j_neurobiolaging_2015_05_023 crossref_primary_10_1007_s00234_024_03354_7 crossref_primary_10_1016_j_compmedimag_2022_102039 crossref_primary_10_18632_aging_203843 crossref_primary_10_1186_s41747_018_0055_4 crossref_primary_10_1186_s10194_019_1028_6 crossref_primary_10_3389_fpsyt_2021_617997 crossref_primary_10_1093_brain_awae059 crossref_primary_10_1177_0333102418764891 crossref_primary_10_1038_s41598_023_36646_8 crossref_primary_10_3389_fnins_2016_00439 crossref_primary_10_1016_j_celrep_2023_112854 crossref_primary_10_1007_s00429_017_1493_0 crossref_primary_10_1007_s11060_022_04120_6 crossref_primary_10_1212_WNL_0000000000201417 crossref_primary_10_1016_j_neuroimage_2016_06_008 crossref_primary_10_2147_CIA_S318679 crossref_primary_10_1038_s41598_020_65040_x crossref_primary_10_1016_j_brainres_2025_149574 crossref_primary_10_1016_j_nicl_2019_101857 crossref_primary_10_1016_j_neurobiolaging_2018_05_006 crossref_primary_10_3390_nu13041275 crossref_primary_10_1016_j_nicl_2023_103533 crossref_primary_10_1007_s00234_018_2121_2 crossref_primary_10_1089_can_2021_0099 crossref_primary_10_1093_brain_awx341 crossref_primary_10_1177_0333102418780632 crossref_primary_10_3174_ajnr_A5943 crossref_primary_10_1016_j_neurop_2021_05_005 crossref_primary_10_3389_fnbeh_2019_00053 crossref_primary_10_1016_j_ynirp_2022_100091 crossref_primary_10_1007_s00234_021_02779_8 crossref_primary_10_1002_hbm_23432 crossref_primary_10_1016_j_nicl_2019_101780 crossref_primary_10_1016_j_neuroimage_2022_119226 crossref_primary_10_1126_sciadv_ade1474 crossref_primary_10_1001_jamaneurol_2019_4501 crossref_primary_10_1016_j_psyneuen_2018_09_014 crossref_primary_10_1038_s41598_018_33530_8 crossref_primary_10_3171_2017_6_JNS162784 crossref_primary_10_1093_braincomms_fcac225 crossref_primary_10_1007_s40520_020_01683_0 crossref_primary_10_3389_fneur_2023_1221892 crossref_primary_10_1007_s12011_020_02376_5 crossref_primary_10_1080_14737175_2021_1956904 crossref_primary_10_1002_hbm_26093 crossref_primary_10_1007_s00330_019_06276_8 crossref_primary_10_1007_s13311_021_01030_9 crossref_primary_10_1155_2021_9820145 crossref_primary_10_3233_JAD_190834 crossref_primary_10_6061_clinics_2020_e2245 crossref_primary_10_1016_j_ynirp_2021_100006 crossref_primary_10_1038_s41380_020_00923_z crossref_primary_10_1038_s41598_024_65944_y crossref_primary_10_3389_fnagi_2022_859383 crossref_primary_10_1016_j_mri_2022_01_004 crossref_primary_10_1093_neuonc_noy043 crossref_primary_10_1002_ana_25214 crossref_primary_10_3233_JAD_230124 |
Cites_doi | 10.1111/j.1365-2990.1977.tb00595.x 10.1016/j.neuroimage.2013.06.068 10.1037/0033-2909.86.2.420 10.1016/j.pscychresns.2003.10.003 10.1016/j.neuroimage.2004.03.037 10.1016/S0165-1781(05)80006-X 10.1148/radiology.172.2.2748838 10.1016/j.neuroimage.2004.07.016 10.1016/j.pscychresns.2011.01.007 10.1016/j.neuroimage.2010.10.023 10.1016/j.neuroimage.2010.06.025 10.1037/0033-2909.112.1.155 10.1016/j.neuroimage.2009.10.056 10.2307/1932409 10.1111/j.1552-6569.2008.00246.x 10.1016/j.neuroimage.2010.01.064 10.1086/427117 10.1016/j.neuroimage.2006.01.015 10.1016/j.neuroimage.2004.06.018 10.1016/j.neuroimage.2005.02.018 10.1016/S0896-6273(02)00569-X |
ContentType | Journal Article |
Copyright | 2015 by American Journal of Neuroradiology. 2015 by American Journal of Neuroradiology 2015 American Journal of Neuroradiology |
Copyright_xml | – notice: 2015 by American Journal of Neuroradiology. – notice: 2015 by American Journal of Neuroradiology 2015 American Journal of Neuroradiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.3174/ajnr.A4299 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1936-959X |
EndPage | 1456 |
ExternalDocumentID | PMC7964698 25857759 10_3174_ajnr_A4299 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 .GJ 23M 2WC 53G 5GY 5RE 5VS 6J9 AAEJM AAYXX ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFHIN AFRAH AJJEV ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 E3Z EBS EJD EMOBN F5P F9R GX1 H13 INIJC KQ8 MV1 N9A OK1 P2P P6G R0Z RHI RPM TNE TR2 UDS W8F WOQ WOW X7M ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c411t-c9f4d12a2306233c9f6211bd452af926a29dbfd15015bf8d6939b3798b292bfc3 |
ISSN | 0195-6108 1936-959X |
IngestDate | Thu Aug 21 18:33:58 EDT 2025 Fri Jul 11 09:46:38 EDT 2025 Fri Jul 11 04:27:38 EDT 2025 Mon Jul 21 05:57:46 EDT 2025 Tue Jul 01 01:44:52 EDT 2025 Thu Apr 24 22:49:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2015 by American Journal of Neuroradiology. Indicates open access to non-subscribers at www.ajnr.org |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c411t-c9f4d12a2306233c9f6211bd452af926a29dbfd15015bf8d6939b3798b292bfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 T.I.H. and V.B. contributed equally (shared first authorship). |
ORCID | 0000-0003-4808-5464 |
OpenAccessLink | http://www.ajnr.org/content/ajnr/36/8/1450.full.pdf |
PMID | 25857759 |
PQID | 1704352055 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7964698 proquest_miscellaneous_1808697642 proquest_miscellaneous_1704352055 pubmed_primary_25857759 crossref_primary_10_3174_ajnr_A4299 crossref_citationtrail_10_3174_ajnr_A4299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-00 2015-Aug 20150801 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of neuroradiology : AJNR |
PublicationTitleAlternate | AJNR Am J Neuroradiol |
PublicationYear | 2015 |
Publisher | American Society of Neuroradiology |
Publisher_xml | – name: American Society of Neuroradiology |
References | 2018022716550993000_36.8.1450.1 2018022716550993000_36.8.1450.18 2018022716550993000_36.8.1450.17 2018022716550993000_36.8.1450.19 2018022716550993000_36.8.1450.3 2018022716550993000_36.8.1450.14 2018022716550993000_36.8.1450.2 Whitwell (2018022716550993000_36.8.1450.11) 2001; 22 2018022716550993000_36.8.1450.13 2018022716550993000_36.8.1450.5 2018022716550993000_36.8.1450.16 2018022716550993000_36.8.1450.4 2018022716550993000_36.8.1450.15 2018022716550993000_36.8.1450.7 2018022716550993000_36.8.1450.10 2018022716550993000_36.8.1450.21 2018022716550993000_36.8.1450.6 2018022716550993000_36.8.1450.20 2018022716550993000_36.8.1450.9 2018022716550993000_36.8.1450.12 2018022716550993000_36.8.1450.8 2018022716550993000_36.8.1450.22 |
References_xml | – ident: 2018022716550993000_36.8.1450.2 doi: 10.1111/j.1365-2990.1977.tb00595.x – ident: 2018022716550993000_36.8.1450.5 doi: 10.1016/j.neuroimage.2013.06.068 – ident: 2018022716550993000_36.8.1450.15 doi: 10.1037/0033-2909.86.2.420 – ident: 2018022716550993000_36.8.1450.21 doi: 10.1016/j.pscychresns.2003.10.003 – ident: 2018022716550993000_36.8.1450.9 doi: 10.1016/j.neuroimage.2004.03.037 – ident: 2018022716550993000_36.8.1450.19 doi: 10.1016/S0165-1781(05)80006-X – ident: 2018022716550993000_36.8.1450.6 doi: 10.1148/radiology.172.2.2748838 – ident: 2018022716550993000_36.8.1450.17 doi: 10.1016/j.neuroimage.2004.07.016 – ident: 2018022716550993000_36.8.1450.8 doi: 10.1016/j.pscychresns.2011.01.007 – ident: 2018022716550993000_36.8.1450.13 doi: 10.1016/j.neuroimage.2010.10.023 – ident: 2018022716550993000_36.8.1450.1 doi: 10.1016/j.neuroimage.2010.06.025 – ident: 2018022716550993000_36.8.1450.20 doi: 10.1037/0033-2909.112.1.155 – ident: 2018022716550993000_36.8.1450.7 doi: 10.1016/j.neuroimage.2009.10.056 – ident: 2018022716550993000_36.8.1450.14 doi: 10.2307/1932409 – ident: 2018022716550993000_36.8.1450.22 doi: 10.1111/j.1552-6569.2008.00246.x – ident: 2018022716550993000_36.8.1450.4 doi: 10.1016/j.neuroimage.2010.01.064 – ident: 2018022716550993000_36.8.1450.18 doi: 10.1086/427117 – ident: 2018022716550993000_36.8.1450.10 doi: 10.1016/j.neuroimage.2006.01.015 – ident: 2018022716550993000_36.8.1450.3 doi: 10.1016/j.neuroimage.2004.06.018 – volume: 22 start-page: 1483 year: 2001 ident: 2018022716550993000_36.8.1450.11 article-title: Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging publication-title: AJNR Am J Neuroradiol – ident: 2018022716550993000_36.8.1450.12 doi: 10.1016/j.neuroimage.2005.02.018 – ident: 2018022716550993000_36.8.1450.16 doi: 10.1016/S0896-6273(02)00569-X |
SSID | ssj0005972 |
Score | 2.4291775 |
Snippet | The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate intracranial volume... BACKGROUND AND PURPOSE:The intracranial volume is commonly used for correcting regional brain volume measurements for variations in head size. Accurate... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1450 |
SubjectTerms | Adult Brain Aged Brain - anatomy & histology Female Humans Magnetic Resonance Imaging - methods Male Middle Aged Organ Size Reference Values Sample Size |
Title | How Does the Accuracy of Intracranial Volume Measurements Affect Normalized Brain Volumes? Sample Size Estimates Based on 966 Subjects from the HUNT MRI Cohort |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25857759 https://www.proquest.com/docview/1704352055 https://www.proquest.com/docview/1808697642 https://pubmed.ncbi.nlm.nih.gov/PMC7964698 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIiFeEDfh0iLgAUVu47XXxxNKIFUoSiRKgvpm7fpQUxq7ysFD_gw_gD_JzO76KgUBL5FjT-xE82VmZ3bmG0JegUfxOEsCK0hFaLmJzKxAQrAiHTCG6HCE6q-YTL3x3D064Sedzo9G1dJ2I_fj3ZV9Jf-jVTgHesUu2X_QbHVTOAHHoF94BQ3D61_pGOfBvS-QpAH7Q-J4u8Lh7bo5BA7BDWE-_IsyQL1JnQ1c40YOkhZPccV6vtjBqnOIsyKM7Pq1c9j7LJaq0BCu9kZgCJa4Ku0NwesluMMAAQxanTNVDVI1qYzn01lvcvwB7Mxp0c77V3tDDbIKxaa5EolhglJZyqPpcW0Wc5MgmtXZ3eEq3RXfRKtAd7T4mpqZA3UyXdUA8LJ-bdDMb9i8qq4D96Rtcuh4VsjVxN3KaGvWFAPOoGGBbVcT2V52DbBOctHvneWr_QE64aYQ_LyLpQIJg_DJ9w1JeZuIu7x0jVxnEJPguIyPn2pqeojMmOa_xUcd1A9Cvmnz0fbi55eI5nJhbmOlM7tNbpkQhQ403u6QTprfJTcmpgjjHvkOsKMIOwoapyXsaJHRJuyohhJtwo5q2NEadlTBzsiu31INOoqgoxXoqAIdLXIKoKMl6CiCTn0FBB0F0FENuvtkfjiavRtbZs6HFbu2vbHiMHMTmwmMhpnjwFuP2bZMXM5EFjJPsBBsSAKhi81lFiRe6ITS8cNAspDJLHYekL28yNNHhDpSwm0CzgWL3b6IpSt8X2QeBOqZIxPeJW9KBUSxIcHHWSznEQTDqLcI9RYpvXXJy0r2QlO_XCn1otRjBJYZt9tEnhbbdWT7fYhFWJ_zP8gE_cCDiMBlXfJQ6756VgmaLvFbqKgEkBm-fSVfnCqGeOwv98Lg8W_v-YTcrP9rT8neZrVNn8HqeiOfK1T_BGn303Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Does+the+Accuracy+of+Intracranial+Volume+Measurements+Affect+Normalized+Brain+Volumes%3F+Sample+Size+Estimates+Based+on+966+Subjects+from+the+HUNT+MRI+Cohort&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Hansen%2C+T+I&rft.au=Brezova%2C+V&rft.au=Eikenes%2C+L&rft.au=H%C3%A5berg%2C+A&rft.date=2015-08-01&rft.eissn=1936-959X&rft.volume=36&rft.issue=8&rft.spage=1450&rft_id=info:doi/10.3174%2Fajnr.A4299&rft_id=info%3Apmid%2F25857759&rft.externalDocID=25857759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon |