Biochar application to low fertility soils: A review of current status, and future prospects

Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low fertility soils to improve crop yield and sustainability. Biochar, a carbonaceous material intentionally produced from biomass, is widely used...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 337; pp. 536 - 554
Main Authors El-Naggar, Ali, Lee, Sang Soo, Rinklebe, Jörg, Farooq, Muhammad, Song, Hocheol, Sarmah, Ajit K., Zimmerman, Andrew R., Ahmad, Mahtab, Shaheen, Sabry M., Ok, Yong Sik
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low fertility soils to improve crop yield and sustainability. Biochar, a carbonaceous material intentionally produced from biomass, is widely used as an amendment to improve soil fertility by retaining nutrients and, potentially, enhancing nutrient bioavailability. But, biochar is not a simple carbon material with uniform properties, so appropriate biochar selection must consider soil type and target crop. In this respect, many recent studies have evaluated several modification methods to maximize the effectiveness of biochar such as optimizing the pyrolysis process, mixing with other soil amendments, composting with other additives, activating by physicochemical processes, and coating with other organic materials. However, the economic feasibility of biochar application cannot be neglected. Strategies for reducing biochar losses and its application costs, and increasing its use efficiency need to be developed. This review synthesized current understanding and introduces holistic and practical approaches for biochar application to low fertility soils, with consideration of economic aspects. •Biochar has potential to be the best management practice for low fertility soils.•Biochar coating with organic materials can result in enhanced crop nutrient supply.•Biochar may accelerate the composting process and improve the end-product quality.•The influence of biochar varies strongly according to the types of feedstock/soil.
AbstractList Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low fertility soils to improve crop yield and sustainability. Biochar, a carbonaceous material intentionally produced from biomass, is widely used as an amendment to improve soil fertility by retaining nutrients and, potentially, enhancing nutrient bioavailability. But, biochar is not a simple carbon material with uniform properties, so appropriate biochar selection must consider soil type and target crop. In this respect, many recent studies have evaluated several modification methods to maximize the effectiveness of biochar such as optimizing the pyrolysis process, mixing with other soil amendments, composting with other additives, activating by physicochemical processes, and coating with other organic materials. However, the economic feasibility of biochar application cannot be neglected. Strategies for reducing biochar losses and its application costs, and increasing its use efficiency need to be developed. This review synthesized current understanding and introduces holistic and practical approaches for biochar application to low fertility soils, with consideration of economic aspects.
Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low fertility soils to improve crop yield and sustainability. Biochar, a carbonaceous material intentionally produced from biomass, is widely used as an amendment to improve soil fertility by retaining nutrients and, potentially, enhancing nutrient bioavailability. But, biochar is not a simple carbon material with uniform properties, so appropriate biochar selection must consider soil type and target crop. In this respect, many recent studies have evaluated several modification methods to maximize the effectiveness of biochar such as optimizing the pyrolysis process, mixing with other soil amendments, composting with other additives, activating by physicochemical processes, and coating with other organic materials. However, the economic feasibility of biochar application cannot be neglected. Strategies for reducing biochar losses and its application costs, and increasing its use efficiency need to be developed. This review synthesized current understanding and introduces holistic and practical approaches for biochar application to low fertility soils, with consideration of economic aspects. •Biochar has potential to be the best management practice for low fertility soils.•Biochar coating with organic materials can result in enhanced crop nutrient supply.•Biochar may accelerate the composting process and improve the end-product quality.•The influence of biochar varies strongly according to the types of feedstock/soil.
Author Rinklebe, Jörg
Zimmerman, Andrew R.
Farooq, Muhammad
Ok, Yong Sik
Song, Hocheol
Lee, Sang Soo
Sarmah, Ajit K.
Ahmad, Mahtab
El-Naggar, Ali
Shaheen, Sabry M.
Author_xml – sequence: 1
  givenname: Ali
  surname: El-Naggar
  fullname: El-Naggar, Ali
  organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
– sequence: 2
  givenname: Sang Soo
  surname: Lee
  fullname: Lee, Sang Soo
  organization: Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
– sequence: 3
  givenname: Jörg
  surname: Rinklebe
  fullname: Rinklebe, Jörg
  organization: University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
– sequence: 4
  givenname: Muhammad
  surname: Farooq
  fullname: Farooq, Muhammad
  organization: Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
– sequence: 5
  givenname: Hocheol
  surname: Song
  fullname: Song, Hocheol
  organization: Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
– sequence: 6
  givenname: Ajit K.
  surname: Sarmah
  fullname: Sarmah, Ajit K.
  organization: Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand
– sequence: 7
  givenname: Andrew R.
  surname: Zimmerman
  fullname: Zimmerman, Andrew R.
  organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
– sequence: 8
  givenname: Mahtab
  surname: Ahmad
  fullname: Ahmad, Mahtab
  organization: Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
– sequence: 9
  givenname: Sabry M.
  surname: Shaheen
  fullname: Shaheen, Sabry M.
  organization: University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
– sequence: 10
  givenname: Yong Sik
  surname: Ok
  fullname: Ok, Yong Sik
  email: yongsikok@korea.ac.kr
  organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
BookMark eNqFkD9PwzAQxT0UibbwFZBHBhpsJ3USxECp-CdVYoENyXLtC7hy42A7VP32uBQWlk6n07337u43QoPWtYDQGSUZJZRfrrJ3cBr8WmaM0CojdUbyYoCGJE0nJeH0GI1CWKW2JIwM0dutcepDeiy7zholo3Etjg5bt8EN-GisiVscnLHhCs-why8DG-warHrvoY04RBn7cIFlq3HTx94D7rwLHagYTtBRI22A0986Rq_3dy_zx8ni-eFpPltMVEFpnCy5lDrnFeiSlVNVAJtSSrVimtalIjWTDdcsDbiiRV5WkhOYNtUy54ypmkM-Ruf73LT5s4cQxdoEBdbKFlwfBGOMVGVBCpKk13upSkcGD41QJv58Hb00VlAidiDFSvyBFDuQgtQigUx2_s_eebOWfnvYeLM3QuKQGHoRlIFWgTY-oRLamUMR31k-ls8
CitedBy_id crossref_primary_10_1002_agj2_21283
crossref_primary_10_1002_jeq2_20475
crossref_primary_10_1007_s11356_023_31556_8
crossref_primary_10_1016_j_jclepro_2020_125605
crossref_primary_10_1093_forsci_fxab053
crossref_primary_10_1186_s13213_020_01550_3
crossref_primary_10_3390_agriculture12071030
crossref_primary_10_3390_ma14030486
crossref_primary_10_2174_0115734110286724240318051113
crossref_primary_10_1016_j_scitotenv_2024_175240
crossref_primary_10_1016_j_fuel_2022_127347
crossref_primary_10_1016_j_scitotenv_2022_157262
crossref_primary_10_1016_j_scitotenv_2020_141351
crossref_primary_10_1111_gcbb_12952
crossref_primary_10_1016_j_wasman_2021_09_014
crossref_primary_10_1016_j_apsoil_2023_105096
crossref_primary_10_1021_acs_energyfuels_1c00182
crossref_primary_10_1080_00103624_2025_2466581
crossref_primary_10_3390_su14137852
crossref_primary_10_1016_j_fuel_2021_122852
crossref_primary_10_1016_j_jenvman_2021_113340
crossref_primary_10_1007_s10098_023_02592_2
crossref_primary_10_1016_j_scitotenv_2022_155183
crossref_primary_10_3389_fsufs_2022_1036133
crossref_primary_10_1016_j_jclepro_2020_122462
crossref_primary_10_3390_horticulturae8040328
crossref_primary_10_1038_s41467_020_20184_2
crossref_primary_10_1080_00103624_2025_2452182
crossref_primary_10_2136_sssaj2018_08_0297
crossref_primary_10_1007_s11356_021_12744_w
crossref_primary_10_1016_j_jhazmat_2021_126611
crossref_primary_10_1098_rstb_2020_0181
crossref_primary_10_3390_horticulturae11020169
crossref_primary_10_1186_s40538_020_00182_8
crossref_primary_10_1007_s42773_020_00072_0
crossref_primary_10_1007_s11368_022_03402_w
crossref_primary_10_1016_j_geoderma_2021_115323
crossref_primary_10_3934_environsci_2019_5_379
crossref_primary_10_1016_j_apsoil_2022_104736
crossref_primary_10_1016_j_scitotenv_2018_12_026
crossref_primary_10_1016_j_envres_2024_120170
crossref_primary_10_1080_10643389_2020_1811590
crossref_primary_10_3389_fenvs_2023_1059449
crossref_primary_10_1016_j_scp_2023_100999
crossref_primary_10_17221_522_2021_PSE
crossref_primary_10_1016_j_scitotenv_2020_142582
crossref_primary_10_1080_01904167_2023_2220740
crossref_primary_10_1007_s00344_020_10245_7
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1016_j_jenvman_2020_111918
crossref_primary_10_1007_s44246_024_00120_5
crossref_primary_10_1016_j_envpol_2019_113592
crossref_primary_10_1016_j_scitotenv_2019_134112
crossref_primary_10_3390_horticulturae7080221
crossref_primary_10_1016_j_scitotenv_2020_138195
crossref_primary_10_1016_j_scitotenv_2020_143657
crossref_primary_10_1016_j_scitotenv_2020_142457
crossref_primary_10_1016_j_biombioe_2020_105710
crossref_primary_10_1007_s11104_023_06459_9
crossref_primary_10_1016_j_chemosphere_2022_134163
crossref_primary_10_1002_ldr_4230
crossref_primary_10_1017_S0014479721000259
crossref_primary_10_1016_j_jenvman_2025_124041
crossref_primary_10_1016_j_jece_2024_112771
crossref_primary_10_3389_fenvs_2024_1340565
crossref_primary_10_1016_j_marpolbul_2023_114899
crossref_primary_10_1016_j_rser_2021_111371
crossref_primary_10_1080_10643389_2019_1642832
crossref_primary_10_1016_j_cej_2024_156083
crossref_primary_10_1016_j_envpol_2024_123646
crossref_primary_10_1016_j_envres_2020_110030
crossref_primary_10_1016_j_jenvman_2020_111097
crossref_primary_10_1016_j_envpol_2021_117364
crossref_primary_10_1016_j_fuel_2022_124156
crossref_primary_10_1016_j_jenvman_2025_124296
crossref_primary_10_1016_j_scitotenv_2019_134169
crossref_primary_10_1134_S106422932112005X
crossref_primary_10_1016_j_agee_2021_107403
crossref_primary_10_1080_02827581_2020_1854846
crossref_primary_10_1080_00380768_2022_2129443
crossref_primary_10_1016_j_chemosphere_2021_131661
crossref_primary_10_1016_j_cej_2020_126136
crossref_primary_10_1007_s00128_020_03011_8
crossref_primary_10_3390_molecules27217191
crossref_primary_10_1071_CP21800
crossref_primary_10_1186_s13750_024_00326_5
crossref_primary_10_1016_j_chemosphere_2019_05_238
crossref_primary_10_1007_s42729_024_01977_6
crossref_primary_10_1016_j_scitotenv_2022_158562
crossref_primary_10_1016_j_jclepro_2022_130685
crossref_primary_10_1080_01904167_2022_2063138
crossref_primary_10_3390_agronomy13102488
crossref_primary_10_1016_j_ecoenv_2020_110181
crossref_primary_10_1007_s10098_019_01728_7
crossref_primary_10_1016_j_jenvman_2022_116943
crossref_primary_10_1111_sum_12731
crossref_primary_10_3390_f14122295
crossref_primary_10_1021_acssuschemeng_2c01539
crossref_primary_10_3390_w14223623
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_1007_s11356_021_16526_2
crossref_primary_10_1007_s10661_023_11894_3
crossref_primary_10_1016_j_scitotenv_2022_160644
crossref_primary_10_1016_j_scienta_2022_111097
crossref_primary_10_1016_j_jenvman_2021_113250
crossref_primary_10_1016_j_jenvman_2021_113128
crossref_primary_10_3390_agronomy13112807
crossref_primary_10_1016_j_chemosphere_2019_125255
crossref_primary_10_1016_j_envpol_2022_118831
crossref_primary_10_1016_j_pce_2023_103508
crossref_primary_10_1016_j_envdev_2023_100819
crossref_primary_10_1016_j_scitotenv_2020_141455
crossref_primary_10_1016_j_scitotenv_2022_159782
crossref_primary_10_1016_j_jenvman_2022_114973
crossref_primary_10_1016_j_fcr_2024_109340
crossref_primary_10_1016_j_clema_2022_100137
crossref_primary_10_1111_sum_12769
crossref_primary_10_1002_saj2_20533
crossref_primary_10_1016_j_scitotenv_2021_151422
crossref_primary_10_1016_j_jclepro_2020_124302
crossref_primary_10_1016_j_pedsph_2024_07_001
crossref_primary_10_1080_00103624_2021_1919698
crossref_primary_10_1016_j_jece_2024_114604
crossref_primary_10_1016_j_scitotenv_2019_06_244
crossref_primary_10_1016_j_catena_2019_104151
crossref_primary_10_1007_s11356_019_07230_3
crossref_primary_10_2478_ahr_2022_0015
crossref_primary_10_1039_D0GC00717J
crossref_primary_10_3389_fenrg_2021_710766
crossref_primary_10_3389_fpls_2024_1475939
crossref_primary_10_59324_ejtas_2024_2_5__65
crossref_primary_10_3390_soilsystems8030069
crossref_primary_10_1016_j_spc_2023_02_019
crossref_primary_10_1016_j_scitotenv_2020_139003
crossref_primary_10_1016_j_envres_2022_113599
crossref_primary_10_1080_10643389_2025_2457991
crossref_primary_10_1111_ejss_13216
crossref_primary_10_1111_sum_12997
crossref_primary_10_3390_pr10081627
crossref_primary_10_1111_sum_12638
crossref_primary_10_1016_j_microc_2020_105506
crossref_primary_10_1016_j_jclepro_2022_131791
crossref_primary_10_1016_j_jece_2025_116081
crossref_primary_10_1080_00103624_2023_2177669
crossref_primary_10_3390_plants13020166
crossref_primary_10_1016_S1002_0160_21_60041_3
crossref_primary_10_1021_acs_jchemed_9b00529
crossref_primary_10_1016_j_apsoil_2023_105127
crossref_primary_10_1021_acssuschemeng_1c01656
crossref_primary_10_1016_j_geodrs_2024_e00847
crossref_primary_10_1016_j_cec_2024_100117
crossref_primary_10_1007_s11356_021_13973_9
crossref_primary_10_1016_j_jece_2025_115602
crossref_primary_10_1021_acs_est_0c04033
crossref_primary_10_3390_agronomy13071745
crossref_primary_10_1007_s11104_024_06833_1
crossref_primary_10_1007_s11368_021_03049_z
crossref_primary_10_1016_j_scitotenv_2020_143801
crossref_primary_10_3390_agronomy13092440
crossref_primary_10_3390_agronomy13092203
crossref_primary_10_1016_j_envres_2022_113909
crossref_primary_10_1128_spectrum_00802_23
crossref_primary_10_1016_j_scitotenv_2022_158876
crossref_primary_10_1016_j_indcrop_2023_117496
crossref_primary_10_1016_j_indcrop_2024_119830
crossref_primary_10_1080_01904167_2021_1871746
crossref_primary_10_5004_dwt_2023_29494
crossref_primary_10_1016_j_chemosphere_2021_129700
crossref_primary_10_3390_agronomy12010131
crossref_primary_10_1016_j_biortech_2021_125102
crossref_primary_10_1007_s11270_024_07580_w
crossref_primary_10_1007_s40725_023_00188_z
crossref_primary_10_1016_j_still_2022_105442
crossref_primary_10_3390_chemosensors10030117
crossref_primary_10_1016_j_scitotenv_2020_141614
crossref_primary_10_1016_j_still_2022_105323
crossref_primary_10_2478_johh_2023_0004
crossref_primary_10_1002_agj2_20365
crossref_primary_10_1007_s00374_020_01479_4
crossref_primary_10_1111_gcbb_12665
crossref_primary_10_3390_f10080678
crossref_primary_10_1007_s11356_024_33807_8
crossref_primary_10_1080_10643389_2020_1818497
crossref_primary_10_1111_gcbb_12783
crossref_primary_10_1016_j_geodrs_2021_e00443
crossref_primary_10_1016_j_envres_2022_112807
crossref_primary_10_1007_s42729_023_01498_8
crossref_primary_10_3390_su16229749
crossref_primary_10_3390_nano12060988
crossref_primary_10_1016_j_hazadv_2022_100134
crossref_primary_10_1007_s00374_025_01888_3
crossref_primary_10_1111_sum_12717
crossref_primary_10_1016_j_envpol_2020_115719
crossref_primary_10_1080_15567036_2019_1656305
crossref_primary_10_3390_pollutants1030010
crossref_primary_10_1016_j_btre_2020_e00570
crossref_primary_10_1007_s42773_024_00333_2
crossref_primary_10_1016_j_enconman_2023_116658
crossref_primary_10_1016_j_still_2021_105015
crossref_primary_10_1007_s13399_020_01078_1
crossref_primary_10_1007_s11356_024_33359_x
crossref_primary_10_1016_j_chemosphere_2022_133586
crossref_primary_10_1016_j_ecoenv_2020_111887
crossref_primary_10_1007_s12649_020_01082_6
crossref_primary_10_1016_j_scitotenv_2020_138489
crossref_primary_10_1016_j_envres_2019_01_048
crossref_primary_10_1017_S0014479722000497
crossref_primary_10_1038_s41598_023_35460_6
crossref_primary_10_1111_sum_12965
crossref_primary_10_2478_agri_2020_0016
crossref_primary_10_3389_fpls_2024_1384065
crossref_primary_10_1016_j_indcrop_2024_119972
crossref_primary_10_1016_j_catena_2025_108765
crossref_primary_10_1111_sum_12845
crossref_primary_10_1007_s42729_024_01893_9
crossref_primary_10_1111_rec_13909
crossref_primary_10_3390_su13031330
crossref_primary_10_1016_j_rser_2022_113042
crossref_primary_10_1016_j_scitotenv_2020_143817
crossref_primary_10_1186_s40068_021_00235_3
crossref_primary_10_1007_s13399_020_00923_7
crossref_primary_10_1016_j_foreco_2019_117635
crossref_primary_10_1016_j_jhazmat_2020_123833
crossref_primary_10_3390_plants11060765
crossref_primary_10_1080_15226514_2019_1647405
crossref_primary_10_1002_ente_202000025
crossref_primary_10_1080_10643389_2019_1629802
crossref_primary_10_3390_su16062523
crossref_primary_10_1111_gcbb_12766
crossref_primary_10_2478_agri_2020_0001
crossref_primary_10_1016_j_agee_2020_107258
crossref_primary_10_1128_spectrum_03427_23
crossref_primary_10_1016_j_apsoil_2021_103883
crossref_primary_10_1111_gcbb_12885
crossref_primary_10_3390_toxics9080184
crossref_primary_10_2478_agri_2020_0005
crossref_primary_10_1007_s44246_025_00198_5
crossref_primary_10_1016_j_jclepro_2019_118319
crossref_primary_10_1007_s13399_020_00836_5
crossref_primary_10_3390_agronomy11102052
crossref_primary_10_3390_applbiosci2010007
crossref_primary_10_3390_agronomy14122919
crossref_primary_10_1016_j_scitotenv_2019_05_051
crossref_primary_10_1007_s41748_022_00336_8
crossref_primary_10_3390_agronomy11050828
crossref_primary_10_1016_j_ecoenv_2023_115589
crossref_primary_10_3390_agronomy10091446
crossref_primary_10_3390_pr9040572
crossref_primary_10_1007_s42773_020_00035_5
crossref_primary_10_1007_s11368_023_03635_3
crossref_primary_10_1021_acsomega_3c09016
crossref_primary_10_1007_s11356_023_26826_4
crossref_primary_10_1016_j_scitotenv_2023_168518
crossref_primary_10_1016_j_jhazmat_2020_123727
crossref_primary_10_3390_ijerph191912381
crossref_primary_10_3390_molecules26185584
crossref_primary_10_1016_j_scitotenv_2022_156532
crossref_primary_10_1080_25765299_2020_1766799
crossref_primary_10_3390_app11146502
crossref_primary_10_1016_j_apsoil_2019_103374
crossref_primary_10_1016_j_jhazmat_2019_121366
crossref_primary_10_3390_agronomy11050942
crossref_primary_10_1177_00368504221148842
crossref_primary_10_1016_j_agwat_2024_109093
crossref_primary_10_1002_jemt_24210
crossref_primary_10_1186_s12870_023_04058_5
crossref_primary_10_1016_j_cej_2021_131189
crossref_primary_10_1016_j_jclepro_2020_125494
crossref_primary_10_1016_j_jhazmat_2020_122767
crossref_primary_10_1002_tqem_21875
crossref_primary_10_1080_10934529_2021_2020503
crossref_primary_10_3389_fevo_2021_798520
crossref_primary_10_1016_j_envpol_2021_117199
crossref_primary_10_1016_j_envres_2020_109324
crossref_primary_10_1016_j_envres_2020_109566
crossref_primary_10_3390_su12052124
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1016_j_agwat_2021_107129
crossref_primary_10_1016_j_envres_2023_115339
crossref_primary_10_1007_s10311_020_01059_w
crossref_primary_10_1139_cjss_2021_0053
crossref_primary_10_1016_j_eti_2022_102988
crossref_primary_10_1016_j_jece_2024_113488
crossref_primary_10_1016_j_scitotenv_2021_148762
crossref_primary_10_1007_s11368_023_03590_z
crossref_primary_10_1080_03650340_2022_2045280
crossref_primary_10_1038_s41598_022_15494_y
crossref_primary_10_1051_bioconf_20213700036
crossref_primary_10_3390_atmos11050539
crossref_primary_10_3390_horticulturae10040368
crossref_primary_10_1016_j_jaridenv_2020_104191
crossref_primary_10_3390_molecules26164783
crossref_primary_10_3390_agronomy12010051
crossref_primary_10_1111_sum_12804
crossref_primary_10_1007_s40891_020_00206_1
crossref_primary_10_1016_j_jclepro_2023_139066
crossref_primary_10_3390_en16010056
crossref_primary_10_1038_s41598_023_50166_5
crossref_primary_10_1016_j_biteb_2021_100800
crossref_primary_10_1016_j_jenvman_2022_116095
crossref_primary_10_1016_j_scitotenv_2020_141713
crossref_primary_10_1016_j_psep_2022_05_056
crossref_primary_10_3390_agronomy10060889
crossref_primary_10_1016_j_cej_2021_132287
crossref_primary_10_1007_s10653_024_02221_x
crossref_primary_10_1007_s42773_019_00013_6
crossref_primary_10_1016_j_apsoil_2021_103960
crossref_primary_10_1016_j_scitotenv_2022_158620
crossref_primary_10_1515_opag_2021_0217
crossref_primary_10_1071_SR19296
crossref_primary_10_1016_j_catena_2020_105046
crossref_primary_10_1016_j_eti_2020_101193
crossref_primary_10_1038_s41598_023_38072_2
crossref_primary_10_1007_s13205_022_03195_2
crossref_primary_10_1007_s11368_021_03001_1
crossref_primary_10_3390_su15053879
crossref_primary_10_1016_j_jaap_2021_105373
crossref_primary_10_1016_j_jclepro_2024_141777
crossref_primary_10_3390_land11030368
crossref_primary_10_1088_1755_1315_1114_1_012046
crossref_primary_10_3390_agriculture14091502
crossref_primary_10_1016_j_still_2024_106367
crossref_primary_10_1007_s11356_021_12477_w
crossref_primary_10_1088_1748_9326_ad99e9
crossref_primary_10_3390_agriculture13061200
crossref_primary_10_1007_s13762_024_05697_3
crossref_primary_10_1007_s42773_024_00391_6
crossref_primary_10_1016_j_apsoil_2020_103856
crossref_primary_10_1016_j_scitotenv_2023_164868
crossref_primary_10_1080_01904167_2024_2354214
crossref_primary_10_3390_su142214996
crossref_primary_10_3390_land11091510
crossref_primary_10_1016_j_agwat_2020_106580
crossref_primary_10_3389_fmicb_2023_1190716
crossref_primary_10_1007_s11368_023_03644_2
crossref_primary_10_1016_j_jenvman_2020_111443
crossref_primary_10_1016_j_scitotenv_2020_138988
crossref_primary_10_1016_j_scitotenv_2020_137775
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_3390_app12084051
crossref_primary_10_1016_j_jenvman_2024_120399
crossref_primary_10_1016_j_jhazmat_2020_124865
crossref_primary_10_2478_ahr_2021_0020
crossref_primary_10_32604_phyton_2022_021644
crossref_primary_10_3389_fpls_2023_1242469
crossref_primary_10_3390_agronomy14010153
crossref_primary_10_1016_j_chemosphere_2021_131176
crossref_primary_10_3390_agronomy12092089
crossref_primary_10_1016_j_scitotenv_2022_153555
crossref_primary_10_1016_j_chemosphere_2022_134825
crossref_primary_10_3390_agronomy12122959
crossref_primary_10_1016_j_hazadv_2022_100092
crossref_primary_10_3390_plants12183319
crossref_primary_10_1007_s12517_021_07996_2
crossref_primary_10_1007_s11368_019_02250_5
crossref_primary_10_3390_agronomy13041111
crossref_primary_10_3390_land12081580
crossref_primary_10_1111_1440_1703_12179
crossref_primary_10_3390_su16010183
crossref_primary_10_1016_j_apgeochem_2018_12_003
crossref_primary_10_1016_j_scitotenv_2022_158818
crossref_primary_10_1016_j_cej_2020_124611
crossref_primary_10_1016_j_scitotenv_2022_154753
crossref_primary_10_1007_s42729_023_01374_5
crossref_primary_10_3390_su14041987
crossref_primary_10_1016_j_biombioe_2024_107458
crossref_primary_10_1016_j_jhazmat_2020_124405
crossref_primary_10_1080_09593330_2022_2074318
crossref_primary_10_1016_j_wasman_2023_09_024
crossref_primary_10_3389_fpls_2021_650432
crossref_primary_10_1016_j_jhazmat_2019_04_057
crossref_primary_10_1016_j_soilbio_2023_109056
crossref_primary_10_1016_j_scienta_2020_109507
crossref_primary_10_1007_s00374_019_01391_6
crossref_primary_10_3390_su17041675
crossref_primary_10_3390_su14084682
crossref_primary_10_1007_s00374_023_01753_1
crossref_primary_10_3390_separations10100533
crossref_primary_10_1007_s40710_022_00587_7
crossref_primary_10_1016_j_envpol_2020_114887
crossref_primary_10_1016_j_jclepro_2020_120998
crossref_primary_10_1080_10643389_2020_1716654
crossref_primary_10_1016_j_scitotenv_2022_154340
crossref_primary_10_5004_dwt_2020_25654
crossref_primary_10_1007_s13399_021_02099_0
crossref_primary_10_2139_ssrn_4194276
crossref_primary_10_1080_03650340_2024_2373163
crossref_primary_10_1016_j_agwat_2024_108843
crossref_primary_10_1007_s42773_022_00181_y
crossref_primary_10_3390_agronomy12092036
crossref_primary_10_1007_s42729_025_02320_3
crossref_primary_10_3390_toxics13030169
crossref_primary_10_1016_j_geoderma_2019_03_010
crossref_primary_10_1016_j_catena_2020_104587
crossref_primary_10_1016_j_scitotenv_2024_173679
crossref_primary_10_1016_j_envint_2024_109131
crossref_primary_10_2139_ssrn_4119763
crossref_primary_10_1088_1755_1315_1262_8_082042
crossref_primary_10_1080_15324982_2019_1696423
crossref_primary_10_3390_land11122265
crossref_primary_10_1016_j_agwat_2024_108953
crossref_primary_10_1016_j_chemosphere_2022_134304
crossref_primary_10_1007_s42729_021_00736_1
crossref_primary_10_1021_acssuschemeng_9b03536
crossref_primary_10_1186_s12870_023_04397_3
crossref_primary_10_1371_journal_pone_0242209
crossref_primary_10_1007_s42773_024_00415_1
crossref_primary_10_1007_s10705_024_10358_5
crossref_primary_10_1016_j_jhazmat_2020_124554
crossref_primary_10_3390_f13122090
crossref_primary_10_1016_j_mtener_2021_100905
crossref_primary_10_1016_j_cej_2021_130387
crossref_primary_10_32604_phyton_2022_020323
crossref_primary_10_1007_s13593_022_00848_7
crossref_primary_10_1016_j_biortech_2019_121973
crossref_primary_10_1016_j_scitotenv_2021_148923
crossref_primary_10_1080_03650340_2024_2419506
crossref_primary_10_1080_26895293_2022_2080282
crossref_primary_10_1111_sum_70044
crossref_primary_10_1186_s43170_024_00289_0
crossref_primary_10_5004_dwt_2020_25750
crossref_primary_10_1016_j_agwat_2022_108026
crossref_primary_10_3390_agronomy12071596
crossref_primary_10_1007_s10311_021_01210_1
crossref_primary_10_2139_ssrn_4118105
crossref_primary_10_1038_s41598_025_87374_0
crossref_primary_10_1016_j_jaridenv_2021_104525
crossref_primary_10_1016_j_chemosphere_2021_133389
crossref_primary_10_1080_03650340_2022_2142937
crossref_primary_10_1016_j_fcr_2022_108574
crossref_primary_10_1007_s13399_025_06702_6
crossref_primary_10_1007_s42729_024_01688_y
crossref_primary_10_1016_S1002_0160_20_60071_6
crossref_primary_10_1016_j_cej_2020_125502
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1017_S1742170522000412
crossref_primary_10_1007_s11368_022_03331_8
crossref_primary_10_1016_j_jhazmat_2020_122026
crossref_primary_10_3390_agronomy10071005
crossref_primary_10_1016_j_scitotenv_2022_153461
crossref_primary_10_1007_s11270_021_05089_0
crossref_primary_10_1016_j_agee_2024_109001
crossref_primary_10_1016_j_ecoleng_2022_106844
crossref_primary_10_2478_ahr_2019_0010
crossref_primary_10_1016_j_scitotenv_2023_163313
crossref_primary_10_1007_s11356_024_33849_y
crossref_primary_10_1007_s42773_024_00316_3
crossref_primary_10_3390_ma14102584
crossref_primary_10_1007_s11104_023_06154_9
crossref_primary_10_1016_j_envpol_2021_116800
crossref_primary_10_1038_s41598_021_88856_7
crossref_primary_10_1007_s42832_024_0267_x
crossref_primary_10_1016_j_geoderma_2023_116528
crossref_primary_10_3390_agronomy10101612
crossref_primary_10_1002_smll_202206954
crossref_primary_10_1016_j_jclepro_2020_120314
crossref_primary_10_1002_saj2_20421
crossref_primary_10_1016_j_scitotenv_2019_06_212
crossref_primary_10_1016_j_jenvman_2021_113076
crossref_primary_10_1016_j_jece_2023_110276
crossref_primary_10_1016_j_rhisph_2020_100264
crossref_primary_10_1007_s11104_023_05968_x
crossref_primary_10_1007_s12155_022_10560_9
crossref_primary_10_1007_s42729_023_01547_2
crossref_primary_10_3389_fmats_2022_870184
crossref_primary_10_1016_j_scitotenv_2019_134645
crossref_primary_10_1016_j_scitotenv_2023_161881
crossref_primary_10_3389_fpls_2024_1347658
crossref_primary_10_1016_j_heliyon_2024_e39737
crossref_primary_10_1038_s41598_019_56663_w
crossref_primary_10_1038_s41598_023_41891_y
crossref_primary_10_1186_s40068_024_00379_y
crossref_primary_10_1016_j_jaap_2021_105405
crossref_primary_10_1016_j_envpol_2021_117840
crossref_primary_10_1016_j_scitotenv_2023_167290
crossref_primary_10_1016_j_jclepro_2025_145109
crossref_primary_10_1002_saj2_20793
crossref_primary_10_3390_ma16237342
crossref_primary_10_1016_j_envint_2019_105376
crossref_primary_10_3390_toxics12040245
crossref_primary_10_1007_s11356_020_08907_w
crossref_primary_10_1080_03650340_2021_1906413
crossref_primary_10_3390_su142416417
crossref_primary_10_3389_fenvs_2023_1207887
crossref_primary_10_3390_su131911104
crossref_primary_10_1007_s13762_021_03185_6
crossref_primary_10_1016_j_envint_2021_106638
crossref_primary_10_1139_cjss_2019_0138
crossref_primary_10_1016_j_envres_2021_112303
crossref_primary_10_1016_j_gexplo_2023_107331
crossref_primary_10_3390_agronomy9060327
crossref_primary_10_1016_j_chemosphere_2019_06_237
crossref_primary_10_3390_agronomy14102431
crossref_primary_10_1007_s42729_023_01208_4
crossref_primary_10_1016_j_psep_2020_04_001
crossref_primary_10_1016_j_scitotenv_2021_151058
crossref_primary_10_1016_j_scitotenv_2021_152267
crossref_primary_10_1016_j_jhazmat_2019_121747
crossref_primary_10_1016_j_envpol_2020_116009
crossref_primary_10_1002_saj2_20683
crossref_primary_10_1016_j_fuel_2021_120243
crossref_primary_10_1016_j_chemosphere_2019_124888
crossref_primary_10_1016_j_jaap_2024_106480
crossref_primary_10_1007_s10098_021_02163_3
crossref_primary_10_2208_journalofjsce_24_27045
crossref_primary_10_1016_j_enceco_2025_01_004
crossref_primary_10_1051_e3sconf_202342403009
crossref_primary_10_3389_fpls_2024_1475510
crossref_primary_10_3390_molecules27217418
crossref_primary_10_1016_j_seh_2023_100033
crossref_primary_10_1007_s10661_024_12595_1
crossref_primary_10_3390_molecules28145381
crossref_primary_10_1007_s12155_024_10786_9
crossref_primary_10_1007_s13399_022_02795_5
crossref_primary_10_1016_j_fcr_2023_109141
crossref_primary_10_3390_agronomy14102400
crossref_primary_10_1016_j_heliyon_2023_e19831
crossref_primary_10_1016_j_cej_2021_131708
crossref_primary_10_1016_j_chemosphere_2021_130458
crossref_primary_10_1007_s42729_021_00631_9
crossref_primary_10_1007_s42773_020_00065_z
crossref_primary_10_1016_j_chemosphere_2023_140983
crossref_primary_10_1016_j_geoderma_2021_115276
crossref_primary_10_1007_s11144_022_02263_1
crossref_primary_10_1021_acsagscitech_4c00114
crossref_primary_10_1080_21655979_2023_2177369
crossref_primary_10_1007_s00244_018_00595_5
crossref_primary_10_1016_j_cej_2022_136225
crossref_primary_10_3390_su11061536
crossref_primary_10_1007_s42773_022_00134_5
crossref_primary_10_1007_s42773_019_00030_5
crossref_primary_10_1016_j_jenvman_2019_109528
crossref_primary_10_1016_j_jiec_2024_10_015
crossref_primary_10_1016_j_clema_2022_100045
crossref_primary_10_1016_j_scitotenv_2020_144351
crossref_primary_10_1016_j_ecoenv_2022_114322
crossref_primary_10_1088_1755_1315_1183_1_012075
crossref_primary_10_1016_j_jrmge_2025_01_019
crossref_primary_10_1002_ldr_5285
crossref_primary_10_3390_agronomy14030533
crossref_primary_10_1002_saj2_20227
crossref_primary_10_1080_09670874_2022_2094493
crossref_primary_10_1016_j_geoderma_2021_115100
crossref_primary_10_1080_15324982_2022_2104183
crossref_primary_10_1071_CP24222
crossref_primary_10_1080_09593330_2021_1883743
crossref_primary_10_1007_s12517_022_10790_3
crossref_primary_10_1007_s40726_024_00327_5
crossref_primary_10_1186_s40538_024_00638_1
crossref_primary_10_1186_s13765_023_00851_w
crossref_primary_10_1016_j_scitotenv_2022_159368
crossref_primary_10_1007_s42773_019_00008_3
crossref_primary_10_1016_j_jhazmat_2021_125213
crossref_primary_10_1007_s13399_022_03289_0
crossref_primary_10_3389_fpls_2022_1020832
crossref_primary_10_1007_s42773_023_00278_y
crossref_primary_10_1016_j_jhazmat_2021_126421
crossref_primary_10_1016_j_scitotenv_2021_151120
crossref_primary_10_1016_j_chemosphere_2021_133427
crossref_primary_10_1007_s13399_020_01013_4
crossref_primary_10_1016_j_chemosphere_2019_124679
crossref_primary_10_1038_s41598_024_70917_2
crossref_primary_10_1016_j_jclepro_2021_127018
crossref_primary_10_1016_j_scitotenv_2022_160478
crossref_primary_10_1002_ldr_4055
crossref_primary_10_1016_j_pedsph_2022_06_030
crossref_primary_10_1016_j_chemosphere_2022_134942
crossref_primary_10_3390_plants14030401
crossref_primary_10_1016_j_cj_2024_07_002
crossref_primary_10_1007_s42773_023_00244_8
crossref_primary_10_3390_ma14216658
crossref_primary_10_1088_1755_1315_399_1_012129
crossref_primary_10_3389_fpls_2024_1422935
crossref_primary_10_1016_j_jhazmat_2021_125200
crossref_primary_10_3390_agriculture14010162
crossref_primary_10_1016_j_soilbio_2020_107825
crossref_primary_10_1186_s40538_021_00249_0
crossref_primary_10_1007_s11356_023_31186_0
crossref_primary_10_1016_j_scitotenv_2023_161786
crossref_primary_10_1016_j_scitotenv_2020_144564
crossref_primary_10_1021_acs_chemmater_1c02961
crossref_primary_10_1016_j_jhazmat_2023_132422
crossref_primary_10_1016_j_jiec_2021_01_044
crossref_primary_10_1016_j_chemosphere_2023_138356
crossref_primary_10_1016_j_jenvman_2020_110734
crossref_primary_10_3390_agronomy14061137
crossref_primary_10_1016_j_jenvman_2024_122692
crossref_primary_10_1016_j_scitotenv_2022_153509
crossref_primary_10_3390_agronomy13102518
crossref_primary_10_3390_min12010085
crossref_primary_10_1007_s44246_022_00033_1
crossref_primary_10_1016_j_sajb_2023_09_024
crossref_primary_10_1016_j_scitotenv_2021_150057
crossref_primary_10_1088_1755_1315_1282_1_012053
crossref_primary_10_15243_jdmlm_2025_122_7205
crossref_primary_10_1016_j_apsoil_2019_01_010
crossref_primary_10_1088_1755_1315_474_3_032041
crossref_primary_10_1016_j_jece_2025_116003
crossref_primary_10_1007_s42729_023_01141_6
crossref_primary_10_1111_gcbb_13134
crossref_primary_10_3390_su16146070
crossref_primary_10_1039_C9EM00570F
crossref_primary_10_1007_s12517_022_09661_8
crossref_primary_10_1016_j_jenvman_2019_02_047
crossref_primary_10_1016_j_jenvman_2022_115200
crossref_primary_10_1016_j_jenvman_2019_02_044
crossref_primary_10_3390_agronomy12030546
crossref_primary_10_1016_j_fuel_2023_127796
crossref_primary_10_1080_03650340_2019_1699240
crossref_primary_10_1016_j_chemosphere_2023_140419
crossref_primary_10_1080_10643389_2020_1859271
crossref_primary_10_1016_j_jhazmat_2022_130076
crossref_primary_10_1016_j_scitotenv_2022_159034
crossref_primary_10_1016_j_matt_2022_09_030
crossref_primary_10_1016_j_apsoil_2021_104134
crossref_primary_10_1016_j_envint_2019_03_031
crossref_primary_10_3390_agronomy10101455
crossref_primary_10_1016_j_chemosphere_2021_131594
Cites_doi 10.1016/j.envpol.2016.03.072
10.2134/jeq2011.0128
10.1016/j.agee.2010.09.003
10.1016/j.cosust.2012.09.015
10.1016/j.biortech.2009.09.024
10.1007/s11104-009-0050-x
10.1016/j.agee.2011.08.015
10.2134/jeq2011.0126
10.1007/s11104-010-0327-0
10.1097/SS.0b013e3181981d9a
10.2134/jeq2011.0070
10.1111/gcbb.12266
10.1034/j.1600-0706.2000.890203.x
10.3390/agriculture5030723
10.1007/s00374-011-0624-7
10.1016/j.earscirev.2017.06.005
10.1007/s13593-013-0150-0
10.1016/j.agsy.2014.05.008
10.1007/s00374-013-0884-5
10.1111/j.1475-2743.2011.00340.x
10.1007/s10653-015-9694-z
10.1016/j.biortech.2012.05.042
10.5194/se-5-693-2014
10.1016/j.ecoleng.2015.01.011
10.1111/ejss.12100
10.1016/j.geoderma.2018.06.017
10.9735/0975-3710.3.1.71-77
10.1016/S1002-0160(15)30053-9
10.1016/j.biortech.2014.02.123
10.1007/s11368-011-0365-0
10.1111/ejss.12302
10.1021/es1014423
10.2134/agronj2007.0161
10.1016/j.fcr.2016.09.005
10.4155/cmt.11.15
10.1021/acs.est.6b01897
10.1016/j.scitotenv.2016.12.169
10.1080/03650340.2012.700511
10.1007/s11104-013-1980-x
10.1016/j.soilbio.2011.10.012
10.1080/17583004.2014.912866
10.1016/j.jenvman.2015.11.045
10.2136/sssaj2005.0383
10.1094/PDIS-10-10-0741
10.1016/j.jenvman.2017.01.061
10.1007/s11368-016-1360-2
10.1016/j.chemosphere.2016.10.069
10.1016/j.foreco.2017.02.036
10.2134/jeq2011.0100
10.1007/s11027-005-9006-5
10.1016/j.envpol.2011.07.023
10.1016/S0008-6223(02)00118-5
10.1016/j.agee.2010.12.005
10.1016/S1002-0160(15)30044-8
10.1080/10643389.2017.1418580
10.1002/jpln.201100172
10.1002/jpln.200625199
10.1016/j.biortech.2014.05.029
10.1007/s11104-007-9391-5
10.1007/s11104-011-0759-1
10.1007/s12155-015-9671-5
10.1016/S0165-2370(98)00074-6
10.1016/B978-0-12-385538-1.00003-2
10.1111/ejss.12034
10.1016/j.scitotenv.2017.01.028
10.1016/j.biortech.2012.01.120
10.2134/jeq2011.0069
10.1016/j.fcr.2008.10.008
10.1080/1065657X.2000.10701990
10.1016/S0960-8524(99)00104-2
10.1023/A:1022833116184
10.1016/j.agee.2011.07.005
10.1016/j.scitotenv.2015.01.061
10.1016/j.biombioe.2012.01.033
10.1007/s11104-013-1806-x
10.1016/j.geoderma.2015.03.022
10.1016/j.chemosphere.2015.05.052
10.1016/S2095-3119(13)60708-X
10.1007/s13762-014-0713-x
10.1016/j.soilbio.2011.02.005
10.1016/j.biortech.2012.04.094
10.1071/SR10058
10.1016/j.biortech.2014.08.079
10.1016/j.agwat.2014.02.016
10.1016/j.soilbio.2011.04.022
10.1016/j.agee.2016.12.019
10.3390/agronomy3020349
10.1016/j.geoderma.2014.11.009
10.3390/agronomy3020275
10.1016/j.colsurfa.2011.12.023
10.1016/j.chemosphere.2015.06.016
10.1016/j.geoderma.2011.04.021
10.1016/j.cej.2013.09.074
10.1016/j.scitotenv.2015.02.005
10.1007/s11356-015-4885-9
10.1007/s11356-016-8303-8
10.1007/s11368-013-0738-7
10.1016/j.enpol.2011.07.035
10.1007/s13765-015-0103-1
10.1007/s00374-002-0466-4
10.1111/gcbb.12037
10.1111/sum.12114
10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
10.2175/106143015X14212658614630
10.4155/cmt.10.32
10.1097/SS.0b013e3182979eac
10.3390/su7055875
10.1111/gcb.13068
10.1016/j.chemosphere.2015.05.065
10.1007/s11368-013-0680-8
10.1007/s12155-011-9133-7
10.1080/10643389.2015.1096880
10.4141/cjss2011-066
10.1016/j.chemosphere.2013.10.071
10.1016/j.catena.2015.11.002
10.1021/es400554x
10.1071/SR10002
10.1021/es903140c
10.1016/j.catena.2013.10.014
10.1111/sum.12180
10.1021/es5021058
10.1016/j.soilbio.2016.08.001
10.1016/j.agee.2015.07.027
10.1016/j.eja.2014.09.006
10.5367/000000010791169998
10.1016/j.agee.2014.04.001
10.1080/00380768.2013.830229
10.1016/j.egypro.2015.07.729
10.1016/j.geoderma.2010.05.012
10.1016/j.jenvman.2014.11.023
10.1016/j.chemosphere.2017.01.148
10.1021/acs.chemrev.5b00195
10.1007/s10661-015-4293-0
10.1007/s10653-015-9736-6
10.1016/j.chemosphere.2017.03.022
10.1080/17583004.2014.973684
10.1016/j.apsoil.2017.06.008
10.1016/S1002-0160(17)60314-X
10.1002/ldr.2896
10.1007/s10533-007-9104-4
10.1016/j.apsoil.2013.01.006
10.1002/ldr.2205
10.1071/SR07109
10.1007/s10021-008-9154-z
10.1016/j.chemosphere.2015.03.067
10.2136/sssaj2014.05.0198
10.1007/s11104-012-1383-4
10.1016/j.envint.2015.10.018
10.1016/j.still.2014.07.016
10.1016/j.agee.2017.02.034
10.1016/j.still.2016.01.002
10.1002/jsfa.7753
10.1007/s11356-014-3434-2
10.1111/gcbb.12132
10.1038/447143a
10.2134/jeq2011.0022
10.1007/s11104-011-0957-x
10.1016/j.soilbio.2009.03.016
10.1016/j.biortech.2013.11.021
10.1097/SS.0b013e31821fbfea
10.1016/j.geoderma.2014.08.010
10.1016/j.fcr.2011.11.020
10.1016/j.soilbio.2011.11.019
10.2134/jeq2012.0064
10.1016/j.ecoleng.2014.10.024
10.1071/SR10009
10.1016/j.envpol.2017.04.032
10.4236/jsbs.2015.52005
10.1016/j.eti.2015.08.003
10.1016/j.geoderma.2016.03.029
10.1016/j.catena.2015.08.013
10.1046/j.1365-2672.2000.01177.x
10.1016/j.scitotenv.2015.11.054
10.1016/j.scitotenv.2017.12.190
10.1016/j.chemosphere.2015.05.092
10.1016/j.chemosphere.2009.01.045
10.1016/j.still.2015.10.002
10.1016/j.biombioe.2013.12.010
10.1016/S0065-2113(10)05002-9
10.1002/ldr.1158
10.1002/jpln.201200282
10.1016/j.chemosphere.2017.01.096
10.1111/j.1475-2743.2012.00407.x
10.2174/1385272821666161216122035
10.1007/s12649-013-9264-5
10.1016/j.geoderma.2012.10.002
10.1016/j.biortech.2011.11.084
10.1038/nature17174
10.1002/ldr.2379
10.1016/j.biortech.2017.07.095
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2018.09.034
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EndPage 554
ExternalDocumentID 10_1016_j_geoderma_2018_09_034
S0016706118309686
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AALCJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c411t-b6aad368ed7275c4e25111dc2d197c092af6d25c46c14378a60e5f8b3622c96e3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Tue Aug 05 11:21:29 EDT 2025
Tue Jul 01 04:04:48 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Tue Oct 01 07:16:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Designer biochar
Co-composted biochar
Engineered biochar
Soil fertility
Black carbon
Composite material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-b6aad368ed7275c4e25111dc2d197c092af6d25c46c14378a60e5f8b3622c96e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2220874040
PQPubID 24069
PageCount 19
ParticipantIDs proquest_miscellaneous_2220874040
crossref_citationtrail_10_1016_j_geoderma_2018_09_034
crossref_primary_10_1016_j_geoderma_2018_09_034
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_09_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ok, Chang, Gao, Chung (bb0670) 2015; 4
Mukherjee, Zimmerman, Hamdan, Cooper (bb0625) 2014; 5
Liu, Wang, Tang, Guan, Reid, Rajapaksha, Ok, Sun (bb0580) 2016; 23
Shaheen, Rinklebe (bb0780) 2015; 74
Kammann, Schmidt, Messerschmidt, Linsel, Steffens, Müller, Koyro, Conte, Stephen (bb0390) 2015; 5
Major, Rondon, Molina, Riha, Lehmann (bb0605) 2012; 41
Edenborn, Edenborn, Krynock, Haug (bb0190) 2015; 150
Kimetu, Lehmann, Ngoze, Mugendi, Kinyangi, Riha, Verchot, Recha, Pell (bb0430) 2008; 11
Khan, Clark, Sánchez-Monedero, Shea, Meier, Bolan (bb0415) 2014; 168
Yue, Cui, Lin, Li, Zhao (bb0965) 2017; 173
Voltr (bb0925) 2012; 58
Dias, Silva, HigashiXawa, Roig, Sanchez-Monedero (bb0170) 2010; 101
Scheer, Grace, Rowlings, Kimber, Van Zwieten (bb0760) 2011; 345
Liu, Jiang, Yu (bb0575) 2015; 115
Uzoma, Inoue, Andry, Fujimaki, Zahoor, Nishihara (bb0895) 2011; 27
Steiner, Melear, Harris, Das (bb0855) 2011; 2
Elmer, Pignatello (bb0195) 2011; 95
Khan, Clark, Sánchez-Monedero, Shea, Meier, Qi, Kookana, Bolan (bb0420) 2016; 142
Khan, Chao, Waqas, Arp, Zhu (bb0410) 2013; 47
Niazi, Bibi, Shahid, Ok, Burton, Wang, Shaheen, Rinklebe, Lüttge (bb0635) 2017
Gul, Whalen (bb0255) 2016; 103
Agegnehu, Bass, Nelson, Muirhead, Wright, Bird (bb0005) 2015; 213
Han, Ren, Zhang (bb0275) 2016; 137
Zhang, Zhang, Song, Song, Hänninen, Wu (bb1000) 2017; 391
Srinivasarao, Venkateswarlu, Lal, Singh, Kundu, Vittal, Patel, Patel (bb0840) 2014; 25
Rajapaksha, Ahmad, Vithanage, Kim, Chang, Lee, Ok (bb0730) 2015; 37
Zhao, Yan, Wang, Xing, Zhou (bb1005) 2013; 59
Havlin, Tisdale, Nelson, Beaton (bb0295) 2014
Sigua, Novak, Watts (bb0795) 2016; 142
Singh, Singh, Cowie (bb0800) 2010; 48
Liu, Ye, Liu, Zhang, Zhang, Li, Pan, Kibue, Zheng, Zheng (bb0570) 2014; 129
Zou, Wang, Khan, Wang, Liu, Alsaedi, Hayat, Wang (bb1035) 2016; 50
Singh, Babu, Kumar, Srivastava, Singh, Raghubanshi (bb0805) 2015; 77
Ippolito, Ducey, Cantrell, Novak, Lentz (bb0340) 2016; 142
Lentz, Ippolito (bb0525) 2012; 41
Lehmann, da Silva, Steiner, Nehls, Zech, Glaser (bb0505) 2003; 249
Ahmad, Lee, Dou, Mohan, Sung, Yang, Ok (bb0015) 2012; 118
Blackwell, Riethmuller, Collins (bb0070) 2009
Yu, Qiu, Wang, Lei, Wang, Song (bb0955) 2017; 168
Butnan, Deenik, Toomsan, Antal, Vityakon (bb0115) 2015; 237
Shaheen, Eissa, Ghanem, Gamal El-Din, Al-Anany (bb0790) 2015; 87
Hardie, Clothier, Bound, Oliver, Close (bb0290) 2014; 376
Shaheen, Rinklebe, Selim (bb0785) 2015; 12
Shaheen, Niazi, Hassan, Bibi, Wang, Tsang, Ok, Bolan, Rinklebe (bb7000) 2018; 22
Watzinger, Feichtmair, Kitzler, Zehetner, Kloss, Wimmer, Zechmeister-Boltenstern, Soja (bb0945) 2014; 65
Wang, Xiong, Kuzyakov (bb0930) 2016; 8
Asai, Samson, Stephan, Songyikhangsuthor, Homma, Kiyono, Inoue, Shiraiwa, Horie (bb0040) 2009; 111
Vandecasteele, Sinicco, D'Hose, Nest, Mondini (bb0910) 2016; 168
Buss, Kammann, Koyro (bb0110) 2012; 41
Ippolito, Novak, Busscher, Ahmedna, Rehrah, Watts (bb0335) 2012; 41
Randolph, Bansode, Hassan, Rehrah, Ravella, Reddy, Watts, Novak, Ahmedna (bb0740) 2017; 192
Igalavithana, Ok, Usman, Al-Wabel, Oleszczuk, Lee (bb0315) 2015
Grunwald, Kaiser, Ludwig (bb0245) 2016; 164
Pietikäinen, Kiikkilä, Fritze (bb0690) 2003; 89
Xu, Wang, Li, Yao, Su, Zhu (bb0950) 2014; 48
Bindraban, van der Velde, Ye, van den Berg, Materechera, Innocent Kiba, Tamene, Vala Ragnarsdottir, Jongschaap, Hoogmoed (bb0065) 2012; 4
Zhang, Sun (bb0975) 2014; 171
Laird (bb0475) 2008; 100
Dai, Zhang, Tang, Muhammad, Wu, Brookes, Xu (bb0150) 2017
Paustian, Lehmann, Ogle, Reay, Robertson, Smith (bb0685) 2016; 532
Cantrell, Hunt, Uchimiya, Novak, Ro (bb0120) 2012; 107
David (bb0160) 2015; 25
Knicker (bb0450) 2007; 85
Zhu, Chen, Zhu, Xing (bb1020) 2017; 227
Awad, Blagodatskaya, Ok, Kuzyakov (bb0045) 2013; 64
Khalifa, Yousef (bb0405) 2015; 74
Sohi, Krull, Lopez-Capel, Bol (bb0815) 2010; 105
Tuomela, Vikman, Hatakka, Itävaara (bb0875) 2000; 72
Smith, House, Bustamante, Jaroslava Sobocká Harper, Pan, West, Clark, Adhya, Rumpel, Paustian, Kuikman, Cotrufo, Elliott, McDowell, Griffiths, Asakawa, Bondeau, Jain, Meersmans, Pugh (bb0810) 2015; 22
Lehmann, Gaunt, Randon (bb0510) 2006; 11
Laghari, Naidu, Xiao, Hu, Mirjat, Hu, Kandhro, Chen, Guo, Jogi, Abudi (bb0470) 2016; 96
Mukherjee, Zimmerman, Harris (bb0620) 2011; 163
Busch, Glaser (bb0105) 2015; 31
Jirka, Tomlinson, IBI (bb0375) 2015
Park, Ok, Kim, Kang, Cho, Heo, Delaune, Seo (bb0680) 2015; 58
Lin, Liu, Liu, Cowie, Bei, Liu, Wang, Ma, Zhu, Xie (bb0555) 2017; 27
Zhang, Cui, Pan, Li, Hussain, Zhang, Zheng, Crowley (bb0980) 2010; 139
Vithanage, Rajapaksha, Zhang, Thiele-Bruhn, Lee, Ok (bb0920) 2015; 22
Hangs, Ahmed, Schoenau (bb0285) 2016; 9
Qian, Chen, Joseph, Pan, Li, Zheng, Zhang, Zheng, Yu, Wang (bb0715) 2014; 5
Steiner, Glaser, Teixeira, Lehmann, Blum, Zech (bb0850) 2008; 171
Luo, Liu, Xia, Chen, Jiang, Zheng, Wang (bb0590) 2016
Antoniadis, Levizou, Shaheen, Ok, Sebastian, Baum, Prasad, Wenzel, Rinklebe (bb0035) 2017; 171
Gunes, Inal, Taskin, Sahin, Kaya, Atakol (bb0260) 2014; 30
Han, Qian, Yan, Chen (bb0280) 2017; 24
Kloss, Zehetner, Dellantonio, Hamid, Ottner, Liedtke, Schwanninger, Gerzabek, Soja (bb0440) 2012; 41
Agegnehu, Bass, Nelson, Bird (bb0010) 2016; 543
Kim, Kim, Cho, Choi (bb0425) 2012; 118
Nyssen, Frankl, Zenebe, Poesen, Deckers (bb0660) 2015; 26
Jones, Rousk, Edwards-Jones, DeLuca, Murphy (bb0380) 2012; 45
Jeffery, Verheijen, Velde, Bastos (bb0350) 2011; 144
Thies, Rillig (bb0870) 2009
Shepherd, Buss, Sohi, Heal (bb5000) 2017; 584
Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (bb0050) 2011; 159
Güereña, Lehmann, Hanley, Enders, Hyland, Riha (bb0250) 2013; 365
Ishii, Fukui, Takii (bb0345) 2000; 89
Lei, Zhang (bb0520) 2013; 13
Agegnehu, Srivastava, Bird (bb9000) 2017; 119
El-Naggar, Usman, Al-Omran, Ok, Ahmad, Al-Wabel (bb0200) 2015; 138
Major, Rondon, Molina, Riha, Lehmann (bb0600) 2010; 333
Zimmerman, Gao, Ahn (bb1030) 2011; 43
Li, Wang, Zhu, Wang, Wang (bb0535) 2012; 395
Liang, Lehmann, Solomon, Kinyangi, Grossman, O'neill, Skjemstad, Thies, Luizao, Petersen, Neves (bb0540) 2006; 70
Lehmann (bb0490) 2007; 5
Lal (bb0485) 2015; 7
Liu, Schulz, Brandl, Miehtke, Huwe, Glaser (bb0560) 2012; 175
Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher, Schomberg (bb0645) 2009; 3
UC Davis Biochar Database (bb0880) 2015
El-Naggar, Lee, Awad, Yang, Ryu, Rizwan, Rinklebe, Tsang, Ok (bb0220) 2018; 332
Liu, Zhang, Ji, Joseph, Bian, Li, Pan, Paz-Ferreiro (bb0565) 2013; 373
Raboin, Razafimahafaly, Rabenjarisoa, Rabary, Dusserre, Thierry Becquer (bb0720) 2016; 199
Jindo, Suto, Matsumoto, Garcia, Sonoki, Sanchez-Monedero (bb0370) 2012; 110
Cheng, Lehmann (bb0135) 2009; 75
Liang, Li, Lin, Zhao (bb0545) 2014; 13
Jeffery, Meinders, Stoof, Bezemer, van de Voorde, Mommer, Groenigen (bb0360) 2015; 251
Ibrahim, Al-Wabel, Usman, Al-Omran (bb0310) 2013; 178
Kookana, Sarmah, Van Zwieten, Krull, Singh (bb0455) 2011; 112
Purakayastha (bb0705) 2010
Novak, Busscher, Laird, Ahmedna, Watts, Niandou (bb0640) 2009; 174
Usman, Ahmad, El-Mahrouky, Al-Omran, Ok, Sallam, El-Naggar, Al-Wabel (bb0890) 2015; 38
El-Naggar, Shaheen, Ok, Rinklebe (bb0205) 2018; 624
Hussain, Farooq, Nawaz, Al-Sadi, Solaiman, Alghamdi, Ammara, Ok, Siddique (bb0305) 2017; 17
Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bb0435) 2012; 41
El-Naggar, Rajapaksha, Shaheen, Rinklebe, Ok (bb0215) 2018
Saranya, Kumutha (bb0755) 2011; 3
Lehmann, Joseph (bb0500) 2015
Karhu, Mattila, Bergström, Regina (bb0395) 2011; 140
Zhang, Ok (bb0970) 2014; 5
Schmidt, Kammann, Niggli, Evangelou, Mackie, Abiven (bb0765) 2014; 15
Zhang, Liu, Pan, Hussain, Li, Zheng, Zhang (bb0995) 2012; 351
Ogbonnaya, Semple (bb0665) 2013; 3
FAO (The Food and Agriculture Organization of the United Nations) (bb0225) 2011
Godlewska, Schmidt, Ok, Oleszczuk (bb8000) 2017
Galinato, Yoder, Granatstein (bb0230) 2011; 39
Clough, Condron, Kammann, Muller (bb0140) 2013; 3
Deenik, Diarra, Uehara, Campbell, Sumiyoshi, Antal (bb0165) 2011; 176
Hayashi, Horikawa, Takeda, Muroyama, Ani (bb0300) 2002; 40
Lu, Sun, Zong (bb0585) 2014; 114
Solaiman, Anawar (bb0820) 2015; 25
Zhou, Gao, Zimmerman, Chen, Zhang, Cao (bb1015) 2014; 152
Gray, Johnson, Dragila, Kleber (bb0240) 2014; 61
Novak, Cantrell, Watts, Busscher, Johnson (bb0650) 2014; 14
Purakayastha, Kumari, Pathak (bb0710) 2015; 239
Brodie, Carr, Condon (bb0090) 2000; 8
Carlson, Saxena, Basta, Hundal, Busalacchi, Dick (bb0125) 2015; 187
Ducey, Ippolito, Cantrell, Novak, Lentz (bb0185) 2013; 65
Wang, Gao, Fang (bb6000) 2017; 47
Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Pullammanappallil, Ok, Cao (bb0330) 2015
Yuan, Xu, Qian, Wang (bb0960) 2011; 11
Laird, Fleming, Wang, Horton, Karlen (bb0480) 2010; 158
Schulz, Dunst, Glaser (bb0775) 2013; 33
Nelissen, Ruysschaert, Manka'Abusi, D'Hose, De Beuf, Al-Barri, Cornelis, Boeckx (bb0630) 2015; 62
Inyang, Gao, Zimmerman, Zhang, Chen (bb0325) 2014; 236
Conte, Laudicina (bb0145) 2017; 21
Borchard, Wolf, Laabs, Aeckersberg, Scherer, Moeller, Amelung (bb0075) 2012; 28
Chan, Van Zwieten, Meszaros, Downie, Joseph (bb0130) 2007; 45
Kasozi, Zimmerman, Nkedi-Kizza, Gao (bb0400) 2010; 44
Omondi, Xia, Nahayo, Liu, Korai, Pan (bb0675) 2016; 274
Lehmann (bb0495) 2007; 447
Nur, Islami, Handayanto, Nugroho, Utomo (bb0655) 2014; 8
Bruun, Ambus, Egsgaard, Hauggaard-Nielsen (bb0095) 2012; 46
Usman, Madu, Alkali (bb0885) 2015; 5
Vandecasteele, Reubens, Willekens, De Neve (bb0905) 2014; 5
Zimmerman (bb1025) 2010; 44
Liang, Gascó, Fu, Méndez, Paz-Ferreiro (bb0550) 2016; 164
Subedi, Kammann, Pelissetti, Taupe, Bertora, Monaco (bb0865) 2015
Steinbeiss, Gleixner, Antonietti (bb0845) 2009; 41
Prayogo, Jones, Baeyens, Bending (bb0695) 2014; 50
Brewer, Unger, Schmidt-Rohr, Brown (bb0085) 2011; 4
Schmidt, Pandit, Martinsen, Cornelissen, Conte, Kammann (bb0770) 2015; 5
Das, Sarmah (bb0155) 2015; 512
Guo, Lua (bb0265) 1998; 46
Rajapaksha, Vithanage, Zhang, Ahmad, Mohan, Chang, Ok (bb0725) 2014; 166
Robertson, Rutherford, López-Gutiérrez, Massicotte (bb0750) 2012; 92
Major (bb0595) 2013
Rinklebe, Shaheen, Frohne (bb0745) 2016; 142
Prost, Borchard, Siemens, Kautz, Sequaris, Moeller, Amelung (bb0700) 2013; 42
Zheng, Han, Liu, Xia, Zhang, Li, Liu, Bian, Cheng, Zheng, Pan (bb1010) 2017; 241
Van Zwiete
Chan (10.1016/j.geoderma.2018.09.034_bb0130) 2007; 45
Saranya (10.1016/j.geoderma.2018.09.034_bb0755) 2011; 3
Tuomela (10.1016/j.geoderma.2018.09.034_bb0875) 2000; 72
Rajapaksha (10.1016/j.geoderma.2018.09.034_bb0730) 2015; 37
Haider (10.1016/j.geoderma.2018.09.034_bb0270) 2017; 237
Rinklebe (10.1016/j.geoderma.2018.09.034_bb0745) 2016; 142
Antoniadis (10.1016/j.geoderma.2018.09.034_bb0035) 2017; 171
Dias (10.1016/j.geoderma.2018.09.034_bb0170) 2010; 101
Gunes (10.1016/j.geoderma.2018.09.034_bb0260) 2014; 30
Zhang (10.1016/j.geoderma.2018.09.034_bb0990) 2012; 127
Lentz (10.1016/j.geoderma.2018.09.034_bb0530) 2014; 78
El-Naggar (10.1016/j.geoderma.2018.09.034_bb0205) 2018; 624
El-Naggar (10.1016/j.geoderma.2018.09.034_bb0215) 2018
Vandecasteele (10.1016/j.geoderma.2018.09.034_bb0905) 2014; 5
Khalifa (10.1016/j.geoderma.2018.09.034_bb0405) 2015; 74
Igalavithana (10.1016/j.geoderma.2018.09.034_bb0320) 2017; 174
Hangs (10.1016/j.geoderma.2018.09.034_bb0285) 2016; 9
Liu (10.1016/j.geoderma.2018.09.034_bb0575) 2015; 115
Lin (10.1016/j.geoderma.2018.09.034_bb0555) 2017; 27
Spokas (10.1016/j.geoderma.2018.09.034_bb0835) 2012; 41
Zhang (10.1016/j.geoderma.2018.09.034_bb0995) 2012; 351
Downie (10.1016/j.geoderma.2018.09.034_bb0180) 2009
Kinney (10.1016/j.geoderma.2018.09.034_bb0435) 2012; 41
Spokas (10.1016/j.geoderma.2018.09.034_bb0830) 2010; 1
Purakayastha (10.1016/j.geoderma.2018.09.034_bb0705) 2010
Jia (10.1016/j.geoderma.2018.09.034_bb0365) 2015; 5
Gray (10.1016/j.geoderma.2018.09.034_bb0240) 2014; 61
Yu (10.1016/j.geoderma.2018.09.034_bb0955) 2017; 168
Brodie (10.1016/j.geoderma.2018.09.034_bb0090) 2000; 8
Mukherjee (10.1016/j.geoderma.2018.09.034_bb0615) 2013; 193
Randolph (10.1016/j.geoderma.2018.09.034_bb0740) 2017; 192
Jirka (10.1016/j.geoderma.2018.09.034_bb0375)
Wang (10.1016/j.geoderma.2018.09.034_bb6000) 2017; 47
Kookana (10.1016/j.geoderma.2018.09.034_bb0455) 2011; 112
Schmidt (10.1016/j.geoderma.2018.09.034_bb0770) 2015; 5
Sigua (10.1016/j.geoderma.2018.09.034_bb0795) 2016; 142
Smith (10.1016/j.geoderma.2018.09.034_bb0810) 2015; 22
Clough (10.1016/j.geoderma.2018.09.034_bb0140) 2013; 3
Cantrell (10.1016/j.geoderma.2018.09.034_bb0120) 2012; 107
Dai (10.1016/j.geoderma.2018.09.034_bb0150) 2017
Ok (10.1016/j.geoderma.2018.09.034_bb0670) 2015; 4
Zhou (10.1016/j.geoderma.2018.09.034_bb1015) 2014; 152
Prost (10.1016/j.geoderma.2018.09.034_bb0700) 2013; 42
Shaheen (10.1016/j.geoderma.2018.09.034_bb0785) 2015; 12
Inyang (10.1016/j.geoderma.2018.09.034_bb0325) 2014; 236
Kammann (10.1016/j.geoderma.2018.09.034_bb0390) 2015; 5
Raboin (10.1016/j.geoderma.2018.09.034_bb0720) 2016; 199
Ippolito (10.1016/j.geoderma.2018.09.034_bb0335) 2012; 41
Han (10.1016/j.geoderma.2018.09.034_bb0280) 2017; 24
Igalavithana (10.1016/j.geoderma.2018.09.034_bb0315) 2015
Joseph (10.1016/j.geoderma.2018.09.034_bb0385) 2010; 48
Jones (10.1016/j.geoderma.2018.09.034_bb0380) 2012; 45
Major (10.1016/j.geoderma.2018.09.034_bb0595) 2013
Laghari (10.1016/j.geoderma.2018.09.034_bb0470) 2016; 96
Steiner (10.1016/j.geoderma.2018.09.034_bb0850) 2008; 171
Zhao (10.1016/j.geoderma.2018.09.034_bb1005) 2013; 59
FAO (The Food and Agriculture Organization of the United Nations) (10.1016/j.geoderma.2018.09.034_bb0225) 2011
Wang (10.1016/j.geoderma.2018.09.034_bb0930) 2016; 8
Lentz (10.1016/j.geoderma.2018.09.034_bb0525) 2012; 41
Kimetu (10.1016/j.geoderma.2018.09.034_bb0430) 2008; 11
Lehmann (10.1016/j.geoderma.2018.09.034_bb0500) 2015
El-Naggar (10.1016/j.geoderma.2018.09.034_bb0220) 2018; 332
Shaheen (10.1016/j.geoderma.2018.09.034_bb7000) 2018; 22
Pietikäinen (10.1016/j.geoderma.2018.09.034_bb0690) 2003; 89
Lehmann (10.1016/j.geoderma.2018.09.034_bb0490) 2007; 5
Singh (10.1016/j.geoderma.2018.09.034_bb0800) 2010; 48
Carlson (10.1016/j.geoderma.2018.09.034_bb0125) 2015; 187
Voltr (10.1016/j.geoderma.2018.09.034_bb0925) 2012; 58
Khan (10.1016/j.geoderma.2018.09.034_bb0420) 2016; 142
Ippolito (10.1016/j.geoderma.2018.09.034_bb0340) 2016; 142
Lehmann (10.1016/j.geoderma.2018.09.034_bb0515) 2011; 43
Hardie (10.1016/j.geoderma.2018.09.034_bb0290) 2014; 376
Lei (10.1016/j.geoderma.2018.09.034_bb0520) 2013; 13
Usman (10.1016/j.geoderma.2018.09.034_bb0885) 2015; 5
Niazi (10.1016/j.geoderma.2018.09.034_bb0635) 2017
Liu (10.1016/j.geoderma.2018.09.034_bb0580) 2016; 23
Khan (10.1016/j.geoderma.2018.09.034_bb0415) 2014; 168
Zimmerman (10.1016/j.geoderma.2018.09.034_bb1025) 2010; 44
Shaheen (10.1016/j.geoderma.2018.09.034_bb0790) 2015; 87
Srinivasarao (10.1016/j.geoderma.2018.09.034_bb0840) 2014; 25
Gul (10.1016/j.geoderma.2018.09.034_bb0255) 2016; 103
Sohi (10.1016/j.geoderma.2018.09.034_bb0815) 2010; 105
Liu (10.1016/j.geoderma.2018.09.034_bb0570) 2014; 129
Zhang (10.1016/j.geoderma.2018.09.034_bb0975) 2014; 171
Zhang (10.1016/j.geoderma.2018.09.034_bb0980) 2010; 139
Glaser (10.1016/j.geoderma.2018.09.034_bb0235) 2002; 35
Deenik (10.1016/j.geoderma.2018.09.034_bb0165) 2011; 176
El-Naggar (10.1016/j.geoderma.2018.09.034_bb0210) 2018
UC Davis Biochar Database (10.1016/j.geoderma.2018.09.034_bb0880)
Liu (10.1016/j.geoderma.2018.09.034_bb0565) 2013; 373
Vanlauwe (10.1016/j.geoderma.2018.09.034_bb0915) 2010; 39
Luo (10.1016/j.geoderma.2018.09.034_bb0590) 2016
Mekuria (10.1016/j.geoderma.2018.09.034_bb0610) 2014; 38
Novak (10.1016/j.geoderma.2018.09.034_bb0645) 2009; 3
Purakayastha (10.1016/j.geoderma.2018.09.034_bb0710) 2015; 239
Zhu (10.1016/j.geoderma.2018.09.034_bb1020) 2017; 227
Agegnehu (10.1016/j.geoderma.2018.09.034_bb0010) 2016; 543
Liang (10.1016/j.geoderma.2018.09.034_bb0540) 2006; 70
Lehmann (10.1016/j.geoderma.2018.09.034_bb0495) 2007; 447
Lu (10.1016/j.geoderma.2018.09.034_bb0585) 2014; 114
Prayogo (10.1016/j.geoderma.2018.09.034_bb0695) 2014; 50
Zhang (10.1016/j.geoderma.2018.09.034_bb0970) 2014; 5
Elmer (10.1016/j.geoderma.2018.09.034_bb0195) 2011; 95
Blackwell (10.1016/j.geoderma.2018.09.034_bb0070) 2009
Solaiman (10.1016/j.geoderma.2018.09.034_bb0825) 2010; 48
Akhtar (10.1016/j.geoderma.2018.09.034_bb0025) 2014; 138
Borchard (10.1016/j.geoderma.2018.09.034_bb0075) 2012; 28
Qian (10.1016/j.geoderma.2018.09.034_bb0715) 2014; 5
Kasozi (10.1016/j.geoderma.2018.09.034_bb0400) 2010; 44
Liang (10.1016/j.geoderma.2018.09.034_bb0550) 2016; 164
Vithanage (10.1016/j.geoderma.2018.09.034_bb0920) 2015; 22
Ahmad (10.1016/j.geoderma.2018.09.034_bb0020) 2014; 99
Kuppusamy (10.1016/j.geoderma.2018.09.034_bb0460) 2016; 87
Jindo (10.1016/j.geoderma.2018.09.034_bb0370) 2012; 110
Li (10.1016/j.geoderma.2018.09.034_bb0535) 2012; 395
Nur (10.1016/j.geoderma.2018.09.034_bb0655) 2014; 8
Su (10.1016/j.geoderma.2018.09.034_bb0860) 2016; 214
Scheer (10.1016/j.geoderma.2018.09.034_bb0760) 2011; 345
Brewer (10.1016/j.geoderma.2018.09.034_bb0085) 2011; 4
Godlewska (10.1016/j.geoderma.2018.09.034_bb8000) 2017
Jeffery (10.1016/j.geoderma.2018.09.034_bb0355) 2015; 7
Paustian (10.1016/j.geoderma.2018.09.034_bb0685) 2016; 532
Buss (10.1016/j.geoderma.2018.09.034_bb0110) 2012; 41
Das (10.1016/j.geoderma.2018.09.034_bb0155) 2015; 512
Awad (10.1016/j.geoderma.2018.09.034_bb0045) 2013; 64
Ducey (10.1016/j.geoderma.2018.09.034_bb0185) 2013; 65
Zou (10.1016/j.geoderma.2018.09.034_bb1035) 2016; 50
Omondi (10.1016/j.geoderma.2018.09.034_bb0675) 2016; 274
Han (10.1016/j.geoderma.2018.09.034_bb0275) 2016; 137
Rajapaksha (10.1016/j.geoderma.2018.09.034_bb0725) 2014; 166
Beiyuan (10.1016/j.geoderma.2018.09.034_bb0055) 2017; 178
Van Zwieten (10.1016/j.geoderma.2018.09.034_bb0900) 2010; 327
Kloss (10.1016/j.geoderma.2018.09.034_bb0440) 2012; 41
Mukherjee (10.1016/j.geoderma.2018.09.034_bb0620) 2011; 163
Bindraban (10.1016/j.geoderma.2018.09.034_bb0065) 2012; 4
Warnock (10.1016/j.geoderma.2018.09.034_bb0935) 2007; 300
Agegnehu (10.1016/j.geoderma.2018.09.034_bb0005) 2015; 213
Havlin (10.1016/j.geoderma.2018.09.034_bb0295) 2014
Jeffery (10.1016/j.geoderma.2018.09.034_bb0350) 2011; 144
Nyssen (10.1016/j.geoderma.2018.09.034_bb0660) 2015; 26
Solaiman (10.1016/j.geoderma.2018.09.034_bb0820) 2015; 25
Major (10.1016/j.geoderma.2018.09.034_bb0600) 2010; 333
Borchard (10.1016/j.geoderma.2018.09.034_bb0080) 2014; 144
Zimmerman (10.1016/j.geoderma.2018.09.034_bb1030) 2011; 43
Lal (10.1016/j.geoderma.2018.09.034_bb0485) 2015; 7
Vandecasteele (10.1016/j.geoderma.2018.09.034_bb0910) 2016; 168
Doan (10.1016/j.geoderma.2018.09.034_bb0175) 2015; 514
Lehmann (10.1016/j.geoderma.2018.09.034_bb0505) 2003; 249
Butnan (10.1016/j.geoderma.2018.09.034_bb0115) 2015; 237
Hayashi (10.1016/j.geoderma.2018.09.034_bb0300) 2002; 40
Thies (10.1016/j.geoderma.2018.09.034_bb0870) 2009
Subedi (10.1016/j.geoderma.2018.09.034_bb0865) 2015
Bruun (10.1016/j.geoderma.2018.09.034_bb0095) 2012; 46
Edenborn (10.1016/j.geoderma.2018.09.034_bb0190) 2015; 150
Cheng (10.1016/j.geoderma.2018.09.034_bb0135) 2009; 75
Park (10.1016/j.geoderma.2018.09.034_bb0680) 2015; 58
Karhu (10.1016/j.geoderma.2018.09.034_bb0395) 2011; 140
Conte (10.1016/j.geoderma.2018.09.034_bb0145) 2017; 21
Annabi (10.1016/j.geoderma.2018.09.034_bb0030) 2011; 144
Singh (10.1016/j.geoderma.2018.09.034_bb0805) 2015; 77
Laird (10.1016/j.geoderma.2018.09.034_bb0480) 2010; 158
Steiner (10.1016/j.geoderma.2018.09.034_bb0855) 2011; 2
Major (10.1016/j.geoderma.2018.09.034_bb0605) 2012; 41
Robertson (10.1016/j.geoderma.2018.09.034_bb0750) 2012; 92
Liu (10.1016/j.geoderma.2018.09.034_bb0560) 2012; 175
Zhang (10.1016/j.geoderma.2018.09.034_bb1000) 2017; 391
Liang (10.1016/j.geoderma.2018.09.034_bb0545) 2014; 13
Nelissen (10.1016/j.geoderma.2018.09.034_bb0630) 2015; 62
Schmidt (10.1016/j.geoderma.2018.09.034_bb0765) 2014; 15
David (10.1016/j.geoderma.2018.09.034_bb0160) 2015; 25
Kim (10.1016/j.geoderma.2018.09.034_bb0425) 2012; 118
Usman (10.1016/j.geoderma.2018.09.034_bb0890) 2015; 38
Inyang (10.1016/j.geoderma.2018.09.034_bb0330) 2015
Laird (10.1016/j.geoderma.2018.09.034_bb0475) 2008; 100
Biederman (10.1016/j.geoderma.2018.09.034_bb0060) 2013; 5
Novak (10.1016/j.geoderma.2018.09.034_bb0640) 2009; 174
Novak (10.1016/j.geoderma.2018.09.034_bb0650) 2014; 14
Ishii (10.1016/j.geoderma.2018.09.034_bb0345) 2000; 89
Bruun (10.1016/j.geoderma.2018.09.034_bb0100) 2015; 26
Schulz (10.1016/j.geoderma.2018.09.034_bb0775) 2013; 33
Shepherd (10.1016/j.geoderma.2018.09.034_bb5000
References_xml – volume: 144
  start-page: 175
  year: 2011
  end-page: 187
  ident: bb0350
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agric. Ecosyst. Environ.
– volume: 1
  start-page: 289
  year: 2010
  end-page: 303
  ident: bb0830
  article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios
  publication-title: Carbon Manag.
– volume: 3
  start-page: 349
  year: 2013
  end-page: 375
  ident: bb0665
  article-title: Impact of biochar on organic contaminants in soil: a tool for mitigating risk?
  publication-title: Agronomy
– volume: 5
  start-page: 693
  year: 2014
  ident: bb0625
  article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging
  publication-title: Solid Earth
– volume: 274
  start-page: 28
  year: 2016
  end-page: 34
  ident: bb0675
  article-title: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data
  publication-title: Geoderma
– volume: 46
  start-page: 113
  year: 1998
  end-page: 125
  ident: bb0265
  article-title: Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 177
  start-page: 3
  year: 2014
  end-page: 15
  ident: bb0445
  article-title: Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 236
  start-page: 39
  year: 2014
  end-page: 46
  ident: bb0325
  article-title: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites
  publication-title: Chem. Eng. J.
– volume: 96
  start-page: 4840
  year: 2016
  end-page: 4849
  ident: bb0470
  article-title: Recent developments in biochar as an effective tool for agricultural soil management: a review
  publication-title: J. Sci. Food Agric.
– volume: 115
  start-page: 12251
  year: 2015
  end-page: 12285
  ident: bb0575
  article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material
  publication-title: Chem. Rev.
– volume: 3
  start-page: 71
  year: 2011
  end-page: 77
  ident: bb0755
  article-title: Standardization of the substrate material for large scale production of arbuscular mycorrhizal inoculum
  publication-title: Int. J. Agric. Sci.
– volume: 174
  start-page: 593
  year: 2017
  end-page: 603
  ident: bb0320
  article-title: Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils
  publication-title: Chemosphere
– volume: 75
  start-page: 1021
  year: 2009
  end-page: 1027
  ident: bb0135
  article-title: Ageing of black carbon along a temperature gradient
  publication-title: Chemosphere
– volume: 395
  start-page: 157
  year: 2012
  end-page: 160
  ident: bb0535
  article-title: In situ preparation of biochar coated silica material from rice husk
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 227
  start-page: 98
  year: 2017
  end-page: 115
  ident: bb1020
  article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review
  publication-title: Environ. Pollut.
– volume: 351
  start-page: 263
  year: 2012
  end-page: 275
  ident: bb0995
  article-title: Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain
  publication-title: Plant Soil
– volume: 41
  start-page: 990
  year: 2012
  end-page: 1000
  ident: bb0440
  article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties
  publication-title: J. Environ. Qual.
– start-page: 55
  year: 2010
  ident: bb0705
  article-title: Effect of biochar on yield of different crops
  publication-title: IARI. Annual Report
– volume: 22
  start-page: 2175
  year: 2015
  end-page: 2186
  ident: bb0920
  article-title: Acid-activated biochar increased sulfamethazine retention in soils
  publication-title: Environ. Sci. Pollut. Res.
– volume: 171
  start-page: 621
  year: 2017
  end-page: 645
  ident: bb0035
  article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review
  publication-title: Earth Sci. Rev.
– volume: 5
  start-page: 381
  year: 2007
  end-page: 387
  ident: bb0490
  article-title: Bio-energy in the black
  publication-title: Front. Ecol. Environ.
– volume: 174
  start-page: 105
  year: 2009
  end-page: 112
  ident: bb0640
  article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil
  publication-title: Soil Sci.
– volume: 77
  start-page: 324
  year: 2015
  end-page: 347
  ident: bb0805
  article-title: Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective
  publication-title: Ecol. Eng.
– volume: 41
  start-page: 1157
  year: 2012
  ident: bb0110
  article-title: Biochar reduces copper toxicity in
  publication-title: J. Environ. Qual.
– volume: 61
  start-page: 196
  year: 2014
  end-page: 205
  ident: bb0240
  article-title: Water uptake in biochars: the roles of porosity and hydrophobicity
  publication-title: Biomass Bioenergy
– volume: 5
  year: 2015
  ident: bb0390
  article-title: Plant growth improvement mediated by nitrate capture in co-composted biochar
  publication-title: Sci. Rep.
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  ident: bb0930
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: Glob. Change Biol. Bioenergy.
– volume: 135
  start-page: 313
  year: 2015
  end-page: 320
  ident: bb0465
  article-title: Effects of biochar application rate on sandy desert soil properties and sorghum growth
  publication-title: Catena
– volume: 5
  start-page: 56
  year: 2015
  end-page: 61
  ident: bb0365
  article-title: Short report: effects of biochar addition on manure composting and associated N
  publication-title: J. Sustain. Bioenergy Syst.
– volume: 38
  start-page: 936
  year: 2014
  end-page: 961
  ident: bb0610
  article-title: Organic and clay-based soil amendments increase maize yield, total nutrient uptake, and soil properties in Lao PDR
  publication-title: Agroecol. Sust. Food Syst.
– volume: 46
  start-page: 73
  year: 2012
  end-page: 79
  ident: bb0095
  article-title: Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics
  publication-title: Soil Biol. Biochem.
– year: 2018
  ident: bb0215
  article-title: Potential of biochar to immobilize nickel in contaminated soils
  publication-title: Nickel in Soils and Plants
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  ident: bb1030
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
– volume: 25
  start-page: 720
  year: 2015
  end-page: 728
  ident: bb0160
  article-title: Biochar and compost increase crop yields but the effect is short term on sandplain soils of Western Australia
  publication-title: Pedosphere
– volume: 48
  start-page: 501
  year: 2010
  end-page: 515
  ident: bb0385
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust. J. Soil Res.
– volume: 41
  start-page: 1301
  year: 2009
  end-page: 1310
  ident: bb0845
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol. Biochem.
– year: 2016
  ident: bb0590
  article-title: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China
  publication-title: J. Soils Sediments
– volume: 144
  start-page: 382
  year: 2011
  end-page: 389
  ident: bb0030
  article-title: Improvement of soil aggregate stability by reported applications of organic amendments to a cultivated silty loam soil
  publication-title: Agric. Ecosyst. Environ.
– volume: 514
  start-page: 147
  year: 2015
  end-page: 154
  ident: bb0175
  article-title: Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment
  publication-title: Sci. Total Environ.
– volume: 48
  start-page: 546
  year: 2010
  end-page: 554
  ident: bb0825
  article-title: Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat
  publication-title: Aust. J. Soil Res.
– volume: 5
  start-page: 145
  year: 2014
  end-page: 154
  ident: bb0715
  article-title: Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China
  publication-title: Carbon Manag.
– volume: 164
  start-page: 3
  year: 2016
  end-page: 10
  ident: bb0550
  article-title: Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size
  publication-title: Soil Tillage Res.
– volume: 25
  start-page: 631
  year: 2015
  end-page: 638
  ident: bb0820
  article-title: Application of biochars for soil constraints: challenges and solutions
  publication-title: Pedosphere
– volume: 175
  start-page: 698
  year: 2012
  end-page: 707
  ident: bb0560
  article-title: Short term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 87
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0460
  article-title: Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions
  publication-title: Environ. Int.
– volume: 137
  start-page: 554
  year: 2016
  end-page: 562
  ident: bb0275
  article-title: Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau
  publication-title: Catena
– volume: 25
  start-page: 173
  year: 2014
  end-page: 183
  ident: bb0840
  article-title: Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in western India
  publication-title: Land Degrad. Dev.
– volume: 40
  start-page: 2381
  year: 2002
  end-page: 2386
  ident: bb0300
  article-title: Preparing activated carbon from various nutshells by chemical activation with K
  publication-title: Carbon
– year: 2014
  ident: bb0295
  article-title: Soil Fertility and Nutrient Management: An Introduction to Nutrient Management
– volume: 48
  start-page: 516
  year: 2010
  end-page: 525
  ident: bb0800
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Soil Res.
– volume: 39
  start-page: 17
  year: 2010
  end-page: 24
  ident: bb0915
  article-title: Integrated soil fertility management: operational definition and consequences for implementation and dissemination
  publication-title: Outlook Agriculture
– volume: 192
  start-page: 271
  year: 2017
  end-page: 280
  ident: bb0740
  article-title: Effect of biochars produced from solid organic municipal waste on soil quality parameters
  publication-title: J. Environ. Manag.
– volume: 142
  start-page: 41
  year: 2016
  end-page: 47
  ident: bb0745
  article-title: Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil
  publication-title: Chemosphere
– volume: 59
  start-page: 771
  year: 2013
  end-page: 782
  ident: bb1005
  article-title: Effects of the addition of rice-straw-based biochar on leaching and retention of fertilizer N in highly fertilized cropland soils
  publication-title: Soil Sci. Plant Nutr.
– volume: 38
  start-page: 511
  year: 2015
  end-page: 521
  ident: bb0890
  article-title: Chemically modified biochar produced from conocarpus waste increases NO
  publication-title: Environ. Geochem. Health
– volume: 41
  start-page: 34
  year: 2012
  end-page: 43
  ident: bb0435
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
– volume: 9
  start-page: 157
  year: 2016
  end-page: 171
  ident: bb0285
  article-title: Influence of willow biochar amendment on soil nitrogen availability and greenhouse gas production in two fertilized temperate prairie soils
  publication-title: Bioenergy Res.
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  ident: bb0235
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal— a review
  publication-title: Biol. Fertil. Soils
– volume: 74
  start-page: 960
  year: 2015
  end-page: 965
  ident: bb0405
  article-title: A short report on changes of quality indicators for a sandy textured soil after treatment with biochar produced from fronds of date palm
  publication-title: Energy Procedia
– volume: 447
  start-page: 143
  year: 2007
  end-page: 144
  ident: bb0495
  article-title: A handful of carbon
  publication-title: Nature
– volume: 50
  start-page: 7290
  year: 2016
  end-page: 7304
  ident: bb1035
  article-title: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 195
  year: 2009
  end-page: 206
  ident: bb0645
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Ann. Environ. Sci.
– volume: 12
  start-page: 2765
  year: 2015
  end-page: 2776
  ident: bb0785
  article-title: Impact of various amendments on the bioavailability and immobilization of Ni and Zn in a contaminated floodplain soil
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 376
  start-page: 347
  year: 2014
  end-page: 361
  ident: bb0290
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
– volume: 22
  start-page: 1008
  year: 2015
  end-page: 1028
  ident: bb0810
  article-title: Global change pressures on soils from land use and management
  publication-title: Glob. Chang. Biol.
– volume: 241
  start-page: 70
  year: 2017
  end-page: 78
  ident: bb1010
  article-title: Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production
  publication-title: Agric. Ecosyst. Environ.
– volume: 45
  start-page: 629
  year: 2007
  end-page: 634
  ident: bb0130
  article-title: Agronomic values of green waste biochar as a soil amendment
  publication-title: Aust. J. Soil Res.
– volume: 47
  start-page: 2158
  year: 2017
  end-page: 2207
  ident: bb6000
  article-title: Recent advances in engineered biochar productions and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 138
  start-page: 37
  year: 2014
  end-page: 44
  ident: bb0025
  article-title: Biochar enhances yield and quality of tomato under reduced irrigation
  publication-title: Agric. Water Manag.
– volume: 144
  start-page: 184
  year: 2014
  end-page: 194
  ident: bb0080
  article-title: Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice
  publication-title: Soil Tillage Res.
– year: 2017
  ident: bb0635
  article-title: Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination
  publication-title: Environ. Pollut.
– volume: 158
  start-page: 436
  year: 2010
  end-page: 442
  ident: bb0480
  article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil
  publication-title: Geoderma
– volume: 152
  start-page: 538
  year: 2014
  end-page: 542
  ident: bb1015
  article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions
  publication-title: Bioresour. Technol.
– volume: 178
  start-page: 110
  year: 2017
  end-page: 118
  ident: bb0055
  article-title: Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions
  publication-title: Chemosphere
– start-page: 193
  year: 2017
  end-page: 202
  ident: bb8000
  article-title: Biochar for composting improvement and contaminants reduction. A review.
  publication-title: Bioresour. Technol.
– volume: 166
  start-page: 303
  year: 2014
  end-page: 308
  ident: bb0725
  article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
  publication-title: Bioresour. Technol.
– volume: 21
  start-page: 1
  year: 2017
  end-page: 7
  ident: bb0145
  article-title: Mechanisms of organic coating on the surface of a poplar biochar
  publication-title: Curr. Org. Chem.
– volume: 213
  start-page: 72
  year: 2015
  end-page: 85
  ident: bb0005
  article-title: Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia
  publication-title: Agric. Ecosyst. Environ.
– volume: 624
  start-page: 1059
  year: 2018
  end-page: 1071
  ident: bb0205
  article-title: Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions
  publication-title: Sci. Total Environ.
– volume: 50
  start-page: 695
  year: 2014
  end-page: 702
  ident: bb0695
  article-title: Impact of biochar on mineralization of C and N from soil and willow litter and its relationship with microbial community biomass and structure
  publication-title: Biol. Fertil. Soils
– volume: 85
  start-page: 91
  year: 2007
  end-page: 118
  ident: bb0450
  article-title: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review
  publication-title: Biogeochemistry
– volume: 300
  start-page: 9
  year: 2007
  end-page: 20
  ident: bb0935
  article-title: Mycorrhizal responses to biochar in soil – concepts and mechanisms
  publication-title: Plant Soil
– volume: 92
  start-page: 329
  year: 2012
  end-page: 340
  ident: bb0750
  article-title: Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils
  publication-title: Can. J. Soil Sci.
– volume: 140
  start-page: 309
  year: 2011
  end-page: 313
  ident: bb0395
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
– volume: 110
  start-page: 396
  year: 2012
  end-page: 404
  ident: bb0370
  article-title: Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure
  publication-title: Bioresour. Technol.
– volume: 95
  start-page: 960
  year: 2011
  end-page: 966
  ident: bb0195
  article-title: Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils
  publication-title: Plant Dis.
– volume: 171
  start-page: 274
  year: 2014
  end-page: 284
  ident: bb0975
  article-title: Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar
  publication-title: Bioresour. Technol.
– volume: 31
  start-page: 251
  year: 2015
  end-page: 258
  ident: bb0105
  article-title: Stability of co-composted hydrochar and biochar under field conditions in a temperate soil
  publication-title: Soil Use Manag.
– volume: 333
  start-page: 117
  year: 2010
  end-page: 128
  ident: bb0600
  article-title: Maize yield and nutrition during 4 years after biochar application to a Colombia savanna oxisol
  publication-title: Plant Soil
– volume: 150
  start-page: 226
  year: 2015
  end-page: 234
  ident: bb0190
  article-title: Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar
  publication-title: J. Environ. Manag.
– volume: 17
  start-page: 685
  year: 2017
  end-page: 716
  ident: bb0305
  article-title: Biochar for crop production: potential benefits and risks
  publication-title: J. Soils Sediments
– volume: 118
  start-page: 536
  year: 2012
  end-page: 544
  ident: bb0015
  article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 227
  year: 2011
  end-page: 230
  ident: bb0855
  article-title: Biochar as bulking agent for poultry litter composting
  publication-title: Carbon Manag.
– volume: 37
  start-page: 931
  year: 2015
  end-page: 942
  ident: bb0730
  article-title: The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil
  publication-title: Environ. Geochem. Health
– year: 2015
  ident: bb0880
  article-title: UC Davis Biochar Database [WWW Document]
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: bb0540
  article-title: Black carbon increases cation exchange capacity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 41
  start-page: 1123
  year: 2012
  end-page: 1130
  ident: bb0335
  article-title: Switchgrass biochar affects two Aridisols
  publication-title: J. Environ. Qual.
– volume: 5
  start-page: 491
  year: 2014
  end-page: 503
  ident: bb0905
  article-title: Composting for increasing the fertilizer value of chicken manure: effects of feedstock on P availability
  publication-title: Waste Biomass Valoriz.
– volume: 58
  start-page: 5243
  year: 2012
  end-page: 5251
  ident: bb0925
  article-title: Concept of soil fertility and soil productivity: evaluation of agricultural sites in the Czech Republic
  publication-title: Arch. Agron. Soil Sci.
– start-page: 85
  year: 2009
  end-page: 105
  ident: bb0870
  article-title: Characteristics of biochar: biological properties
  publication-title: Biochar for Environmental Management. Science and Technology
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: bb0515
  article-title: Biochar effects on soil biota — a review
  publication-title: Soil Biol. Biochem.
– volume: 72
  start-page: 169
  year: 2000
  end-page: 183
  ident: bb0875
  article-title: Biodegradation of lignin in a compost environment: a review
  publication-title: Bioresour. Technol.
– start-page: 207
  year: 2009
  end-page: 226
  ident: bb0070
  article-title: Biochar application to soil
  publication-title: Biochar for Environmental Management Science and Technology
– volume: 543
  start-page: 295
  year: 2016
  end-page: 306
  ident: bb0010
  article-title: Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 1
  year: 2015
  end-page: 13
  ident: bb0355
  article-title: The way forward in biochar research: targeting trade-offs between the potential wins
  publication-title: Glob. Change Biol. Bioenergy.
– volume: 168
  start-page: 245
  year: 2014
  end-page: 251
  ident: bb0415
  article-title: Maturity indices in co-composting of chicken manure and sawdust with biochar
  publication-title: Bioresour. Technol.
– volume: 112
  start-page: 103
  year: 2011
  end-page: 143
  ident: bb0455
  article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences
  publication-title: Adv. Agron.
– start-page: 1
  year: 2015
  end-page: 1214
  ident: bb0500
  article-title: Biochar for environmental management: an introduction
  publication-title: Biochar for Environmental Management: Science, Technology and Implementation
– volume: 251
  start-page: 47
  year: 2015
  end-page: 54
  ident: bb0360
  article-title: Biochar application does not improve the soil hydrological function of a sandy soil
  publication-title: Geoderma
– volume: 42
  start-page: 164
  year: 2013
  end-page: 172
  ident: bb0700
  article-title: Biochar affected by composting with farmyard manure
  publication-title: J. Environ. Qual.
– volume: 89
  start-page: 768
  year: 2000
  end-page: 777
  ident: bb0345
  article-title: Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis
  publication-title: J. Appl. Microbiol.
– volume: 176
  start-page: 336
  year: 2011
  end-page: 345
  ident: bb0165
  article-title: Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol
  publication-title: Soil Sci.
– volume: 62
  start-page: 65
  year: 2015
  end-page: 78
  ident: bb0630
  article-title: Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment
  publication-title: Eur. J. Agron.
– volume: 138
  start-page: 67
  year: 2015
  end-page: 73
  ident: bb0200
  article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar
  publication-title: Chemosphere
– volume: 159
  start-page: 3268
  year: 2011
  end-page: 3282
  ident: bb0050
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
– volume: 30
  start-page: 182
  year: 2014
  end-page: 188
  ident: bb0260
  article-title: Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (
  publication-title: Soil Use Manag.
– volume: 391
  start-page: 321
  year: 2017
  end-page: 329
  ident: bb1000
  article-title: Biochar enhances nut quality of
  publication-title: For. Ecol. Manag.
– volume: 163
  start-page: 247
  year: 2011
  end-page: 255
  ident: bb0620
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
– volume: 5
  start-page: 723
  year: 2015
  end-page: 741
  ident: bb0770
  article-title: Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil
  publication-title: Agriculture
– volume: 89
  start-page: 231
  year: 2003
  end-page: 242
  ident: bb0690
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
– volume: 3
  start-page: 275
  year: 2013
  end-page: 293
  ident: bb0140
  article-title: A review of biochar and soil nitrogen dynamics
  publication-title: Agronomy
– volume: 4
  start-page: 206
  year: 2015
  end-page: 209
  ident: bb0670
  article-title: SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research
  publication-title: Environ. Technol. Innov.
– start-page: 102
  year: 2013
  ident: bb0595
  article-title: Practical aspects of biochar application to tree crops
  publication-title: IBI Technical Bulletin
– volume: 41
  start-page: 973
  year: 2012
  end-page: 989
  ident: bb0835
  article-title: Biochar: a synthesis of its agronomic impact beyond carbon sequestration
  publication-title: J. Environ. Qual.
– volume: 345
  start-page: 47
  year: 2011
  end-page: 58
  ident: bb0760
  article-title: Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia
  publication-title: Plant Soil
– start-page: 13
  year: 2009
  end-page: 32
  ident: bb0180
  article-title: Physical properties of biochar
  publication-title: Biochar for Environmental Management: Science and Technology
– volume: 142
  start-page: 184
  year: 2016
  end-page: 191
  ident: bb0340
  article-title: Designer, acidic biochar influences calcareous soil characteristics
  publication-title: Chemosphere
– volume: 26
  start-page: 272
  year: 2015
  end-page: 283
  ident: bb0100
  article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture
  publication-title: Land Degrad. Dev.
– volume: 187
  start-page: 1
  year: 2015
  end-page: 15
  ident: bb0125
  article-title: Application of organic amendments to restore degraded soil: effects on soil microbial properties
  publication-title: Environ. Monit. Assess.
– volume: 24
  start-page: 5554
  year: 2017
  end-page: 5565
  ident: bb0280
  article-title: Effects of the biochar aromaticity and molecular structures of the chlorinated organic compounds on the adsorption characteristics
  publication-title: Environ. Sci. Pollut. Res.
– volume: 249
  start-page: 343
  year: 2003
  end-page: 357
  ident: bb0505
  article-title: Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon Basin: fertilizer, manure and charcoal amendments
  publication-title: Plant Soil
– volume: 5
  start-page: 1
  year: 2015
  end-page: 7
  ident: bb0885
  article-title: The combined use of organic and inorganic fertilizers for improving maize crop productivity in Nigeria
  publication-title: Int. J. Sci. Res. Publ.
– volume: 27
  start-page: 248
  year: 2017
  end-page: 261
  ident: bb0555
  article-title: Effects of different biochars on
  publication-title: Pedosphere
– year: 2011
  ident: bb0225
  article-title: The State of the World's Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy
– volume: 168
  start-page: 200
  year: 2016
  end-page: 209
  ident: bb0910
  article-title: Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake
  publication-title: J. Environ. Manag.
– volume: 111
  start-page: 81
  year: 2009
  end-page: 84
  ident: bb0040
  article-title: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield
  publication-title: Field Crop Res.
– volume: 87
  start-page: 506
  year: 2015
  end-page: 515
  ident: bb0790
  article-title: Metal ion removal from industrial wastewaters by sorption on activated carbon, cement kiln dust, and sawdust
  publication-title: Water Environ. Res.
– volume: 193
  start-page: 122
  year: 2013
  end-page: 130
  ident: bb0615
  article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures
  publication-title: Geoderma
– volume: 199
  start-page: 99
  year: 2016
  end-page: 108
  ident: bb0720
  article-title: Improving the fertility of tropical acid soils: liming versus biochar application? A long term comparison in the highlands of Madagascar
  publication-title: Field Crop Res.
– volume: 74
  start-page: 319
  year: 2015
  end-page: 326
  ident: bb0780
  article-title: Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil
  publication-title: Ecol. Eng.
– volume: 4
  start-page: 478
  year: 2012
  end-page: 488
  ident: bb0065
  article-title: Assessing the impact of soil degradation on food production
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 103
  start-page: 1
  year: 2016
  end-page: 15
  ident: bb0255
  article-title: Biochemical cycling of nitrogen and phosphorus in biochar-amended soils - review paper
  publication-title: Soil Biol. Biochem.
– volume: 114
  start-page: 37
  year: 2014
  end-page: 44
  ident: bb0585
  article-title: Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol)
  publication-title: Catena
– volume: 512
  start-page: 682
  year: 2015
  end-page: 685
  ident: bb0155
  article-title: The love–hate relationship of pyrolysis biochar and water: a perspective
  publication-title: Sci. Total Environ.
– volume: 33
  start-page: 817
  year: 2013
  end-page: 827
  ident: bb0775
  article-title: Positive effects of composted biochar on plant growth and soil fertility
  publication-title: Agron. Sustain. Dev.
– volume: 139
  start-page: 469
  year: 2010
  end-page: 475
  ident: bb0980
  article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China
  publication-title: Agric. Ecosyst. Environ.
– volume: 178
  start-page: 165
  year: 2013
  end-page: 173
  ident: bb0310
  article-title: Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil
  publication-title: Soil Sci.
– volume: 8
  start-page: 178
  year: 2000
  end-page: 189
  ident: bb0090
  article-title: A comparison of static pile and turned windrow methods for poultry litter compost production
  publication-title: Compost Sci. Util.
– volume: 78
  start-page: 1641
  year: 2014
  end-page: 1655
  ident: bb0530
  article-title: Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn
  publication-title: Soil Sci. Soc. Am. J.
– volume: 26
  start-page: 629
  year: 2015
  end-page: 631
  ident: bb0660
  article-title: Environmental conservation for food production and sustainable livelihood in Tropical Africa
  publication-title: Land Degrad. Dev.
– volume: 142
  start-page: 168
  year: 2016
  end-page: 175
  ident: bb0795
  article-title: Ameliorating soil chemical properties of a hard setting subsoil layer in Coastal Plain USA with different designer biochars
  publication-title: Chemosphere
– volume: 22
  start-page: 1
  year: 2018
  end-page: 32
  ident: bb7000
  article-title: Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review
  publication-title: Int. Mater. Rev.
– volume: 119
  start-page: 156
  year: 2017
  end-page: 170
  ident: bb9000
  article-title: The role of biochar and biochar-compost in improving soil quality and crop performance: a review
  publication-title: Appl. Soil Ecol.
– year: 2015
  ident: bb0315
  article-title: The Effects of Biochar Amendment on Soil Fertility. Agricultural and Environmental Applications of Biochar: Advances and Barriers
– volume: 332
  start-page: 100
  year: 2018
  end-page: 108
  ident: bb0220
  article-title: Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils
  publication-title: Geoderma
– volume: 13
  start-page: 1561
  year: 2013
  end-page: 1572
  ident: bb0520
  article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties
  publication-title: J. Soils Sediments
– volume: 237
  start-page: 105
  year: 2015
  end-page: 116
  ident: bb0115
  article-title: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy
  publication-title: Geoderma
– volume: 48
  start-page: 9391
  year: 2014
  end-page: 9399
  ident: bb0950
  article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape
  publication-title: Environ. Sci. Technol.
– volume: 142
  start-page: 14
  year: 2016
  end-page: 23
  ident: bb0420
  article-title: Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost
  publication-title: Chemosphere
– volume: 373
  start-page: 583
  year: 2013
  end-page: 594
  ident: bb0565
  article-title: Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data
  publication-title: Plant Soil
– volume: 164
  start-page: 11
  year: 2016
  end-page: 17
  ident: bb0245
  article-title: Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures
  publication-title: Soil Tillage Res.
– volume: 44
  start-page: 6189
  year: 2010
  end-page: 6195
  ident: bb0400
  article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars)
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 741
  year: 2011
  end-page: 750
  ident: bb0960
  article-title: Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars
  publication-title: J. Soils Sediments
– volume: 171
  start-page: 893
  year: 2008
  end-page: 899
  ident: bb0850
  article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 101
  start-page: 1239
  year: 2010
  end-page: 1246
  ident: bb0170
  article-title: Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification
  publication-title: Bioresour. Technol.
– volume: 532
  start-page: 49
  year: 2016
  end-page: 57
  ident: bb0685
  article-title: Climate-smart soils
  publication-title: Nature
– volume: 28
  start-page: 177
  year: 2012
  end-page: 184
  ident: bb0075
  article-title: Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment
  publication-title: Soil Use Manag.
– volume: 23
  start-page: 995
  year: 2016
  end-page: 1006
  ident: bb0580
  article-title: Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 173
  start-page: 551
  year: 2017
  end-page: 556
  ident: bb0965
  article-title: Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth
  publication-title: Chemosphere
– year: 2015
  ident: bb0375
  article-title: State of the Biochar Industry
– volume: 64
  start-page: 488
  year: 2013
  end-page: 499
  ident: bb0045
  article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of
  publication-title: Eur. J. Soil Sci.
– start-page: 406
  year: 2015
  end-page: 433
  ident: bb0330
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 584
  start-page: 448
  year: 2017
  end-page: 457
  ident: bb5000
  article-title: Bioavailability of phosphorus, other nutrients and potentially toxic elements from marginal biomass-derived biochar assessed in barley (Hordeum vulgare) growth experiments
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 202
  year: 2013
  end-page: 214
  ident: bb0060
  article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis
  publication-title: GCB Bioenergy
– volume: 13
  start-page: 525
  year: 2014
  end-page: 532
  ident: bb0545
  article-title: Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil
  publication-title: J. Integr. Agric.
– volume: 58
  start-page: 751
  year: 2015
  end-page: 760
  ident: bb0680
  article-title: Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption
  publication-title: J. Korean Soc. Appl. Biol. Chem.
– year: 2018
  ident: bb0210
  article-title: Biochar influences soil carbon pools and facilitates interactions with soil: a field investigation
  publication-title: Land Degrad. Dev.
– volume: 47
  start-page: 8624
  year: 2013
  end-page: 8632
  ident: bb0410
  article-title: Sewage sludge biochar influence upon rice (
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 65
  year: 2013
  end-page: 72
  ident: bb0185
  article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances
  publication-title: Appl. Soil Ecol.
– volume: 129
  start-page: 22
  year: 2014
  end-page: 29
  ident: bb0570
  article-title: Sustainable biochar effects for low carbon crop production: a 5-crop season field experiment on a low fertility soil from Central China
  publication-title: Agric. Syst.
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: bb0020
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 237
  start-page: 80
  year: 2017
  end-page: 94
  ident: bb0270
  article-title: Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study
  publication-title: Agric. Ecosyst. Environ.
– volume: 107
  start-page: 419
  year: 2012
  end-page: 428
  ident: bb0120
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresour. Technol.
– volume: 14
  start-page: 330
  year: 2014
  end-page: 343
  ident: bb0650
  article-title: Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks
  publication-title: J. Soils Sediments
– volume: 15
  start-page: 117
  year: 2014
  end-page: 123
  ident: bb0765
  article-title: Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality
  publication-title: Agric. Ecosyst. Environ.
– volume: 118
  start-page: 158
  year: 2012
  end-page: 162
  ident: bb0425
  article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (
  publication-title: Bioresour. Technol.
– volume: 214
  start-page: 94
  year: 2016
  end-page: 100
  ident: bb0860
  article-title: Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil
  publication-title: Environ. Pollut.
– volume: 5
  start-page: 255
  year: 2014
  end-page: 257
  ident: bb0970
  article-title: Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration
  publication-title: Carbon Manag.
– volume: 4
  start-page: 312
  year: 2011
  end-page: 323
  ident: bb0085
  article-title: Criteria to select biochars for field studies based on biochar chemical properties
  publication-title: Bioenergy Res.
– volume: 65
  start-page: 40
  year: 2014
  end-page: 51
  ident: bb0945
  article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by
  publication-title: Eur. J. Soil Sci.
– year: 2015
  ident: bb0865
  article-title: Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry?
  publication-title: Eur. J. Soil Sci.
– volume: 239
  start-page: 293
  year: 2015
  end-page: 303
  ident: bb0710
  article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues
  publication-title: Geoderma
– volume: 11
  start-page: 395
  year: 2006
  end-page: 419
  ident: bb0510
  article-title: Biochar sequestration in terrestrial ecosystems – a review
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
– volume: 27
  start-page: 205
  year: 2011
  end-page: 212
  ident: bb0895
  article-title: Effect of cow manure biochar on maize productivity under sandy soil condition
  publication-title: Soil Use Manag.
– volume: 11
  start-page: 726
  year: 2008
  end-page: 739
  ident: bb0430
  article-title: Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient
  publication-title: Ecosystems
– volume: 105
  start-page: 47
  year: 2010
  end-page: 82
  ident: bb0815
  article-title: A review of biochar and its use and function in soil
  publication-title: Adv. Agron.
– volume: 327
  start-page: 235
  year: 2010
  end-page: 246
  ident: bb0900
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
– volume: 168
  start-page: 341
  year: 2017
  end-page: 349
  ident: bb0955
  article-title: Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (
  publication-title: Chemosphere
– volume: 127
  start-page: 153
  year: 2012
  end-page: 160
  ident: bb0990
  article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles
  publication-title: Field Crop Res.
– year: 2017
  ident: bb0150
  article-title: Potential role of biochars in decreasing soil acidification-a critical review
  publication-title: Sci. Total Environ.
– volume: 48
  start-page: 271
  year: 2012
  end-page: 284
  ident: bb0735
  article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil
  publication-title: Biol. Fertil. Soils
– volume: 100
  start-page: 178
  year: 2008
  end-page: 181
  ident: bb0475
  article-title: The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality
  publication-title: Agron. J.
– volume: 45
  start-page: 113
  year: 2012
  end-page: 124
  ident: bb0380
  article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial
  publication-title: Soil Biol. Biochem.
– volume: 39
  start-page: 6344
  year: 2011
  end-page: 6350
  ident: bb0230
  article-title: The economic value of biochar in crop production and carbon sequestration
  publication-title: Energy Policy
– volume: 41
  start-page: 1076
  year: 2012
  end-page: 1086
  ident: bb0605
  article-title: Nutrient leaching in a Colombian savanna oxisol amended with biochar
  publication-title: J. Environ. Qual.
– volume: 8
  start-page: 105
  year: 2014
  end-page: 111
  ident: bb0655
  article-title: The use of biochar fortified compost on calcareous soil of east Nusa Tenggara, Indonesia: 2. Effect on the yield of maize (
  publication-title: Am.-Eurasian J. Sustain. Agric.
– volume: 365
  start-page: 239
  year: 2013
  end-page: 254
  ident: bb0250
  article-title: Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system
  publication-title: Plant Soil
– volume: 7
  start-page: 5875
  year: 2015
  end-page: 5895
  ident: bb0485
  article-title: Restoring soil quality to mitigate soil degradation
  publication-title: Sustainability
– volume: 44
  start-page: 1295
  year: 2010
  end-page: 1301
  ident: bb1025
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 1033
  year: 2012
  end-page: 1043
  ident: bb0525
  article-title: Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake
  publication-title: J. Environ. Qual.
– volume: 214
  start-page: 94
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0860
  article-title: Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.03.072
– volume: 41
  start-page: 1076
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0605
  article-title: Nutrient leaching in a Colombian savanna oxisol amended with biochar
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0128
– volume: 139
  start-page: 469
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0980
  article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.09.003
– volume: 4
  start-page: 478
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0065
  article-title: Assessing the impact of soil degradation on food production
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2012.09.015
– volume: 101
  start-page: 1239
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0170
  article-title: Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.09.024
– volume: 327
  start-page: 235
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0900
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0050-x
– volume: 144
  start-page: 175
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0350
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.08.015
– volume: 41
  start-page: 1033
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0525
  article-title: Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0126
– volume: 333
  start-page: 117
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0600
  article-title: Maize yield and nutrition during 4 years after biochar application to a Colombia savanna oxisol
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0327-0
– volume: 174
  start-page: 105
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2018.09.034_bb0640
  article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3181981d9a
– volume: 41
  start-page: 990
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0440
  article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0070
– ident: 10.1016/j.geoderma.2018.09.034_bb0880
– volume: 8
  start-page: 512
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0930
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12266
– year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0590
  article-title: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China
  publication-title: J. Soils Sediments
– volume: 89
  start-page: 231
  year: 2003
  ident: 10.1016/j.geoderma.2018.09.034_bb0690
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2000.890203.x
– year: 2018
  ident: 10.1016/j.geoderma.2018.09.034_bb0215
  article-title: Potential of biochar to immobilize nickel in contaminated soils
– volume: 5
  start-page: 723
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0770
  article-title: Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil
  publication-title: Agriculture
  doi: 10.3390/agriculture5030723
– volume: 48
  start-page: 271
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0735
  article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-011-0624-7
– volume: 171
  start-page: 621
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0035
  article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2017.06.005
– volume: 33
  start-page: 817
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0775
  article-title: Positive effects of composted biochar on plant growth and soil fertility
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0150-0
– volume: 129
  start-page: 22
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0570
  article-title: Sustainable biochar effects for low carbon crop production: a 5-crop season field experiment on a low fertility soil from Central China
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2014.05.008
– volume: 50
  start-page: 695
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0695
  article-title: Impact of biochar on mineralization of C and N from soil and willow litter and its relationship with microbial community biomass and structure
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-013-0884-5
– volume: 27
  start-page: 205
  issue: 2
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0895
  article-title: Effect of cow manure biochar on maize productivity under sandy soil condition
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2011.00340.x
– volume: 37
  start-page: 931
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0730
  article-title: The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-015-9694-z
– volume: 118
  start-page: 536
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0015
  article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.05.042
– volume: 5
  start-page: 693
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0625
  article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging
  publication-title: Solid Earth
  doi: 10.5194/se-5-693-2014
– volume: 77
  start-page: 324
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0805
  article-title: Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2015.01.011
– volume: 65
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0945
  article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12100
– volume: 332
  start-page: 100
  year: 2018
  ident: 10.1016/j.geoderma.2018.09.034_bb0220
  article-title: Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.06.017
– volume: 38
  start-page: 936
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0610
  article-title: Organic and clay-based soil amendments increase maize yield, total nutrient uptake, and soil properties in Lao PDR
  publication-title: Agroecol. Sust. Food Syst.
– volume: 3
  start-page: 71
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0755
  article-title: Standardization of the substrate material for large scale production of arbuscular mycorrhizal inoculum
  publication-title: Int. J. Agric. Sci.
  doi: 10.9735/0975-3710.3.1.71-77
– volume: 25
  start-page: 720
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0160
  article-title: Biochar and compost increase crop yields but the effect is short term on sandplain soils of Western Australia
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30053-9
– volume: 168
  start-page: 245
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0415
  article-title: Maturity indices in co-composting of chicken manure and sawdust with biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.123
– ident: 10.1016/j.geoderma.2018.09.034_bb0375
– volume: 11
  start-page: 741
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0960
  article-title: Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-011-0365-0
– year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0865
  article-title: Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry?
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12302
– volume: 44
  start-page: 6189
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0400
  article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1014423
– volume: 100
  start-page: 178
  year: 2008
  ident: 10.1016/j.geoderma.2018.09.034_bb0475
  article-title: The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0161
– year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0225
– volume: 199
  start-page: 99
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0720
  article-title: Improving the fertility of tropical acid soils: liming versus biochar application? A long term comparison in the highlands of Madagascar
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2016.09.005
– volume: 8
  start-page: 105
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0655
  article-title: The use of biochar fortified compost on calcareous soil of east Nusa Tenggara, Indonesia: 2. Effect on the yield of maize (Zea mays L) and phosphate absorption
  publication-title: Am.-Eurasian J. Sustain. Agric.
– volume: 2
  start-page: 227
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0855
  article-title: Biochar as bulking agent for poultry litter composting
  publication-title: Carbon Manag.
  doi: 10.4155/cmt.11.15
– volume: 50
  start-page: 7290
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb1035
  article-title: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b01897
– year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0150
  article-title: Potential role of biochars in decreasing soil acidification-a critical review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.169
– volume: 58
  start-page: 5243
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0925
  article-title: Concept of soil fertility and soil productivity: evaluation of agricultural sites in the Czech Republic
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2012.700511
– volume: 376
  start-page: 347
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0290
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1980-x
– volume: 45
  start-page: 113
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0380
  article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.10.012
– volume: 5
  start-page: 145
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0715
  article-title: Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2014.912866
– year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0295
– volume: 168
  start-page: 200
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0910
  article-title: Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.11.045
– volume: 70
  start-page: 1719
  year: 2006
  ident: 10.1016/j.geoderma.2018.09.034_bb0540
  article-title: Black carbon increases cation exchange capacity
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0383
– volume: 95
  start-page: 960
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0195
  article-title: Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-10-10-0741
– volume: 192
  start-page: 271
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0740
  article-title: Effect of biochars produced from solid organic municipal waste on soil quality parameters
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.01.061
– volume: 17
  start-page: 685
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0305
  article-title: Biochar for crop production: potential benefits and risks
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-016-1360-2
– volume: 168
  start-page: 341
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0955
  article-title: Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.10.069
– volume: 391
  start-page: 321
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb1000
  article-title: Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.02.036
– volume: 41
  start-page: 1123
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0335
  article-title: Switchgrass biochar affects two Aridisols
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0100
– volume: 11
  start-page: 395
  year: 2006
  ident: 10.1016/j.geoderma.2018.09.034_bb0510
  article-title: Biochar sequestration in terrestrial ecosystems – a review
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
  doi: 10.1007/s11027-005-9006-5
– volume: 159
  start-page: 3268
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0050
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.023
– volume: 40
  start-page: 2381
  year: 2002
  ident: 10.1016/j.geoderma.2018.09.034_bb0300
  article-title: Preparing activated carbon from various nutshells by chemical activation with K2CO3
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00118-5
– volume: 140
  start-page: 309
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0395
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– volume: 25
  start-page: 631
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0820
  article-title: Application of biochars for soil constraints: challenges and solutions
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30044-8
– volume: 47
  start-page: 2158
  issue: 22
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb6000
  article-title: Recent advances in engineered biochar productions and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2017.1418580
– volume: 175
  start-page: 698
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0560
  article-title: Short term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201100172
– volume: 171
  start-page: 893
  year: 2008
  ident: 10.1016/j.geoderma.2018.09.034_bb0850
  article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200625199
– volume: 166
  start-page: 303
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0725
  article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.05.029
– volume: 300
  start-page: 9
  year: 2007
  ident: 10.1016/j.geoderma.2018.09.034_bb0935
  article-title: Mycorrhizal responses to biochar in soil – concepts and mechanisms
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9391-5
– volume: 345
  start-page: 47
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0760
  article-title: Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0759-1
– volume: 9
  start-page: 157
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0285
  article-title: Influence of willow biochar amendment on soil nitrogen availability and greenhouse gas production in two fertilized temperate prairie soils
  publication-title: Bioenergy Res.
  doi: 10.1007/s12155-015-9671-5
– volume: 46
  start-page: 113
  year: 1998
  ident: 10.1016/j.geoderma.2018.09.034_bb0265
  article-title: Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/S0165-2370(98)00074-6
– volume: 112
  start-page: 103
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0455
  article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-385538-1.00003-2
– start-page: 55
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0705
  article-title: Effect of biochar on yield of different crops
– volume: 64
  start-page: 488
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0045
  article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12034
– volume: 584
  start-page: 448
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb5000
  article-title: Bioavailability of phosphorus, other nutrients and potentially toxic elements from marginal biomass-derived biochar assessed in barley (Hordeum vulgare) growth experiments
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.028
– start-page: 85
  year: 2009
  ident: 10.1016/j.geoderma.2018.09.034_bb0870
  article-title: Characteristics of biochar: biological properties
– volume: 110
  start-page: 396
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0370
  article-title: Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.120
– volume: 41
  start-page: 973
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0835
  article-title: Biochar: a synthesis of its agronomic impact beyond carbon sequestration
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0069
– volume: 111
  start-page: 81
  year: 2009
  ident: 10.1016/j.geoderma.2018.09.034_bb0040
  article-title: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2008.10.008
– year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0635
  article-title: Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination
  publication-title: Environ. Pollut.
– volume: 8
  start-page: 178
  year: 2000
  ident: 10.1016/j.geoderma.2018.09.034_bb0090
  article-title: A comparison of static pile and turned windrow methods for poultry litter compost production
  publication-title: Compost Sci. Util.
  doi: 10.1080/1065657X.2000.10701990
– volume: 72
  start-page: 169
  year: 2000
  ident: 10.1016/j.geoderma.2018.09.034_bb0875
  article-title: Biodegradation of lignin in a compost environment: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(99)00104-2
– volume: 249
  start-page: 343
  year: 2003
  ident: 10.1016/j.geoderma.2018.09.034_bb0505
  article-title: Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon Basin: fertilizer, manure and charcoal amendments
  publication-title: Plant Soil
  doi: 10.1023/A:1022833116184
– volume: 144
  start-page: 382
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0030
  article-title: Improvement of soil aggregate stability by reported applications of organic amendments to a cultivated silty loam soil
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.07.005
– volume: 3
  start-page: 195
  year: 2009
  ident: 10.1016/j.geoderma.2018.09.034_bb0645
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Ann. Environ. Sci.
– volume: 512
  start-page: 682
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0155
  article-title: The love–hate relationship of pyrolysis biochar and water: a perspective
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.01.061
– volume: 41
  start-page: 34
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0435
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.033
– volume: 373
  start-page: 583
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0565
  article-title: Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1806-x
– volume: 251
  start-page: 47
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0360
  article-title: Biochar application does not improve the soil hydrological function of a sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.03.022
– volume: 138
  start-page: 67
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0200
  article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.052
– volume: 13
  start-page: 525
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0545
  article-title: Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(13)60708-X
– volume: 12
  start-page: 2765
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0785
  article-title: Impact of various amendments on the bioavailability and immobilization of Ni and Zn in a contaminated floodplain soil
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-014-0713-x
– volume: 43
  start-page: 1169
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb1030
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.005
– start-page: 207
  year: 2009
  ident: 10.1016/j.geoderma.2018.09.034_bb0070
  article-title: Biochar application to soil
– volume: 118
  start-page: 158
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0425
  article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.094
– volume: 48
  start-page: 516
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0800
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Soil Res.
  doi: 10.1071/SR10058
– volume: 171
  start-page: 274
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0975
  article-title: Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.08.079
– volume: 138
  start-page: 37
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0025
  article-title: Biochar enhances yield and quality of tomato under reduced irrigation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.02.016
– volume: 43
  start-page: 1812
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0515
  article-title: Biochar effects on soil biota — a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 237
  start-page: 80
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0270
  article-title: Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.12.019
– volume: 3
  start-page: 349
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0665
  article-title: Impact of biochar on organic contaminants in soil: a tool for mitigating risk?
  publication-title: Agronomy
  doi: 10.3390/agronomy3020349
– volume: 239
  start-page: 293
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0710
  article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.11.009
– volume: 3
  start-page: 275
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0140
  article-title: A review of biochar and soil nitrogen dynamics
  publication-title: Agronomy
  doi: 10.3390/agronomy3020275
– volume: 395
  start-page: 157
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0535
  article-title: In situ preparation of biochar coated silica material from rice husk
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2011.12.023
– volume: 142
  start-page: 168
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0795
  article-title: Ameliorating soil chemical properties of a hard setting subsoil layer in Coastal Plain USA with different designer biochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.06.016
– volume: 163
  start-page: 247
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0620
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.021
– volume: 236
  start-page: 39
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0325
  article-title: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.074
– volume: 514
  start-page: 147
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0175
  article-title: Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.02.005
– volume: 23
  start-page: 995
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0580
  article-title: Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4885-9
– volume: 24
  start-page: 5554
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0280
  article-title: Effects of the biochar aromaticity and molecular structures of the chlorinated organic compounds on the adsorption characteristics
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-8303-8
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0885
  article-title: The combined use of organic and inorganic fertilizers for improving maize crop productivity in Nigeria
  publication-title: Int. J. Sci. Res. Publ.
– volume: 13
  start-page: 1561
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0520
  article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-013-0738-7
– volume: 39
  start-page: 6344
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0230
  article-title: The economic value of biochar in crop production and carbon sequestration
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.07.035
– volume: 58
  start-page: 751
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0680
  article-title: Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption
  publication-title: J. Korean Soc. Appl. Biol. Chem.
  doi: 10.1007/s13765-015-0103-1
– volume: 35
  start-page: 219
  year: 2002
  ident: 10.1016/j.geoderma.2018.09.034_bb0235
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal— a review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-002-0466-4
– volume: 5
  start-page: 202
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0060
  article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12037
– volume: 30
  start-page: 182
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0260
  article-title: Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12114
– volume: 5
  start-page: 381
  year: 2007
  ident: 10.1016/j.geoderma.2018.09.034_bb0490
  article-title: Bio-energy in the black
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
– volume: 87
  start-page: 506
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0790
  article-title: Metal ion removal from industrial wastewaters by sorption on activated carbon, cement kiln dust, and sawdust
  publication-title: Water Environ. Res.
  doi: 10.2175/106143015X14212658614630
– volume: 1
  start-page: 289
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0830
  article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios
  publication-title: Carbon Manag.
  doi: 10.4155/cmt.10.32
– volume: 178
  start-page: 165
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0310
  article-title: Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3182979eac
– volume: 7
  start-page: 5875
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0485
  article-title: Restoring soil quality to mitigate soil degradation
  publication-title: Sustainability
  doi: 10.3390/su7055875
– volume: 22
  start-page: 1008
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0810
  article-title: Global change pressures on soils from land use and management
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13068
– volume: 142
  start-page: 14
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0420
  article-title: Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.065
– volume: 14
  start-page: 330
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0650
  article-title: Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-013-0680-8
– volume: 4
  start-page: 312
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0085
  article-title: Criteria to select biochars for field studies based on biochar chemical properties
  publication-title: Bioenergy Res.
  doi: 10.1007/s12155-011-9133-7
– start-page: 406
  issue: 4
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0330
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2015.1096880
– volume: 92
  start-page: 329
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0750
  article-title: Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss2011-066
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0020
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 137
  start-page: 554
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0275
  article-title: Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau
  publication-title: Catena
  doi: 10.1016/j.catena.2015.11.002
– volume: 47
  start-page: 8624
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0410
  article-title: Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400554x
– volume: 48
  start-page: 546
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0825
  article-title: Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10002
– volume: 44
  start-page: 1295
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb1025
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903140c
– volume: 114
  start-page: 37
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0585
  article-title: Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol)
  publication-title: Catena
  doi: 10.1016/j.catena.2013.10.014
– volume: 31
  start-page: 251
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0105
  article-title: Stability of co-composted hydrochar and biochar under field conditions in a temperate soil
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12180
– volume: 48
  start-page: 9391
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0950
  article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5021058
– volume: 103
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0255
  article-title: Biochemical cycling of nitrogen and phosphorus in biochar-amended soils - review paper
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.08.001
– volume: 213
  start-page: 72
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0005
  article-title: Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.07.027
– volume: 62
  start-page: 65
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0630
  article-title: Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2014.09.006
– volume: 39
  start-page: 17
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0915
  article-title: Integrated soil fertility management: operational definition and consequences for implementation and dissemination
  publication-title: Outlook Agriculture
  doi: 10.5367/000000010791169998
– volume: 15
  start-page: 117
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0765
  article-title: Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.04.001
– volume: 59
  start-page: 771
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb1005
  article-title: Effects of the addition of rice-straw-based biochar on leaching and retention of fertilizer N in highly fertilized cropland soils
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2013.830229
– volume: 74
  start-page: 960
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0405
  article-title: A short report on changes of quality indicators for a sandy textured soil after treatment with biochar produced from fronds of date palm
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.729
– volume: 158
  start-page: 436
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0480
  article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.012
– volume: 150
  start-page: 226
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0190
  article-title: Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.11.023
– volume: 174
  start-page: 593
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0320
  article-title: Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.148
– volume: 115
  start-page: 12251
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0575
  article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00195
– volume: 187
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0125
  article-title: Application of organic amendments to restore degraded soil: effects on soil microbial properties
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4293-0
– start-page: 102
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0595
  article-title: Practical aspects of biochar application to tree crops
– volume: 38
  start-page: 511
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0890
  article-title: Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-015-9736-6
– volume: 178
  start-page: 110
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0055
  article-title: Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.03.022
– volume: 5
  start-page: 255
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0970
  article-title: Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2014.973684
– volume: 119
  start-page: 156
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb9000
  article-title: The role of biochar and biochar-compost in improving soil quality and crop performance: a review
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.06.008
– volume: 27
  start-page: 248
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0555
  article-title: Effects of different biochars on Pinus elliottii growth, N use efficiency, soil N2O and CH4 emissions and C storage in a subtropical area of China
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60314-X
– year: 2018
  ident: 10.1016/j.geoderma.2018.09.034_bb0210
  article-title: Biochar influences soil carbon pools and facilitates interactions with soil: a field investigation
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2896
– volume: 85
  start-page: 91
  year: 2007
  ident: 10.1016/j.geoderma.2018.09.034_bb0450
  article-title: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9104-4
– volume: 65
  start-page: 65
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0185
  article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.01.006
– volume: 26
  start-page: 272
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0100
  article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2205
– volume: 45
  start-page: 629
  year: 2007
  ident: 10.1016/j.geoderma.2018.09.034_bb0130
  article-title: Agronomic values of green waste biochar as a soil amendment
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR07109
– volume: 5
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0390
  article-title: Plant growth improvement mediated by nitrate capture in co-composted biochar
  publication-title: Sci. Rep.
– volume: 11
  start-page: 726
  year: 2008
  ident: 10.1016/j.geoderma.2018.09.034_bb0430
  article-title: Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9154-z
– volume: 142
  start-page: 41
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0745
  article-title: Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.03.067
– volume: 78
  start-page: 1641
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0530
  article-title: Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2014.05.0198
– volume: 365
  start-page: 239
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0250
  article-title: Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1383-4
– volume: 87
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0460
  article-title: Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.10.018
– volume: 144
  start-page: 184
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0080
  article-title: Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2014.07.016
– volume: 241
  start-page: 70
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb1010
  article-title: Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.02.034
– volume: 164
  start-page: 11
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0245
  article-title: Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2016.01.002
– year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0315
– volume: 96
  start-page: 4840
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0470
  article-title: Recent developments in biochar as an effective tool for agricultural soil management: a review
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.7753
– volume: 22
  start-page: 2175
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0920
  article-title: Acid-activated biochar increased sulfamethazine retention in soils
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3434-2
– volume: 7
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0355
  article-title: The way forward in biochar research: targeting trade-offs between the potential wins
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12132
– volume: 447
  start-page: 143
  year: 2007
  ident: 10.1016/j.geoderma.2018.09.034_bb0495
  article-title: A handful of carbon
  publication-title: Nature
  doi: 10.1038/447143a
– volume: 41
  start-page: 1157
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0110
  article-title: Biochar reduces copper toxicity in Chenopodium quinoa Willd. in a sandy soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0022
– volume: 351
  start-page: 263
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0995
  article-title: Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0957-x
– volume: 41
  start-page: 1301
  year: 2009
  ident: 10.1016/j.geoderma.2018.09.034_bb0845
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.03.016
– start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0500
  article-title: Biochar for environmental management: an introduction
– volume: 152
  start-page: 538
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb1015
  article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.11.021
– volume: 176
  start-page: 336
  year: 2011
  ident: 10.1016/j.geoderma.2018.09.034_bb0165
  article-title: Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31821fbfea
– volume: 237
  start-page: 105
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0115
  article-title: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.08.010
– volume: 127
  start-page: 153
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0990
  article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2011.11.020
– volume: 46
  start-page: 73
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0095
  article-title: Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.11.019
– volume: 42
  start-page: 164
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0700
  article-title: Biochar affected by composting with farmyard manure
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2012.0064
– volume: 74
  start-page: 319
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0780
  article-title: Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.10.024
– volume: 48
  start-page: 501
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0385
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10009
– volume: 22
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2018.09.034_bb7000
  article-title: Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review
  publication-title: Int. Mater. Rev.
– volume: 227
  start-page: 98
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb1020
  article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.04.032
– volume: 5
  start-page: 56
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0365
  article-title: Short report: effects of biochar addition on manure composting and associated N2O emissions
  publication-title: J. Sustain. Bioenergy Syst.
  doi: 10.4236/jsbs.2015.52005
– volume: 4
  start-page: 206
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0670
  article-title: SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2015.08.003
– volume: 274
  start-page: 28
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0675
  article-title: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.03.029
– volume: 135
  start-page: 313
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0465
  article-title: Effects of biochar application rate on sandy desert soil properties and sorghum growth
  publication-title: Catena
  doi: 10.1016/j.catena.2015.08.013
– volume: 89
  start-page: 768
  year: 2000
  ident: 10.1016/j.geoderma.2018.09.034_bb0345
  article-title: Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.2000.01177.x
– volume: 543
  start-page: 295
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0010
  article-title: Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.11.054
– volume: 624
  start-page: 1059
  year: 2018
  ident: 10.1016/j.geoderma.2018.09.034_bb0205
  article-title: Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.190
– volume: 142
  start-page: 184
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0340
  article-title: Designer, acidic biochar influences calcareous soil characteristics
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.092
– start-page: 13
  year: 2009
  ident: 10.1016/j.geoderma.2018.09.034_bb0180
  article-title: Physical properties of biochar
– volume: 75
  start-page: 1021
  year: 2009
  ident: 10.1016/j.geoderma.2018.09.034_bb0135
  article-title: Ageing of black carbon along a temperature gradient
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.01.045
– volume: 164
  start-page: 3
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0550
  article-title: Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.10.002
– volume: 61
  start-page: 196
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0240
  article-title: Water uptake in biochars: the roles of porosity and hydrophobicity
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.12.010
– volume: 105
  start-page: 47
  year: 2010
  ident: 10.1016/j.geoderma.2018.09.034_bb0815
  article-title: A review of biochar and its use and function in soil
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(10)05002-9
– volume: 25
  start-page: 173
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0840
  article-title: Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in western India
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.1158
– volume: 177
  start-page: 3
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0445
  article-title: Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200282
– volume: 173
  start-page: 551
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0965
  article-title: Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.096
– volume: 28
  start-page: 177
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0075
  article-title: Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2012.00407.x
– volume: 21
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb0145
  article-title: Mechanisms of organic coating on the surface of a poplar biochar
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272821666161216122035
– volume: 5
  start-page: 491
  year: 2014
  ident: 10.1016/j.geoderma.2018.09.034_bb0905
  article-title: Composting for increasing the fertilizer value of chicken manure: effects of feedstock on P availability
  publication-title: Waste Biomass Valoriz.
  doi: 10.1007/s12649-013-9264-5
– volume: 193
  start-page: 122
  year: 2013
  ident: 10.1016/j.geoderma.2018.09.034_bb0615
  article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.10.002
– volume: 107
  start-page: 419
  year: 2012
  ident: 10.1016/j.geoderma.2018.09.034_bb0120
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.084
– volume: 532
  start-page: 49
  year: 2016
  ident: 10.1016/j.geoderma.2018.09.034_bb0685
  article-title: Climate-smart soils
  publication-title: Nature
  doi: 10.1038/nature17174
– volume: 26
  start-page: 629
  year: 2015
  ident: 10.1016/j.geoderma.2018.09.034_bb0660
  article-title: Environmental conservation for food production and sustainable livelihood in Tropical Africa
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2379
– start-page: 193
  year: 2017
  ident: 10.1016/j.geoderma.2018.09.034_bb8000
  article-title: Biochar for composting improvement and contaminants reduction. A review.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.095
SSID ssj0017020
Score 2.6889083
SecondaryResourceType review_article
Snippet Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 536
SubjectTerms additives
bioavailability
biochar
biomass
Black carbon
carbon
Co-composted biochar
coatings
Composite material
composting
crop yield
Designer biochar
economic feasibility
Engineered biochar
industrialization
mixing
nutrients
pyrolysis
soil amendments
Soil fertility
soil quality
soil types
Title Biochar application to low fertility soils: A review of current status, and future prospects
URI https://dx.doi.org/10.1016/j.geoderma.2018.09.034
https://www.proquest.com/docview/2220874040
Volume 337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBU8Gpukm03iLRZLVezJQg_Csq9ISklKk-LN3-5sHqUK0oPHPHYJs5OZL9n5vkHoRlM3JFwQi3DqWUQTbXE7FpbvCkGMwlxc_sp-HdPRhDxPvWkLDRoujCmrrGN_FdPLaF2f6dXW7C2SxHB8HepDOgKnBBweGNltmNt4-d3XuszD8e1amtGhlrl7gyU8gzUyDcdK_SEnqPROyV8J6leoLvPP8ADt18ARR9WzHaKWTo_QXvSxrMUz9DF6f0gyw6LCG7vSuMjwPPvEsamfNpAb51kyz-9xhCvWCs5iLCuRJmzYRav8FvNU4UpsBMPjlGTM_ARNho9vg5FVd0-wJHGcwhKUc9WngVYAUTxJtPmYcJR0lRP60g5dHlPlwgUqATP5Aae29uJAQEZzZUh1_xS10yzVZwgD6uJCgY18rghVVLi-pNoVtgh8rTzSQV5jMiZraXHT4WLOmhqyGWtMzYypmR0yMHUH9dbjFpW4xtYRYbMi7IebMMgAW8deN0vI4B0yGyM81dkqZ4CRbNOakNjn_5j_Au3CUVgVqF2idrFc6StALIXoli7ZRTvR08to_A0gaOyI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPRQOqKUgFgo1UnsjbGIcJ0HisKWg5fMEEgck46-gRatktdkV4sKf6h9knDiIVqo4VFxj2bKexzMvycwbgO-W04xJxQImeRwwy2wgw1wFCVWKOYW5vP6UfX7B-1fs5Dq-noHfbS2MS6v0vr_x6bW39k-6Hs3uaDBwNb4RTzAcoVEiD0-5z6w8tY8P-N5W7R__wkP-QenR4eVBP_CtBQLNomgSKC6l2eWpNRi_Y82sY9qR0dREWaLDjMqcG4oDXCOhSFLJQxvnqUJ3T3XG7S6uOwsfGLoL1zZh5-klryRKQq8FGfHAbe9VWfI9GoXrcFYLHkVpI7DK_hUR_4oNdcA7-gSLnqmSXgPGZ5ixxRIs9O7GXq3DfoGbn4PSlW2RV7_ByaQkw_KB5C5h23F8UpWDYbVHeqQpkyFlTnSjCkVcOdO02iayMKRRNyG4nbr6s1qGq3fBdAXmirKwq0CQ5kllEKNEGsYNVzTR3FIVqjSxJmYdiFvIhPZa5q6lxlC0SWv3ooVaOKhFmAmEugPdl3mjRs3jzRlZeyLiD7sUGHLenLvVHqHAS-v-xMjCltNKICkLXS9EFq79x_rf4GP_8vxMnB1fnK7DPI5kTXbcV5ibjKd2A-nSRG3W5kng9r3vwzMUwSeN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+application+to+low+fertility+soils%3A+A+review+of+current+status%2C+and+future+prospects&rft.jtitle=Geoderma&rft.au=El-Naggar%2C+Ali&rft.au=Lee%2C+Sang+Soo&rft.au=Rinklebe%2C+J%C3%B6rg&rft.au=F%C4%81r%C5%ABq%2C+Mu%E1%B8%A5ammad&rft.date=2019-03-01&rft.issn=0016-7061&rft.volume=337+p.536-554&rft.spage=536&rft.epage=554&rft_id=info:doi/10.1016%2Fj.geoderma.2018.09.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon