Redox-Active Water-Soluble Low-Weight and Polymer-Based Anolytes Containing Tetrazine Groups: Synthesis and Electrochemical Characterization
Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer material...
Saved in:
Published in | Polymers Vol. 17; no. 1; p. 60 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial. |
---|---|
AbstractList | Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial.Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial. Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial. |
Audience | Academic |
Author | Inozemtseva, Alina I. Khokhlov, Alexei R. Magdesieva, Tatiana V. Nikolenko, Anatoly D. Kozhunova, Elena Yu Sentyurin, Vyacheslav V. |
AuthorAffiliation | 3 N.N. Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia 2 Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia 1 Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; sentyurinvv@gmail.com (V.V.S.); a.i.inozemtseva@yandex.ru (A.I.I.); nikolenko2001@gmail.com (A.D.N.) |
AuthorAffiliation_xml | – name: 1 Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; sentyurinvv@gmail.com (V.V.S.); a.i.inozemtseva@yandex.ru (A.I.I.); nikolenko2001@gmail.com (A.D.N.) – name: 3 N.N. Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia – name: 2 Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia |
Author_xml | – sequence: 1 givenname: Elena Yu orcidid: 0000-0003-2062-004X surname: Kozhunova fullname: Kozhunova, Elena Yu – sequence: 2 givenname: Vyacheslav V. surname: Sentyurin fullname: Sentyurin, Vyacheslav V. – sequence: 3 givenname: Alina I. orcidid: 0000-0002-4466-4314 surname: Inozemtseva fullname: Inozemtseva, Alina I. – sequence: 4 givenname: Anatoly D. surname: Nikolenko fullname: Nikolenko, Anatoly D. – sequence: 5 givenname: Alexei R. surname: Khokhlov fullname: Khokhlov, Alexei R. – sequence: 6 givenname: Tatiana V. surname: Magdesieva fullname: Magdesieva, Tatiana V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39795463$$D View this record in MEDLINE/PubMed |
BookMark | eNpdklFvFCEQx4mpsbX20VdD4osvW2Fhl11fzHmp1eQSja3pI2HZ2VsaDk5gq9fP4IeW9WrTCg8wzI__zMA8RwfOO0DoJSWnjLXk7dbb3YYKQgmpyRN0VBLBCs5qcvBgf4hOYrwmefCqrql4hg5ZK9qK1-wI_f4Gvf9VLHQyN4CvVIJQXHg7dRbwyv8srsCsx4SV6_HXOVh2f1ARerxw2UwQ8dK7pIwzbo0vIQV1axzg8-CnbXyHL3YujRBN_KtwZkGn4PUIG6OVxctRBaVzSHOrkvHuBXo6KBvh5G49Rt8_nl0uPxWrL-efl4tVoTmlqehUpYeO9EAa4IKIQdBuULwRRLFSa6hKXQ-0Aug5hZKwMhst042qO6hI07Nj9H6vu526DfQaXM7bym0wGxV20isjH3ucGeXa30hKRVnWZZMV3twpBP9jgpjkxkQN1ioHfoqS0YpzwkXLMvr6P_TaT8Hl-maK1YwLPgue7qm1siCNG3wOrPPs57fKvz6YfL5oSsZYTSuSL7x6WMN98v--NgPFHtDBxxhguEcokXP3yEfdw_4A1xO6kw |
Cites_doi | 10.1039/C4CS00528G 10.1021/acs.macromol.9b01292 10.1039/C8CS00072G 10.1149/2.1511707jes 10.1002/anie.201708960 10.1007/978-3-030-26130-6_2 10.1149/2.1001409jes 10.3390/ma12111770 10.1021/acs.chemrev.6b00008 10.1126/science.1243619 10.1021/acsenergylett.0c02205 10.1016/j.synthmet.2017.06.011 10.1021/acs.macromol.1c01942 10.1039/c3ra46893c 10.1039/D2GC00981A 10.1002/batt.202200281 10.1016/j.polymer.2022.124622 10.1007/s11708-018-0552-4 10.1021/acsami.3c09856 10.1038/s41467-019-10607-0 10.1021/jacs.6b06365 10.1134/S0965545X06100051 10.1146/annurev-chembioeng-092220-111121 10.1016/j.joule.2017.08.018 10.1021/acs.macromol.6b02569 10.1002/9783527632992 10.1016/j.coelec.2019.12.006 10.1002/pi.4675 10.1021/acs.accounts.6b00544 10.1039/D0RA03424J 10.1016/0013-4686(92)85064-R 10.1016/j.electacta.2015.12.139 10.1016/j.eurpolymj.2020.109722 10.1039/9781788019743-00001 10.3390/molecules27238549 10.1002/aenm.201601415 10.1201/9780429190520-19 10.3390/polym14245440 10.1021/acsapm.9b00864 10.1002/anie.202106230 10.1007/s00396-020-04612-9 10.1039/C9SM01390C 10.1021/acsenergylett.7b00650 10.1002/cssc.201901545 10.1016/j.progpolymsci.2021.101449 10.3390/molecules26040894 10.1039/C8RA00048D 10.1016/j.polymer.2007.12.025 10.1039/D2TA04515J 10.1002/cssc.201802290 10.1021/acs.chemrev.3c00172 10.1016/0010-4655(82)90174-6 10.1002/047084289X.rc024.pub2 10.1021/cr900357e 10.1002/aenm.201501449 10.1002/anie.201604925 10.1002/pi.5817 10.1021/acs.jpclett.0c03164 10.1002/9781119953678.rad083 10.1038/nature15746 10.1016/j.electacta.2023.143534 10.1002/cphc.201500544 10.1002/batt.202200355 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/polym17010060 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | PMC11722628 A823336150 39795463 10_3390_polym17010060 |
Genre | Journal Article |
GeographicLocations | United States Missouri Russia St Louis Missouri United States--US |
GeographicLocations_xml | – name: Missouri – name: Russia – name: United States – name: St Louis Missouri – name: United States--US |
GrantInformation_xml | – fundername: Russian Science Foundation grantid: 22-13-00115 |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS NPM PQGLB PMFND 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c411t-ba5cfb0de08e4707f71bfa4870a32cce52c6f15eed41e2032f1593c8a6be508d3 |
IEDL.DBID | BENPR |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:28:43 EDT 2025 Fri Jul 11 05:23:54 EDT 2025 Fri Jul 25 11:59:28 EDT 2025 Tue Jun 10 20:54:08 EDT 2025 Mon Jul 21 06:00:35 EDT 2025 Tue Jul 01 03:22:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | redox-active materials polymers microgels redox flow batteries tetrazines |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-ba5cfb0de08e4707f71bfa4870a32cce52c6f15eed41e2032f1593c8a6be508d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4466-4314 0000-0003-2062-004X |
OpenAccessLink | https://www.proquest.com/docview/3153634748?pq-origsite=%requestingapplication% |
PMID | 39795463 |
PQID | 3153634748 |
PQPubID | 2032345 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11722628 proquest_miscellaneous_3154404793 proquest_journals_3153634748 gale_infotracacademiconefile_A823336150 pubmed_primary_39795463 crossref_primary_10_3390_polym17010060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Polymers |
PublicationTitleAlternate | Polymers (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 PBorchers (ref_18) 2022; 223 Oyaizu (ref_8) 2023; 123 He (ref_9) 2024; 16 Kawaguchi (ref_46) 2014; 63 Yan (ref_16) 2019; 10 Provencher (ref_41) 1982; 27 Kozhunova (ref_34) 2020; 11 Winsberg (ref_12) 2017; 56 ref_15 Min (ref_24) 2019; 12 Rudyak (ref_54) 2022; 244 ref_59 Lai (ref_13) 2020; 2 Kamel (ref_66) 2013; 341 Zhou (ref_55) 2020; 10 Fritea (ref_22) 2015; 16 Zhao (ref_3) 2017; 56 Polymeropoulos (ref_31) 2017; 50 Rivero (ref_43) 2021; 54 Kozhunova (ref_35) 2024; 475 Singh (ref_67) 2022; 5 Ke (ref_56) 2018; 47 Zheng (ref_61) 2015; 44 Maciel (ref_53) 2020; 298 ref_23 Sun (ref_58) 1992; 37 Zhang (ref_64) 2016; 190 Schmidt (ref_51) 2008; 49 Montoto (ref_36) 2016; 138 Chernikova (ref_37) 2006; 48 ref_27 Kaur (ref_25) 2022; 10 Zhou (ref_44) 2014; 4 Wild (ref_4) 2017; 7 Friebe (ref_6) 2019; 12 Clavier (ref_52) 2010; 110 Wei (ref_10) 2017; 2 Nishide (ref_28) 2022; 24 Kim (ref_26) 2017; 1 Cording (ref_62) 2018; 12 Montoto (ref_19) 2017; 164 Grinberg (ref_50) 2020; 133 Goujon (ref_17) 2021; 122 Jung (ref_32) 2020; 53 Plamper (ref_30) 2017; 50 ref_47 Li (ref_33) 2019; 15 ref_45 ref_40 ref_1 Serkhacheva (ref_39) 2019; 68 Yang (ref_63) 2014; 161 Gentil (ref_11) 2020; 21 Santos (ref_42) 2021; 60 Ma (ref_29) 2023; 14 ref_49 Ren (ref_60) 2016; 116 ref_48 Chernikova (ref_38) 2018; 8 Caianiello (ref_57) 2023; 6 ref_5 Liu (ref_65) 2016; 6 ref_7 Machado (ref_21) 2021; 6 TVaid (ref_2) 2017; 231 Janoschka (ref_20) 2015; 527 |
References_xml | – volume: 44 start-page: 4091 year: 2015 ident: ref_61 article-title: Hyperbranched polymers: Advances from synthesis to applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00528G – volume: 53 start-page: 1043 year: 2020 ident: ref_32 article-title: Responsive Supramolecular Microgels with Redox-Triggered Cleavable Crosslinks publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01292 – volume: 47 start-page: 721 year: 2018 ident: ref_56 article-title: Rechargeable redox flow batteries: Flow fields, stacks and design considerations publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00072G – volume: 164 start-page: A1688 year: 2017 ident: ref_19 article-title: Redox Active Polymers for Non-Aqueous Redox Flow Batteries: Validation of the Size-Exclusion Approach publication-title: J. Electrochem. Soc. doi: 10.1149/2.1511707jes – volume: 56 start-page: 15334 year: 2017 ident: ref_3 article-title: Organic Thiocarboxylate Electrodes for a Room-Temperature Sodium-Ion Battery Delivering an Ultrahigh Capacity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708960 – volume: 223 start-page: 2100373 year: 2022 ident: ref_18 article-title: A Viologen Polymer and a Compact Ferrocene: Comparison of Solution Viscosities and Their Performance in a Redox Flow Battery with a Size Exclusion Membrane, Macromol publication-title: Chem. Phys. – ident: ref_7 doi: 10.1007/978-3-030-26130-6_2 – volume: 161 start-page: A1371 year: 2014 ident: ref_63 article-title: An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples publication-title: J. Electrochem. Soc. doi: 10.1149/2.1001409jes – ident: ref_5 doi: 10.3390/ma12111770 – volume: 116 start-page: 6743 year: 2016 ident: ref_60 article-title: Star Polymers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00008 – volume: 341 start-page: 722 year: 2013 ident: ref_66 article-title: Paths from Pesticides to Parkinson’s publication-title: Science doi: 10.1126/science.1243619 – volume: 6 start-page: 158 year: 2021 ident: ref_21 article-title: Redox Flow Battery Membranes: Improving Battery Performance by Leveraging Structure–Property Relationships publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02205 – volume: 231 start-page: 44 year: 2017 ident: ref_2 article-title: Polythianthrene ladder oligomers function as an organic battery electrode with a high oxidation potential publication-title: Synth. Met. doi: 10.1016/j.synthmet.2017.06.011 – volume: 54 start-page: 10428 year: 2021 ident: ref_43 article-title: Tetrazine Dynamic Covalent Polymer Networks publication-title: Macromolecules doi: 10.1021/acs.macromol.1c01942 – ident: ref_1 – volume: 4 start-page: 7193 year: 2014 ident: ref_44 article-title: New unsymmetrical alkyl-s-tetrazines: Original syntheses, fluorescence and electrochemical behaviour publication-title: RSC Adv. doi: 10.1039/c3ra46893c – volume: 24 start-page: 4650 year: 2022 ident: ref_28 article-title: Organic redox polymers as electrochemical energy materials publication-title: Green Chem. doi: 10.1039/D2GC00981A – volume: 5 start-page: e202200281 year: 2022 ident: ref_67 article-title: Ammonium-Functionalized Naphthalene Diimides as Two-Electron-Transfer Negolyte for Aqueous Redox Flow Batteries publication-title: Batter. Supercaps doi: 10.1002/batt.202200281 – volume: 244 start-page: 124622 year: 2022 ident: ref_54 article-title: Viscosity of macromolecules with complex architecture publication-title: Polymer doi: 10.1016/j.polymer.2022.124622 – volume: 12 start-page: 198 year: 2018 ident: ref_62 article-title: Redox flow batteries—Concepts and chemistries for cost-effective energy storage publication-title: Front. Energy doi: 10.1007/s11708-018-0552-4 – volume: 16 start-page: 48689 year: 2024 ident: ref_9 article-title: Modified Viologen- and Carbonylpyridinium-Based Electrodes for Organic Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c09856 – volume: 10 start-page: 2513 year: 2019 ident: ref_16 article-title: All-polymer particulate slurry batteries publication-title: Nat. Commun. doi: 10.1038/s41467-019-10607-0 – volume: 138 start-page: 13230 year: 2016 ident: ref_36 article-title: Redox Active Colloids as Discrete Energy Storage Carriers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06365 – volume: 48 start-page: 1046 year: 2006 ident: ref_37 article-title: Controlled radical polymerization of styrene mediated by dithiobenzoates as reversible addition-fragmentation chain-transfer agents publication-title: Polym. Sci. Ser. A doi: 10.1134/S0965545X06100051 – volume: 14 start-page: 187 year: 2023 ident: ref_29 article-title: Nonconjugated Redox-Active Polymers: Electron Transfer Mechanisms, Energy Storage, and Chemical Versatility publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-092220-111121 – ident: ref_48 – volume: 1 start-page: 739 year: 2017 ident: ref_26 article-title: Redox-Active Polymers for Energy Storage Nanoarchitectonics publication-title: Joule doi: 10.1016/j.joule.2017.08.018 – volume: 50 start-page: 1253 year: 2017 ident: ref_31 article-title: 50th Anniversary Perspective: Polymers with Complex Architectures publication-title: Macromolecules doi: 10.1021/acs.macromol.6b02569 – ident: ref_49 doi: 10.1002/9783527632992 – volume: 21 start-page: 7 year: 2020 ident: ref_11 article-title: Aqueous organic and redox-mediated redox flow batteries: A review publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2019.12.006 – volume: 63 start-page: 925 year: 2014 ident: ref_46 article-title: Thermoresponsive microhydrogels: Preparation, properties and applications publication-title: Polym. Int. doi: 10.1002/pi.4675 – volume: 50 start-page: 131 year: 2017 ident: ref_30 article-title: Functional Microgels and Microgel Systems publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00544 – volume: 10 start-page: 21839 year: 2020 ident: ref_55 article-title: Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: Effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance publication-title: JRSC Adv. doi: 10.1039/D0RA03424J – volume: 37 start-page: 1253 year: 1992 ident: ref_58 article-title: Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment publication-title: Electrochim. Acta doi: 10.1016/0013-4686(92)85064-R – ident: ref_59 – volume: 190 start-page: 737 year: 2016 ident: ref_64 article-title: An Organic Electroactive Material for Flow Batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.139 – volume: 133 start-page: 109722 year: 2020 ident: ref_50 article-title: Functionalized thermoresponsive microgels based on N-isopropylacrylamide: Energetics and mechanism of phase transitions publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.109722 – ident: ref_27 doi: 10.1039/9781788019743-00001 – ident: ref_45 doi: 10.3390/molecules27238549 – volume: 7 start-page: 1601415 year: 2017 ident: ref_4 article-title: All-Organic Battery Composed of Thianthrene- and TCAQ-Based Polymers publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601415 – ident: ref_15 doi: 10.1201/9780429190520-19 – ident: ref_40 doi: 10.3390/polym14245440 – volume: 2 start-page: 113 year: 2020 ident: ref_13 article-title: Polymeric Active Materials for Redox Flow Battery Application publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00864 – volume: 60 start-page: 18783 year: 2021 ident: ref_42 article-title: Dynamic Nucleophilic Aromatic Substitution of Tetrazines publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202106230 – volume: 298 start-page: 791 year: 2020 ident: ref_53 article-title: Chain flexibility and dynamics of alginate solutions in different solvents publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-020-04612-9 – volume: 15 start-page: 8589 year: 2019 ident: ref_33 article-title: Electroactive and degradable supramolecular microgels publication-title: Soft Matter doi: 10.1039/C9SM01390C – volume: 2 start-page: 2187 year: 2017 ident: ref_10 article-title: Materials and Systems for Organic Redox Flow Batteries: Status and Challenges publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00650 – volume: 12 start-page: 4093 year: 2019 ident: ref_6 article-title: Sustainable Energy Storage: Recent Trends and Developments toward Fully Organic Batteries publication-title: ChemSusChem doi: 10.1002/cssc.201901545 – volume: 122 start-page: 101449 year: 2021 ident: ref_17 article-title: Organic batteries based on just redox polymers publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2021.101449 – ident: ref_23 doi: 10.3390/molecules26040894 – volume: 8 start-page: 14300 year: 2018 ident: ref_38 article-title: Control over the relative reactivities of monomers in RAFT copolymerization of styrene and acrylic acid publication-title: RSC Adv. doi: 10.1039/C8RA00048D – volume: 49 start-page: 749 year: 2008 ident: ref_51 article-title: Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study publication-title: Polymer doi: 10.1016/j.polymer.2007.12.025 – volume: 10 start-page: 18745 year: 2022 ident: ref_25 article-title: Soluble and stable symmetric tetrazines as anolytes in redox flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/D2TA04515J – volume: 12 start-page: 503 year: 2019 ident: ref_24 article-title: s-Tetrazines as a New Electrode-Active Material for Secondary Batteries publication-title: ChemSusChem doi: 10.1002/cssc.201802290 – volume: 123 start-page: 11336 year: 2023 ident: ref_8 article-title: Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00172 – volume: 27 start-page: 229 year: 1982 ident: ref_41 article-title: CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(82)90174-6 – ident: ref_47 doi: 10.1002/047084289X.rc024.pub2 – volume: 110 start-page: 3299 year: 2010 ident: ref_52 article-title: s-Tetrazines as Building Blocks for New Functional Molecules and Molecular Materials publication-title: Chem. Rev. doi: 10.1021/cr900357e – volume: 6 start-page: 1501449 year: 2016 ident: ref_65 article-title: A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501449 – volume: 56 start-page: 686 year: 2017 ident: ref_12 article-title: Redox-Flow Batteries: From Metals to Organic Redox-Active Materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604925 – volume: 68 start-page: 1303 year: 2019 ident: ref_39 article-title: Emulsifier-free reversible addition–fragmentation chain transfer emulsion polymerization of alkyl acrylates mediated by symmetrical trithiocarbonates based on poly(acrylic acid) publication-title: Polym. Int. doi: 10.1002/pi.5817 – volume: 11 start-page: 10561 year: 2020 ident: ref_34 article-title: Redox-Active Aqueous Microgels for Energy Storage Applications publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03164 – ident: ref_14 doi: 10.1002/9781119953678.rad083 – volume: 527 start-page: 78 year: 2015 ident: ref_20 article-title: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials publication-title: Nature doi: 10.1038/nature15746 – volume: 475 start-page: 143534 year: 2024 ident: ref_35 article-title: Nanoarchitectonics and electrochemical properties of redox-active nanogels for redox flow battery electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.143534 – volume: 16 start-page: 3695 year: 2015 ident: ref_22 article-title: First Occurrence of Tetrazines in Aqueous Solution: Electrochemistry and Fluorescence publication-title: ChemPhysChem doi: 10.1002/cphc.201500544 – volume: 6 start-page: e202200355 year: 2023 ident: ref_57 article-title: A Hydroxylated Tetracationic Viologen based on Dimethylaminoethanol as a Negolyte for Aqueous Flow Batteries publication-title: Batter. Supercaps doi: 10.1002/batt.202200355 |
SSID | ssj0000456617 |
Score | 2.3607073 |
Snippet | Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 60 |
SubjectTerms | Acrylic acid Anodes Anolytes Aqueous solutions Batteries Chemical synthesis Chromatography Electric properties Electrochemical analysis Electrode materials Electrodes Isopropylacrylamide Low molecular weights Microgels Molecular weight Organic chemistry Organic compounds Polyacrylic acid Polymer industry Polymerization Polymers Solvents Vacuum distillation Water Water chemistry |
Title | Redox-Active Water-Soluble Low-Weight and Polymer-Based Anolytes Containing Tetrazine Groups: Synthesis and Electrochemical Characterization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39795463 https://www.proquest.com/docview/3153634748 https://www.proquest.com/docview/3154404793 https://pubmed.ncbi.nlm.nih.gov/PMC11722628 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTtwwFL0qsGg3qO-mpciVqnZlMYntJMOmGkYzoKpCiIKYXeT4oSJBMiWDWv6Bj-69iSclXXRp2UqcnPi-7JwD8HGkhZNGOK60F1zaTHKtk4yj68plmVofd6d8j9Ojc_l1oRah4NaEY5Vrm9gaalsbqpHvCVyaqZCZzL8sf3JSjaLd1SChsQFbaIJzTL62DmbHJ6d9lYUCFvTRHbmmwPx-b1lf3V0TCTkxkQyc0b8m-YFPGp6XfOCA5k9hO0SObNJB_Qweueo5PJ6uBdtewP2ps_VvPmktGLvAIPKGU9WrvHLsW_2LX7RVUKYry05oeth9gD7MskmFTQw5GVFVdYoR7MzhHIh5mrXVqWaffb-rMFhsLpv2CrNOPscEvgE27Ymfu_86X8L5fHY2PeJBbIEbGccrXmplfDmybpQ7mY0yn8Wl15jOIJqJMU4lJvWxQpcqY0ey69gYC5PrtHQY5FnxCjarunJvgHmr3BgHjTGdkzYuNZEDe6VsqpUV0kfwaf3Wi2XHqVFgLkLwFAN4IvhMmBS01vChjQ6_DOBtiLWqmOSJEIIo7SPYWcNWhEXYFH8_mQg-9N0ICu2J6MrVt-0YYkhEKxXB6w7lfk605UlqARHkA_z7AUTNPeypLn-0FN0xxoVJmuRv_z-vd_AkIT3htqSzA5urm1v3HoOcVbkLG_n8cDd8z9g6XMR_ABqSA-0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXivJMacFIPE5Wk9h5LBJCy9JlS5cKwVbtLTi2o1Zqk6XZqux_4LfwG5nJi4YDtx4jW9nZjMfzeWx_H8ALVwkrtbA8UJng0kSSK-VHHFNXLNPQZF59yvcgnBzKT8fB8Qr8bu_C0LHKdk6sJmpTaKqR7wgMzVDISMbv5j84qUbR7moroVEPi327vMIlW_l27wP696Xvj3dnowlvVAW4lp634KkKdJa6xrqxlZEbZZGXZgpxO5rta20DX4eZF2DukJ4lfXF8GAgdqzC1iGaMwPfegttSiAFFVDz-2NV0CB4hIqipPLHd3ZkXZ8tzojwn3pNe6vs3AVzLgP3TmdfS3fgurDc4lQ3rgbUBKza_B2ujVh7uPvz6ak3xkw-r-ZIdIWS94FRjS88smxZX_KiquTKVG_aFzMPm95gxDRvm-IgAlxExVq1PwWYWbSCea1bVwso37NsyR2hanpbVG3ZrsR7dsBuwUUczXd8ifQCHN-KEh7CaF7l9DCwzgR1gpwEuHqXxUkVUxFkQmFAFRsjMgVftV0_mNYNHgisfck_Sc48Dr8knCUU2_mmtmgsK-DPEkZUMY18IQQT6Dmy1bkuakC-TvwPUgeddMzqFdmBUbovLqg_xMeKc6MCj2sudTbTBStoEDsQ9_3cdiAi835KfnlSE4B6iUD_0483_2_UM1iazz9Nkunew_wTu-KRkXBWTtmB1cXFptxFeLdKn1Zhm8P2mg-gPBOE-rA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VrQS8IO6kFDASlydrk9i5LBJC2-2uWlqtVqVV-5Y6sS0qtcnSbFX2H_givo6Z3OjywFsfI1uOk7Fnjsf2OQDvXCWMzIThgbKCSx1JrpQfcQxdsUxDbb36lO803DmSX0-CkzX43d6FoWOVrU-sHLUuMsqR9wVOzVDISMZ92xyLmG1Pvsx_cFKQop3WVk6jHiJ7ZnmNy7fy8-422vq970_Gh6Md3igM8Ex63oKnKshs6mrjxkZGbmQjL7UKMTx-gp9lJvCz0HoBxhHpGdIax4eByGIVpgaRjRbY7h1Yj3BV5PZgfWs8nR10GR4CS4gPamJPIQZuf16cLy-IAJ1YUFYC4b_h4EY8XD2reSP4TR7Cgwa1smE9zB7Bmskfw71RKxb3BH4dGF385MPKe7JjBLCXnDJu6blh-8U1P64ysEzlms2oe1i8hfFTs2GOjwh3GdFk1WoV7NBgH4j1mlWZsfIT-7bMEaiWZ2XVwriW7skargM26kin6zulT-HoVszwDHp5kZsXwKwOzAArDXApKbWXKiImtkGgQxVoIa0DH9q_nsxrPo8E10FknmTFPA58JJskNM_xozPVXFfA1xBjVjKMfSEE0ek7sNmaLWkcQJn8Ha4OvO2K0Si0H6NyU1xVdYidET2kA89rK3d9ou1WUipwIF6xf1eBaMFXS_Kz7xU9uIeY1A_9eOP__XoDd3ECJfu7072XcN8nWeMqs7QJvcXllXmFWGuRvm4GNYPT255HfwCwI0Q- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox-Active+Water-Soluble+Low-Weight+and+Polymer-Based+Anolytes+Containing+Tetrazine+Groups%3A+Synthesis+and+Electrochemical+Characterization&rft.jtitle=Polymers&rft.au=Kozhunova%2C+Elena+Yu&rft.au=Sentyurin%2C+Vyacheslav+V.&rft.au=Inozemtseva%2C+Alina+I.&rft.au=Nikolenko%2C+Anatoly+D.&rft.date=2025-01-01&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=17&rft.issue=1&rft_id=info:doi/10.3390%2Fpolym17010060&rft_id=info%3Apmid%2F39795463&rft.externalDocID=PMC11722628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |