Biochar application to low fertility soils: A review of current status, and future prospects
Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low fertility soils to improve crop yield and sustainability. Biochar, a carbonaceous material intentionally produced from biomass, is widely used...
Saved in:
Published in | Geoderma Vol. 337; pp. 536 - 554 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low fertility soils to improve crop yield and sustainability. Biochar, a carbonaceous material intentionally produced from biomass, is widely used as an amendment to improve soil fertility by retaining nutrients and, potentially, enhancing nutrient bioavailability. But, biochar is not a simple carbon material with uniform properties, so appropriate biochar selection must consider soil type and target crop. In this respect, many recent studies have evaluated several modification methods to maximize the effectiveness of biochar such as optimizing the pyrolysis process, mixing with other soil amendments, composting with other additives, activating by physicochemical processes, and coating with other organic materials. However, the economic feasibility of biochar application cannot be neglected. Strategies for reducing biochar losses and its application costs, and increasing its use efficiency need to be developed. This review synthesized current understanding and introduces holistic and practical approaches for biochar application to low fertility soils, with consideration of economic aspects.
•Biochar has potential to be the best management practice for low fertility soils.•Biochar coating with organic materials can result in enhanced crop nutrient supply.•Biochar may accelerate the composting process and improve the end-product quality.•The influence of biochar varies strongly according to the types of feedstock/soil. |
---|---|
AbstractList | Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low fertility soils to improve crop yield and sustainability. Biochar, a carbonaceous material intentionally produced from biomass, is widely used as an amendment to improve soil fertility by retaining nutrients and, potentially, enhancing nutrient bioavailability. But, biochar is not a simple carbon material with uniform properties, so appropriate biochar selection must consider soil type and target crop. In this respect, many recent studies have evaluated several modification methods to maximize the effectiveness of biochar such as optimizing the pyrolysis process, mixing with other soil amendments, composting with other additives, activating by physicochemical processes, and coating with other organic materials. However, the economic feasibility of biochar application cannot be neglected. Strategies for reducing biochar losses and its application costs, and increasing its use efficiency need to be developed. This review synthesized current understanding and introduces holistic and practical approaches for biochar application to low fertility soils, with consideration of economic aspects. Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low fertility soils to improve crop yield and sustainability. Biochar, a carbonaceous material intentionally produced from biomass, is widely used as an amendment to improve soil fertility by retaining nutrients and, potentially, enhancing nutrient bioavailability. But, biochar is not a simple carbon material with uniform properties, so appropriate biochar selection must consider soil type and target crop. In this respect, many recent studies have evaluated several modification methods to maximize the effectiveness of biochar such as optimizing the pyrolysis process, mixing with other soil amendments, composting with other additives, activating by physicochemical processes, and coating with other organic materials. However, the economic feasibility of biochar application cannot be neglected. Strategies for reducing biochar losses and its application costs, and increasing its use efficiency need to be developed. This review synthesized current understanding and introduces holistic and practical approaches for biochar application to low fertility soils, with consideration of economic aspects. •Biochar has potential to be the best management practice for low fertility soils.•Biochar coating with organic materials can result in enhanced crop nutrient supply.•Biochar may accelerate the composting process and improve the end-product quality.•The influence of biochar varies strongly according to the types of feedstock/soil. |
Author | Rinklebe, Jörg Zimmerman, Andrew R. Farooq, Muhammad Ok, Yong Sik Song, Hocheol Lee, Sang Soo Sarmah, Ajit K. Ahmad, Mahtab El-Naggar, Ali Shaheen, Sabry M. |
Author_xml | – sequence: 1 givenname: Ali surname: El-Naggar fullname: El-Naggar, Ali organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea – sequence: 2 givenname: Sang Soo surname: Lee fullname: Lee, Sang Soo organization: Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea – sequence: 3 givenname: Jörg surname: Rinklebe fullname: Rinklebe, Jörg organization: University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany – sequence: 4 givenname: Muhammad surname: Farooq fullname: Farooq, Muhammad organization: Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman – sequence: 5 givenname: Hocheol surname: Song fullname: Song, Hocheol organization: Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea – sequence: 6 givenname: Ajit K. surname: Sarmah fullname: Sarmah, Ajit K. organization: Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand – sequence: 7 givenname: Andrew R. surname: Zimmerman fullname: Zimmerman, Andrew R. organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA – sequence: 8 givenname: Mahtab surname: Ahmad fullname: Ahmad, Mahtab organization: Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan – sequence: 9 givenname: Sabry M. surname: Shaheen fullname: Shaheen, Sabry M. organization: University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany – sequence: 10 givenname: Yong Sik surname: Ok fullname: Ok, Yong Sik email: yongsikok@korea.ac.kr organization: Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea |
BookMark | eNqFkD9PwzAQxT0UibbwFZBHBhpsJ3USxECp-CdVYoENyXLtC7hy42A7VP32uBQWlk6n07337u43QoPWtYDQGSUZJZRfrrJ3cBr8WmaM0CojdUbyYoCGJE0nJeH0GI1CWKW2JIwM0dutcepDeiy7zholo3Etjg5bt8EN-GisiVscnLHhCs-why8DG-warHrvoY04RBn7cIFlq3HTx94D7rwLHagYTtBRI22A0986Rq_3dy_zx8ni-eFpPltMVEFpnCy5lDrnFeiSlVNVAJtSSrVimtalIjWTDdcsDbiiRV5WkhOYNtUy54ypmkM-Ruf73LT5s4cQxdoEBdbKFlwfBGOMVGVBCpKk13upSkcGD41QJv58Hb00VlAidiDFSvyBFDuQgtQigUx2_s_eebOWfnvYeLM3QuKQGHoRlIFWgTY-oRLamUMR31k-ls8 |
CitedBy_id | crossref_primary_10_1002_agj2_21283 crossref_primary_10_1002_jeq2_20475 crossref_primary_10_1007_s11356_023_31556_8 crossref_primary_10_1016_j_jclepro_2020_125605 crossref_primary_10_1093_forsci_fxab053 crossref_primary_10_1186_s13213_020_01550_3 crossref_primary_10_3390_agriculture12071030 crossref_primary_10_3390_ma14030486 crossref_primary_10_2174_0115734110286724240318051113 crossref_primary_10_1016_j_scitotenv_2024_175240 crossref_primary_10_1016_j_fuel_2022_127347 crossref_primary_10_1016_j_scitotenv_2022_157262 crossref_primary_10_1016_j_scitotenv_2020_141351 crossref_primary_10_1111_gcbb_12952 crossref_primary_10_1016_j_wasman_2021_09_014 crossref_primary_10_1016_j_apsoil_2023_105096 crossref_primary_10_1021_acs_energyfuels_1c00182 crossref_primary_10_1080_00103624_2025_2466581 crossref_primary_10_3390_su14137852 crossref_primary_10_1016_j_fuel_2021_122852 crossref_primary_10_1016_j_jenvman_2021_113340 crossref_primary_10_1007_s10098_023_02592_2 crossref_primary_10_1016_j_scitotenv_2022_155183 crossref_primary_10_3389_fsufs_2022_1036133 crossref_primary_10_1016_j_jclepro_2020_122462 crossref_primary_10_3390_horticulturae8040328 crossref_primary_10_1038_s41467_020_20184_2 crossref_primary_10_1080_00103624_2025_2452182 crossref_primary_10_2136_sssaj2018_08_0297 crossref_primary_10_1007_s11356_021_12744_w crossref_primary_10_1016_j_jhazmat_2021_126611 crossref_primary_10_1098_rstb_2020_0181 crossref_primary_10_3390_horticulturae11020169 crossref_primary_10_1186_s40538_020_00182_8 crossref_primary_10_1007_s42773_020_00072_0 crossref_primary_10_1007_s11368_022_03402_w crossref_primary_10_1016_j_geoderma_2021_115323 crossref_primary_10_3934_environsci_2019_5_379 crossref_primary_10_1016_j_apsoil_2022_104736 crossref_primary_10_1016_j_scitotenv_2018_12_026 crossref_primary_10_1016_j_envres_2024_120170 crossref_primary_10_1080_10643389_2020_1811590 crossref_primary_10_3389_fenvs_2023_1059449 crossref_primary_10_1016_j_scp_2023_100999 crossref_primary_10_17221_522_2021_PSE crossref_primary_10_1016_j_scitotenv_2020_142582 crossref_primary_10_1080_01904167_2023_2220740 crossref_primary_10_1007_s00344_020_10245_7 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1016_j_jenvman_2020_111918 crossref_primary_10_1007_s44246_024_00120_5 crossref_primary_10_1016_j_envpol_2019_113592 crossref_primary_10_1016_j_scitotenv_2019_134112 crossref_primary_10_3390_horticulturae7080221 crossref_primary_10_1016_j_scitotenv_2020_138195 crossref_primary_10_1016_j_scitotenv_2020_143657 crossref_primary_10_1016_j_scitotenv_2020_142457 crossref_primary_10_1016_j_biombioe_2020_105710 crossref_primary_10_1007_s11104_023_06459_9 crossref_primary_10_1016_j_chemosphere_2022_134163 crossref_primary_10_1002_ldr_4230 crossref_primary_10_1017_S0014479721000259 crossref_primary_10_1016_j_jenvman_2025_124041 crossref_primary_10_1016_j_jece_2024_112771 crossref_primary_10_3389_fenvs_2024_1340565 crossref_primary_10_1016_j_marpolbul_2023_114899 crossref_primary_10_1016_j_rser_2021_111371 crossref_primary_10_1080_10643389_2019_1642832 crossref_primary_10_1016_j_cej_2024_156083 crossref_primary_10_1016_j_envpol_2024_123646 crossref_primary_10_1016_j_envres_2020_110030 crossref_primary_10_1016_j_jenvman_2020_111097 crossref_primary_10_1016_j_envpol_2021_117364 crossref_primary_10_1016_j_fuel_2022_124156 crossref_primary_10_1016_j_jenvman_2025_124296 crossref_primary_10_1016_j_scitotenv_2019_134169 crossref_primary_10_1134_S106422932112005X crossref_primary_10_1016_j_agee_2021_107403 crossref_primary_10_1080_02827581_2020_1854846 crossref_primary_10_1080_00380768_2022_2129443 crossref_primary_10_1016_j_chemosphere_2021_131661 crossref_primary_10_1016_j_cej_2020_126136 crossref_primary_10_1007_s00128_020_03011_8 crossref_primary_10_3390_molecules27217191 crossref_primary_10_1071_CP21800 crossref_primary_10_1186_s13750_024_00326_5 crossref_primary_10_1016_j_chemosphere_2019_05_238 crossref_primary_10_1007_s42729_024_01977_6 crossref_primary_10_1016_j_scitotenv_2022_158562 crossref_primary_10_1016_j_jclepro_2022_130685 crossref_primary_10_1080_01904167_2022_2063138 crossref_primary_10_3390_agronomy13102488 crossref_primary_10_1016_j_ecoenv_2020_110181 crossref_primary_10_1007_s10098_019_01728_7 crossref_primary_10_1016_j_jenvman_2022_116943 crossref_primary_10_1111_sum_12731 crossref_primary_10_3390_f14122295 crossref_primary_10_1021_acssuschemeng_2c01539 crossref_primary_10_3390_w14223623 crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_1007_s11356_021_16526_2 crossref_primary_10_1007_s10661_023_11894_3 crossref_primary_10_1016_j_scitotenv_2022_160644 crossref_primary_10_1016_j_scienta_2022_111097 crossref_primary_10_1016_j_jenvman_2021_113250 crossref_primary_10_1016_j_jenvman_2021_113128 crossref_primary_10_3390_agronomy13112807 crossref_primary_10_1016_j_chemosphere_2019_125255 crossref_primary_10_1016_j_envpol_2022_118831 crossref_primary_10_1016_j_pce_2023_103508 crossref_primary_10_1016_j_envdev_2023_100819 crossref_primary_10_1016_j_scitotenv_2020_141455 crossref_primary_10_1016_j_scitotenv_2022_159782 crossref_primary_10_1016_j_jenvman_2022_114973 crossref_primary_10_1016_j_fcr_2024_109340 crossref_primary_10_1016_j_clema_2022_100137 crossref_primary_10_1111_sum_12769 crossref_primary_10_1002_saj2_20533 crossref_primary_10_1016_j_scitotenv_2021_151422 crossref_primary_10_1016_j_jclepro_2020_124302 crossref_primary_10_1016_j_pedsph_2024_07_001 crossref_primary_10_1080_00103624_2021_1919698 crossref_primary_10_1016_j_jece_2024_114604 crossref_primary_10_1016_j_scitotenv_2019_06_244 crossref_primary_10_1016_j_catena_2019_104151 crossref_primary_10_1007_s11356_019_07230_3 crossref_primary_10_2478_ahr_2022_0015 crossref_primary_10_1039_D0GC00717J crossref_primary_10_3389_fenrg_2021_710766 crossref_primary_10_3389_fpls_2024_1475939 crossref_primary_10_59324_ejtas_2024_2_5__65 crossref_primary_10_3390_soilsystems8030069 crossref_primary_10_1016_j_spc_2023_02_019 crossref_primary_10_1016_j_scitotenv_2020_139003 crossref_primary_10_1016_j_envres_2022_113599 crossref_primary_10_1080_10643389_2025_2457991 crossref_primary_10_1111_ejss_13216 crossref_primary_10_1111_sum_12997 crossref_primary_10_3390_pr10081627 crossref_primary_10_1111_sum_12638 crossref_primary_10_1016_j_microc_2020_105506 crossref_primary_10_1016_j_jclepro_2022_131791 crossref_primary_10_1016_j_jece_2025_116081 crossref_primary_10_1080_00103624_2023_2177669 crossref_primary_10_3390_plants13020166 crossref_primary_10_1016_S1002_0160_21_60041_3 crossref_primary_10_1021_acs_jchemed_9b00529 crossref_primary_10_1016_j_apsoil_2023_105127 crossref_primary_10_1021_acssuschemeng_1c01656 crossref_primary_10_1016_j_geodrs_2024_e00847 crossref_primary_10_1016_j_cec_2024_100117 crossref_primary_10_1007_s11356_021_13973_9 crossref_primary_10_1016_j_jece_2025_115602 crossref_primary_10_1021_acs_est_0c04033 crossref_primary_10_3390_agronomy13071745 crossref_primary_10_1007_s11104_024_06833_1 crossref_primary_10_1007_s11368_021_03049_z crossref_primary_10_1016_j_scitotenv_2020_143801 crossref_primary_10_3390_agronomy13092440 crossref_primary_10_3390_agronomy13092203 crossref_primary_10_1016_j_envres_2022_113909 crossref_primary_10_1128_spectrum_00802_23 crossref_primary_10_1016_j_scitotenv_2022_158876 crossref_primary_10_1016_j_indcrop_2023_117496 crossref_primary_10_1016_j_indcrop_2024_119830 crossref_primary_10_1080_01904167_2021_1871746 crossref_primary_10_5004_dwt_2023_29494 crossref_primary_10_1016_j_chemosphere_2021_129700 crossref_primary_10_3390_agronomy12010131 crossref_primary_10_1016_j_biortech_2021_125102 crossref_primary_10_1007_s11270_024_07580_w crossref_primary_10_1007_s40725_023_00188_z crossref_primary_10_1016_j_still_2022_105442 crossref_primary_10_3390_chemosensors10030117 crossref_primary_10_1016_j_scitotenv_2020_141614 crossref_primary_10_1016_j_still_2022_105323 crossref_primary_10_2478_johh_2023_0004 crossref_primary_10_1002_agj2_20365 crossref_primary_10_1007_s00374_020_01479_4 crossref_primary_10_1111_gcbb_12665 crossref_primary_10_3390_f10080678 crossref_primary_10_1007_s11356_024_33807_8 crossref_primary_10_1080_10643389_2020_1818497 crossref_primary_10_1111_gcbb_12783 crossref_primary_10_1016_j_geodrs_2021_e00443 crossref_primary_10_1016_j_envres_2022_112807 crossref_primary_10_1007_s42729_023_01498_8 crossref_primary_10_3390_su16229749 crossref_primary_10_3390_nano12060988 crossref_primary_10_1016_j_hazadv_2022_100134 crossref_primary_10_1007_s00374_025_01888_3 crossref_primary_10_1111_sum_12717 crossref_primary_10_1016_j_envpol_2020_115719 crossref_primary_10_1080_15567036_2019_1656305 crossref_primary_10_3390_pollutants1030010 crossref_primary_10_1016_j_btre_2020_e00570 crossref_primary_10_1007_s42773_024_00333_2 crossref_primary_10_1016_j_enconman_2023_116658 crossref_primary_10_1016_j_still_2021_105015 crossref_primary_10_1007_s13399_020_01078_1 crossref_primary_10_1007_s11356_024_33359_x crossref_primary_10_1016_j_chemosphere_2022_133586 crossref_primary_10_1016_j_ecoenv_2020_111887 crossref_primary_10_1007_s12649_020_01082_6 crossref_primary_10_1016_j_scitotenv_2020_138489 crossref_primary_10_1016_j_envres_2019_01_048 crossref_primary_10_1017_S0014479722000497 crossref_primary_10_1038_s41598_023_35460_6 crossref_primary_10_1111_sum_12965 crossref_primary_10_2478_agri_2020_0016 crossref_primary_10_3389_fpls_2024_1384065 crossref_primary_10_1016_j_indcrop_2024_119972 crossref_primary_10_1016_j_catena_2025_108765 crossref_primary_10_1111_sum_12845 crossref_primary_10_1007_s42729_024_01893_9 crossref_primary_10_1111_rec_13909 crossref_primary_10_3390_su13031330 crossref_primary_10_1016_j_rser_2022_113042 crossref_primary_10_1016_j_scitotenv_2020_143817 crossref_primary_10_1186_s40068_021_00235_3 crossref_primary_10_1007_s13399_020_00923_7 crossref_primary_10_1016_j_foreco_2019_117635 crossref_primary_10_1016_j_jhazmat_2020_123833 crossref_primary_10_3390_plants11060765 crossref_primary_10_1080_15226514_2019_1647405 crossref_primary_10_1002_ente_202000025 crossref_primary_10_1080_10643389_2019_1629802 crossref_primary_10_3390_su16062523 crossref_primary_10_1111_gcbb_12766 crossref_primary_10_2478_agri_2020_0001 crossref_primary_10_1016_j_agee_2020_107258 crossref_primary_10_1128_spectrum_03427_23 crossref_primary_10_1016_j_apsoil_2021_103883 crossref_primary_10_1111_gcbb_12885 crossref_primary_10_3390_toxics9080184 crossref_primary_10_2478_agri_2020_0005 crossref_primary_10_1007_s44246_025_00198_5 crossref_primary_10_1016_j_jclepro_2019_118319 crossref_primary_10_1007_s13399_020_00836_5 crossref_primary_10_3390_agronomy11102052 crossref_primary_10_3390_applbiosci2010007 crossref_primary_10_3390_agronomy14122919 crossref_primary_10_1016_j_scitotenv_2019_05_051 crossref_primary_10_1007_s41748_022_00336_8 crossref_primary_10_3390_agronomy11050828 crossref_primary_10_1016_j_ecoenv_2023_115589 crossref_primary_10_3390_agronomy10091446 crossref_primary_10_3390_pr9040572 crossref_primary_10_1007_s42773_020_00035_5 crossref_primary_10_1007_s11368_023_03635_3 crossref_primary_10_1021_acsomega_3c09016 crossref_primary_10_1007_s11356_023_26826_4 crossref_primary_10_1016_j_scitotenv_2023_168518 crossref_primary_10_1016_j_jhazmat_2020_123727 crossref_primary_10_3390_ijerph191912381 crossref_primary_10_3390_molecules26185584 crossref_primary_10_1016_j_scitotenv_2022_156532 crossref_primary_10_1080_25765299_2020_1766799 crossref_primary_10_3390_app11146502 crossref_primary_10_1016_j_apsoil_2019_103374 crossref_primary_10_1016_j_jhazmat_2019_121366 crossref_primary_10_3390_agronomy11050942 crossref_primary_10_1177_00368504221148842 crossref_primary_10_1016_j_agwat_2024_109093 crossref_primary_10_1002_jemt_24210 crossref_primary_10_1186_s12870_023_04058_5 crossref_primary_10_1016_j_cej_2021_131189 crossref_primary_10_1016_j_jclepro_2020_125494 crossref_primary_10_1016_j_jhazmat_2020_122767 crossref_primary_10_1002_tqem_21875 crossref_primary_10_1080_10934529_2021_2020503 crossref_primary_10_3389_fevo_2021_798520 crossref_primary_10_1016_j_envpol_2021_117199 crossref_primary_10_1016_j_envres_2020_109324 crossref_primary_10_1016_j_envres_2020_109566 crossref_primary_10_3390_su12052124 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1016_j_agwat_2021_107129 crossref_primary_10_1016_j_envres_2023_115339 crossref_primary_10_1007_s10311_020_01059_w crossref_primary_10_1139_cjss_2021_0053 crossref_primary_10_1016_j_eti_2022_102988 crossref_primary_10_1016_j_jece_2024_113488 crossref_primary_10_1016_j_scitotenv_2021_148762 crossref_primary_10_1007_s11368_023_03590_z crossref_primary_10_1080_03650340_2022_2045280 crossref_primary_10_1038_s41598_022_15494_y crossref_primary_10_1051_bioconf_20213700036 crossref_primary_10_3390_atmos11050539 crossref_primary_10_3390_horticulturae10040368 crossref_primary_10_1016_j_jaridenv_2020_104191 crossref_primary_10_3390_molecules26164783 crossref_primary_10_3390_agronomy12010051 crossref_primary_10_1111_sum_12804 crossref_primary_10_1007_s40891_020_00206_1 crossref_primary_10_1016_j_jclepro_2023_139066 crossref_primary_10_3390_en16010056 crossref_primary_10_1038_s41598_023_50166_5 crossref_primary_10_1016_j_biteb_2021_100800 crossref_primary_10_1016_j_jenvman_2022_116095 crossref_primary_10_1016_j_scitotenv_2020_141713 crossref_primary_10_1016_j_psep_2022_05_056 crossref_primary_10_3390_agronomy10060889 crossref_primary_10_1016_j_cej_2021_132287 crossref_primary_10_1007_s10653_024_02221_x crossref_primary_10_1007_s42773_019_00013_6 crossref_primary_10_1016_j_apsoil_2021_103960 crossref_primary_10_1016_j_scitotenv_2022_158620 crossref_primary_10_1515_opag_2021_0217 crossref_primary_10_1071_SR19296 crossref_primary_10_1016_j_catena_2020_105046 crossref_primary_10_1016_j_eti_2020_101193 crossref_primary_10_1038_s41598_023_38072_2 crossref_primary_10_1007_s13205_022_03195_2 crossref_primary_10_1007_s11368_021_03001_1 crossref_primary_10_3390_su15053879 crossref_primary_10_1016_j_jaap_2021_105373 crossref_primary_10_1016_j_jclepro_2024_141777 crossref_primary_10_3390_land11030368 crossref_primary_10_1088_1755_1315_1114_1_012046 crossref_primary_10_3390_agriculture14091502 crossref_primary_10_1016_j_still_2024_106367 crossref_primary_10_1007_s11356_021_12477_w crossref_primary_10_1088_1748_9326_ad99e9 crossref_primary_10_3390_agriculture13061200 crossref_primary_10_1007_s13762_024_05697_3 crossref_primary_10_1007_s42773_024_00391_6 crossref_primary_10_1016_j_apsoil_2020_103856 crossref_primary_10_1016_j_scitotenv_2023_164868 crossref_primary_10_1080_01904167_2024_2354214 crossref_primary_10_3390_su142214996 crossref_primary_10_3390_land11091510 crossref_primary_10_1016_j_agwat_2020_106580 crossref_primary_10_3389_fmicb_2023_1190716 crossref_primary_10_1007_s11368_023_03644_2 crossref_primary_10_1016_j_jenvman_2020_111443 crossref_primary_10_1016_j_scitotenv_2020_138988 crossref_primary_10_1016_j_scitotenv_2020_137775 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_3390_app12084051 crossref_primary_10_1016_j_jenvman_2024_120399 crossref_primary_10_1016_j_jhazmat_2020_124865 crossref_primary_10_2478_ahr_2021_0020 crossref_primary_10_32604_phyton_2022_021644 crossref_primary_10_3389_fpls_2023_1242469 crossref_primary_10_3390_agronomy14010153 crossref_primary_10_1016_j_chemosphere_2021_131176 crossref_primary_10_3390_agronomy12092089 crossref_primary_10_1016_j_scitotenv_2022_153555 crossref_primary_10_1016_j_chemosphere_2022_134825 crossref_primary_10_3390_agronomy12122959 crossref_primary_10_1016_j_hazadv_2022_100092 crossref_primary_10_3390_plants12183319 crossref_primary_10_1007_s12517_021_07996_2 crossref_primary_10_1007_s11368_019_02250_5 crossref_primary_10_3390_agronomy13041111 crossref_primary_10_3390_land12081580 crossref_primary_10_1111_1440_1703_12179 crossref_primary_10_3390_su16010183 crossref_primary_10_1016_j_apgeochem_2018_12_003 crossref_primary_10_1016_j_scitotenv_2022_158818 crossref_primary_10_1016_j_cej_2020_124611 crossref_primary_10_1016_j_scitotenv_2022_154753 crossref_primary_10_1007_s42729_023_01374_5 crossref_primary_10_3390_su14041987 crossref_primary_10_1016_j_biombioe_2024_107458 crossref_primary_10_1016_j_jhazmat_2020_124405 crossref_primary_10_1080_09593330_2022_2074318 crossref_primary_10_1016_j_wasman_2023_09_024 crossref_primary_10_3389_fpls_2021_650432 crossref_primary_10_1016_j_jhazmat_2019_04_057 crossref_primary_10_1016_j_soilbio_2023_109056 crossref_primary_10_1016_j_scienta_2020_109507 crossref_primary_10_1007_s00374_019_01391_6 crossref_primary_10_3390_su17041675 crossref_primary_10_3390_su14084682 crossref_primary_10_1007_s00374_023_01753_1 crossref_primary_10_3390_separations10100533 crossref_primary_10_1007_s40710_022_00587_7 crossref_primary_10_1016_j_envpol_2020_114887 crossref_primary_10_1016_j_jclepro_2020_120998 crossref_primary_10_1080_10643389_2020_1716654 crossref_primary_10_1016_j_scitotenv_2022_154340 crossref_primary_10_5004_dwt_2020_25654 crossref_primary_10_1007_s13399_021_02099_0 crossref_primary_10_2139_ssrn_4194276 crossref_primary_10_1080_03650340_2024_2373163 crossref_primary_10_1016_j_agwat_2024_108843 crossref_primary_10_1007_s42773_022_00181_y crossref_primary_10_3390_agronomy12092036 crossref_primary_10_1007_s42729_025_02320_3 crossref_primary_10_3390_toxics13030169 crossref_primary_10_1016_j_geoderma_2019_03_010 crossref_primary_10_1016_j_catena_2020_104587 crossref_primary_10_1016_j_scitotenv_2024_173679 crossref_primary_10_1016_j_envint_2024_109131 crossref_primary_10_2139_ssrn_4119763 crossref_primary_10_1088_1755_1315_1262_8_082042 crossref_primary_10_1080_15324982_2019_1696423 crossref_primary_10_3390_land11122265 crossref_primary_10_1016_j_agwat_2024_108953 crossref_primary_10_1016_j_chemosphere_2022_134304 crossref_primary_10_1007_s42729_021_00736_1 crossref_primary_10_1021_acssuschemeng_9b03536 crossref_primary_10_1186_s12870_023_04397_3 crossref_primary_10_1371_journal_pone_0242209 crossref_primary_10_1007_s42773_024_00415_1 crossref_primary_10_1007_s10705_024_10358_5 crossref_primary_10_1016_j_jhazmat_2020_124554 crossref_primary_10_3390_f13122090 crossref_primary_10_1016_j_mtener_2021_100905 crossref_primary_10_1016_j_cej_2021_130387 crossref_primary_10_32604_phyton_2022_020323 crossref_primary_10_1007_s13593_022_00848_7 crossref_primary_10_1016_j_biortech_2019_121973 crossref_primary_10_1016_j_scitotenv_2021_148923 crossref_primary_10_1080_03650340_2024_2419506 crossref_primary_10_1080_26895293_2022_2080282 crossref_primary_10_1111_sum_70044 crossref_primary_10_1186_s43170_024_00289_0 crossref_primary_10_5004_dwt_2020_25750 crossref_primary_10_1016_j_agwat_2022_108026 crossref_primary_10_3390_agronomy12071596 crossref_primary_10_1007_s10311_021_01210_1 crossref_primary_10_2139_ssrn_4118105 crossref_primary_10_1038_s41598_025_87374_0 crossref_primary_10_1016_j_jaridenv_2021_104525 crossref_primary_10_1016_j_chemosphere_2021_133389 crossref_primary_10_1080_03650340_2022_2142937 crossref_primary_10_1016_j_fcr_2022_108574 crossref_primary_10_1007_s13399_025_06702_6 crossref_primary_10_1007_s42729_024_01688_y crossref_primary_10_1016_S1002_0160_20_60071_6 crossref_primary_10_1016_j_cej_2020_125502 crossref_primary_10_1016_S1002_0160_20_60094_7 crossref_primary_10_1017_S1742170522000412 crossref_primary_10_1007_s11368_022_03331_8 crossref_primary_10_1016_j_jhazmat_2020_122026 crossref_primary_10_3390_agronomy10071005 crossref_primary_10_1016_j_scitotenv_2022_153461 crossref_primary_10_1007_s11270_021_05089_0 crossref_primary_10_1016_j_agee_2024_109001 crossref_primary_10_1016_j_ecoleng_2022_106844 crossref_primary_10_2478_ahr_2019_0010 crossref_primary_10_1016_j_scitotenv_2023_163313 crossref_primary_10_1007_s11356_024_33849_y crossref_primary_10_1007_s42773_024_00316_3 crossref_primary_10_3390_ma14102584 crossref_primary_10_1007_s11104_023_06154_9 crossref_primary_10_1016_j_envpol_2021_116800 crossref_primary_10_1038_s41598_021_88856_7 crossref_primary_10_1007_s42832_024_0267_x crossref_primary_10_1016_j_geoderma_2023_116528 crossref_primary_10_3390_agronomy10101612 crossref_primary_10_1002_smll_202206954 crossref_primary_10_1016_j_jclepro_2020_120314 crossref_primary_10_1002_saj2_20421 crossref_primary_10_1016_j_scitotenv_2019_06_212 crossref_primary_10_1016_j_jenvman_2021_113076 crossref_primary_10_1016_j_jece_2023_110276 crossref_primary_10_1016_j_rhisph_2020_100264 crossref_primary_10_1007_s11104_023_05968_x crossref_primary_10_1007_s12155_022_10560_9 crossref_primary_10_1007_s42729_023_01547_2 crossref_primary_10_3389_fmats_2022_870184 crossref_primary_10_1016_j_scitotenv_2019_134645 crossref_primary_10_1016_j_scitotenv_2023_161881 crossref_primary_10_3389_fpls_2024_1347658 crossref_primary_10_1016_j_heliyon_2024_e39737 crossref_primary_10_1038_s41598_019_56663_w crossref_primary_10_1038_s41598_023_41891_y crossref_primary_10_1186_s40068_024_00379_y crossref_primary_10_1016_j_jaap_2021_105405 crossref_primary_10_1016_j_envpol_2021_117840 crossref_primary_10_1016_j_scitotenv_2023_167290 crossref_primary_10_1016_j_jclepro_2025_145109 crossref_primary_10_1002_saj2_20793 crossref_primary_10_3390_ma16237342 crossref_primary_10_1016_j_envint_2019_105376 crossref_primary_10_3390_toxics12040245 crossref_primary_10_1007_s11356_020_08907_w crossref_primary_10_1080_03650340_2021_1906413 crossref_primary_10_3390_su142416417 crossref_primary_10_3389_fenvs_2023_1207887 crossref_primary_10_3390_su131911104 crossref_primary_10_1007_s13762_021_03185_6 crossref_primary_10_1016_j_envint_2021_106638 crossref_primary_10_1139_cjss_2019_0138 crossref_primary_10_1016_j_envres_2021_112303 crossref_primary_10_1016_j_gexplo_2023_107331 crossref_primary_10_3390_agronomy9060327 crossref_primary_10_1016_j_chemosphere_2019_06_237 crossref_primary_10_3390_agronomy14102431 crossref_primary_10_1007_s42729_023_01208_4 crossref_primary_10_1016_j_psep_2020_04_001 crossref_primary_10_1016_j_scitotenv_2021_151058 crossref_primary_10_1016_j_scitotenv_2021_152267 crossref_primary_10_1016_j_jhazmat_2019_121747 crossref_primary_10_1016_j_envpol_2020_116009 crossref_primary_10_1002_saj2_20683 crossref_primary_10_1016_j_fuel_2021_120243 crossref_primary_10_1016_j_chemosphere_2019_124888 crossref_primary_10_1016_j_jaap_2024_106480 crossref_primary_10_1007_s10098_021_02163_3 crossref_primary_10_2208_journalofjsce_24_27045 crossref_primary_10_1016_j_enceco_2025_01_004 crossref_primary_10_1051_e3sconf_202342403009 crossref_primary_10_3389_fpls_2024_1475510 crossref_primary_10_3390_molecules27217418 crossref_primary_10_1016_j_seh_2023_100033 crossref_primary_10_1007_s10661_024_12595_1 crossref_primary_10_3390_molecules28145381 crossref_primary_10_1007_s12155_024_10786_9 crossref_primary_10_1007_s13399_022_02795_5 crossref_primary_10_1016_j_fcr_2023_109141 crossref_primary_10_3390_agronomy14102400 crossref_primary_10_1016_j_heliyon_2023_e19831 crossref_primary_10_1016_j_cej_2021_131708 crossref_primary_10_1016_j_chemosphere_2021_130458 crossref_primary_10_1007_s42729_021_00631_9 crossref_primary_10_1007_s42773_020_00065_z crossref_primary_10_1016_j_chemosphere_2023_140983 crossref_primary_10_1016_j_geoderma_2021_115276 crossref_primary_10_1007_s11144_022_02263_1 crossref_primary_10_1021_acsagscitech_4c00114 crossref_primary_10_1080_21655979_2023_2177369 crossref_primary_10_1007_s00244_018_00595_5 crossref_primary_10_1016_j_cej_2022_136225 crossref_primary_10_3390_su11061536 crossref_primary_10_1007_s42773_022_00134_5 crossref_primary_10_1007_s42773_019_00030_5 crossref_primary_10_1016_j_jenvman_2019_109528 crossref_primary_10_1016_j_jiec_2024_10_015 crossref_primary_10_1016_j_clema_2022_100045 crossref_primary_10_1016_j_scitotenv_2020_144351 crossref_primary_10_1016_j_ecoenv_2022_114322 crossref_primary_10_1088_1755_1315_1183_1_012075 crossref_primary_10_1016_j_jrmge_2025_01_019 crossref_primary_10_1002_ldr_5285 crossref_primary_10_3390_agronomy14030533 crossref_primary_10_1002_saj2_20227 crossref_primary_10_1080_09670874_2022_2094493 crossref_primary_10_1016_j_geoderma_2021_115100 crossref_primary_10_1080_15324982_2022_2104183 crossref_primary_10_1071_CP24222 crossref_primary_10_1080_09593330_2021_1883743 crossref_primary_10_1007_s12517_022_10790_3 crossref_primary_10_1007_s40726_024_00327_5 crossref_primary_10_1186_s40538_024_00638_1 crossref_primary_10_1186_s13765_023_00851_w crossref_primary_10_1016_j_scitotenv_2022_159368 crossref_primary_10_1007_s42773_019_00008_3 crossref_primary_10_1016_j_jhazmat_2021_125213 crossref_primary_10_1007_s13399_022_03289_0 crossref_primary_10_3389_fpls_2022_1020832 crossref_primary_10_1007_s42773_023_00278_y crossref_primary_10_1016_j_jhazmat_2021_126421 crossref_primary_10_1016_j_scitotenv_2021_151120 crossref_primary_10_1016_j_chemosphere_2021_133427 crossref_primary_10_1007_s13399_020_01013_4 crossref_primary_10_1016_j_chemosphere_2019_124679 crossref_primary_10_1038_s41598_024_70917_2 crossref_primary_10_1016_j_jclepro_2021_127018 crossref_primary_10_1016_j_scitotenv_2022_160478 crossref_primary_10_1002_ldr_4055 crossref_primary_10_1016_j_pedsph_2022_06_030 crossref_primary_10_1016_j_chemosphere_2022_134942 crossref_primary_10_3390_plants14030401 crossref_primary_10_1016_j_cj_2024_07_002 crossref_primary_10_1007_s42773_023_00244_8 crossref_primary_10_3390_ma14216658 crossref_primary_10_1088_1755_1315_399_1_012129 crossref_primary_10_3389_fpls_2024_1422935 crossref_primary_10_1016_j_jhazmat_2021_125200 crossref_primary_10_3390_agriculture14010162 crossref_primary_10_1016_j_soilbio_2020_107825 crossref_primary_10_1186_s40538_021_00249_0 crossref_primary_10_1007_s11356_023_31186_0 crossref_primary_10_1016_j_scitotenv_2023_161786 crossref_primary_10_1016_j_scitotenv_2020_144564 crossref_primary_10_1021_acs_chemmater_1c02961 crossref_primary_10_1016_j_jhazmat_2023_132422 crossref_primary_10_1016_j_jiec_2021_01_044 crossref_primary_10_1016_j_chemosphere_2023_138356 crossref_primary_10_1016_j_jenvman_2020_110734 crossref_primary_10_3390_agronomy14061137 crossref_primary_10_1016_j_jenvman_2024_122692 crossref_primary_10_1016_j_scitotenv_2022_153509 crossref_primary_10_3390_agronomy13102518 crossref_primary_10_3390_min12010085 crossref_primary_10_1007_s44246_022_00033_1 crossref_primary_10_1016_j_sajb_2023_09_024 crossref_primary_10_1016_j_scitotenv_2021_150057 crossref_primary_10_1088_1755_1315_1282_1_012053 crossref_primary_10_15243_jdmlm_2025_122_7205 crossref_primary_10_1016_j_apsoil_2019_01_010 crossref_primary_10_1088_1755_1315_474_3_032041 crossref_primary_10_1016_j_jece_2025_116003 crossref_primary_10_1007_s42729_023_01141_6 crossref_primary_10_1111_gcbb_13134 crossref_primary_10_3390_su16146070 crossref_primary_10_1039_C9EM00570F crossref_primary_10_1007_s12517_022_09661_8 crossref_primary_10_1016_j_jenvman_2019_02_047 crossref_primary_10_1016_j_jenvman_2022_115200 crossref_primary_10_1016_j_jenvman_2019_02_044 crossref_primary_10_3390_agronomy12030546 crossref_primary_10_1016_j_fuel_2023_127796 crossref_primary_10_1080_03650340_2019_1699240 crossref_primary_10_1016_j_chemosphere_2023_140419 crossref_primary_10_1080_10643389_2020_1859271 crossref_primary_10_1016_j_jhazmat_2022_130076 crossref_primary_10_1016_j_scitotenv_2022_159034 crossref_primary_10_1016_j_matt_2022_09_030 crossref_primary_10_1016_j_apsoil_2021_104134 crossref_primary_10_1016_j_envint_2019_03_031 crossref_primary_10_3390_agronomy10101455 crossref_primary_10_1016_j_chemosphere_2021_131594 |
Cites_doi | 10.1016/j.envpol.2016.03.072 10.2134/jeq2011.0128 10.1016/j.agee.2010.09.003 10.1016/j.cosust.2012.09.015 10.1016/j.biortech.2009.09.024 10.1007/s11104-009-0050-x 10.1016/j.agee.2011.08.015 10.2134/jeq2011.0126 10.1007/s11104-010-0327-0 10.1097/SS.0b013e3181981d9a 10.2134/jeq2011.0070 10.1111/gcbb.12266 10.1034/j.1600-0706.2000.890203.x 10.3390/agriculture5030723 10.1007/s00374-011-0624-7 10.1016/j.earscirev.2017.06.005 10.1007/s13593-013-0150-0 10.1016/j.agsy.2014.05.008 10.1007/s00374-013-0884-5 10.1111/j.1475-2743.2011.00340.x 10.1007/s10653-015-9694-z 10.1016/j.biortech.2012.05.042 10.5194/se-5-693-2014 10.1016/j.ecoleng.2015.01.011 10.1111/ejss.12100 10.1016/j.geoderma.2018.06.017 10.9735/0975-3710.3.1.71-77 10.1016/S1002-0160(15)30053-9 10.1016/j.biortech.2014.02.123 10.1007/s11368-011-0365-0 10.1111/ejss.12302 10.1021/es1014423 10.2134/agronj2007.0161 10.1016/j.fcr.2016.09.005 10.4155/cmt.11.15 10.1021/acs.est.6b01897 10.1016/j.scitotenv.2016.12.169 10.1080/03650340.2012.700511 10.1007/s11104-013-1980-x 10.1016/j.soilbio.2011.10.012 10.1080/17583004.2014.912866 10.1016/j.jenvman.2015.11.045 10.2136/sssaj2005.0383 10.1094/PDIS-10-10-0741 10.1016/j.jenvman.2017.01.061 10.1007/s11368-016-1360-2 10.1016/j.chemosphere.2016.10.069 10.1016/j.foreco.2017.02.036 10.2134/jeq2011.0100 10.1007/s11027-005-9006-5 10.1016/j.envpol.2011.07.023 10.1016/S0008-6223(02)00118-5 10.1016/j.agee.2010.12.005 10.1016/S1002-0160(15)30044-8 10.1080/10643389.2017.1418580 10.1002/jpln.201100172 10.1002/jpln.200625199 10.1016/j.biortech.2014.05.029 10.1007/s11104-007-9391-5 10.1007/s11104-011-0759-1 10.1007/s12155-015-9671-5 10.1016/S0165-2370(98)00074-6 10.1016/B978-0-12-385538-1.00003-2 10.1111/ejss.12034 10.1016/j.scitotenv.2017.01.028 10.1016/j.biortech.2012.01.120 10.2134/jeq2011.0069 10.1016/j.fcr.2008.10.008 10.1080/1065657X.2000.10701990 10.1016/S0960-8524(99)00104-2 10.1023/A:1022833116184 10.1016/j.agee.2011.07.005 10.1016/j.scitotenv.2015.01.061 10.1016/j.biombioe.2012.01.033 10.1007/s11104-013-1806-x 10.1016/j.geoderma.2015.03.022 10.1016/j.chemosphere.2015.05.052 10.1016/S2095-3119(13)60708-X 10.1007/s13762-014-0713-x 10.1016/j.soilbio.2011.02.005 10.1016/j.biortech.2012.04.094 10.1071/SR10058 10.1016/j.biortech.2014.08.079 10.1016/j.agwat.2014.02.016 10.1016/j.soilbio.2011.04.022 10.1016/j.agee.2016.12.019 10.3390/agronomy3020349 10.1016/j.geoderma.2014.11.009 10.3390/agronomy3020275 10.1016/j.colsurfa.2011.12.023 10.1016/j.chemosphere.2015.06.016 10.1016/j.geoderma.2011.04.021 10.1016/j.cej.2013.09.074 10.1016/j.scitotenv.2015.02.005 10.1007/s11356-015-4885-9 10.1007/s11356-016-8303-8 10.1007/s11368-013-0738-7 10.1016/j.enpol.2011.07.035 10.1007/s13765-015-0103-1 10.1007/s00374-002-0466-4 10.1111/gcbb.12037 10.1111/sum.12114 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 10.2175/106143015X14212658614630 10.4155/cmt.10.32 10.1097/SS.0b013e3182979eac 10.3390/su7055875 10.1111/gcb.13068 10.1016/j.chemosphere.2015.05.065 10.1007/s11368-013-0680-8 10.1007/s12155-011-9133-7 10.1080/10643389.2015.1096880 10.4141/cjss2011-066 10.1016/j.chemosphere.2013.10.071 10.1016/j.catena.2015.11.002 10.1021/es400554x 10.1071/SR10002 10.1021/es903140c 10.1016/j.catena.2013.10.014 10.1111/sum.12180 10.1021/es5021058 10.1016/j.soilbio.2016.08.001 10.1016/j.agee.2015.07.027 10.1016/j.eja.2014.09.006 10.5367/000000010791169998 10.1016/j.agee.2014.04.001 10.1080/00380768.2013.830229 10.1016/j.egypro.2015.07.729 10.1016/j.geoderma.2010.05.012 10.1016/j.jenvman.2014.11.023 10.1016/j.chemosphere.2017.01.148 10.1021/acs.chemrev.5b00195 10.1007/s10661-015-4293-0 10.1007/s10653-015-9736-6 10.1016/j.chemosphere.2017.03.022 10.1080/17583004.2014.973684 10.1016/j.apsoil.2017.06.008 10.1016/S1002-0160(17)60314-X 10.1002/ldr.2896 10.1007/s10533-007-9104-4 10.1016/j.apsoil.2013.01.006 10.1002/ldr.2205 10.1071/SR07109 10.1007/s10021-008-9154-z 10.1016/j.chemosphere.2015.03.067 10.2136/sssaj2014.05.0198 10.1007/s11104-012-1383-4 10.1016/j.envint.2015.10.018 10.1016/j.still.2014.07.016 10.1016/j.agee.2017.02.034 10.1016/j.still.2016.01.002 10.1002/jsfa.7753 10.1007/s11356-014-3434-2 10.1111/gcbb.12132 10.1038/447143a 10.2134/jeq2011.0022 10.1007/s11104-011-0957-x 10.1016/j.soilbio.2009.03.016 10.1016/j.biortech.2013.11.021 10.1097/SS.0b013e31821fbfea 10.1016/j.geoderma.2014.08.010 10.1016/j.fcr.2011.11.020 10.1016/j.soilbio.2011.11.019 10.2134/jeq2012.0064 10.1016/j.ecoleng.2014.10.024 10.1071/SR10009 10.1016/j.envpol.2017.04.032 10.4236/jsbs.2015.52005 10.1016/j.eti.2015.08.003 10.1016/j.geoderma.2016.03.029 10.1016/j.catena.2015.08.013 10.1046/j.1365-2672.2000.01177.x 10.1016/j.scitotenv.2015.11.054 10.1016/j.scitotenv.2017.12.190 10.1016/j.chemosphere.2015.05.092 10.1016/j.chemosphere.2009.01.045 10.1016/j.still.2015.10.002 10.1016/j.biombioe.2013.12.010 10.1016/S0065-2113(10)05002-9 10.1002/ldr.1158 10.1002/jpln.201200282 10.1016/j.chemosphere.2017.01.096 10.1111/j.1475-2743.2012.00407.x 10.2174/1385272821666161216122035 10.1007/s12649-013-9264-5 10.1016/j.geoderma.2012.10.002 10.1016/j.biortech.2011.11.084 10.1038/nature17174 10.1002/ldr.2379 10.1016/j.biortech.2017.07.095 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.09.034 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EndPage | 554 |
ExternalDocumentID | 10_1016_j_geoderma_2018_09_034 S0016706118309686 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AALCJ AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c411t-b6aad368ed7275c4e25111dc2d197c092af6d25c46c14378a60e5f8b3622c96e3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Tue Aug 05 11:21:29 EDT 2025 Tue Jul 01 04:04:48 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Tue Oct 01 07:16:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Designer biochar Co-composted biochar Engineered biochar Soil fertility Black carbon Composite material |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-b6aad368ed7275c4e25111dc2d197c092af6d25c46c14378a60e5f8b3622c96e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2220874040 |
PQPubID | 24069 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2220874040 crossref_citationtrail_10_1016_j_geoderma_2018_09_034 crossref_primary_10_1016_j_geoderma_2018_09_034 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_09_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ok, Chang, Gao, Chung (bb0670) 2015; 4 Mukherjee, Zimmerman, Hamdan, Cooper (bb0625) 2014; 5 Liu, Wang, Tang, Guan, Reid, Rajapaksha, Ok, Sun (bb0580) 2016; 23 Shaheen, Rinklebe (bb0780) 2015; 74 Kammann, Schmidt, Messerschmidt, Linsel, Steffens, Müller, Koyro, Conte, Stephen (bb0390) 2015; 5 Major, Rondon, Molina, Riha, Lehmann (bb0605) 2012; 41 Edenborn, Edenborn, Krynock, Haug (bb0190) 2015; 150 Kimetu, Lehmann, Ngoze, Mugendi, Kinyangi, Riha, Verchot, Recha, Pell (bb0430) 2008; 11 Khan, Clark, Sánchez-Monedero, Shea, Meier, Bolan (bb0415) 2014; 168 Yue, Cui, Lin, Li, Zhao (bb0965) 2017; 173 Voltr (bb0925) 2012; 58 Dias, Silva, HigashiXawa, Roig, Sanchez-Monedero (bb0170) 2010; 101 Scheer, Grace, Rowlings, Kimber, Van Zwieten (bb0760) 2011; 345 Liu, Jiang, Yu (bb0575) 2015; 115 Uzoma, Inoue, Andry, Fujimaki, Zahoor, Nishihara (bb0895) 2011; 27 Steiner, Melear, Harris, Das (bb0855) 2011; 2 Elmer, Pignatello (bb0195) 2011; 95 Khan, Clark, Sánchez-Monedero, Shea, Meier, Qi, Kookana, Bolan (bb0420) 2016; 142 Khan, Chao, Waqas, Arp, Zhu (bb0410) 2013; 47 Niazi, Bibi, Shahid, Ok, Burton, Wang, Shaheen, Rinklebe, Lüttge (bb0635) 2017 Gul, Whalen (bb0255) 2016; 103 Agegnehu, Bass, Nelson, Muirhead, Wright, Bird (bb0005) 2015; 213 Han, Ren, Zhang (bb0275) 2016; 137 Zhang, Zhang, Song, Song, Hänninen, Wu (bb1000) 2017; 391 Srinivasarao, Venkateswarlu, Lal, Singh, Kundu, Vittal, Patel, Patel (bb0840) 2014; 25 Rajapaksha, Ahmad, Vithanage, Kim, Chang, Lee, Ok (bb0730) 2015; 37 Zhao, Yan, Wang, Xing, Zhou (bb1005) 2013; 59 Havlin, Tisdale, Nelson, Beaton (bb0295) 2014 Sigua, Novak, Watts (bb0795) 2016; 142 Singh, Singh, Cowie (bb0800) 2010; 48 Liu, Ye, Liu, Zhang, Zhang, Li, Pan, Kibue, Zheng, Zheng (bb0570) 2014; 129 Zou, Wang, Khan, Wang, Liu, Alsaedi, Hayat, Wang (bb1035) 2016; 50 Singh, Babu, Kumar, Srivastava, Singh, Raghubanshi (bb0805) 2015; 77 Ippolito, Ducey, Cantrell, Novak, Lentz (bb0340) 2016; 142 Lentz, Ippolito (bb0525) 2012; 41 Lehmann, da Silva, Steiner, Nehls, Zech, Glaser (bb0505) 2003; 249 Ahmad, Lee, Dou, Mohan, Sung, Yang, Ok (bb0015) 2012; 118 Blackwell, Riethmuller, Collins (bb0070) 2009 Yu, Qiu, Wang, Lei, Wang, Song (bb0955) 2017; 168 Butnan, Deenik, Toomsan, Antal, Vityakon (bb0115) 2015; 237 Shaheen, Eissa, Ghanem, Gamal El-Din, Al-Anany (bb0790) 2015; 87 Hardie, Clothier, Bound, Oliver, Close (bb0290) 2014; 376 Shaheen, Rinklebe, Selim (bb0785) 2015; 12 Shaheen, Niazi, Hassan, Bibi, Wang, Tsang, Ok, Bolan, Rinklebe (bb7000) 2018; 22 Watzinger, Feichtmair, Kitzler, Zehetner, Kloss, Wimmer, Zechmeister-Boltenstern, Soja (bb0945) 2014; 65 Wang, Xiong, Kuzyakov (bb0930) 2016; 8 Asai, Samson, Stephan, Songyikhangsuthor, Homma, Kiyono, Inoue, Shiraiwa, Horie (bb0040) 2009; 111 Vandecasteele, Sinicco, D'Hose, Nest, Mondini (bb0910) 2016; 168 Buss, Kammann, Koyro (bb0110) 2012; 41 Ippolito, Novak, Busscher, Ahmedna, Rehrah, Watts (bb0335) 2012; 41 Randolph, Bansode, Hassan, Rehrah, Ravella, Reddy, Watts, Novak, Ahmedna (bb0740) 2017; 192 Igalavithana, Ok, Usman, Al-Wabel, Oleszczuk, Lee (bb0315) 2015 Grunwald, Kaiser, Ludwig (bb0245) 2016; 164 Pietikäinen, Kiikkilä, Fritze (bb0690) 2003; 89 Xu, Wang, Li, Yao, Su, Zhu (bb0950) 2014; 48 Bindraban, van der Velde, Ye, van den Berg, Materechera, Innocent Kiba, Tamene, Vala Ragnarsdottir, Jongschaap, Hoogmoed (bb0065) 2012; 4 Zhang, Sun (bb0975) 2014; 171 Laird (bb0475) 2008; 100 Dai, Zhang, Tang, Muhammad, Wu, Brookes, Xu (bb0150) 2017 Paustian, Lehmann, Ogle, Reay, Robertson, Smith (bb0685) 2016; 532 Cantrell, Hunt, Uchimiya, Novak, Ro (bb0120) 2012; 107 David (bb0160) 2015; 25 Knicker (bb0450) 2007; 85 Zhu, Chen, Zhu, Xing (bb1020) 2017; 227 Awad, Blagodatskaya, Ok, Kuzyakov (bb0045) 2013; 64 Khalifa, Yousef (bb0405) 2015; 74 Sohi, Krull, Lopez-Capel, Bol (bb0815) 2010; 105 Tuomela, Vikman, Hatakka, Itävaara (bb0875) 2000; 72 Smith, House, Bustamante, Jaroslava Sobocká Harper, Pan, West, Clark, Adhya, Rumpel, Paustian, Kuikman, Cotrufo, Elliott, McDowell, Griffiths, Asakawa, Bondeau, Jain, Meersmans, Pugh (bb0810) 2015; 22 Lehmann, Gaunt, Randon (bb0510) 2006; 11 Laghari, Naidu, Xiao, Hu, Mirjat, Hu, Kandhro, Chen, Guo, Jogi, Abudi (bb0470) 2016; 96 Mukherjee, Zimmerman, Harris (bb0620) 2011; 163 Busch, Glaser (bb0105) 2015; 31 Jirka, Tomlinson, IBI (bb0375) 2015 Park, Ok, Kim, Kang, Cho, Heo, Delaune, Seo (bb0680) 2015; 58 Lin, Liu, Liu, Cowie, Bei, Liu, Wang, Ma, Zhu, Xie (bb0555) 2017; 27 Zhang, Cui, Pan, Li, Hussain, Zhang, Zheng, Crowley (bb0980) 2010; 139 Vithanage, Rajapaksha, Zhang, Thiele-Bruhn, Lee, Ok (bb0920) 2015; 22 Hangs, Ahmed, Schoenau (bb0285) 2016; 9 Qian, Chen, Joseph, Pan, Li, Zheng, Zhang, Zheng, Yu, Wang (bb0715) 2014; 5 Steiner, Glaser, Teixeira, Lehmann, Blum, Zech (bb0850) 2008; 171 Luo, Liu, Xia, Chen, Jiang, Zheng, Wang (bb0590) 2016 Antoniadis, Levizou, Shaheen, Ok, Sebastian, Baum, Prasad, Wenzel, Rinklebe (bb0035) 2017; 171 Gunes, Inal, Taskin, Sahin, Kaya, Atakol (bb0260) 2014; 30 Han, Qian, Yan, Chen (bb0280) 2017; 24 Kloss, Zehetner, Dellantonio, Hamid, Ottner, Liedtke, Schwanninger, Gerzabek, Soja (bb0440) 2012; 41 Agegnehu, Bass, Nelson, Bird (bb0010) 2016; 543 Kim, Kim, Cho, Choi (bb0425) 2012; 118 Nyssen, Frankl, Zenebe, Poesen, Deckers (bb0660) 2015; 26 Jones, Rousk, Edwards-Jones, DeLuca, Murphy (bb0380) 2012; 45 Jeffery, Verheijen, Velde, Bastos (bb0350) 2011; 144 Thies, Rillig (bb0870) 2009 Shepherd, Buss, Sohi, Heal (bb5000) 2017; 584 Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (bb0050) 2011; 159 Güereña, Lehmann, Hanley, Enders, Hyland, Riha (bb0250) 2013; 365 Ishii, Fukui, Takii (bb0345) 2000; 89 Lei, Zhang (bb0520) 2013; 13 Agegnehu, Srivastava, Bird (bb9000) 2017; 119 El-Naggar, Usman, Al-Omran, Ok, Ahmad, Al-Wabel (bb0200) 2015; 138 Major, Rondon, Molina, Riha, Lehmann (bb0600) 2010; 333 Zimmerman, Gao, Ahn (bb1030) 2011; 43 Li, Wang, Zhu, Wang, Wang (bb0535) 2012; 395 Liang, Lehmann, Solomon, Kinyangi, Grossman, O'neill, Skjemstad, Thies, Luizao, Petersen, Neves (bb0540) 2006; 70 Lehmann (bb0490) 2007; 5 Lal (bb0485) 2015; 7 Liu, Schulz, Brandl, Miehtke, Huwe, Glaser (bb0560) 2012; 175 Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher, Schomberg (bb0645) 2009; 3 UC Davis Biochar Database (bb0880) 2015 El-Naggar, Lee, Awad, Yang, Ryu, Rizwan, Rinklebe, Tsang, Ok (bb0220) 2018; 332 Liu, Zhang, Ji, Joseph, Bian, Li, Pan, Paz-Ferreiro (bb0565) 2013; 373 Raboin, Razafimahafaly, Rabenjarisoa, Rabary, Dusserre, Thierry Becquer (bb0720) 2016; 199 Jindo, Suto, Matsumoto, Garcia, Sonoki, Sanchez-Monedero (bb0370) 2012; 110 Cheng, Lehmann (bb0135) 2009; 75 Liang, Li, Lin, Zhao (bb0545) 2014; 13 Jeffery, Meinders, Stoof, Bezemer, van de Voorde, Mommer, Groenigen (bb0360) 2015; 251 Ibrahim, Al-Wabel, Usman, Al-Omran (bb0310) 2013; 178 Kookana, Sarmah, Van Zwieten, Krull, Singh (bb0455) 2011; 112 Purakayastha (bb0705) 2010 Novak, Busscher, Laird, Ahmedna, Watts, Niandou (bb0640) 2009; 174 Usman, Ahmad, El-Mahrouky, Al-Omran, Ok, Sallam, El-Naggar, Al-Wabel (bb0890) 2015; 38 El-Naggar, Shaheen, Ok, Rinklebe (bb0205) 2018; 624 Hussain, Farooq, Nawaz, Al-Sadi, Solaiman, Alghamdi, Ammara, Ok, Siddique (bb0305) 2017; 17 Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bb0435) 2012; 41 El-Naggar, Rajapaksha, Shaheen, Rinklebe, Ok (bb0215) 2018 Saranya, Kumutha (bb0755) 2011; 3 Lehmann, Joseph (bb0500) 2015 Karhu, Mattila, Bergström, Regina (bb0395) 2011; 140 Zhang, Ok (bb0970) 2014; 5 Schmidt, Kammann, Niggli, Evangelou, Mackie, Abiven (bb0765) 2014; 15 Zhang, Liu, Pan, Hussain, Li, Zheng, Zhang (bb0995) 2012; 351 Ogbonnaya, Semple (bb0665) 2013; 3 FAO (The Food and Agriculture Organization of the United Nations) (bb0225) 2011 Godlewska, Schmidt, Ok, Oleszczuk (bb8000) 2017 Galinato, Yoder, Granatstein (bb0230) 2011; 39 Clough, Condron, Kammann, Muller (bb0140) 2013; 3 Deenik, Diarra, Uehara, Campbell, Sumiyoshi, Antal (bb0165) 2011; 176 Hayashi, Horikawa, Takeda, Muroyama, Ani (bb0300) 2002; 40 Lu, Sun, Zong (bb0585) 2014; 114 Solaiman, Anawar (bb0820) 2015; 25 Zhou, Gao, Zimmerman, Chen, Zhang, Cao (bb1015) 2014; 152 Gray, Johnson, Dragila, Kleber (bb0240) 2014; 61 Novak, Cantrell, Watts, Busscher, Johnson (bb0650) 2014; 14 Purakayastha, Kumari, Pathak (bb0710) 2015; 239 Brodie, Carr, Condon (bb0090) 2000; 8 Carlson, Saxena, Basta, Hundal, Busalacchi, Dick (bb0125) 2015; 187 Ducey, Ippolito, Cantrell, Novak, Lentz (bb0185) 2013; 65 Wang, Gao, Fang (bb6000) 2017; 47 Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Pullammanappallil, Ok, Cao (bb0330) 2015 Yuan, Xu, Qian, Wang (bb0960) 2011; 11 Laird, Fleming, Wang, Horton, Karlen (bb0480) 2010; 158 Schulz, Dunst, Glaser (bb0775) 2013; 33 Nelissen, Ruysschaert, Manka'Abusi, D'Hose, De Beuf, Al-Barri, Cornelis, Boeckx (bb0630) 2015; 62 Inyang, Gao, Zimmerman, Zhang, Chen (bb0325) 2014; 236 Conte, Laudicina (bb0145) 2017; 21 Borchard, Wolf, Laabs, Aeckersberg, Scherer, Moeller, Amelung (bb0075) 2012; 28 Chan, Van Zwieten, Meszaros, Downie, Joseph (bb0130) 2007; 45 Kasozi, Zimmerman, Nkedi-Kizza, Gao (bb0400) 2010; 44 Omondi, Xia, Nahayo, Liu, Korai, Pan (bb0675) 2016; 274 Lehmann (bb0495) 2007; 447 Nur, Islami, Handayanto, Nugroho, Utomo (bb0655) 2014; 8 Bruun, Ambus, Egsgaard, Hauggaard-Nielsen (bb0095) 2012; 46 Usman, Madu, Alkali (bb0885) 2015; 5 Vandecasteele, Reubens, Willekens, De Neve (bb0905) 2014; 5 Zimmerman (bb1025) 2010; 44 Liang, Gascó, Fu, Méndez, Paz-Ferreiro (bb0550) 2016; 164 Subedi, Kammann, Pelissetti, Taupe, Bertora, Monaco (bb0865) 2015 Steinbeiss, Gleixner, Antonietti (bb0845) 2009; 41 Prayogo, Jones, Baeyens, Bending (bb0695) 2014; 50 Brewer, Unger, Schmidt-Rohr, Brown (bb0085) 2011; 4 Schmidt, Pandit, Martinsen, Cornelissen, Conte, Kammann (bb0770) 2015; 5 Das, Sarmah (bb0155) 2015; 512 Guo, Lua (bb0265) 1998; 46 Rajapaksha, Vithanage, Zhang, Ahmad, Mohan, Chang, Ok (bb0725) 2014; 166 Robertson, Rutherford, López-Gutiérrez, Massicotte (bb0750) 2012; 92 Major (bb0595) 2013 Rinklebe, Shaheen, Frohne (bb0745) 2016; 142 Prost, Borchard, Siemens, Kautz, Sequaris, Moeller, Amelung (bb0700) 2013; 42 Zheng, Han, Liu, Xia, Zhang, Li, Liu, Bian, Cheng, Zheng, Pan (bb1010) 2017; 241 Van Zwiete Chan (10.1016/j.geoderma.2018.09.034_bb0130) 2007; 45 Saranya (10.1016/j.geoderma.2018.09.034_bb0755) 2011; 3 Tuomela (10.1016/j.geoderma.2018.09.034_bb0875) 2000; 72 Rajapaksha (10.1016/j.geoderma.2018.09.034_bb0730) 2015; 37 Haider (10.1016/j.geoderma.2018.09.034_bb0270) 2017; 237 Rinklebe (10.1016/j.geoderma.2018.09.034_bb0745) 2016; 142 Antoniadis (10.1016/j.geoderma.2018.09.034_bb0035) 2017; 171 Dias (10.1016/j.geoderma.2018.09.034_bb0170) 2010; 101 Gunes (10.1016/j.geoderma.2018.09.034_bb0260) 2014; 30 Zhang (10.1016/j.geoderma.2018.09.034_bb0990) 2012; 127 Lentz (10.1016/j.geoderma.2018.09.034_bb0530) 2014; 78 El-Naggar (10.1016/j.geoderma.2018.09.034_bb0205) 2018; 624 El-Naggar (10.1016/j.geoderma.2018.09.034_bb0215) 2018 Vandecasteele (10.1016/j.geoderma.2018.09.034_bb0905) 2014; 5 Khalifa (10.1016/j.geoderma.2018.09.034_bb0405) 2015; 74 Igalavithana (10.1016/j.geoderma.2018.09.034_bb0320) 2017; 174 Hangs (10.1016/j.geoderma.2018.09.034_bb0285) 2016; 9 Liu (10.1016/j.geoderma.2018.09.034_bb0575) 2015; 115 Lin (10.1016/j.geoderma.2018.09.034_bb0555) 2017; 27 Spokas (10.1016/j.geoderma.2018.09.034_bb0835) 2012; 41 Zhang (10.1016/j.geoderma.2018.09.034_bb0995) 2012; 351 Downie (10.1016/j.geoderma.2018.09.034_bb0180) 2009 Kinney (10.1016/j.geoderma.2018.09.034_bb0435) 2012; 41 Spokas (10.1016/j.geoderma.2018.09.034_bb0830) 2010; 1 Purakayastha (10.1016/j.geoderma.2018.09.034_bb0705) 2010 Jia (10.1016/j.geoderma.2018.09.034_bb0365) 2015; 5 Gray (10.1016/j.geoderma.2018.09.034_bb0240) 2014; 61 Yu (10.1016/j.geoderma.2018.09.034_bb0955) 2017; 168 Brodie (10.1016/j.geoderma.2018.09.034_bb0090) 2000; 8 Mukherjee (10.1016/j.geoderma.2018.09.034_bb0615) 2013; 193 Randolph (10.1016/j.geoderma.2018.09.034_bb0740) 2017; 192 Jirka (10.1016/j.geoderma.2018.09.034_bb0375) Wang (10.1016/j.geoderma.2018.09.034_bb6000) 2017; 47 Kookana (10.1016/j.geoderma.2018.09.034_bb0455) 2011; 112 Schmidt (10.1016/j.geoderma.2018.09.034_bb0770) 2015; 5 Sigua (10.1016/j.geoderma.2018.09.034_bb0795) 2016; 142 Smith (10.1016/j.geoderma.2018.09.034_bb0810) 2015; 22 Clough (10.1016/j.geoderma.2018.09.034_bb0140) 2013; 3 Cantrell (10.1016/j.geoderma.2018.09.034_bb0120) 2012; 107 Dai (10.1016/j.geoderma.2018.09.034_bb0150) 2017 Ok (10.1016/j.geoderma.2018.09.034_bb0670) 2015; 4 Zhou (10.1016/j.geoderma.2018.09.034_bb1015) 2014; 152 Prost (10.1016/j.geoderma.2018.09.034_bb0700) 2013; 42 Shaheen (10.1016/j.geoderma.2018.09.034_bb0785) 2015; 12 Inyang (10.1016/j.geoderma.2018.09.034_bb0325) 2014; 236 Kammann (10.1016/j.geoderma.2018.09.034_bb0390) 2015; 5 Raboin (10.1016/j.geoderma.2018.09.034_bb0720) 2016; 199 Ippolito (10.1016/j.geoderma.2018.09.034_bb0335) 2012; 41 Han (10.1016/j.geoderma.2018.09.034_bb0280) 2017; 24 Igalavithana (10.1016/j.geoderma.2018.09.034_bb0315) 2015 Joseph (10.1016/j.geoderma.2018.09.034_bb0385) 2010; 48 Jones (10.1016/j.geoderma.2018.09.034_bb0380) 2012; 45 Major (10.1016/j.geoderma.2018.09.034_bb0595) 2013 Laghari (10.1016/j.geoderma.2018.09.034_bb0470) 2016; 96 Steiner (10.1016/j.geoderma.2018.09.034_bb0850) 2008; 171 Zhao (10.1016/j.geoderma.2018.09.034_bb1005) 2013; 59 FAO (The Food and Agriculture Organization of the United Nations) (10.1016/j.geoderma.2018.09.034_bb0225) 2011 Wang (10.1016/j.geoderma.2018.09.034_bb0930) 2016; 8 Lentz (10.1016/j.geoderma.2018.09.034_bb0525) 2012; 41 Kimetu (10.1016/j.geoderma.2018.09.034_bb0430) 2008; 11 Lehmann (10.1016/j.geoderma.2018.09.034_bb0500) 2015 El-Naggar (10.1016/j.geoderma.2018.09.034_bb0220) 2018; 332 Shaheen (10.1016/j.geoderma.2018.09.034_bb7000) 2018; 22 Pietikäinen (10.1016/j.geoderma.2018.09.034_bb0690) 2003; 89 Lehmann (10.1016/j.geoderma.2018.09.034_bb0490) 2007; 5 Singh (10.1016/j.geoderma.2018.09.034_bb0800) 2010; 48 Carlson (10.1016/j.geoderma.2018.09.034_bb0125) 2015; 187 Voltr (10.1016/j.geoderma.2018.09.034_bb0925) 2012; 58 Khan (10.1016/j.geoderma.2018.09.034_bb0420) 2016; 142 Ippolito (10.1016/j.geoderma.2018.09.034_bb0340) 2016; 142 Lehmann (10.1016/j.geoderma.2018.09.034_bb0515) 2011; 43 Hardie (10.1016/j.geoderma.2018.09.034_bb0290) 2014; 376 Lei (10.1016/j.geoderma.2018.09.034_bb0520) 2013; 13 Usman (10.1016/j.geoderma.2018.09.034_bb0885) 2015; 5 Niazi (10.1016/j.geoderma.2018.09.034_bb0635) 2017 Liu (10.1016/j.geoderma.2018.09.034_bb0580) 2016; 23 Khan (10.1016/j.geoderma.2018.09.034_bb0415) 2014; 168 Zimmerman (10.1016/j.geoderma.2018.09.034_bb1025) 2010; 44 Shaheen (10.1016/j.geoderma.2018.09.034_bb0790) 2015; 87 Srinivasarao (10.1016/j.geoderma.2018.09.034_bb0840) 2014; 25 Gul (10.1016/j.geoderma.2018.09.034_bb0255) 2016; 103 Sohi (10.1016/j.geoderma.2018.09.034_bb0815) 2010; 105 Liu (10.1016/j.geoderma.2018.09.034_bb0570) 2014; 129 Zhang (10.1016/j.geoderma.2018.09.034_bb0975) 2014; 171 Zhang (10.1016/j.geoderma.2018.09.034_bb0980) 2010; 139 Glaser (10.1016/j.geoderma.2018.09.034_bb0235) 2002; 35 Deenik (10.1016/j.geoderma.2018.09.034_bb0165) 2011; 176 El-Naggar (10.1016/j.geoderma.2018.09.034_bb0210) 2018 UC Davis Biochar Database (10.1016/j.geoderma.2018.09.034_bb0880) Liu (10.1016/j.geoderma.2018.09.034_bb0565) 2013; 373 Vanlauwe (10.1016/j.geoderma.2018.09.034_bb0915) 2010; 39 Luo (10.1016/j.geoderma.2018.09.034_bb0590) 2016 Mekuria (10.1016/j.geoderma.2018.09.034_bb0610) 2014; 38 Novak (10.1016/j.geoderma.2018.09.034_bb0645) 2009; 3 Purakayastha (10.1016/j.geoderma.2018.09.034_bb0710) 2015; 239 Zhu (10.1016/j.geoderma.2018.09.034_bb1020) 2017; 227 Agegnehu (10.1016/j.geoderma.2018.09.034_bb0010) 2016; 543 Liang (10.1016/j.geoderma.2018.09.034_bb0540) 2006; 70 Lehmann (10.1016/j.geoderma.2018.09.034_bb0495) 2007; 447 Lu (10.1016/j.geoderma.2018.09.034_bb0585) 2014; 114 Prayogo (10.1016/j.geoderma.2018.09.034_bb0695) 2014; 50 Zhang (10.1016/j.geoderma.2018.09.034_bb0970) 2014; 5 Elmer (10.1016/j.geoderma.2018.09.034_bb0195) 2011; 95 Blackwell (10.1016/j.geoderma.2018.09.034_bb0070) 2009 Solaiman (10.1016/j.geoderma.2018.09.034_bb0825) 2010; 48 Akhtar (10.1016/j.geoderma.2018.09.034_bb0025) 2014; 138 Borchard (10.1016/j.geoderma.2018.09.034_bb0075) 2012; 28 Qian (10.1016/j.geoderma.2018.09.034_bb0715) 2014; 5 Kasozi (10.1016/j.geoderma.2018.09.034_bb0400) 2010; 44 Liang (10.1016/j.geoderma.2018.09.034_bb0550) 2016; 164 Vithanage (10.1016/j.geoderma.2018.09.034_bb0920) 2015; 22 Ahmad (10.1016/j.geoderma.2018.09.034_bb0020) 2014; 99 Kuppusamy (10.1016/j.geoderma.2018.09.034_bb0460) 2016; 87 Jindo (10.1016/j.geoderma.2018.09.034_bb0370) 2012; 110 Li (10.1016/j.geoderma.2018.09.034_bb0535) 2012; 395 Nur (10.1016/j.geoderma.2018.09.034_bb0655) 2014; 8 Su (10.1016/j.geoderma.2018.09.034_bb0860) 2016; 214 Scheer (10.1016/j.geoderma.2018.09.034_bb0760) 2011; 345 Brewer (10.1016/j.geoderma.2018.09.034_bb0085) 2011; 4 Godlewska (10.1016/j.geoderma.2018.09.034_bb8000) 2017 Jeffery (10.1016/j.geoderma.2018.09.034_bb0355) 2015; 7 Paustian (10.1016/j.geoderma.2018.09.034_bb0685) 2016; 532 Buss (10.1016/j.geoderma.2018.09.034_bb0110) 2012; 41 Das (10.1016/j.geoderma.2018.09.034_bb0155) 2015; 512 Awad (10.1016/j.geoderma.2018.09.034_bb0045) 2013; 64 Ducey (10.1016/j.geoderma.2018.09.034_bb0185) 2013; 65 Zou (10.1016/j.geoderma.2018.09.034_bb1035) 2016; 50 Omondi (10.1016/j.geoderma.2018.09.034_bb0675) 2016; 274 Han (10.1016/j.geoderma.2018.09.034_bb0275) 2016; 137 Rajapaksha (10.1016/j.geoderma.2018.09.034_bb0725) 2014; 166 Beiyuan (10.1016/j.geoderma.2018.09.034_bb0055) 2017; 178 Van Zwieten (10.1016/j.geoderma.2018.09.034_bb0900) 2010; 327 Kloss (10.1016/j.geoderma.2018.09.034_bb0440) 2012; 41 Mukherjee (10.1016/j.geoderma.2018.09.034_bb0620) 2011; 163 Bindraban (10.1016/j.geoderma.2018.09.034_bb0065) 2012; 4 Warnock (10.1016/j.geoderma.2018.09.034_bb0935) 2007; 300 Agegnehu (10.1016/j.geoderma.2018.09.034_bb0005) 2015; 213 Havlin (10.1016/j.geoderma.2018.09.034_bb0295) 2014 Jeffery (10.1016/j.geoderma.2018.09.034_bb0350) 2011; 144 Nyssen (10.1016/j.geoderma.2018.09.034_bb0660) 2015; 26 Solaiman (10.1016/j.geoderma.2018.09.034_bb0820) 2015; 25 Major (10.1016/j.geoderma.2018.09.034_bb0600) 2010; 333 Borchard (10.1016/j.geoderma.2018.09.034_bb0080) 2014; 144 Zimmerman (10.1016/j.geoderma.2018.09.034_bb1030) 2011; 43 Lal (10.1016/j.geoderma.2018.09.034_bb0485) 2015; 7 Vandecasteele (10.1016/j.geoderma.2018.09.034_bb0910) 2016; 168 Doan (10.1016/j.geoderma.2018.09.034_bb0175) 2015; 514 Lehmann (10.1016/j.geoderma.2018.09.034_bb0505) 2003; 249 Butnan (10.1016/j.geoderma.2018.09.034_bb0115) 2015; 237 Hayashi (10.1016/j.geoderma.2018.09.034_bb0300) 2002; 40 Thies (10.1016/j.geoderma.2018.09.034_bb0870) 2009 Subedi (10.1016/j.geoderma.2018.09.034_bb0865) 2015 Bruun (10.1016/j.geoderma.2018.09.034_bb0095) 2012; 46 Edenborn (10.1016/j.geoderma.2018.09.034_bb0190) 2015; 150 Cheng (10.1016/j.geoderma.2018.09.034_bb0135) 2009; 75 Park (10.1016/j.geoderma.2018.09.034_bb0680) 2015; 58 Karhu (10.1016/j.geoderma.2018.09.034_bb0395) 2011; 140 Conte (10.1016/j.geoderma.2018.09.034_bb0145) 2017; 21 Annabi (10.1016/j.geoderma.2018.09.034_bb0030) 2011; 144 Singh (10.1016/j.geoderma.2018.09.034_bb0805) 2015; 77 Laird (10.1016/j.geoderma.2018.09.034_bb0480) 2010; 158 Steiner (10.1016/j.geoderma.2018.09.034_bb0855) 2011; 2 Major (10.1016/j.geoderma.2018.09.034_bb0605) 2012; 41 Robertson (10.1016/j.geoderma.2018.09.034_bb0750) 2012; 92 Liu (10.1016/j.geoderma.2018.09.034_bb0560) 2012; 175 Zhang (10.1016/j.geoderma.2018.09.034_bb1000) 2017; 391 Liang (10.1016/j.geoderma.2018.09.034_bb0545) 2014; 13 Nelissen (10.1016/j.geoderma.2018.09.034_bb0630) 2015; 62 Schmidt (10.1016/j.geoderma.2018.09.034_bb0765) 2014; 15 David (10.1016/j.geoderma.2018.09.034_bb0160) 2015; 25 Kim (10.1016/j.geoderma.2018.09.034_bb0425) 2012; 118 Usman (10.1016/j.geoderma.2018.09.034_bb0890) 2015; 38 Inyang (10.1016/j.geoderma.2018.09.034_bb0330) 2015 Laird (10.1016/j.geoderma.2018.09.034_bb0475) 2008; 100 Biederman (10.1016/j.geoderma.2018.09.034_bb0060) 2013; 5 Novak (10.1016/j.geoderma.2018.09.034_bb0640) 2009; 174 Novak (10.1016/j.geoderma.2018.09.034_bb0650) 2014; 14 Ishii (10.1016/j.geoderma.2018.09.034_bb0345) 2000; 89 Bruun (10.1016/j.geoderma.2018.09.034_bb0100) 2015; 26 Schulz (10.1016/j.geoderma.2018.09.034_bb0775) 2013; 33 Shepherd (10.1016/j.geoderma.2018.09.034_bb5000 |
References_xml | – volume: 144 start-page: 175 year: 2011 end-page: 187 ident: bb0350 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agric. Ecosyst. Environ. – volume: 1 start-page: 289 year: 2010 end-page: 303 ident: bb0830 article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios publication-title: Carbon Manag. – volume: 3 start-page: 349 year: 2013 end-page: 375 ident: bb0665 article-title: Impact of biochar on organic contaminants in soil: a tool for mitigating risk? publication-title: Agronomy – volume: 5 start-page: 693 year: 2014 ident: bb0625 article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging publication-title: Solid Earth – volume: 274 start-page: 28 year: 2016 end-page: 34 ident: bb0675 article-title: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data publication-title: Geoderma – volume: 46 start-page: 113 year: 1998 end-page: 125 ident: bb0265 article-title: Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons publication-title: J. Anal. Appl. Pyrolysis – volume: 177 start-page: 3 year: 2014 end-page: 15 ident: bb0445 article-title: Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions publication-title: J. Plant Nutr. Soil Sci. – volume: 236 start-page: 39 year: 2014 end-page: 46 ident: bb0325 article-title: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites publication-title: Chem. Eng. J. – volume: 96 start-page: 4840 year: 2016 end-page: 4849 ident: bb0470 article-title: Recent developments in biochar as an effective tool for agricultural soil management: a review publication-title: J. Sci. Food Agric. – volume: 115 start-page: 12251 year: 2015 end-page: 12285 ident: bb0575 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Chem. Rev. – volume: 3 start-page: 71 year: 2011 end-page: 77 ident: bb0755 article-title: Standardization of the substrate material for large scale production of arbuscular mycorrhizal inoculum publication-title: Int. J. Agric. Sci. – volume: 174 start-page: 593 year: 2017 end-page: 603 ident: bb0320 article-title: Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils publication-title: Chemosphere – volume: 75 start-page: 1021 year: 2009 end-page: 1027 ident: bb0135 article-title: Ageing of black carbon along a temperature gradient publication-title: Chemosphere – volume: 395 start-page: 157 year: 2012 end-page: 160 ident: bb0535 article-title: In situ preparation of biochar coated silica material from rice husk publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 227 start-page: 98 year: 2017 end-page: 115 ident: bb1020 article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review publication-title: Environ. Pollut. – volume: 351 start-page: 263 year: 2012 end-page: 275 ident: bb0995 article-title: Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain publication-title: Plant Soil – volume: 41 start-page: 990 year: 2012 end-page: 1000 ident: bb0440 article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties publication-title: J. Environ. Qual. – start-page: 55 year: 2010 ident: bb0705 article-title: Effect of biochar on yield of different crops publication-title: IARI. Annual Report – volume: 22 start-page: 2175 year: 2015 end-page: 2186 ident: bb0920 article-title: Acid-activated biochar increased sulfamethazine retention in soils publication-title: Environ. Sci. Pollut. Res. – volume: 171 start-page: 621 year: 2017 end-page: 645 ident: bb0035 article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review publication-title: Earth Sci. Rev. – volume: 5 start-page: 381 year: 2007 end-page: 387 ident: bb0490 article-title: Bio-energy in the black publication-title: Front. Ecol. Environ. – volume: 174 start-page: 105 year: 2009 end-page: 112 ident: bb0640 article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil publication-title: Soil Sci. – volume: 77 start-page: 324 year: 2015 end-page: 347 ident: bb0805 article-title: Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective publication-title: Ecol. Eng. – volume: 41 start-page: 1157 year: 2012 ident: bb0110 article-title: Biochar reduces copper toxicity in publication-title: J. Environ. Qual. – volume: 61 start-page: 196 year: 2014 end-page: 205 ident: bb0240 article-title: Water uptake in biochars: the roles of porosity and hydrophobicity publication-title: Biomass Bioenergy – volume: 5 year: 2015 ident: bb0390 article-title: Plant growth improvement mediated by nitrate capture in co-composted biochar publication-title: Sci. Rep. – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: bb0930 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: Glob. Change Biol. Bioenergy. – volume: 135 start-page: 313 year: 2015 end-page: 320 ident: bb0465 article-title: Effects of biochar application rate on sandy desert soil properties and sorghum growth publication-title: Catena – volume: 5 start-page: 56 year: 2015 end-page: 61 ident: bb0365 article-title: Short report: effects of biochar addition on manure composting and associated N publication-title: J. Sustain. Bioenergy Syst. – volume: 38 start-page: 936 year: 2014 end-page: 961 ident: bb0610 article-title: Organic and clay-based soil amendments increase maize yield, total nutrient uptake, and soil properties in Lao PDR publication-title: Agroecol. Sust. Food Syst. – volume: 46 start-page: 73 year: 2012 end-page: 79 ident: bb0095 article-title: Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics publication-title: Soil Biol. Biochem. – year: 2018 ident: bb0215 article-title: Potential of biochar to immobilize nickel in contaminated soils publication-title: Nickel in Soils and Plants – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: bb1030 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. – volume: 25 start-page: 720 year: 2015 end-page: 728 ident: bb0160 article-title: Biochar and compost increase crop yields but the effect is short term on sandplain soils of Western Australia publication-title: Pedosphere – volume: 48 start-page: 501 year: 2010 end-page: 515 ident: bb0385 article-title: An investigation into the reactions of biochar in soil publication-title: Aust. J. Soil Res. – volume: 41 start-page: 1301 year: 2009 end-page: 1310 ident: bb0845 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol. Biochem. – year: 2016 ident: bb0590 article-title: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China publication-title: J. Soils Sediments – volume: 144 start-page: 382 year: 2011 end-page: 389 ident: bb0030 article-title: Improvement of soil aggregate stability by reported applications of organic amendments to a cultivated silty loam soil publication-title: Agric. Ecosyst. Environ. – volume: 514 start-page: 147 year: 2015 end-page: 154 ident: bb0175 article-title: Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment publication-title: Sci. Total Environ. – volume: 48 start-page: 546 year: 2010 end-page: 554 ident: bb0825 article-title: Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat publication-title: Aust. J. Soil Res. – volume: 5 start-page: 145 year: 2014 end-page: 154 ident: bb0715 article-title: Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China publication-title: Carbon Manag. – volume: 164 start-page: 3 year: 2016 end-page: 10 ident: bb0550 article-title: Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size publication-title: Soil Tillage Res. – volume: 25 start-page: 631 year: 2015 end-page: 638 ident: bb0820 article-title: Application of biochars for soil constraints: challenges and solutions publication-title: Pedosphere – volume: 175 start-page: 698 year: 2012 end-page: 707 ident: bb0560 article-title: Short term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions publication-title: J. Plant Nutr. Soil Sci. – volume: 87 start-page: 1 year: 2016 end-page: 12 ident: bb0460 article-title: Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions publication-title: Environ. Int. – volume: 137 start-page: 554 year: 2016 end-page: 562 ident: bb0275 article-title: Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau publication-title: Catena – volume: 25 start-page: 173 year: 2014 end-page: 183 ident: bb0840 article-title: Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in western India publication-title: Land Degrad. Dev. – volume: 40 start-page: 2381 year: 2002 end-page: 2386 ident: bb0300 article-title: Preparing activated carbon from various nutshells by chemical activation with K publication-title: Carbon – year: 2014 ident: bb0295 article-title: Soil Fertility and Nutrient Management: An Introduction to Nutrient Management – volume: 48 start-page: 516 year: 2010 end-page: 525 ident: bb0800 article-title: Characterisation and evaluation of biochars for their application as a soil amendment publication-title: Soil Res. – volume: 39 start-page: 17 year: 2010 end-page: 24 ident: bb0915 article-title: Integrated soil fertility management: operational definition and consequences for implementation and dissemination publication-title: Outlook Agriculture – volume: 192 start-page: 271 year: 2017 end-page: 280 ident: bb0740 article-title: Effect of biochars produced from solid organic municipal waste on soil quality parameters publication-title: J. Environ. Manag. – volume: 142 start-page: 41 year: 2016 end-page: 47 ident: bb0745 article-title: Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil publication-title: Chemosphere – volume: 59 start-page: 771 year: 2013 end-page: 782 ident: bb1005 article-title: Effects of the addition of rice-straw-based biochar on leaching and retention of fertilizer N in highly fertilized cropland soils publication-title: Soil Sci. Plant Nutr. – volume: 38 start-page: 511 year: 2015 end-page: 521 ident: bb0890 article-title: Chemically modified biochar produced from conocarpus waste increases NO publication-title: Environ. Geochem. Health – volume: 41 start-page: 34 year: 2012 end-page: 43 ident: bb0435 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass Bioenergy – volume: 9 start-page: 157 year: 2016 end-page: 171 ident: bb0285 article-title: Influence of willow biochar amendment on soil nitrogen availability and greenhouse gas production in two fertilized temperate prairie soils publication-title: Bioenergy Res. – volume: 35 start-page: 219 year: 2002 end-page: 230 ident: bb0235 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal— a review publication-title: Biol. Fertil. Soils – volume: 74 start-page: 960 year: 2015 end-page: 965 ident: bb0405 article-title: A short report on changes of quality indicators for a sandy textured soil after treatment with biochar produced from fronds of date palm publication-title: Energy Procedia – volume: 447 start-page: 143 year: 2007 end-page: 144 ident: bb0495 article-title: A handful of carbon publication-title: Nature – volume: 50 start-page: 7290 year: 2016 end-page: 7304 ident: bb1035 article-title: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review publication-title: Environ. Sci. Technol. – volume: 3 start-page: 195 year: 2009 end-page: 206 ident: bb0645 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Ann. Environ. Sci. – volume: 12 start-page: 2765 year: 2015 end-page: 2776 ident: bb0785 article-title: Impact of various amendments on the bioavailability and immobilization of Ni and Zn in a contaminated floodplain soil publication-title: Int. J. Environ. Sci. Technol. – volume: 376 start-page: 347 year: 2014 end-page: 361 ident: bb0290 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil – volume: 22 start-page: 1008 year: 2015 end-page: 1028 ident: bb0810 article-title: Global change pressures on soils from land use and management publication-title: Glob. Chang. Biol. – volume: 241 start-page: 70 year: 2017 end-page: 78 ident: bb1010 article-title: Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production publication-title: Agric. Ecosyst. Environ. – volume: 45 start-page: 629 year: 2007 end-page: 634 ident: bb0130 article-title: Agronomic values of green waste biochar as a soil amendment publication-title: Aust. J. Soil Res. – volume: 47 start-page: 2158 year: 2017 end-page: 2207 ident: bb6000 article-title: Recent advances in engineered biochar productions and applications publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 138 start-page: 37 year: 2014 end-page: 44 ident: bb0025 article-title: Biochar enhances yield and quality of tomato under reduced irrigation publication-title: Agric. Water Manag. – volume: 144 start-page: 184 year: 2014 end-page: 194 ident: bb0080 article-title: Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice publication-title: Soil Tillage Res. – year: 2017 ident: bb0635 article-title: Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination publication-title: Environ. Pollut. – volume: 158 start-page: 436 year: 2010 end-page: 442 ident: bb0480 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma – volume: 152 start-page: 538 year: 2014 end-page: 542 ident: bb1015 article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions publication-title: Bioresour. Technol. – volume: 178 start-page: 110 year: 2017 end-page: 118 ident: bb0055 article-title: Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions publication-title: Chemosphere – start-page: 193 year: 2017 end-page: 202 ident: bb8000 article-title: Biochar for composting improvement and contaminants reduction. A review. publication-title: Bioresour. Technol. – volume: 166 start-page: 303 year: 2014 end-page: 308 ident: bb0725 article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars publication-title: Bioresour. Technol. – volume: 21 start-page: 1 year: 2017 end-page: 7 ident: bb0145 article-title: Mechanisms of organic coating on the surface of a poplar biochar publication-title: Curr. Org. Chem. – volume: 213 start-page: 72 year: 2015 end-page: 85 ident: bb0005 article-title: Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia publication-title: Agric. Ecosyst. Environ. – volume: 624 start-page: 1059 year: 2018 end-page: 1071 ident: bb0205 article-title: Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions publication-title: Sci. Total Environ. – volume: 50 start-page: 695 year: 2014 end-page: 702 ident: bb0695 article-title: Impact of biochar on mineralization of C and N from soil and willow litter and its relationship with microbial community biomass and structure publication-title: Biol. Fertil. Soils – volume: 85 start-page: 91 year: 2007 end-page: 118 ident: bb0450 article-title: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review publication-title: Biogeochemistry – volume: 300 start-page: 9 year: 2007 end-page: 20 ident: bb0935 article-title: Mycorrhizal responses to biochar in soil – concepts and mechanisms publication-title: Plant Soil – volume: 92 start-page: 329 year: 2012 end-page: 340 ident: bb0750 article-title: Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils publication-title: Can. J. Soil Sci. – volume: 140 start-page: 309 year: 2011 end-page: 313 ident: bb0395 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. – volume: 110 start-page: 396 year: 2012 end-page: 404 ident: bb0370 article-title: Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure publication-title: Bioresour. Technol. – volume: 95 start-page: 960 year: 2011 end-page: 966 ident: bb0195 article-title: Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils publication-title: Plant Dis. – volume: 171 start-page: 274 year: 2014 end-page: 284 ident: bb0975 article-title: Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar publication-title: Bioresour. Technol. – volume: 31 start-page: 251 year: 2015 end-page: 258 ident: bb0105 article-title: Stability of co-composted hydrochar and biochar under field conditions in a temperate soil publication-title: Soil Use Manag. – volume: 333 start-page: 117 year: 2010 end-page: 128 ident: bb0600 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombia savanna oxisol publication-title: Plant Soil – volume: 150 start-page: 226 year: 2015 end-page: 234 ident: bb0190 article-title: Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar publication-title: J. Environ. Manag. – volume: 17 start-page: 685 year: 2017 end-page: 716 ident: bb0305 article-title: Biochar for crop production: potential benefits and risks publication-title: J. Soils Sediments – volume: 118 start-page: 536 year: 2012 end-page: 544 ident: bb0015 article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour. Technol. – volume: 2 start-page: 227 year: 2011 end-page: 230 ident: bb0855 article-title: Biochar as bulking agent for poultry litter composting publication-title: Carbon Manag. – volume: 37 start-page: 931 year: 2015 end-page: 942 ident: bb0730 article-title: The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil publication-title: Environ. Geochem. Health – year: 2015 ident: bb0880 article-title: UC Davis Biochar Database [WWW Document] – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: bb0540 article-title: Black carbon increases cation exchange capacity publication-title: Soil Sci. Soc. Am. J. – volume: 41 start-page: 1123 year: 2012 end-page: 1130 ident: bb0335 article-title: Switchgrass biochar affects two Aridisols publication-title: J. Environ. Qual. – volume: 5 start-page: 491 year: 2014 end-page: 503 ident: bb0905 article-title: Composting for increasing the fertilizer value of chicken manure: effects of feedstock on P availability publication-title: Waste Biomass Valoriz. – volume: 58 start-page: 5243 year: 2012 end-page: 5251 ident: bb0925 article-title: Concept of soil fertility and soil productivity: evaluation of agricultural sites in the Czech Republic publication-title: Arch. Agron. Soil Sci. – start-page: 85 year: 2009 end-page: 105 ident: bb0870 article-title: Characteristics of biochar: biological properties publication-title: Biochar for Environmental Management. Science and Technology – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: bb0515 article-title: Biochar effects on soil biota — a review publication-title: Soil Biol. Biochem. – volume: 72 start-page: 169 year: 2000 end-page: 183 ident: bb0875 article-title: Biodegradation of lignin in a compost environment: a review publication-title: Bioresour. Technol. – start-page: 207 year: 2009 end-page: 226 ident: bb0070 article-title: Biochar application to soil publication-title: Biochar for Environmental Management Science and Technology – volume: 543 start-page: 295 year: 2016 end-page: 306 ident: bb0010 article-title: Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil publication-title: Sci. Total Environ. – volume: 7 start-page: 1 year: 2015 end-page: 13 ident: bb0355 article-title: The way forward in biochar research: targeting trade-offs between the potential wins publication-title: Glob. Change Biol. Bioenergy. – volume: 168 start-page: 245 year: 2014 end-page: 251 ident: bb0415 article-title: Maturity indices in co-composting of chicken manure and sawdust with biochar publication-title: Bioresour. Technol. – volume: 112 start-page: 103 year: 2011 end-page: 143 ident: bb0455 article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences publication-title: Adv. Agron. – start-page: 1 year: 2015 end-page: 1214 ident: bb0500 article-title: Biochar for environmental management: an introduction publication-title: Biochar for Environmental Management: Science, Technology and Implementation – volume: 251 start-page: 47 year: 2015 end-page: 54 ident: bb0360 article-title: Biochar application does not improve the soil hydrological function of a sandy soil publication-title: Geoderma – volume: 42 start-page: 164 year: 2013 end-page: 172 ident: bb0700 article-title: Biochar affected by composting with farmyard manure publication-title: J. Environ. Qual. – volume: 89 start-page: 768 year: 2000 end-page: 777 ident: bb0345 article-title: Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis publication-title: J. Appl. Microbiol. – volume: 176 start-page: 336 year: 2011 end-page: 345 ident: bb0165 article-title: Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol publication-title: Soil Sci. – volume: 62 start-page: 65 year: 2015 end-page: 78 ident: bb0630 article-title: Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment publication-title: Eur. J. Agron. – volume: 138 start-page: 67 year: 2015 end-page: 73 ident: bb0200 article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar publication-title: Chemosphere – volume: 159 start-page: 3268 year: 2011 end-page: 3282 ident: bb0050 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. – volume: 30 start-page: 182 year: 2014 end-page: 188 ident: bb0260 article-title: Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce ( publication-title: Soil Use Manag. – volume: 391 start-page: 321 year: 2017 end-page: 329 ident: bb1000 article-title: Biochar enhances nut quality of publication-title: For. Ecol. Manag. – volume: 163 start-page: 247 year: 2011 end-page: 255 ident: bb0620 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma – volume: 5 start-page: 723 year: 2015 end-page: 741 ident: bb0770 article-title: Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil publication-title: Agriculture – volume: 89 start-page: 231 year: 2003 end-page: 242 ident: bb0690 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos – volume: 3 start-page: 275 year: 2013 end-page: 293 ident: bb0140 article-title: A review of biochar and soil nitrogen dynamics publication-title: Agronomy – volume: 4 start-page: 206 year: 2015 end-page: 209 ident: bb0670 article-title: SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research publication-title: Environ. Technol. Innov. – start-page: 102 year: 2013 ident: bb0595 article-title: Practical aspects of biochar application to tree crops publication-title: IBI Technical Bulletin – volume: 41 start-page: 973 year: 2012 end-page: 989 ident: bb0835 article-title: Biochar: a synthesis of its agronomic impact beyond carbon sequestration publication-title: J. Environ. Qual. – volume: 345 start-page: 47 year: 2011 end-page: 58 ident: bb0760 article-title: Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia publication-title: Plant Soil – start-page: 13 year: 2009 end-page: 32 ident: bb0180 article-title: Physical properties of biochar publication-title: Biochar for Environmental Management: Science and Technology – volume: 142 start-page: 184 year: 2016 end-page: 191 ident: bb0340 article-title: Designer, acidic biochar influences calcareous soil characteristics publication-title: Chemosphere – volume: 26 start-page: 272 year: 2015 end-page: 283 ident: bb0100 article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture publication-title: Land Degrad. Dev. – volume: 187 start-page: 1 year: 2015 end-page: 15 ident: bb0125 article-title: Application of organic amendments to restore degraded soil: effects on soil microbial properties publication-title: Environ. Monit. Assess. – volume: 24 start-page: 5554 year: 2017 end-page: 5565 ident: bb0280 article-title: Effects of the biochar aromaticity and molecular structures of the chlorinated organic compounds on the adsorption characteristics publication-title: Environ. Sci. Pollut. Res. – volume: 249 start-page: 343 year: 2003 end-page: 357 ident: bb0505 article-title: Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon Basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil – volume: 5 start-page: 1 year: 2015 end-page: 7 ident: bb0885 article-title: The combined use of organic and inorganic fertilizers for improving maize crop productivity in Nigeria publication-title: Int. J. Sci. Res. Publ. – volume: 27 start-page: 248 year: 2017 end-page: 261 ident: bb0555 article-title: Effects of different biochars on publication-title: Pedosphere – year: 2011 ident: bb0225 article-title: The State of the World's Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy – volume: 168 start-page: 200 year: 2016 end-page: 209 ident: bb0910 article-title: Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake publication-title: J. Environ. Manag. – volume: 111 start-page: 81 year: 2009 end-page: 84 ident: bb0040 article-title: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield publication-title: Field Crop Res. – volume: 87 start-page: 506 year: 2015 end-page: 515 ident: bb0790 article-title: Metal ion removal from industrial wastewaters by sorption on activated carbon, cement kiln dust, and sawdust publication-title: Water Environ. Res. – volume: 193 start-page: 122 year: 2013 end-page: 130 ident: bb0615 article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures publication-title: Geoderma – volume: 199 start-page: 99 year: 2016 end-page: 108 ident: bb0720 article-title: Improving the fertility of tropical acid soils: liming versus biochar application? A long term comparison in the highlands of Madagascar publication-title: Field Crop Res. – volume: 74 start-page: 319 year: 2015 end-page: 326 ident: bb0780 article-title: Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil publication-title: Ecol. Eng. – volume: 4 start-page: 478 year: 2012 end-page: 488 ident: bb0065 article-title: Assessing the impact of soil degradation on food production publication-title: Curr. Opin. Environ. Sustain. – volume: 103 start-page: 1 year: 2016 end-page: 15 ident: bb0255 article-title: Biochemical cycling of nitrogen and phosphorus in biochar-amended soils - review paper publication-title: Soil Biol. Biochem. – volume: 114 start-page: 37 year: 2014 end-page: 44 ident: bb0585 article-title: Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol) publication-title: Catena – volume: 512 start-page: 682 year: 2015 end-page: 685 ident: bb0155 article-title: The love–hate relationship of pyrolysis biochar and water: a perspective publication-title: Sci. Total Environ. – volume: 33 start-page: 817 year: 2013 end-page: 827 ident: bb0775 article-title: Positive effects of composted biochar on plant growth and soil fertility publication-title: Agron. Sustain. Dev. – volume: 139 start-page: 469 year: 2010 end-page: 475 ident: bb0980 article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China publication-title: Agric. Ecosyst. Environ. – volume: 178 start-page: 165 year: 2013 end-page: 173 ident: bb0310 article-title: Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil publication-title: Soil Sci. – volume: 8 start-page: 178 year: 2000 end-page: 189 ident: bb0090 article-title: A comparison of static pile and turned windrow methods for poultry litter compost production publication-title: Compost Sci. Util. – volume: 78 start-page: 1641 year: 2014 end-page: 1655 ident: bb0530 article-title: Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn publication-title: Soil Sci. Soc. Am. J. – volume: 26 start-page: 629 year: 2015 end-page: 631 ident: bb0660 article-title: Environmental conservation for food production and sustainable livelihood in Tropical Africa publication-title: Land Degrad. Dev. – volume: 142 start-page: 168 year: 2016 end-page: 175 ident: bb0795 article-title: Ameliorating soil chemical properties of a hard setting subsoil layer in Coastal Plain USA with different designer biochars publication-title: Chemosphere – volume: 22 start-page: 1 year: 2018 end-page: 32 ident: bb7000 article-title: Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review publication-title: Int. Mater. Rev. – volume: 119 start-page: 156 year: 2017 end-page: 170 ident: bb9000 article-title: The role of biochar and biochar-compost in improving soil quality and crop performance: a review publication-title: Appl. Soil Ecol. – year: 2015 ident: bb0315 article-title: The Effects of Biochar Amendment on Soil Fertility. Agricultural and Environmental Applications of Biochar: Advances and Barriers – volume: 332 start-page: 100 year: 2018 end-page: 108 ident: bb0220 article-title: Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils publication-title: Geoderma – volume: 13 start-page: 1561 year: 2013 end-page: 1572 ident: bb0520 article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties publication-title: J. Soils Sediments – volume: 237 start-page: 105 year: 2015 end-page: 116 ident: bb0115 article-title: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy publication-title: Geoderma – volume: 48 start-page: 9391 year: 2014 end-page: 9399 ident: bb0950 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environ. Sci. Technol. – volume: 142 start-page: 14 year: 2016 end-page: 23 ident: bb0420 article-title: Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost publication-title: Chemosphere – volume: 373 start-page: 583 year: 2013 end-page: 594 ident: bb0565 article-title: Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data publication-title: Plant Soil – volume: 164 start-page: 11 year: 2016 end-page: 17 ident: bb0245 article-title: Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures publication-title: Soil Tillage Res. – volume: 44 start-page: 6189 year: 2010 end-page: 6195 ident: bb0400 article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) publication-title: Environ. Sci. Technol. – volume: 11 start-page: 741 year: 2011 end-page: 750 ident: bb0960 article-title: Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars publication-title: J. Soils Sediments – volume: 171 start-page: 893 year: 2008 end-page: 899 ident: bb0850 article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal publication-title: J. Plant Nutr. Soil Sci. – volume: 101 start-page: 1239 year: 2010 end-page: 1246 ident: bb0170 article-title: Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification publication-title: Bioresour. Technol. – volume: 532 start-page: 49 year: 2016 end-page: 57 ident: bb0685 article-title: Climate-smart soils publication-title: Nature – volume: 28 start-page: 177 year: 2012 end-page: 184 ident: bb0075 article-title: Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment publication-title: Soil Use Manag. – volume: 23 start-page: 995 year: 2016 end-page: 1006 ident: bb0580 article-title: Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China publication-title: Environ. Sci. Pollut. Res. – volume: 173 start-page: 551 year: 2017 end-page: 556 ident: bb0965 article-title: Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth publication-title: Chemosphere – year: 2015 ident: bb0375 article-title: State of the Biochar Industry – volume: 64 start-page: 488 year: 2013 end-page: 499 ident: bb0045 article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of publication-title: Eur. J. Soil Sci. – start-page: 406 year: 2015 end-page: 433 ident: bb0330 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 584 start-page: 448 year: 2017 end-page: 457 ident: bb5000 article-title: Bioavailability of phosphorus, other nutrients and potentially toxic elements from marginal biomass-derived biochar assessed in barley (Hordeum vulgare) growth experiments publication-title: Sci. Total Environ. – volume: 5 start-page: 202 year: 2013 end-page: 214 ident: bb0060 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: GCB Bioenergy – volume: 13 start-page: 525 year: 2014 end-page: 532 ident: bb0545 article-title: Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil publication-title: J. Integr. Agric. – volume: 58 start-page: 751 year: 2015 end-page: 760 ident: bb0680 article-title: Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption publication-title: J. Korean Soc. Appl. Biol. Chem. – year: 2018 ident: bb0210 article-title: Biochar influences soil carbon pools and facilitates interactions with soil: a field investigation publication-title: Land Degrad. Dev. – volume: 47 start-page: 8624 year: 2013 end-page: 8632 ident: bb0410 article-title: Sewage sludge biochar influence upon rice ( publication-title: Environ. Sci. Technol. – volume: 65 start-page: 65 year: 2013 end-page: 72 ident: bb0185 article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances publication-title: Appl. Soil Ecol. – volume: 129 start-page: 22 year: 2014 end-page: 29 ident: bb0570 article-title: Sustainable biochar effects for low carbon crop production: a 5-crop season field experiment on a low fertility soil from Central China publication-title: Agric. Syst. – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: bb0020 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 237 start-page: 80 year: 2017 end-page: 94 ident: bb0270 article-title: Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study publication-title: Agric. Ecosyst. Environ. – volume: 107 start-page: 419 year: 2012 end-page: 428 ident: bb0120 article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar publication-title: Bioresour. Technol. – volume: 14 start-page: 330 year: 2014 end-page: 343 ident: bb0650 article-title: Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks publication-title: J. Soils Sediments – volume: 15 start-page: 117 year: 2014 end-page: 123 ident: bb0765 article-title: Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality publication-title: Agric. Ecosyst. Environ. – volume: 118 start-page: 158 year: 2012 end-page: 162 ident: bb0425 article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine ( publication-title: Bioresour. Technol. – volume: 214 start-page: 94 year: 2016 end-page: 100 ident: bb0860 article-title: Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil publication-title: Environ. Pollut. – volume: 5 start-page: 255 year: 2014 end-page: 257 ident: bb0970 article-title: Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration publication-title: Carbon Manag. – volume: 4 start-page: 312 year: 2011 end-page: 323 ident: bb0085 article-title: Criteria to select biochars for field studies based on biochar chemical properties publication-title: Bioenergy Res. – volume: 65 start-page: 40 year: 2014 end-page: 51 ident: bb0945 article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by publication-title: Eur. J. Soil Sci. – year: 2015 ident: bb0865 article-title: Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? publication-title: Eur. J. Soil Sci. – volume: 239 start-page: 293 year: 2015 end-page: 303 ident: bb0710 article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues publication-title: Geoderma – volume: 11 start-page: 395 year: 2006 end-page: 419 ident: bb0510 article-title: Biochar sequestration in terrestrial ecosystems – a review publication-title: Mitig. Adapt. Strateg. Glob. Chang. – volume: 27 start-page: 205 year: 2011 end-page: 212 ident: bb0895 article-title: Effect of cow manure biochar on maize productivity under sandy soil condition publication-title: Soil Use Manag. – volume: 11 start-page: 726 year: 2008 end-page: 739 ident: bb0430 article-title: Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient publication-title: Ecosystems – volume: 105 start-page: 47 year: 2010 end-page: 82 ident: bb0815 article-title: A review of biochar and its use and function in soil publication-title: Adv. Agron. – volume: 327 start-page: 235 year: 2010 end-page: 246 ident: bb0900 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil – volume: 168 start-page: 341 year: 2017 end-page: 349 ident: bb0955 article-title: Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice ( publication-title: Chemosphere – volume: 127 start-page: 153 year: 2012 end-page: 160 ident: bb0990 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles publication-title: Field Crop Res. – year: 2017 ident: bb0150 article-title: Potential role of biochars in decreasing soil acidification-a critical review publication-title: Sci. Total Environ. – volume: 48 start-page: 271 year: 2012 end-page: 284 ident: bb0735 article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil publication-title: Biol. Fertil. Soils – volume: 100 start-page: 178 year: 2008 end-page: 181 ident: bb0475 article-title: The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality publication-title: Agron. J. – volume: 45 start-page: 113 year: 2012 end-page: 124 ident: bb0380 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol. Biochem. – volume: 39 start-page: 6344 year: 2011 end-page: 6350 ident: bb0230 article-title: The economic value of biochar in crop production and carbon sequestration publication-title: Energy Policy – volume: 41 start-page: 1076 year: 2012 end-page: 1086 ident: bb0605 article-title: Nutrient leaching in a Colombian savanna oxisol amended with biochar publication-title: J. Environ. Qual. – volume: 8 start-page: 105 year: 2014 end-page: 111 ident: bb0655 article-title: The use of biochar fortified compost on calcareous soil of east Nusa Tenggara, Indonesia: 2. Effect on the yield of maize ( publication-title: Am.-Eurasian J. Sustain. Agric. – volume: 365 start-page: 239 year: 2013 end-page: 254 ident: bb0250 article-title: Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system publication-title: Plant Soil – volume: 7 start-page: 5875 year: 2015 end-page: 5895 ident: bb0485 article-title: Restoring soil quality to mitigate soil degradation publication-title: Sustainability – volume: 44 start-page: 1295 year: 2010 end-page: 1301 ident: bb1025 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 41 start-page: 1033 year: 2012 end-page: 1043 ident: bb0525 article-title: Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake publication-title: J. Environ. Qual. – volume: 214 start-page: 94 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0860 article-title: Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.03.072 – volume: 41 start-page: 1076 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0605 article-title: Nutrient leaching in a Colombian savanna oxisol amended with biochar publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0128 – volume: 139 start-page: 469 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0980 article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.09.003 – volume: 4 start-page: 478 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0065 article-title: Assessing the impact of soil degradation on food production publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2012.09.015 – volume: 101 start-page: 1239 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0170 article-title: Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.09.024 – volume: 327 start-page: 235 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0900 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil doi: 10.1007/s11104-009-0050-x – volume: 144 start-page: 175 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0350 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.08.015 – volume: 41 start-page: 1033 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0525 article-title: Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0126 – volume: 333 start-page: 117 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0600 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombia savanna oxisol publication-title: Plant Soil doi: 10.1007/s11104-010-0327-0 – volume: 174 start-page: 105 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2018.09.034_bb0640 article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil publication-title: Soil Sci. doi: 10.1097/SS.0b013e3181981d9a – volume: 41 start-page: 990 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0440 article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0070 – ident: 10.1016/j.geoderma.2018.09.034_bb0880 – volume: 8 start-page: 512 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0930 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12266 – year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0590 article-title: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China publication-title: J. Soils Sediments – volume: 89 start-page: 231 year: 2003 ident: 10.1016/j.geoderma.2018.09.034_bb0690 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos doi: 10.1034/j.1600-0706.2000.890203.x – year: 2018 ident: 10.1016/j.geoderma.2018.09.034_bb0215 article-title: Potential of biochar to immobilize nickel in contaminated soils – volume: 5 start-page: 723 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0770 article-title: Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil publication-title: Agriculture doi: 10.3390/agriculture5030723 – volume: 48 start-page: 271 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0735 article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-011-0624-7 – volume: 171 start-page: 621 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0035 article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2017.06.005 – volume: 33 start-page: 817 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0775 article-title: Positive effects of composted biochar on plant growth and soil fertility publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0150-0 – volume: 129 start-page: 22 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0570 article-title: Sustainable biochar effects for low carbon crop production: a 5-crop season field experiment on a low fertility soil from Central China publication-title: Agric. Syst. doi: 10.1016/j.agsy.2014.05.008 – volume: 50 start-page: 695 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0695 article-title: Impact of biochar on mineralization of C and N from soil and willow litter and its relationship with microbial community biomass and structure publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-013-0884-5 – volume: 27 start-page: 205 issue: 2 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0895 article-title: Effect of cow manure biochar on maize productivity under sandy soil condition publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2011.00340.x – volume: 37 start-page: 931 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0730 article-title: The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil publication-title: Environ. Geochem. Health doi: 10.1007/s10653-015-9694-z – volume: 118 start-page: 536 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0015 article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.042 – volume: 5 start-page: 693 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0625 article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging publication-title: Solid Earth doi: 10.5194/se-5-693-2014 – volume: 77 start-page: 324 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0805 article-title: Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2015.01.011 – volume: 65 start-page: 40 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0945 article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12100 – volume: 332 start-page: 100 year: 2018 ident: 10.1016/j.geoderma.2018.09.034_bb0220 article-title: Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils publication-title: Geoderma doi: 10.1016/j.geoderma.2018.06.017 – volume: 38 start-page: 936 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0610 article-title: Organic and clay-based soil amendments increase maize yield, total nutrient uptake, and soil properties in Lao PDR publication-title: Agroecol. Sust. Food Syst. – volume: 3 start-page: 71 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0755 article-title: Standardization of the substrate material for large scale production of arbuscular mycorrhizal inoculum publication-title: Int. J. Agric. Sci. doi: 10.9735/0975-3710.3.1.71-77 – volume: 25 start-page: 720 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0160 article-title: Biochar and compost increase crop yields but the effect is short term on sandplain soils of Western Australia publication-title: Pedosphere doi: 10.1016/S1002-0160(15)30053-9 – volume: 168 start-page: 245 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0415 article-title: Maturity indices in co-composting of chicken manure and sawdust with biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.123 – ident: 10.1016/j.geoderma.2018.09.034_bb0375 – volume: 11 start-page: 741 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0960 article-title: Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars publication-title: J. Soils Sediments doi: 10.1007/s11368-011-0365-0 – year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0865 article-title: Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12302 – volume: 44 start-page: 6189 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0400 article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) publication-title: Environ. Sci. Technol. doi: 10.1021/es1014423 – volume: 100 start-page: 178 year: 2008 ident: 10.1016/j.geoderma.2018.09.034_bb0475 article-title: The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality publication-title: Agron. J. doi: 10.2134/agronj2007.0161 – year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0225 – volume: 199 start-page: 99 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0720 article-title: Improving the fertility of tropical acid soils: liming versus biochar application? A long term comparison in the highlands of Madagascar publication-title: Field Crop Res. doi: 10.1016/j.fcr.2016.09.005 – volume: 8 start-page: 105 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0655 article-title: The use of biochar fortified compost on calcareous soil of east Nusa Tenggara, Indonesia: 2. Effect on the yield of maize (Zea mays L) and phosphate absorption publication-title: Am.-Eurasian J. Sustain. Agric. – volume: 2 start-page: 227 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0855 article-title: Biochar as bulking agent for poultry litter composting publication-title: Carbon Manag. doi: 10.4155/cmt.11.15 – volume: 50 start-page: 7290 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb1035 article-title: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01897 – year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0150 article-title: Potential role of biochars in decreasing soil acidification-a critical review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.169 – volume: 58 start-page: 5243 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0925 article-title: Concept of soil fertility and soil productivity: evaluation of agricultural sites in the Czech Republic publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2012.700511 – volume: 376 start-page: 347 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0290 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil doi: 10.1007/s11104-013-1980-x – volume: 45 start-page: 113 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0380 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.10.012 – volume: 5 start-page: 145 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0715 article-title: Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China publication-title: Carbon Manag. doi: 10.1080/17583004.2014.912866 – year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0295 – volume: 168 start-page: 200 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0910 article-title: Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.11.045 – volume: 70 start-page: 1719 year: 2006 ident: 10.1016/j.geoderma.2018.09.034_bb0540 article-title: Black carbon increases cation exchange capacity publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0383 – volume: 95 start-page: 960 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0195 article-title: Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils publication-title: Plant Dis. doi: 10.1094/PDIS-10-10-0741 – volume: 192 start-page: 271 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0740 article-title: Effect of biochars produced from solid organic municipal waste on soil quality parameters publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.01.061 – volume: 17 start-page: 685 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0305 article-title: Biochar for crop production: potential benefits and risks publication-title: J. Soils Sediments doi: 10.1007/s11368-016-1360-2 – volume: 168 start-page: 341 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0955 article-title: Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.10.069 – volume: 391 start-page: 321 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb1000 article-title: Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.02.036 – volume: 41 start-page: 1123 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0335 article-title: Switchgrass biochar affects two Aridisols publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0100 – volume: 11 start-page: 395 year: 2006 ident: 10.1016/j.geoderma.2018.09.034_bb0510 article-title: Biochar sequestration in terrestrial ecosystems – a review publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-005-9006-5 – volume: 159 start-page: 3268 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0050 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.023 – volume: 40 start-page: 2381 year: 2002 ident: 10.1016/j.geoderma.2018.09.034_bb0300 article-title: Preparing activated carbon from various nutshells by chemical activation with K2CO3 publication-title: Carbon doi: 10.1016/S0008-6223(02)00118-5 – volume: 140 start-page: 309 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0395 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.005 – volume: 25 start-page: 631 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0820 article-title: Application of biochars for soil constraints: challenges and solutions publication-title: Pedosphere doi: 10.1016/S1002-0160(15)30044-8 – volume: 47 start-page: 2158 issue: 22 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb6000 article-title: Recent advances in engineered biochar productions and applications publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2017.1418580 – volume: 175 start-page: 698 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0560 article-title: Short term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201100172 – volume: 171 start-page: 893 year: 2008 ident: 10.1016/j.geoderma.2018.09.034_bb0850 article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200625199 – volume: 166 start-page: 303 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0725 article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.05.029 – volume: 300 start-page: 9 year: 2007 ident: 10.1016/j.geoderma.2018.09.034_bb0935 article-title: Mycorrhizal responses to biochar in soil – concepts and mechanisms publication-title: Plant Soil doi: 10.1007/s11104-007-9391-5 – volume: 345 start-page: 47 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0760 article-title: Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia publication-title: Plant Soil doi: 10.1007/s11104-011-0759-1 – volume: 9 start-page: 157 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0285 article-title: Influence of willow biochar amendment on soil nitrogen availability and greenhouse gas production in two fertilized temperate prairie soils publication-title: Bioenergy Res. doi: 10.1007/s12155-015-9671-5 – volume: 46 start-page: 113 year: 1998 ident: 10.1016/j.geoderma.2018.09.034_bb0265 article-title: Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(98)00074-6 – volume: 112 start-page: 103 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0455 article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences publication-title: Adv. Agron. doi: 10.1016/B978-0-12-385538-1.00003-2 – start-page: 55 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0705 article-title: Effect of biochar on yield of different crops – volume: 64 start-page: 488 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0045 article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12034 – volume: 584 start-page: 448 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb5000 article-title: Bioavailability of phosphorus, other nutrients and potentially toxic elements from marginal biomass-derived biochar assessed in barley (Hordeum vulgare) growth experiments publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.028 – start-page: 85 year: 2009 ident: 10.1016/j.geoderma.2018.09.034_bb0870 article-title: Characteristics of biochar: biological properties – volume: 110 start-page: 396 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0370 article-title: Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.120 – volume: 41 start-page: 973 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0835 article-title: Biochar: a synthesis of its agronomic impact beyond carbon sequestration publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0069 – volume: 111 start-page: 81 year: 2009 ident: 10.1016/j.geoderma.2018.09.034_bb0040 article-title: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield publication-title: Field Crop Res. doi: 10.1016/j.fcr.2008.10.008 – year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0635 article-title: Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination publication-title: Environ. Pollut. – volume: 8 start-page: 178 year: 2000 ident: 10.1016/j.geoderma.2018.09.034_bb0090 article-title: A comparison of static pile and turned windrow methods for poultry litter compost production publication-title: Compost Sci. Util. doi: 10.1080/1065657X.2000.10701990 – volume: 72 start-page: 169 year: 2000 ident: 10.1016/j.geoderma.2018.09.034_bb0875 article-title: Biodegradation of lignin in a compost environment: a review publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(99)00104-2 – volume: 249 start-page: 343 year: 2003 ident: 10.1016/j.geoderma.2018.09.034_bb0505 article-title: Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon Basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil doi: 10.1023/A:1022833116184 – volume: 144 start-page: 382 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0030 article-title: Improvement of soil aggregate stability by reported applications of organic amendments to a cultivated silty loam soil publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.07.005 – volume: 3 start-page: 195 year: 2009 ident: 10.1016/j.geoderma.2018.09.034_bb0645 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Ann. Environ. Sci. – volume: 512 start-page: 682 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0155 article-title: The love–hate relationship of pyrolysis biochar and water: a perspective publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.01.061 – volume: 41 start-page: 34 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0435 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.01.033 – volume: 373 start-page: 583 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0565 article-title: Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data publication-title: Plant Soil doi: 10.1007/s11104-013-1806-x – volume: 251 start-page: 47 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0360 article-title: Biochar application does not improve the soil hydrological function of a sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2015.03.022 – volume: 138 start-page: 67 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0200 article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.052 – volume: 13 start-page: 525 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0545 article-title: Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(13)60708-X – volume: 12 start-page: 2765 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0785 article-title: Impact of various amendments on the bioavailability and immobilization of Ni and Zn in a contaminated floodplain soil publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-014-0713-x – volume: 43 start-page: 1169 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb1030 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – start-page: 207 year: 2009 ident: 10.1016/j.geoderma.2018.09.034_bb0070 article-title: Biochar application to soil – volume: 118 start-page: 158 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0425 article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.094 – volume: 48 start-page: 516 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0800 article-title: Characterisation and evaluation of biochars for their application as a soil amendment publication-title: Soil Res. doi: 10.1071/SR10058 – volume: 171 start-page: 274 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0975 article-title: Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.079 – volume: 138 start-page: 37 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0025 article-title: Biochar enhances yield and quality of tomato under reduced irrigation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2014.02.016 – volume: 43 start-page: 1812 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0515 article-title: Biochar effects on soil biota — a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 237 start-page: 80 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0270 article-title: Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.12.019 – volume: 3 start-page: 349 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0665 article-title: Impact of biochar on organic contaminants in soil: a tool for mitigating risk? publication-title: Agronomy doi: 10.3390/agronomy3020349 – volume: 239 start-page: 293 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0710 article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues publication-title: Geoderma doi: 10.1016/j.geoderma.2014.11.009 – volume: 3 start-page: 275 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0140 article-title: A review of biochar and soil nitrogen dynamics publication-title: Agronomy doi: 10.3390/agronomy3020275 – volume: 395 start-page: 157 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0535 article-title: In situ preparation of biochar coated silica material from rice husk publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2011.12.023 – volume: 142 start-page: 168 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0795 article-title: Ameliorating soil chemical properties of a hard setting subsoil layer in Coastal Plain USA with different designer biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.016 – volume: 163 start-page: 247 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0620 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.021 – volume: 236 start-page: 39 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0325 article-title: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.074 – volume: 514 start-page: 147 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0175 article-title: Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.02.005 – volume: 23 start-page: 995 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0580 article-title: Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4885-9 – volume: 24 start-page: 5554 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0280 article-title: Effects of the biochar aromaticity and molecular structures of the chlorinated organic compounds on the adsorption characteristics publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-8303-8 – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0885 article-title: The combined use of organic and inorganic fertilizers for improving maize crop productivity in Nigeria publication-title: Int. J. Sci. Res. Publ. – volume: 13 start-page: 1561 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0520 article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties publication-title: J. Soils Sediments doi: 10.1007/s11368-013-0738-7 – volume: 39 start-page: 6344 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0230 article-title: The economic value of biochar in crop production and carbon sequestration publication-title: Energy Policy doi: 10.1016/j.enpol.2011.07.035 – volume: 58 start-page: 751 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0680 article-title: Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption publication-title: J. Korean Soc. Appl. Biol. Chem. doi: 10.1007/s13765-015-0103-1 – volume: 35 start-page: 219 year: 2002 ident: 10.1016/j.geoderma.2018.09.034_bb0235 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal— a review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-002-0466-4 – volume: 5 start-page: 202 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0060 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12037 – volume: 30 start-page: 182 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0260 article-title: Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil publication-title: Soil Use Manag. doi: 10.1111/sum.12114 – volume: 5 start-page: 381 year: 2007 ident: 10.1016/j.geoderma.2018.09.034_bb0490 article-title: Bio-energy in the black publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – volume: 87 start-page: 506 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0790 article-title: Metal ion removal from industrial wastewaters by sorption on activated carbon, cement kiln dust, and sawdust publication-title: Water Environ. Res. doi: 10.2175/106143015X14212658614630 – volume: 1 start-page: 289 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0830 article-title: Review of the stability of biochar in soils: predictability of O:C molar ratios publication-title: Carbon Manag. doi: 10.4155/cmt.10.32 – volume: 178 start-page: 165 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0310 article-title: Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil publication-title: Soil Sci. doi: 10.1097/SS.0b013e3182979eac – volume: 7 start-page: 5875 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0485 article-title: Restoring soil quality to mitigate soil degradation publication-title: Sustainability doi: 10.3390/su7055875 – volume: 22 start-page: 1008 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0810 article-title: Global change pressures on soils from land use and management publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13068 – volume: 142 start-page: 14 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0420 article-title: Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.065 – volume: 14 start-page: 330 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0650 article-title: Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks publication-title: J. Soils Sediments doi: 10.1007/s11368-013-0680-8 – volume: 4 start-page: 312 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0085 article-title: Criteria to select biochars for field studies based on biochar chemical properties publication-title: Bioenergy Res. doi: 10.1007/s12155-011-9133-7 – start-page: 406 issue: 4 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0330 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2015.1096880 – volume: 92 start-page: 329 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0750 article-title: Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils publication-title: Can. J. Soil Sci. doi: 10.4141/cjss2011-066 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0020 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 137 start-page: 554 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0275 article-title: Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau publication-title: Catena doi: 10.1016/j.catena.2015.11.002 – volume: 47 start-page: 8624 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0410 article-title: Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil publication-title: Environ. Sci. Technol. doi: 10.1021/es400554x – volume: 48 start-page: 546 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0825 article-title: Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat publication-title: Aust. J. Soil Res. doi: 10.1071/SR10002 – volume: 44 start-page: 1295 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb1025 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es903140c – volume: 114 start-page: 37 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0585 article-title: Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol) publication-title: Catena doi: 10.1016/j.catena.2013.10.014 – volume: 31 start-page: 251 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0105 article-title: Stability of co-composted hydrochar and biochar under field conditions in a temperate soil publication-title: Soil Use Manag. doi: 10.1111/sum.12180 – volume: 48 start-page: 9391 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0950 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environ. Sci. Technol. doi: 10.1021/es5021058 – volume: 103 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0255 article-title: Biochemical cycling of nitrogen and phosphorus in biochar-amended soils - review paper publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.08.001 – volume: 213 start-page: 72 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0005 article-title: Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.07.027 – volume: 62 start-page: 65 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0630 article-title: Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2014.09.006 – volume: 39 start-page: 17 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0915 article-title: Integrated soil fertility management: operational definition and consequences for implementation and dissemination publication-title: Outlook Agriculture doi: 10.5367/000000010791169998 – volume: 15 start-page: 117 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0765 article-title: Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.04.001 – volume: 59 start-page: 771 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb1005 article-title: Effects of the addition of rice-straw-based biochar on leaching and retention of fertilizer N in highly fertilized cropland soils publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2013.830229 – volume: 74 start-page: 960 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0405 article-title: A short report on changes of quality indicators for a sandy textured soil after treatment with biochar produced from fronds of date palm publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.729 – volume: 158 start-page: 436 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0480 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.012 – volume: 150 start-page: 226 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0190 article-title: Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.11.023 – volume: 174 start-page: 593 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0320 article-title: Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.148 – volume: 115 start-page: 12251 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0575 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00195 – volume: 187 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0125 article-title: Application of organic amendments to restore degraded soil: effects on soil microbial properties publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4293-0 – start-page: 102 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0595 article-title: Practical aspects of biochar application to tree crops – volume: 38 start-page: 511 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0890 article-title: Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions publication-title: Environ. Geochem. Health doi: 10.1007/s10653-015-9736-6 – volume: 178 start-page: 110 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0055 article-title: Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.03.022 – volume: 5 start-page: 255 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0970 article-title: Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration publication-title: Carbon Manag. doi: 10.1080/17583004.2014.973684 – volume: 119 start-page: 156 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb9000 article-title: The role of biochar and biochar-compost in improving soil quality and crop performance: a review publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.06.008 – volume: 27 start-page: 248 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0555 article-title: Effects of different biochars on Pinus elliottii growth, N use efficiency, soil N2O and CH4 emissions and C storage in a subtropical area of China publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60314-X – year: 2018 ident: 10.1016/j.geoderma.2018.09.034_bb0210 article-title: Biochar influences soil carbon pools and facilitates interactions with soil: a field investigation publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2896 – volume: 85 start-page: 91 year: 2007 ident: 10.1016/j.geoderma.2018.09.034_bb0450 article-title: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review publication-title: Biogeochemistry doi: 10.1007/s10533-007-9104-4 – volume: 65 start-page: 65 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0185 article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.01.006 – volume: 26 start-page: 272 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0100 article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2205 – volume: 45 start-page: 629 year: 2007 ident: 10.1016/j.geoderma.2018.09.034_bb0130 article-title: Agronomic values of green waste biochar as a soil amendment publication-title: Aust. J. Soil Res. doi: 10.1071/SR07109 – volume: 5 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0390 article-title: Plant growth improvement mediated by nitrate capture in co-composted biochar publication-title: Sci. Rep. – volume: 11 start-page: 726 year: 2008 ident: 10.1016/j.geoderma.2018.09.034_bb0430 article-title: Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient publication-title: Ecosystems doi: 10.1007/s10021-008-9154-z – volume: 142 start-page: 41 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0745 article-title: Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.03.067 – volume: 78 start-page: 1641 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0530 article-title: Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.05.0198 – volume: 365 start-page: 239 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0250 article-title: Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system publication-title: Plant Soil doi: 10.1007/s11104-012-1383-4 – volume: 87 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0460 article-title: Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions publication-title: Environ. Int. doi: 10.1016/j.envint.2015.10.018 – volume: 144 start-page: 184 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0080 article-title: Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice publication-title: Soil Tillage Res. doi: 10.1016/j.still.2014.07.016 – volume: 241 start-page: 70 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb1010 article-title: Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.02.034 – volume: 164 start-page: 11 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0245 article-title: Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.01.002 – year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0315 – volume: 96 start-page: 4840 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0470 article-title: Recent developments in biochar as an effective tool for agricultural soil management: a review publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.7753 – volume: 22 start-page: 2175 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0920 article-title: Acid-activated biochar increased sulfamethazine retention in soils publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3434-2 – volume: 7 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0355 article-title: The way forward in biochar research: targeting trade-offs between the potential wins publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12132 – volume: 447 start-page: 143 year: 2007 ident: 10.1016/j.geoderma.2018.09.034_bb0495 article-title: A handful of carbon publication-title: Nature doi: 10.1038/447143a – volume: 41 start-page: 1157 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0110 article-title: Biochar reduces copper toxicity in Chenopodium quinoa Willd. in a sandy soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0022 – volume: 351 start-page: 263 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0995 article-title: Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain publication-title: Plant Soil doi: 10.1007/s11104-011-0957-x – volume: 41 start-page: 1301 year: 2009 ident: 10.1016/j.geoderma.2018.09.034_bb0845 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.03.016 – start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0500 article-title: Biochar for environmental management: an introduction – volume: 152 start-page: 538 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb1015 article-title: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.11.021 – volume: 176 start-page: 336 year: 2011 ident: 10.1016/j.geoderma.2018.09.034_bb0165 article-title: Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol publication-title: Soil Sci. doi: 10.1097/SS.0b013e31821fbfea – volume: 237 start-page: 105 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0115 article-title: Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy publication-title: Geoderma doi: 10.1016/j.geoderma.2014.08.010 – volume: 127 start-page: 153 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0990 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles publication-title: Field Crop Res. doi: 10.1016/j.fcr.2011.11.020 – volume: 46 start-page: 73 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0095 article-title: Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.11.019 – volume: 42 start-page: 164 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0700 article-title: Biochar affected by composting with farmyard manure publication-title: J. Environ. Qual. doi: 10.2134/jeq2012.0064 – volume: 74 start-page: 319 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0780 article-title: Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.10.024 – volume: 48 start-page: 501 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0385 article-title: An investigation into the reactions of biochar in soil publication-title: Aust. J. Soil Res. doi: 10.1071/SR10009 – volume: 22 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2018.09.034_bb7000 article-title: Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review publication-title: Int. Mater. Rev. – volume: 227 start-page: 98 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb1020 article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.04.032 – volume: 5 start-page: 56 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0365 article-title: Short report: effects of biochar addition on manure composting and associated N2O emissions publication-title: J. Sustain. Bioenergy Syst. doi: 10.4236/jsbs.2015.52005 – volume: 4 start-page: 206 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0670 article-title: SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2015.08.003 – volume: 274 start-page: 28 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0675 article-title: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data publication-title: Geoderma doi: 10.1016/j.geoderma.2016.03.029 – volume: 135 start-page: 313 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0465 article-title: Effects of biochar application rate on sandy desert soil properties and sorghum growth publication-title: Catena doi: 10.1016/j.catena.2015.08.013 – volume: 89 start-page: 768 year: 2000 ident: 10.1016/j.geoderma.2018.09.034_bb0345 article-title: Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.2000.01177.x – volume: 543 start-page: 295 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0010 article-title: Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.11.054 – volume: 624 start-page: 1059 year: 2018 ident: 10.1016/j.geoderma.2018.09.034_bb0205 article-title: Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.190 – volume: 142 start-page: 184 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0340 article-title: Designer, acidic biochar influences calcareous soil characteristics publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.092 – start-page: 13 year: 2009 ident: 10.1016/j.geoderma.2018.09.034_bb0180 article-title: Physical properties of biochar – volume: 75 start-page: 1021 year: 2009 ident: 10.1016/j.geoderma.2018.09.034_bb0135 article-title: Ageing of black carbon along a temperature gradient publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.01.045 – volume: 164 start-page: 3 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0550 article-title: Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.10.002 – volume: 61 start-page: 196 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0240 article-title: Water uptake in biochars: the roles of porosity and hydrophobicity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.12.010 – volume: 105 start-page: 47 year: 2010 ident: 10.1016/j.geoderma.2018.09.034_bb0815 article-title: A review of biochar and its use and function in soil publication-title: Adv. Agron. doi: 10.1016/S0065-2113(10)05002-9 – volume: 25 start-page: 173 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0840 article-title: Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in western India publication-title: Land Degrad. Dev. doi: 10.1002/ldr.1158 – volume: 177 start-page: 3 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0445 article-title: Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200282 – volume: 173 start-page: 551 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0965 article-title: Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.096 – volume: 28 start-page: 177 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0075 article-title: Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2012.00407.x – volume: 21 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb0145 article-title: Mechanisms of organic coating on the surface of a poplar biochar publication-title: Curr. Org. Chem. doi: 10.2174/1385272821666161216122035 – volume: 5 start-page: 491 year: 2014 ident: 10.1016/j.geoderma.2018.09.034_bb0905 article-title: Composting for increasing the fertilizer value of chicken manure: effects of feedstock on P availability publication-title: Waste Biomass Valoriz. doi: 10.1007/s12649-013-9264-5 – volume: 193 start-page: 122 year: 2013 ident: 10.1016/j.geoderma.2018.09.034_bb0615 article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures publication-title: Geoderma doi: 10.1016/j.geoderma.2012.10.002 – volume: 107 start-page: 419 year: 2012 ident: 10.1016/j.geoderma.2018.09.034_bb0120 article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.084 – volume: 532 start-page: 49 year: 2016 ident: 10.1016/j.geoderma.2018.09.034_bb0685 article-title: Climate-smart soils publication-title: Nature doi: 10.1038/nature17174 – volume: 26 start-page: 629 year: 2015 ident: 10.1016/j.geoderma.2018.09.034_bb0660 article-title: Environmental conservation for food production and sustainable livelihood in Tropical Africa publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2379 – start-page: 193 year: 2017 ident: 10.1016/j.geoderma.2018.09.034_bb8000 article-title: Biochar for composting improvement and contaminants reduction. A review. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.095 |
SSID | ssj0017020 |
Score | 2.6889083 |
SecondaryResourceType | review_article |
Snippet | Rapid industrial development and human activities have caused a degradation of soil quality and fertility. There is increasing interest in rehabilitating low... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 536 |
SubjectTerms | additives bioavailability biochar biomass Black carbon carbon Co-composted biochar coatings Composite material composting crop yield Designer biochar economic feasibility Engineered biochar industrialization mixing nutrients pyrolysis soil amendments Soil fertility soil quality soil types |
Title | Biochar application to low fertility soils: A review of current status, and future prospects |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.09.034 https://www.proquest.com/docview/2220874040 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBU8Gpukm03iLRZLVezJQg_Csq9ISklKk-LN3-5sHqUK0oPHPHYJs5OZL9n5vkHoRlM3JFwQi3DqWUQTbXE7FpbvCkGMwlxc_sp-HdPRhDxPvWkLDRoujCmrrGN_FdPLaF2f6dXW7C2SxHB8HepDOgKnBBweGNltmNt4-d3XuszD8e1amtGhlrl7gyU8gzUyDcdK_SEnqPROyV8J6leoLvPP8ADt18ARR9WzHaKWTo_QXvSxrMUz9DF6f0gyw6LCG7vSuMjwPPvEsamfNpAb51kyz-9xhCvWCs5iLCuRJmzYRav8FvNU4UpsBMPjlGTM_ARNho9vg5FVd0-wJHGcwhKUc9WngVYAUTxJtPmYcJR0lRP60g5dHlPlwgUqATP5Aae29uJAQEZzZUh1_xS10yzVZwgD6uJCgY18rghVVLi-pNoVtgh8rTzSQV5jMiZraXHT4WLOmhqyGWtMzYypmR0yMHUH9dbjFpW4xtYRYbMi7IebMMgAW8deN0vI4B0yGyM81dkqZ4CRbNOakNjn_5j_Au3CUVgVqF2idrFc6StALIXoli7ZRTvR08to_A0gaOyI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPRQOqKUgFgo1UnsjbGIcJ0HisKWg5fMEEgck46-gRatktdkV4sKf6h9knDiIVqo4VFxj2bKexzMvycwbgO-W04xJxQImeRwwy2wgw1wFCVWKOYW5vP6UfX7B-1fs5Dq-noHfbS2MS6v0vr_x6bW39k-6Hs3uaDBwNb4RTzAcoVEiD0-5z6w8tY8P-N5W7R__wkP-QenR4eVBP_CtBQLNomgSKC6l2eWpNRi_Y82sY9qR0dREWaLDjMqcG4oDXCOhSFLJQxvnqUJ3T3XG7S6uOwsfGLoL1zZh5-klryRKQq8FGfHAbe9VWfI9GoXrcFYLHkVpI7DK_hUR_4oNdcA7-gSLnqmSXgPGZ5ixxRIs9O7GXq3DfoGbn4PSlW2RV7_ByaQkw_KB5C5h23F8UpWDYbVHeqQpkyFlTnSjCkVcOdO02iayMKRRNyG4nbr6s1qGq3fBdAXmirKwq0CQ5kllEKNEGsYNVzTR3FIVqjSxJmYdiFvIhPZa5q6lxlC0SWv3ooVaOKhFmAmEugPdl3mjRs3jzRlZeyLiD7sUGHLenLvVHqHAS-v-xMjCltNKICkLXS9EFq79x_rf4GP_8vxMnB1fnK7DPI5kTXbcV5ibjKd2A-nSRG3W5kng9r3vwzMUwSeN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+application+to+low+fertility+soils%3A+A+review+of+current+status%2C+and+future+prospects&rft.jtitle=Geoderma&rft.au=El-Naggar%2C+Ali&rft.au=Lee%2C+Sang+Soo&rft.au=Rinklebe%2C+J%C3%B6rg&rft.au=F%C4%81r%C5%ABq%2C+Mu%E1%B8%A5ammad&rft.date=2019-03-01&rft.issn=0016-7061&rft.volume=337+p.536-554&rft.spage=536&rft.epage=554&rft_id=info:doi/10.1016%2Fj.geoderma.2018.09.034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |