Redox-Active Water-Soluble Low-Weight and Polymer-Based Anolytes Containing Tetrazine Groups: Synthesis and Electrochemical Characterization

Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer material...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 17; no. 1; p. 60
Main Authors Kozhunova, Elena Yu, Sentyurin, Vyacheslav V., Inozemtseva, Alina I., Nikolenko, Anatoly D., Khokhlov, Alexei R., Magdesieva, Tatiana V.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial.
AbstractList Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial.Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial.
Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial.
Audience Academic
Author Inozemtseva, Alina I.
Khokhlov, Alexei R.
Magdesieva, Tatiana V.
Nikolenko, Anatoly D.
Kozhunova, Elena Yu
Sentyurin, Vyacheslav V.
AuthorAffiliation 3 N.N. Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia
2 Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
1 Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; sentyurinvv@gmail.com (V.V.S.); a.i.inozemtseva@yandex.ru (A.I.I.); nikolenko2001@gmail.com (A.D.N.)
AuthorAffiliation_xml – name: 1 Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; sentyurinvv@gmail.com (V.V.S.); a.i.inozemtseva@yandex.ru (A.I.I.); nikolenko2001@gmail.com (A.D.N.)
– name: 3 N.N. Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia
– name: 2 Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
Author_xml – sequence: 1
  givenname: Elena Yu
  orcidid: 0000-0003-2062-004X
  surname: Kozhunova
  fullname: Kozhunova, Elena Yu
– sequence: 2
  givenname: Vyacheslav V.
  surname: Sentyurin
  fullname: Sentyurin, Vyacheslav V.
– sequence: 3
  givenname: Alina I.
  orcidid: 0000-0002-4466-4314
  surname: Inozemtseva
  fullname: Inozemtseva, Alina I.
– sequence: 4
  givenname: Anatoly D.
  surname: Nikolenko
  fullname: Nikolenko, Anatoly D.
– sequence: 5
  givenname: Alexei R.
  surname: Khokhlov
  fullname: Khokhlov, Alexei R.
– sequence: 6
  givenname: Tatiana V.
  surname: Magdesieva
  fullname: Magdesieva, Tatiana V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39795463$$D View this record in MEDLINE/PubMed
BookMark eNpdklFvFCEQx4mpsbX20VdD4osvW2Fhl11fzHmp1eQSja3pI2HZ2VsaDk5gq9fP4IeW9WrTCg8wzI__zMA8RwfOO0DoJSWnjLXk7dbb3YYKQgmpyRN0VBLBCs5qcvBgf4hOYrwmefCqrql4hg5ZK9qK1-wI_f4Gvf9VLHQyN4CvVIJQXHg7dRbwyv8srsCsx4SV6_HXOVh2f1ARerxw2UwQ8dK7pIwzbo0vIQV1axzg8-CnbXyHL3YujRBN_KtwZkGn4PUIG6OVxctRBaVzSHOrkvHuBXo6KBvh5G49Rt8_nl0uPxWrL-efl4tVoTmlqehUpYeO9EAa4IKIQdBuULwRRLFSa6hKXQ-0Aug5hZKwMhst042qO6hI07Nj9H6vu526DfQaXM7bym0wGxV20isjH3ucGeXa30hKRVnWZZMV3twpBP9jgpjkxkQN1ioHfoqS0YpzwkXLMvr6P_TaT8Hl-maK1YwLPgue7qm1siCNG3wOrPPs57fKvz6YfL5oSsZYTSuSL7x6WMN98v--NgPFHtDBxxhguEcokXP3yEfdw_4A1xO6kw
Cites_doi 10.1039/C4CS00528G
10.1021/acs.macromol.9b01292
10.1039/C8CS00072G
10.1149/2.1511707jes
10.1002/anie.201708960
10.1007/978-3-030-26130-6_2
10.1149/2.1001409jes
10.3390/ma12111770
10.1021/acs.chemrev.6b00008
10.1126/science.1243619
10.1021/acsenergylett.0c02205
10.1016/j.synthmet.2017.06.011
10.1021/acs.macromol.1c01942
10.1039/c3ra46893c
10.1039/D2GC00981A
10.1002/batt.202200281
10.1016/j.polymer.2022.124622
10.1007/s11708-018-0552-4
10.1021/acsami.3c09856
10.1038/s41467-019-10607-0
10.1021/jacs.6b06365
10.1134/S0965545X06100051
10.1146/annurev-chembioeng-092220-111121
10.1016/j.joule.2017.08.018
10.1021/acs.macromol.6b02569
10.1002/9783527632992
10.1016/j.coelec.2019.12.006
10.1002/pi.4675
10.1021/acs.accounts.6b00544
10.1039/D0RA03424J
10.1016/0013-4686(92)85064-R
10.1016/j.electacta.2015.12.139
10.1016/j.eurpolymj.2020.109722
10.1039/9781788019743-00001
10.3390/molecules27238549
10.1002/aenm.201601415
10.1201/9780429190520-19
10.3390/polym14245440
10.1021/acsapm.9b00864
10.1002/anie.202106230
10.1007/s00396-020-04612-9
10.1039/C9SM01390C
10.1021/acsenergylett.7b00650
10.1002/cssc.201901545
10.1016/j.progpolymsci.2021.101449
10.3390/molecules26040894
10.1039/C8RA00048D
10.1016/j.polymer.2007.12.025
10.1039/D2TA04515J
10.1002/cssc.201802290
10.1021/acs.chemrev.3c00172
10.1016/0010-4655(82)90174-6
10.1002/047084289X.rc024.pub2
10.1021/cr900357e
10.1002/aenm.201501449
10.1002/anie.201604925
10.1002/pi.5817
10.1021/acs.jpclett.0c03164
10.1002/9781119953678.rad083
10.1038/nature15746
10.1016/j.electacta.2023.143534
10.1002/cphc.201500544
10.1002/batt.202200355
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym17010060
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC11722628
A823336150
39795463
10_3390_polym17010060
Genre Journal Article
GeographicLocations United States
Missouri
Russia
St Louis Missouri
United States--US
GeographicLocations_xml – name: Missouri
– name: Russia
– name: United States
– name: St Louis Missouri
– name: United States--US
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 22-13-00115
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
NPM
PQGLB
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c411t-ba5cfb0de08e4707f71bfa4870a32cce52c6f15eed41e2032f1593c8a6be508d3
IEDL.DBID BENPR
ISSN 2073-4360
IngestDate Thu Aug 21 18:28:43 EDT 2025
Fri Jul 11 05:23:54 EDT 2025
Fri Jul 25 11:59:28 EDT 2025
Tue Jun 10 20:54:08 EDT 2025
Mon Jul 21 06:00:35 EDT 2025
Tue Jul 01 03:22:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords redox-active materials
polymers
microgels
redox flow batteries
tetrazines
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-ba5cfb0de08e4707f71bfa4870a32cce52c6f15eed41e2032f1593c8a6be508d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4466-4314
0000-0003-2062-004X
OpenAccessLink https://www.proquest.com/docview/3153634748?pq-origsite=%requestingapplication%
PMID 39795463
PQID 3153634748
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11722628
proquest_miscellaneous_3154404793
proquest_journals_3153634748
gale_infotracacademiconefile_A823336150
pubmed_primary_39795463
crossref_primary_10_3390_polym17010060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
PBorchers (ref_18) 2022; 223
Oyaizu (ref_8) 2023; 123
He (ref_9) 2024; 16
Kawaguchi (ref_46) 2014; 63
Yan (ref_16) 2019; 10
Provencher (ref_41) 1982; 27
Kozhunova (ref_34) 2020; 11
Winsberg (ref_12) 2017; 56
ref_15
Min (ref_24) 2019; 12
Rudyak (ref_54) 2022; 244
ref_59
Lai (ref_13) 2020; 2
Kamel (ref_66) 2013; 341
Zhou (ref_55) 2020; 10
Fritea (ref_22) 2015; 16
Zhao (ref_3) 2017; 56
Polymeropoulos (ref_31) 2017; 50
Rivero (ref_43) 2021; 54
Kozhunova (ref_35) 2024; 475
Singh (ref_67) 2022; 5
Ke (ref_56) 2018; 47
Zheng (ref_61) 2015; 44
Maciel (ref_53) 2020; 298
ref_23
Sun (ref_58) 1992; 37
Zhang (ref_64) 2016; 190
Schmidt (ref_51) 2008; 49
Montoto (ref_36) 2016; 138
Chernikova (ref_37) 2006; 48
ref_27
Kaur (ref_25) 2022; 10
Zhou (ref_44) 2014; 4
Wild (ref_4) 2017; 7
Friebe (ref_6) 2019; 12
Clavier (ref_52) 2010; 110
Wei (ref_10) 2017; 2
Nishide (ref_28) 2022; 24
Kim (ref_26) 2017; 1
Cording (ref_62) 2018; 12
Montoto (ref_19) 2017; 164
Grinberg (ref_50) 2020; 133
Goujon (ref_17) 2021; 122
Jung (ref_32) 2020; 53
Plamper (ref_30) 2017; 50
ref_47
Li (ref_33) 2019; 15
ref_45
ref_40
ref_1
Serkhacheva (ref_39) 2019; 68
Yang (ref_63) 2014; 161
Gentil (ref_11) 2020; 21
Santos (ref_42) 2021; 60
Ma (ref_29) 2023; 14
ref_49
Ren (ref_60) 2016; 116
ref_48
Chernikova (ref_38) 2018; 8
Caianiello (ref_57) 2023; 6
ref_5
Liu (ref_65) 2016; 6
ref_7
Machado (ref_21) 2021; 6
TVaid (ref_2) 2017; 231
Janoschka (ref_20) 2015; 527
References_xml – volume: 44
  start-page: 4091
  year: 2015
  ident: ref_61
  article-title: Hyperbranched polymers: Advances from synthesis to applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00528G
– volume: 53
  start-page: 1043
  year: 2020
  ident: ref_32
  article-title: Responsive Supramolecular Microgels with Redox-Triggered Cleavable Crosslinks
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01292
– volume: 47
  start-page: 721
  year: 2018
  ident: ref_56
  article-title: Rechargeable redox flow batteries: Flow fields, stacks and design considerations
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00072G
– volume: 164
  start-page: A1688
  year: 2017
  ident: ref_19
  article-title: Redox Active Polymers for Non-Aqueous Redox Flow Batteries: Validation of the Size-Exclusion Approach
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1511707jes
– volume: 56
  start-page: 15334
  year: 2017
  ident: ref_3
  article-title: Organic Thiocarboxylate Electrodes for a Room-Temperature Sodium-Ion Battery Delivering an Ultrahigh Capacity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708960
– volume: 223
  start-page: 2100373
  year: 2022
  ident: ref_18
  article-title: A Viologen Polymer and a Compact Ferrocene: Comparison of Solution Viscosities and Their Performance in a Redox Flow Battery with a Size Exclusion Membrane, Macromol
  publication-title: Chem. Phys.
– ident: ref_7
  doi: 10.1007/978-3-030-26130-6_2
– volume: 161
  start-page: A1371
  year: 2014
  ident: ref_63
  article-title: An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1001409jes
– ident: ref_5
  doi: 10.3390/ma12111770
– volume: 116
  start-page: 6743
  year: 2016
  ident: ref_60
  article-title: Star Polymers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00008
– volume: 341
  start-page: 722
  year: 2013
  ident: ref_66
  article-title: Paths from Pesticides to Parkinson’s
  publication-title: Science
  doi: 10.1126/science.1243619
– volume: 6
  start-page: 158
  year: 2021
  ident: ref_21
  article-title: Redox Flow Battery Membranes: Improving Battery Performance by Leveraging Structure–Property Relationships
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02205
– volume: 231
  start-page: 44
  year: 2017
  ident: ref_2
  article-title: Polythianthrene ladder oligomers function as an organic battery electrode with a high oxidation potential
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2017.06.011
– volume: 54
  start-page: 10428
  year: 2021
  ident: ref_43
  article-title: Tetrazine Dynamic Covalent Polymer Networks
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c01942
– ident: ref_1
– volume: 4
  start-page: 7193
  year: 2014
  ident: ref_44
  article-title: New unsymmetrical alkyl-s-tetrazines: Original syntheses, fluorescence and electrochemical behaviour
  publication-title: RSC Adv.
  doi: 10.1039/c3ra46893c
– volume: 24
  start-page: 4650
  year: 2022
  ident: ref_28
  article-title: Organic redox polymers as electrochemical energy materials
  publication-title: Green Chem.
  doi: 10.1039/D2GC00981A
– volume: 5
  start-page: e202200281
  year: 2022
  ident: ref_67
  article-title: Ammonium-Functionalized Naphthalene Diimides as Two-Electron-Transfer Negolyte for Aqueous Redox Flow Batteries
  publication-title: Batter. Supercaps
  doi: 10.1002/batt.202200281
– volume: 244
  start-page: 124622
  year: 2022
  ident: ref_54
  article-title: Viscosity of macromolecules with complex architecture
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.124622
– volume: 12
  start-page: 198
  year: 2018
  ident: ref_62
  article-title: Redox flow batteries—Concepts and chemistries for cost-effective energy storage
  publication-title: Front. Energy
  doi: 10.1007/s11708-018-0552-4
– volume: 16
  start-page: 48689
  year: 2024
  ident: ref_9
  article-title: Modified Viologen- and Carbonylpyridinium-Based Electrodes for Organic Batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c09856
– volume: 10
  start-page: 2513
  year: 2019
  ident: ref_16
  article-title: All-polymer particulate slurry batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10607-0
– volume: 138
  start-page: 13230
  year: 2016
  ident: ref_36
  article-title: Redox Active Colloids as Discrete Energy Storage Carriers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06365
– volume: 48
  start-page: 1046
  year: 2006
  ident: ref_37
  article-title: Controlled radical polymerization of styrene mediated by dithiobenzoates as reversible addition-fragmentation chain-transfer agents
  publication-title: Polym. Sci. Ser. A
  doi: 10.1134/S0965545X06100051
– volume: 14
  start-page: 187
  year: 2023
  ident: ref_29
  article-title: Nonconjugated Redox-Active Polymers: Electron Transfer Mechanisms, Energy Storage, and Chemical Versatility
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-092220-111121
– ident: ref_48
– volume: 1
  start-page: 739
  year: 2017
  ident: ref_26
  article-title: Redox-Active Polymers for Energy Storage Nanoarchitectonics
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.018
– volume: 50
  start-page: 1253
  year: 2017
  ident: ref_31
  article-title: 50th Anniversary Perspective: Polymers with Complex Architectures
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02569
– ident: ref_49
  doi: 10.1002/9783527632992
– volume: 21
  start-page: 7
  year: 2020
  ident: ref_11
  article-title: Aqueous organic and redox-mediated redox flow batteries: A review
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2019.12.006
– volume: 63
  start-page: 925
  year: 2014
  ident: ref_46
  article-title: Thermoresponsive microhydrogels: Preparation, properties and applications
  publication-title: Polym. Int.
  doi: 10.1002/pi.4675
– volume: 50
  start-page: 131
  year: 2017
  ident: ref_30
  article-title: Functional Microgels and Microgel Systems
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00544
– volume: 10
  start-page: 21839
  year: 2020
  ident: ref_55
  article-title: Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: Effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance
  publication-title: JRSC Adv.
  doi: 10.1039/D0RA03424J
– volume: 37
  start-page: 1253
  year: 1992
  ident: ref_58
  article-title: Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(92)85064-R
– ident: ref_59
– volume: 190
  start-page: 737
  year: 2016
  ident: ref_64
  article-title: An Organic Electroactive Material for Flow Batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.139
– volume: 133
  start-page: 109722
  year: 2020
  ident: ref_50
  article-title: Functionalized thermoresponsive microgels based on N-isopropylacrylamide: Energetics and mechanism of phase transitions
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.109722
– ident: ref_27
  doi: 10.1039/9781788019743-00001
– ident: ref_45
  doi: 10.3390/molecules27238549
– volume: 7
  start-page: 1601415
  year: 2017
  ident: ref_4
  article-title: All-Organic Battery Composed of Thianthrene- and TCAQ-Based Polymers
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601415
– ident: ref_15
  doi: 10.1201/9780429190520-19
– ident: ref_40
  doi: 10.3390/polym14245440
– volume: 2
  start-page: 113
  year: 2020
  ident: ref_13
  article-title: Polymeric Active Materials for Redox Flow Battery Application
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00864
– volume: 60
  start-page: 18783
  year: 2021
  ident: ref_42
  article-title: Dynamic Nucleophilic Aromatic Substitution of Tetrazines
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202106230
– volume: 298
  start-page: 791
  year: 2020
  ident: ref_53
  article-title: Chain flexibility and dynamics of alginate solutions in different solvents
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-020-04612-9
– volume: 15
  start-page: 8589
  year: 2019
  ident: ref_33
  article-title: Electroactive and degradable supramolecular microgels
  publication-title: Soft Matter
  doi: 10.1039/C9SM01390C
– volume: 2
  start-page: 2187
  year: 2017
  ident: ref_10
  article-title: Materials and Systems for Organic Redox Flow Batteries: Status and Challenges
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00650
– volume: 12
  start-page: 4093
  year: 2019
  ident: ref_6
  article-title: Sustainable Energy Storage: Recent Trends and Developments toward Fully Organic Batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201901545
– volume: 122
  start-page: 101449
  year: 2021
  ident: ref_17
  article-title: Organic batteries based on just redox polymers
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2021.101449
– ident: ref_23
  doi: 10.3390/molecules26040894
– volume: 8
  start-page: 14300
  year: 2018
  ident: ref_38
  article-title: Control over the relative reactivities of monomers in RAFT copolymerization of styrene and acrylic acid
  publication-title: RSC Adv.
  doi: 10.1039/C8RA00048D
– volume: 49
  start-page: 749
  year: 2008
  ident: ref_51
  article-title: Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.12.025
– volume: 10
  start-page: 18745
  year: 2022
  ident: ref_25
  article-title: Soluble and stable symmetric tetrazines as anolytes in redox flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA04515J
– volume: 12
  start-page: 503
  year: 2019
  ident: ref_24
  article-title: s-Tetrazines as a New Electrode-Active Material for Secondary Batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802290
– volume: 123
  start-page: 11336
  year: 2023
  ident: ref_8
  article-title: Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00172
– volume: 27
  start-page: 229
  year: 1982
  ident: ref_41
  article-title: CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(82)90174-6
– ident: ref_47
  doi: 10.1002/047084289X.rc024.pub2
– volume: 110
  start-page: 3299
  year: 2010
  ident: ref_52
  article-title: s-Tetrazines as Building Blocks for New Functional Molecules and Molecular Materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr900357e
– volume: 6
  start-page: 1501449
  year: 2016
  ident: ref_65
  article-title: A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501449
– volume: 56
  start-page: 686
  year: 2017
  ident: ref_12
  article-title: Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604925
– volume: 68
  start-page: 1303
  year: 2019
  ident: ref_39
  article-title: Emulsifier-free reversible addition–fragmentation chain transfer emulsion polymerization of alkyl acrylates mediated by symmetrical trithiocarbonates based on poly(acrylic acid)
  publication-title: Polym. Int.
  doi: 10.1002/pi.5817
– volume: 11
  start-page: 10561
  year: 2020
  ident: ref_34
  article-title: Redox-Active Aqueous Microgels for Energy Storage Applications
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c03164
– ident: ref_14
  doi: 10.1002/9781119953678.rad083
– volume: 527
  start-page: 78
  year: 2015
  ident: ref_20
  article-title: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials
  publication-title: Nature
  doi: 10.1038/nature15746
– volume: 475
  start-page: 143534
  year: 2024
  ident: ref_35
  article-title: Nanoarchitectonics and electrochemical properties of redox-active nanogels for redox flow battery electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.143534
– volume: 16
  start-page: 3695
  year: 2015
  ident: ref_22
  article-title: First Occurrence of Tetrazines in Aqueous Solution: Electrochemistry and Fluorescence
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201500544
– volume: 6
  start-page: e202200355
  year: 2023
  ident: ref_57
  article-title: A Hydroxylated Tetracationic Viologen based on Dimethylaminoethanol as a Negolyte for Aqueous Flow Batteries
  publication-title: Batter. Supercaps
  doi: 10.1002/batt.202200355
SSID ssj0000456617
Score 2.3607073
Snippet Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 60
SubjectTerms Acrylic acid
Anodes
Anolytes
Aqueous solutions
Batteries
Chemical synthesis
Chromatography
Electric properties
Electrochemical analysis
Electrode materials
Electrodes
Isopropylacrylamide
Low molecular weights
Microgels
Molecular weight
Organic chemistry
Organic compounds
Polyacrylic acid
Polymer industry
Polymerization
Polymers
Solvents
Vacuum distillation
Water
Water chemistry
Title Redox-Active Water-Soluble Low-Weight and Polymer-Based Anolytes Containing Tetrazine Groups: Synthesis and Electrochemical Characterization
URI https://www.ncbi.nlm.nih.gov/pubmed/39795463
https://www.proquest.com/docview/3153634748
https://www.proquest.com/docview/3154404793
https://pubmed.ncbi.nlm.nih.gov/PMC11722628
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTtwwFL0qsGg3qO-mpciVqnZlMYntJMOmGkYzoKpCiIKYXeT4oSJBMiWDWv6Bj-69iSclXXRp2UqcnPi-7JwD8HGkhZNGOK60F1zaTHKtk4yj68plmVofd6d8j9Ojc_l1oRah4NaEY5Vrm9gaalsbqpHvCVyaqZCZzL8sf3JSjaLd1SChsQFbaIJzTL62DmbHJ6d9lYUCFvTRHbmmwPx-b1lf3V0TCTkxkQyc0b8m-YFPGp6XfOCA5k9hO0SObNJB_Qweueo5PJ6uBdtewP2ps_VvPmktGLvAIPKGU9WrvHLsW_2LX7RVUKYry05oeth9gD7MskmFTQw5GVFVdYoR7MzhHIh5mrXVqWaffb-rMFhsLpv2CrNOPscEvgE27Ymfu_86X8L5fHY2PeJBbIEbGccrXmplfDmybpQ7mY0yn8Wl15jOIJqJMU4lJvWxQpcqY0ey69gYC5PrtHQY5FnxCjarunJvgHmr3BgHjTGdkzYuNZEDe6VsqpUV0kfwaf3Wi2XHqVFgLkLwFAN4IvhMmBS01vChjQ6_DOBtiLWqmOSJEIIo7SPYWcNWhEXYFH8_mQg-9N0ICu2J6MrVt-0YYkhEKxXB6w7lfk605UlqARHkA_z7AUTNPeypLn-0FN0xxoVJmuRv_z-vd_AkIT3htqSzA5urm1v3HoOcVbkLG_n8cDd8z9g6XMR_ABqSA-0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXivJMacFIPE5Wk9h5LBJCy9JlS5cKwVbtLTi2o1Zqk6XZqux_4LfwG5nJi4YDtx4jW9nZjMfzeWx_H8ALVwkrtbA8UJng0kSSK-VHHFNXLNPQZF59yvcgnBzKT8fB8Qr8bu_C0LHKdk6sJmpTaKqR7wgMzVDISMbv5j84qUbR7moroVEPi327vMIlW_l27wP696Xvj3dnowlvVAW4lp634KkKdJa6xrqxlZEbZZGXZgpxO5rta20DX4eZF2DukJ4lfXF8GAgdqzC1iGaMwPfegttSiAFFVDz-2NV0CB4hIqipPLHd3ZkXZ8tzojwn3pNe6vs3AVzLgP3TmdfS3fgurDc4lQ3rgbUBKza_B2ujVh7uPvz6ak3xkw-r-ZIdIWS94FRjS88smxZX_KiquTKVG_aFzMPm95gxDRvm-IgAlxExVq1PwWYWbSCea1bVwso37NsyR2hanpbVG3ZrsR7dsBuwUUczXd8ifQCHN-KEh7CaF7l9DCwzgR1gpwEuHqXxUkVUxFkQmFAFRsjMgVftV0_mNYNHgisfck_Sc48Dr8knCUU2_mmtmgsK-DPEkZUMY18IQQT6Dmy1bkuakC-TvwPUgeddMzqFdmBUbovLqg_xMeKc6MCj2sudTbTBStoEDsQ9_3cdiAi835KfnlSE4B6iUD_0483_2_UM1iazz9Nkunew_wTu-KRkXBWTtmB1cXFptxFeLdKn1Zhm8P2mg-gPBOE-rA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VrQS8IO6kFDASlydrk9i5LBJC2-2uWlqtVqVV-5Y6sS0qtcnSbFX2H_givo6Z3OjywFsfI1uOk7Fnjsf2OQDvXCWMzIThgbKCSx1JrpQfcQxdsUxDbb36lO803DmSX0-CkzX43d6FoWOVrU-sHLUuMsqR9wVOzVDISMZ92xyLmG1Pvsx_cFKQop3WVk6jHiJ7ZnmNy7fy8-422vq970_Gh6Md3igM8Ex63oKnKshs6mrjxkZGbmQjL7UKMTx-gp9lJvCz0HoBxhHpGdIax4eByGIVpgaRjRbY7h1Yj3BV5PZgfWs8nR10GR4CS4gPamJPIQZuf16cLy-IAJ1YUFYC4b_h4EY8XD2reSP4TR7Cgwa1smE9zB7Bmskfw71RKxb3BH4dGF385MPKe7JjBLCXnDJu6blh-8U1P64ysEzlms2oe1i8hfFTs2GOjwh3GdFk1WoV7NBgH4j1mlWZsfIT-7bMEaiWZ2XVwriW7skargM26kin6zulT-HoVszwDHp5kZsXwKwOzAArDXApKbWXKiImtkGgQxVoIa0DH9q_nsxrPo8E10FknmTFPA58JJskNM_xozPVXFfA1xBjVjKMfSEE0ek7sNmaLWkcQJn8Ha4OvO2K0Si0H6NyU1xVdYidET2kA89rK3d9ou1WUipwIF6xf1eBaMFXS_Kz7xU9uIeY1A_9eOP__XoDd3ECJfu7072XcN8nWeMqs7QJvcXllXmFWGuRvm4GNYPT255HfwCwI0Q-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox-Active+Water-Soluble+Low-Weight+and+Polymer-Based+Anolytes+Containing+Tetrazine+Groups%3A+Synthesis+and+Electrochemical+Characterization&rft.jtitle=Polymers&rft.au=Kozhunova%2C+Elena+Yu&rft.au=Sentyurin%2C+Vyacheslav+V.&rft.au=Inozemtseva%2C+Alina+I.&rft.au=Nikolenko%2C+Anatoly+D.&rft.date=2025-01-01&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=17&rft.issue=1&rft_id=info:doi/10.3390%2Fpolym17010060&rft_id=info%3Apmid%2F39795463&rft.externalDocID=PMC11722628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon