Bauxite residue issues: II. options for residue utilization

Worldwide bauxite residue disposal areas contain an estimated 2.7 billion tonnes of residue, increasing by approximately 120 million tonnes per annum. The question of what to do with bauxite residue arose with the development of the Bayer process for alumina refining and the recognition that it gene...

Full description

Saved in:
Bibliographic Details
Published inHydrometallurgy Vol. 108; no. 1; pp. 11 - 32
Main Authors Klauber, C., Gräfe, M., Power, G.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.06.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Worldwide bauxite residue disposal areas contain an estimated 2.7 billion tonnes of residue, increasing by approximately 120 million tonnes per annum. The question of what to do with bauxite residue arose with the development of the Bayer process for alumina refining and the recognition that it generated a large amount of waste material. In the subsequent 120 years, residues have been primarily disposed into long-term storage, with a wide range of industry practice depending on local circumstances. Ideally this residue would be utilized as an industrial by-product for other applications, leading to a zero waste situation. Despite over 50 years of research and hundreds of publications and patents on the subject, little evidence exists of any significant utilization of bauxite residue. In this review of public domain information the reasons are examined, future opportunities are identified, and a way forward is proposed. All avenues of residue “re-use” (or more appropriately “use”) are considered, but emphasis is on the few highest volume uses of lowest risk. Utilization is defined as taking the residue in some non-hazardous form (as a by-product) from the alumina refinery site and then using it as feedstock for another distinct application. Although residues from different bauxites have generic similarities, their specific make-up and residue location can influence their suitability for a given type of use. There are four primary reasons for inaction on residue use: volume, performance, cost and risk, with the last two probably being paramount. In terms of cost there are better options for raw material input from virgin sources (lower cost for better grades) that do not come with the same perceived risks as bauxite residue. The risks are composition based (technical and community perception) and relate to: soda, alkalinity, heavy metals and low levels of naturally occurring radioactive material (NORM). Amongst the outcomes of this review are priority research recommendations to address the knowledge gaps identified that, amongst other factors, are impeding the implementation of residue use. This is the second in a series of four related reviews examining bauxite residue issues in detail. ►Review of options for utilization of bauxite residue. ►Over 50 years of research, hundreds of patents, no significant utilization. ►Four primary reasons for inaction on residue use: volume, performance, cost and risk. ►Zero waste out-come from value recovery very unlikely. ►Series of priority research recommendations made.
AbstractList Worldwide bauxite residue disposal areas contain an estimated 2.7billiontonnes of residue, increasing by approximately 120milliontonnesperannum. The question of what to do with bauxite residue arose with the development of the Bayer process for alumina refining and the recognition that it generated a large amount of waste material. In the subsequent 120years, residues have been primarily disposed into long-term storage, with a wide range of industry practice depending on local circumstances. Ideally this residue would be utilized as an industrial by-product for other applications, leading to a zero waste situation. Despite over 50years of research and hundreds of publications and patents on the subject, little evidence exists of any significant utilization of bauxite residue. In this review of public domain information the reasons are examined, future opportunities are identified, and a way forward is proposed. All avenues of residue "re-use" (or more appropriately "use") are considered, but emphasis is on the few highest volume uses of lowest risk. Utilization is defined as taking the residue in some non-hazardous form (as a by-product) from the alumina refinery site and then using it as feedstock for another distinct application. Although residues from different bauxites have generic similarities, their specific make-up and residue location can influence their suitability for a given type of use. There are four primary reasons for inaction on residue use: volume, performance, cost and risk, with the last two probably being paramount. In terms of cost there are better options for raw material input from virgin sources (lower cost for better grades) that do not come with the same perceived risks as bauxite residue. The risks are composition based (technical and community perception) and relate to: soda, alkalinity, heavy metals and low levels of naturally occurring radioactive material (NORM). Amongst the outcomes of this review are priority research recommendations to address the knowledge gaps identified that, amongst other factors, are impeding the implementation of residue use. This is the second in a series of four related reviews examining bauxite residue issues in detail.
Worldwide bauxite residue disposal areas contain an estimated 2.7 billion tonnes of residue, increasing by approximately 120 million tonnes per annum. The question of what to do with bauxite residue arose with the development of the Bayer process for alumina refining and the recognition that it generated a large amount of waste material. In the subsequent 120 years, residues have been primarily disposed into long-term storage, with a wide range of industry practice depending on local circumstances. Ideally this residue would be utilized as an industrial by-product for other applications, leading to a zero waste situation. Despite over 50 years of research and hundreds of publications and patents on the subject, little evidence exists of any significant utilization of bauxite residue. In this review of public domain information the reasons are examined, future opportunities are identified, and a way forward is proposed. All avenues of residue “re-use” (or more appropriately “use”) are considered, but emphasis is on the few highest volume uses of lowest risk. Utilization is defined as taking the residue in some non-hazardous form (as a by-product) from the alumina refinery site and then using it as feedstock for another distinct application. Although residues from different bauxites have generic similarities, their specific make-up and residue location can influence their suitability for a given type of use. There are four primary reasons for inaction on residue use: volume, performance, cost and risk, with the last two probably being paramount. In terms of cost there are better options for raw material input from virgin sources (lower cost for better grades) that do not come with the same perceived risks as bauxite residue. The risks are composition based (technical and community perception) and relate to: soda, alkalinity, heavy metals and low levels of naturally occurring radioactive material (NORM). Amongst the outcomes of this review are priority research recommendations to address the knowledge gaps identified that, amongst other factors, are impeding the implementation of residue use. This is the second in a series of four related reviews examining bauxite residue issues in detail. ►Review of options for utilization of bauxite residue. ►Over 50 years of research, hundreds of patents, no significant utilization. ►Four primary reasons for inaction on residue use: volume, performance, cost and risk. ►Zero waste out-come from value recovery very unlikely. ►Series of priority research recommendations made.
Author Gräfe, M.
Klauber, C.
Power, G.
Author_xml – sequence: 1
  givenname: C.
  surname: Klauber
  fullname: Klauber, C.
  email: craig.klauber@csiro.au
– sequence: 2
  givenname: M.
  surname: Gräfe
  fullname: Gräfe, M.
– sequence: 3
  givenname: G.
  surname: Power
  fullname: Power, G.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24206666$$DView record in Pascal Francis
BookMark eNqFkE1LxDAQhoMouH78BelFPLVmmiZN1YMf-LGw4EXBW0iTLGbpNmuSiuuvN-uqBy87l4GZ5x2GZw9t9643CB0BLgADO50Vr0vt3dzEosQABS4LjOstNAJeNzkA5dtohAmucsLZyy7aC2GGMWakhhE6v5bDh40m8yZYPZjMhjCYcJaNx0XmFtG6PmRT5__2Q7Sd_ZSrxQHamcoumMOfvo-e726fbh7yyeP9-OZqkqsKIOZtVbdlQzStlGGkZYQ2WmtoKSEgJaVctrSsEwNaQd20kuiSpSkllCkKnOyjk_XdhXdv6bko5jYo03WyN24IgvOGcOC8TuTxDymDkt3Uy17ZIBbezqVfirIqMUuVOLbmlHcheDP9QwCLlVQxE79SxUqqwKVIUlPw4l9Q2fgtI3ppu83xy3XcJF3v1ngRlDW9Mtp6o6LQzm468QW4EplB
CODEN HYDRDA
CitedBy_id crossref_primary_10_1071_SR18348
crossref_primary_10_1155_2014_876872
crossref_primary_10_3390_min9010060
crossref_primary_10_1016_j_scitotenv_2017_10_158
crossref_primary_10_1016_j_conbuildmat_2021_124170
crossref_primary_10_1016_j_jes_2017_01_011
crossref_primary_10_1016_j_seppur_2018_07_033
crossref_primary_10_1016_j_conbuildmat_2018_05_096
crossref_primary_10_4236_ojss_2025_151004
crossref_primary_10_1016_j_resconrec_2020_105314
crossref_primary_10_1016_j_mcat_2020_111310
crossref_primary_10_1007_s11356_023_26752_5
crossref_primary_10_1039_C5TA09613H
crossref_primary_10_3390_su132011298
crossref_primary_10_1016_j_jclepro_2020_120049
crossref_primary_10_1007_s11356_016_7508_1
crossref_primary_10_3389_feart_2022_843189
crossref_primary_10_1016_j_conbuildmat_2024_135915
crossref_primary_10_1016_j_wasman_2014_09_003
crossref_primary_10_1007_s00128_021_03400_7
crossref_primary_10_2109_jcersj2_15167
crossref_primary_10_1007_s12205_021_2054_x
crossref_primary_10_1016_j_conbuildmat_2023_131005
crossref_primary_10_1016_j_ceramint_2023_08_131
crossref_primary_10_1016_j_jclepro_2018_10_083
crossref_primary_10_1039_D4SU00576G
crossref_primary_10_1016_j_jenvman_2021_112479
crossref_primary_10_1016_j_jclepro_2015_09_111
crossref_primary_10_1016_j_chemosphere_2017_02_083
crossref_primary_10_1016_j_heliyon_2023_e14652
crossref_primary_10_1515_rams_2023_0114
crossref_primary_10_1007_s11837_018_3130_7
crossref_primary_10_1016_j_jhazmat_2012_03_052
crossref_primary_10_3390_met7110458
crossref_primary_10_1016_j_scitotenv_2021_150134
crossref_primary_10_1016_j_hydromet_2019_01_005
crossref_primary_10_1007_s11356_016_6478_7
crossref_primary_10_1016_j_conbuildmat_2017_09_015
crossref_primary_10_1007_s00128_022_03518_2
crossref_primary_10_1080_01919512_2021_1924118
crossref_primary_10_1016_j_conbuildmat_2020_120653
crossref_primary_10_1039_C4RA07635D
crossref_primary_10_1016_j_apcatb_2013_07_015
crossref_primary_10_1016_j_cscm_2022_e00994
crossref_primary_10_1016_j_conbuildmat_2019_117821
crossref_primary_10_3390_met10081083
crossref_primary_10_1016_j_scitotenv_2024_177105
crossref_primary_10_3390_cryst11101267
crossref_primary_10_1016_j_apsusc_2021_152308
crossref_primary_10_1016_j_istruc_2024_107699
crossref_primary_10_1016_j_apgeochem_2019_03_020
crossref_primary_10_1007_s11270_021_05442_3
crossref_primary_10_3390_min8030102
crossref_primary_10_1016_j_conbuildmat_2018_12_122
crossref_primary_10_1016_j_apgeochem_2015_01_015
crossref_primary_10_1021_acsomega_1c04580
crossref_primary_10_1016_j_powtec_2016_11_028
crossref_primary_10_1016_j_cej_2025_159762
crossref_primary_10_2478_auoc_2024_0021
crossref_primary_10_1016_j_conbuildmat_2020_119851
crossref_primary_10_3390_min9020067
crossref_primary_10_1016_j_cej_2013_09_101
crossref_primary_10_3390_su142013202
crossref_primary_10_1016_j_apsusc_2023_156852
crossref_primary_10_1021_acs_iecr_7b04538
crossref_primary_10_3390_su14031258
crossref_primary_10_1016_j_scitotenv_2017_03_266
crossref_primary_10_1016_j_ceramint_2018_07_072
crossref_primary_10_1016_j_jclepro_2017_09_199
crossref_primary_10_1007_s10924_018_1289_1
crossref_primary_10_1016_j_apcatb_2015_12_049
crossref_primary_10_1016_j_oregeorev_2019_103161
crossref_primary_10_1016_j_clay_2018_03_002
crossref_primary_10_1016_j_hydromet_2011_02_006
crossref_primary_10_1007_s42398_020_00152_8
crossref_primary_10_1007_s12598_017_0893_x
crossref_primary_10_1088_1755_1315_677_5_052063
crossref_primary_10_1016_j_ceramint_2021_12_027
crossref_primary_10_1016_j_hydromet_2011_02_004
crossref_primary_10_1016_j_hydromet_2011_02_005
crossref_primary_10_1016_j_mineng_2021_107148
crossref_primary_10_1007_s11356_019_05576_2
crossref_primary_10_1007_s11356_013_1477_4
crossref_primary_10_1016_j_mineng_2018_01_023
crossref_primary_10_1007_s12649_016_9490_8
crossref_primary_10_3390_min11080896
crossref_primary_10_1016_j_ceramint_2016_08_072
crossref_primary_10_1016_j_jhazmat_2016_01_010
crossref_primary_10_1016_j_biortech_2013_03_070
crossref_primary_10_1007_s13762_022_04184_x
crossref_primary_10_1016_j_conbuildmat_2022_128892
crossref_primary_10_1021_acs_iecr_2c02928
crossref_primary_10_1039_C4RA03127J
crossref_primary_10_1016_j_jhazmat_2017_10_046
crossref_primary_10_1016_j_clay_2016_12_026
crossref_primary_10_1080_19648189_2017_1304280
crossref_primary_10_1007_s40996_024_01582_8
crossref_primary_10_1016_j_jclepro_2022_133620
crossref_primary_10_1177_0734242X16684386
crossref_primary_10_1016_j_cattod_2016_10_028
crossref_primary_10_1063_5_0096781
crossref_primary_10_1016_j_jwpe_2020_101173
crossref_primary_10_1007_s11783_017_0956_0
crossref_primary_10_1016_j_envadv_2023_100362
crossref_primary_10_3390_min13030425
crossref_primary_10_1080_09593330_2018_1505963
crossref_primary_10_1016_j_resconrec_2018_11_006
crossref_primary_10_1021_acs_iecr_0c00423
crossref_primary_10_17721_fujcV8I1P88_94
crossref_primary_10_1016_j_jece_2017_04_031
crossref_primary_10_1016_j_scitotenv_2020_137126
crossref_primary_10_1007_s40831_023_00648_7
crossref_primary_10_1016_j_resconrec_2021_106079
crossref_primary_10_1007_s11242_017_0829_9
crossref_primary_10_1016_j_clema_2021_100009
crossref_primary_10_1007_s10967_018_6355_6
crossref_primary_10_1016_j_apcatb_2013_02_007
crossref_primary_10_1016_j_jre_2019_12_005
crossref_primary_10_1080_25726641_2020_1727175
crossref_primary_10_1016_j_mineng_2021_107084
crossref_primary_10_3390_min11080860
crossref_primary_10_1016_j_jhazmat_2016_04_072
crossref_primary_10_1007_s44169_023_00056_8
crossref_primary_10_1016_j_conbuildmat_2022_129718
crossref_primary_10_3390_ma14247740
crossref_primary_10_1016_j_arabjc_2019_07_006
crossref_primary_10_3390_ma14092211
crossref_primary_10_1631_jzus_A2100476
crossref_primary_10_1016_j_renene_2019_05_114
crossref_primary_10_1007_s11356_022_24190_3
crossref_primary_10_1016_j_jes_2020_02_004
crossref_primary_10_1007_s10163_020_01055_w
crossref_primary_10_1590_S1678_86212012000400005
crossref_primary_10_1016_j_envadv_2021_100136
crossref_primary_10_1016_j_mineng_2021_107071
crossref_primary_10_1016_j_jenvman_2023_117558
crossref_primary_10_1002_gch2_201800061
crossref_primary_10_1007_s00128_021_03279_4
crossref_primary_10_1016_j_btre_2023_e00825
crossref_primary_10_1016_j_seppur_2019_115934
crossref_primary_10_1007_s11270_012_1269_3
crossref_primary_10_1016_j_biombioe_2025_107741
crossref_primary_10_1016_j_hydromet_2014_05_007
crossref_primary_10_3390_suschem2040038
crossref_primary_10_1007_s11771_019_4001_2
crossref_primary_10_1016_j_jhazmat_2020_123723
crossref_primary_10_1061_JHTRBP_HZENG_1168
crossref_primary_10_1007_s11270_021_05232_x
crossref_primary_10_1016_j_hydromet_2013_03_006
crossref_primary_10_1016_j_mineng_2016_09_012
crossref_primary_10_1016_j_jhazmat_2022_128334
crossref_primary_10_1016_j_conbuildmat_2020_121419
crossref_primary_10_1515_gps_2017_0070
crossref_primary_10_1016_j_jclepro_2019_04_035
crossref_primary_10_1007_s11356_023_27800_w
crossref_primary_10_1016_j_heliyon_2024_e24943
crossref_primary_10_1080_03719553_2017_1288359
crossref_primary_10_1007_s40831_020_00326_y
crossref_primary_10_1016_j_mineng_2022_107394
crossref_primary_10_1016_j_fuel_2022_125777
crossref_primary_10_1016_j_jhazmat_2024_134455
crossref_primary_10_1016_j_scitotenv_2023_166686
crossref_primary_10_1088_1757_899X_274_1_012040
crossref_primary_10_1016_j_hydromet_2014_11_015
crossref_primary_10_1039_c2gc36714a
crossref_primary_10_1016_j_jclepro_2024_143734
crossref_primary_10_1039_c2em30155e
crossref_primary_10_1016_j_cej_2023_145966
crossref_primary_10_1016_j_jclepro_2018_10_044
crossref_primary_10_1007_s11270_015_2447_x
crossref_primary_10_3390_app9081519
crossref_primary_10_1016_j_mineng_2015_07_022
crossref_primary_10_1016_j_jenvman_2021_112311
crossref_primary_10_1016_j_ceramint_2022_11_147
crossref_primary_10_1016_j_jece_2019_103509
crossref_primary_10_1016_j_jhazmat_2014_09_005
crossref_primary_10_1016_j_conbuildmat_2017_06_031
crossref_primary_10_1016_j_fuel_2014_05_058
crossref_primary_10_1016_j_hydromet_2015_07_007
crossref_primary_10_1016_j_jhazmat_2016_11_073
crossref_primary_10_1016_j_ceramint_2017_11_225
crossref_primary_10_1617_s11527_020_01601_w
crossref_primary_10_3390_separations10070366
crossref_primary_10_1016_j_jhazmat_2016_04_040
crossref_primary_10_1007_s11270_018_3876_0
crossref_primary_10_25130_tjes_29_2_2
crossref_primary_10_1007_s11356_015_4558_8
crossref_primary_10_3390_recycling6020038
crossref_primary_10_1007_s40891_020_00250_x
crossref_primary_10_1179_1432891715Z_0000000001686
crossref_primary_10_1007_s00128_022_03501_x
crossref_primary_10_3390_resources12070079
crossref_primary_10_1016_j_hydromet_2015_12_004
crossref_primary_10_1016_j_hydromet_2016_06_012
crossref_primary_10_1007_s40831_018_0164_6
crossref_primary_10_1016_j_jmrt_2019_04_009
crossref_primary_10_3390_min10060500
crossref_primary_10_1007_s10661_017_6079_z
crossref_primary_10_1016_j_cscm_2023_e02769
crossref_primary_10_1007_s40098_022_00683_3
crossref_primary_10_1016_j_hydromet_2015_04_018
crossref_primary_10_1007_s40831_016_0103_3
crossref_primary_10_1177_0734242X15584841
crossref_primary_10_1016_j_jece_2023_110320
crossref_primary_10_1155_2020_6973165
crossref_primary_10_3390_polym13121986
crossref_primary_10_1080_08827508_2024_2328688
crossref_primary_10_1007_s11356_022_23837_5
crossref_primary_10_1016_j_rineng_2025_104539
crossref_primary_10_3390_met13050946
crossref_primary_10_1007_s11771_024_5604_9
crossref_primary_10_1016_j_apgeochem_2014_12_011
crossref_primary_10_1016_j_jclepro_2018_04_009
crossref_primary_10_1016_j_jclepro_2022_135658
crossref_primary_10_1016_j_seppur_2024_128015
crossref_primary_10_1016_j_jclepro_2017_11_131
crossref_primary_10_1177_0734242X14567503
crossref_primary_10_1007_s12598_016_0805_5
crossref_primary_10_1134_S0016702923110058
crossref_primary_10_1051_e3sconf_202020512002
crossref_primary_10_1039_C3EE43585G
crossref_primary_10_3390_min14121210
crossref_primary_10_1007_s13369_019_04314_7
crossref_primary_10_1111_jiec_13448
crossref_primary_10_1007_s11356_020_07970_7
crossref_primary_10_1016_j_conbuildmat_2016_11_108
crossref_primary_10_1016_j_apgeochem_2021_104898
crossref_primary_10_1002_cjce_24605
crossref_primary_10_1180_minmag_2016_080_052
crossref_primary_10_1007_s13762_015_0917_8
crossref_primary_10_1002_jctb_4898
crossref_primary_10_1016_j_powtec_2023_118242
crossref_primary_10_1007_s40831_016_0060_x
crossref_primary_10_1007_s11368_019_02482_5
crossref_primary_10_3390_app10092993
crossref_primary_10_1002_ldr_2737
crossref_primary_10_1007_s11356_024_35217_2
crossref_primary_10_1016_j_jclepro_2017_03_172
crossref_primary_10_1016_j_jenvman_2018_01_035
crossref_primary_10_1016_j_jece_2023_109433
crossref_primary_10_2139_ssrn_4159291
crossref_primary_10_1007_s11837_018_3311_4
crossref_primary_10_1016_j_jobe_2021_102238
crossref_primary_10_1016_j_psep_2024_06_133
crossref_primary_10_1016_j_scitotenv_2019_01_317
crossref_primary_10_1016_j_mineng_2020_106448
crossref_primary_10_1016_j_hydromet_2020_105495
crossref_primary_10_1590_s1983_41952021000200011
crossref_primary_10_1016_j_jhazmat_2011_12_007
crossref_primary_10_1080_08827508_2022_2115489
crossref_primary_10_1016_j_ecoenv_2020_110847
crossref_primary_10_1088_1757_899X_613_1_012051
crossref_primary_10_1007_s42461_024_00948_w
crossref_primary_10_1039_C6RA06204K
crossref_primary_10_1007_s10973_017_6794_2
crossref_primary_10_3390_met7100390
crossref_primary_10_1016_j_jhazmat_2020_123210
crossref_primary_10_3390_met11081281
crossref_primary_10_1016_j_cattod_2011_11_028
crossref_primary_10_1016_j_cscm_2019_e00266
crossref_primary_10_1071_AN14913
crossref_primary_10_1038_s41598_017_15457_8
crossref_primary_10_3390_min9100571
crossref_primary_10_1016_j_hydromet_2018_01_007
crossref_primary_10_1002_clen_201700634
crossref_primary_10_1007_s10973_023_12350_7
crossref_primary_10_3390_ma15020433
crossref_primary_10_1016_j_conbuildmat_2021_122993
crossref_primary_10_1039_C5GC02225H
crossref_primary_10_1080_02757540_2013_817568
crossref_primary_10_1016_j_envres_2023_116474
crossref_primary_10_1111_jace_12840
crossref_primary_10_1016_j_scitotenv_2022_155413
crossref_primary_10_1016_j_jclepro_2020_120610
crossref_primary_10_1002_jctb_5300
crossref_primary_10_1007_s11356_023_27898_y
crossref_primary_10_1016_j_cej_2020_124307
crossref_primary_10_1016_j_hydromet_2021_105758
crossref_primary_10_1016_j_cemconcomp_2013_04_010
crossref_primary_10_17073_0368_0797_2018_11_843_858
crossref_primary_10_1016_j_jenvman_2023_118616
crossref_primary_10_3389_fmicb_2022_973568
crossref_primary_10_1016_j_hydromet_2013_01_011
crossref_primary_10_1016_j_micromeso_2020_110058
crossref_primary_10_3390_met8100834
crossref_primary_10_1016_j_jclepro_2015_02_089
crossref_primary_10_1007_s12613_016_1234_z
crossref_primary_10_1007_s40831_016_0102_4
crossref_primary_10_1134_S0036024413010081
crossref_primary_10_1016_j_jhazmat_2020_124689
crossref_primary_10_1080_25726641_2019_1644778
crossref_primary_10_3390_min9050269
crossref_primary_10_1016_j_cemconcomp_2024_105686
crossref_primary_10_1680_jmacr_24_00246
crossref_primary_10_1680_jadcr_19_00085
crossref_primary_10_1007_s40831_016_0080_6
crossref_primary_10_1002_cctc_201601269
crossref_primary_10_1016_j_chemosphere_2018_05_041
crossref_primary_10_1016_j_molliq_2019_111197
crossref_primary_10_1155_2019_3617050
crossref_primary_10_1016_j_jclepro_2017_06_080
crossref_primary_10_3390_ma15155407
crossref_primary_10_1109_TNS_2012_2206608
crossref_primary_10_1016_j_conbuildmat_2023_133730
crossref_primary_10_1002_jctb_5687
crossref_primary_10_1016_j_matpr_2022_02_152
crossref_primary_10_1016_j_matpr_2023_04_043
crossref_primary_10_1016_j_jclepro_2016_03_019
crossref_primary_10_3390_molecules26206200
crossref_primary_10_1016_j_conbuildmat_2019_03_252
crossref_primary_10_1016_j_gexplo_2017_03_003
crossref_primary_10_1007_s11356_020_09623_1
crossref_primary_10_1080_01490451_2021_1977433
crossref_primary_10_1016_j_jclepro_2018_01_092
crossref_primary_10_1007_s11356_016_7626_9
crossref_primary_10_1016_j_jclepro_2020_120440
crossref_primary_10_1016_j_conbuildmat_2012_09_013
crossref_primary_10_1016_j_conbuildmat_2017_04_171
crossref_primary_10_2355_isijinternational_ISIJINT_2024_341
crossref_primary_10_3390_ma17164085
crossref_primary_10_1016_j_apsoil_2013_07_006
crossref_primary_10_1088_1757_899X_426_1_012026
crossref_primary_10_1007_s40831_019_00209_x
crossref_primary_10_3390_min13060737
crossref_primary_10_1016_j_jenvman_2019_109981
crossref_primary_10_1520_JTE20170215
crossref_primary_10_1016_j_jenvman_2019_02_093
crossref_primary_10_3390_met6110294
crossref_primary_10_1016_j_conbuildmat_2019_117602
crossref_primary_10_1007_s11837_019_03528_2
crossref_primary_10_1016_j_mineng_2016_03_002
crossref_primary_10_1007_s10973_019_08095_x
crossref_primary_10_1080_02648725_2023_2216071
crossref_primary_10_1016_j_jobe_2021_102528
crossref_primary_10_1515_revce_2019_0032
crossref_primary_10_1016_j_jconhyd_2023_104264
crossref_primary_10_1016_j_mineng_2015_01_005
crossref_primary_10_1016_j_seppur_2016_12_009
crossref_primary_10_1080_17480930_2013_830906
crossref_primary_10_1080_01496395_2020_1813177
crossref_primary_10_1016_j_conbuildmat_2020_119704
crossref_primary_10_1515_ntrev_2020_0029
crossref_primary_10_3103_S1067821218020050
crossref_primary_10_1016_j_cemconres_2017_08_027
crossref_primary_10_3103_S0967091220120141
crossref_primary_10_1007_s42461_020_00333_3
crossref_primary_10_1007_s00501_017_0610_y
crossref_primary_10_1016_j_seppur_2022_121157
crossref_primary_10_1016_j_conbuildmat_2021_124651
crossref_primary_10_1016_j_cej_2017_08_098
crossref_primary_10_1520_ACEM20160050
crossref_primary_10_1007_s11356_016_7702_1
crossref_primary_10_1016_j_hydromet_2017_11_005
crossref_primary_10_1007_s11837_019_03801_4
crossref_primary_10_1186_s42834_021_00113_8
crossref_primary_10_1007_s10853_015_9338_9
crossref_primary_10_1007_s11837_019_03617_2
crossref_primary_10_1016_j_scitotenv_2018_07_059
crossref_primary_10_1007_s10717_021_00312_0
crossref_primary_10_1080_10934529_2016_1229938
crossref_primary_10_1088_1755_1315_252_4_042037
crossref_primary_10_1007_s40831_016_0068_2
crossref_primary_10_1002_ep_13466
crossref_primary_10_1016_j_jhazmat_2021_126542
crossref_primary_10_1016_j_hydromet_2016_10_021
crossref_primary_10_3390_min12050636
crossref_primary_10_1016_j_hydromet_2015_03_018
crossref_primary_10_1016_j_minpro_2013_12_009
crossref_primary_10_1016_j_ceramint_2021_09_285
crossref_primary_10_1016_j_conbuildmat_2022_127900
crossref_primary_10_1016_j_resconrec_2018_07_006
crossref_primary_10_1080_15567036_2014_962118
crossref_primary_10_1016_j_jece_2018_02_048
crossref_primary_10_1007_s11356_015_5537_9
crossref_primary_10_1016_j_conbuildmat_2016_02_099
crossref_primary_10_1007_s11274_020_02838_x
crossref_primary_10_1016_j_conbuildmat_2019_06_078
crossref_primary_10_1016_j_ecoenv_2024_117381
crossref_primary_10_1016_j_jenvman_2018_09_041
crossref_primary_10_1021_la301790v
crossref_primary_10_2139_ssrn_4014054
crossref_primary_10_1016_j_hydromet_2016_04_012
crossref_primary_10_1007_s11837_019_03475_y
crossref_primary_10_1007_s11837_017_2301_2
crossref_primary_10_3390_min13010051
crossref_primary_10_1021_acs_iecr_7b04026
crossref_primary_10_1016_j_hydromet_2016_04_011
crossref_primary_10_1007_s11356_015_4901_0
crossref_primary_10_1016_j_cemconres_2022_106739
crossref_primary_10_1088_1757_899X_316_1_012025
crossref_primary_10_1007_s40831_016_0110_4
crossref_primary_10_1016_j_conbuildmat_2019_04_235
crossref_primary_10_1016_j_powtec_2019_04_046
crossref_primary_10_1016_j_jobe_2023_106559
crossref_primary_10_1007_s00521_018_3482_5
crossref_primary_10_1007_s11595_016_1462_0
Cites_doi 10.1016/S0021-9797(03)00447-8
10.1007/s10973-005-7671-y
10.1139/t06-071
10.1021/es035166p
10.1007/s10230-006-0106-6
10.1016/j.jhazmat.2006.02.011
10.1016/j.mineng.2006.08.002
10.1016/j.msea.2006.01.038
10.1007/BF00747586
10.2175/106143009X12487095236432
10.1007/BF02038437
10.1080/08827500490477603
10.1021/ie011047b
10.1016/S0272-8842(99)00083-8
10.1081/PLN-120013290
10.1071/SR99070
10.1007/s002540100399
10.1071/EN08026
10.1007/s10853-006-0401-4
10.1002/(SICI)1097-4660(199711)70:3<241::AID-JCTB769>3.0.CO;2-X
10.1093/oxfordjournals.rpd.a032597
10.1016/j.jhazmat.2009.02.049
10.1016/j.chemosphere.2009.12.032
10.1016/S0304-386X(96)00070-9
10.1016/j.resconrec.2008.07.010
10.1016/S0926-860X(98)00373-1
10.1007/BF00749964
10.1016/S0008-8846(97)00101-4
10.1021/ef7003943
10.1016/S0955-2219(99)00088-6
10.1071/EN06018
10.1061/(ASCE)0733-9372(2005)131:8(1230)
10.1016/j.matchar.2007.02.008
10.1081/ESE-120030331
10.1016/S0301-7516(99)00074-5
10.1016/j.jhazmat.2004.09.010
10.1205/psep.05163
10.1016/S0269-7491(01)00294-9
10.1021/ie0616904
10.1016/j.jhazmat.2006.12.015
10.1016/j.apgeochem.2007.04.021
10.1016/j.buildenv.2005.07.019
10.1016/j.apcatb.2007.12.002
10.1016/S0956-053X(97)00004-4
10.1021/es035207h
10.1016/j.mineng.2003.11.006
10.1071/AR9820275
10.1016/j.minpro.2009.08.005
10.1016/j.chemosphere.2004.11.002
10.1097/00004032-199111000-00009
10.1016/S0304-3894(02)00263-7
10.1016/j.jeurceramsoc.2006.05.106
10.1016/S0269-7491(01)00295-0
10.1016/j.envpol.2003.08.001
10.1016/j.jhazmat.2006.09.094
10.1089/ees.2006.0234
10.1016/S0167-8809(97)00040-6
10.4028/www.scientific.net/AMR.71-73.677
10.1080/00103629409369235
10.1071/SR9960569
10.1016/j.jhazmat.2007.11.123
10.1002/er.4440180214
10.1071/SR9890651
10.1016/j.jhazmat.2007.07.031
10.1016/j.watres.2006.10.024
10.1016/j.resconrec.2009.02.006
10.1016/S0955-2219(99)00156-9
10.1016/j.seppur.2007.03.013
10.1016/S0883-2927(02)00246-9
10.1016/j.conbuildmat.2007.10.005
10.1016/j.hydromet.2011.02.004
10.1016/j.hydromet.2011.02.006
10.1016/j.hydromet.2011.02.005
10.1080/10934520801974582
10.1016/j.jhazmat.2007.05.004
10.1016/j.jhazmat.2005.10.043
10.1897/04-087R.1
10.1016/0003-2670(95)00309-N
10.1081/TMA-120017903
10.1016/0048-9697(82)90085-7
10.1080/08827500802498199
10.1016/S0958-9465(96)00027-3
10.1080/00103628809367989
10.1071/SR9960555
10.1016/S0043-1354(97)00326-6
10.1016/j.ceramint.2007.11.013
10.1051/jp4:20030359
10.1071/SR97095
10.1016/S1001-0742(07)60190-9
10.1016/j.watres.2005.04.050
10.1016/0016-2361(92)90036-N
10.1071/SR01060
10.1016/j.jhazmat.2009.08.108
10.1016/S0956-053X(03)00134-X
10.1016/j.jenvman.2010.06.013
10.1016/S0167-8809(99)00049-3
10.1061/(ASCE)0733-9372(2005)131:8(1221)
10.1016/0003-2670(95)00486-6
10.1016/j.buildenv.2006.04.015
10.1016/S0167-2991(05)80179-X
10.6028/jres.090.024
10.1016/j.jhazmat.2004.08.002
10.1016/j.chemosphere.2009.08.056
10.1071/EN05038
10.1016/j.jcis.2003.10.011
10.1016/j.colsurfa.2005.03.030
ContentType Journal Article
Copyright 2011
2015 INIST-CNRS
Copyright_xml – notice: 2011
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QF
8BQ
8FD
JG9
DOI 10.1016/j.hydromet.2011.02.007
DatabaseName CrossRef
Pascal-Francis
Aluminium Industry Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-1158
EndPage 32
ExternalDocumentID 24206666
10_1016_j_hydromet_2011_02_007
S0304386X11000466
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABEFU
ABFNM
ABMAC
ABNUV
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
VH1
WUQ
XPP
XXG
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QF
8BQ
8FD
JG9
ID FETCH-LOGICAL-c411t-b47b293d54ce63b6359ddd1b5331aa558ab5277b21dc179ba3d2658a5356c5183
IEDL.DBID .~1
ISSN 0304-386X
IngestDate Fri Jul 11 11:21:21 EDT 2025
Mon Jul 21 09:15:35 EDT 2025
Tue Jul 01 04:29:12 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Fri Feb 23 02:27:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Red sand
Bauxite residue
Waste utilization
Geopolymer
Red mud
Cement
Soil amendment
Effluent treatment
Metal recovery
Aggregate
Material recovery
Bauxite
Hydrometallurgy
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-b47b293d54ce63b6359ddd1b5331aa558ab5277b21dc179ba3d2658a5356c5183
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 889381887
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_889381887
pascalfrancis_primary_24206666
crossref_primary_10_1016_j_hydromet_2011_02_007
crossref_citationtrail_10_1016_j_hydromet_2011_02_007
elsevier_sciencedirect_doi_10_1016_j_hydromet_2011_02_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Hydrometallurgy
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Singh, Upadhayay, Prasad (bb0730) 1996; 16
Brown, Kirkpatrick (bb0105) 1999
Genc, Tjell (bb0245) 2003; 107
U.S. Geological Survey, 2001. Mineral Commodity Summaries 2001 — bauxite and alumina. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
Alva, Huang, Paramasivam, Sajwan (bb0015) 2002; 25
Anich, Bagshaw, Margolis, Skillingberg (bb0035) 2002
Smirnov, Molchanova (bb0740) 1997; 45
Xu, Van Deventer (bb0915) 2000; 59
Somlai, Jobbagy, Kovacs, Tarjan, Kovacs (bb0745) 2008; 150
Pinnock (bb0640) 1991; 61
U.S. Environmental Protection Agency (bb0840) 2002
Gräfe, Klauber, Pang (bb0305) 2010
Bertocchi, Ghiani, Peretti, Zucca (bb0080) 2006; 134
Duvallet, Rathbone, Henke, Jewell (bb0200) 2009
Justiz-Smith, Buchanan, Oliver (bb0420) 2006; 420
Ji, S., Wu, D., Ye, Y., Zhang, W., 2004. Synthesis of layered double oxides and layered double hydroxides or hydrotalcites for use as e.g. catalysts comprises utilizing red mud from Bayer process of producing alumina as raw material. AU2004222753-A1.
Jones, Haynes, Phillips (bb0415) 2010; 91
Costa (bb0155) 2010; 78
Zijlstra, Dessi, Peretti, Zucca (bb0955) 2010; 82
Zhu, Luan, Wang, Shan (bb0945) 2007; 57
McCarthy, Armour-Brown, Iyer, Desu, Kander, Vaseashta (bb0555) 1992
Yalcin, Sevinc (bb0920) 2000; 26
Katz, Kovler (bb0425) 2004; 24
Kavas (bb0430) 2006; 41
Matheson, Xie, Jahanshahi (bb0550) 2005
Summers, Pech (bb0765) 1997; 64
American Coal Ash Association (bb0025) 2008
Habashi (bb0330) 1988
Klieger, Lamond (bb0445) 1994
Maddocks, Lin, McConchie (bb0530) 2004; 127
Bayer (bb0070) 1892
Showa Denko K.K., Sumitomo Chem. Ind. K.K., Ishikawajima Harima Heavy Ind. 1976b. Artificial construction aggregates — from granular red mud discharge from Bayer's process. JP51007022-A; JP83023339-B, JP51007022-A 21 Jan 1976 197610 JP83023339-B 14 May 1983 198323, 1976.
Fergusson (bb0225) 2007
Prasad, Subramanian (bb0665) 1997; 50
Harris (bb0345) 2007; No. 2
.
Gräfe, M., Klauber, C., 2011. Bauxite Residue Issues: IV. old obstacles and new pathways for in situ bioremediation. Hydrometallurgy.
Gurmendi, A.C., 2008. 2006 Minerals Yearbook, Spain. In: U.S. Department of the Interior (Editor). U.S. Geological Survey.
Akinci, Artir (bb0010) 2008; 59
Pawlek (bb0625) 2008
Ochsenkuhn-Petropoulou, Hatzilyberis, Mendrinos, Salmas (bb0585) 2002; 41
Cooper, Clarke, Robertson, McPharlin, Jeffrey (bb0145) 1995; 194
Sumitomo Chem. Co. Ltd., 1974. Absorbing sulphur dioxide from waste gases — by a red mud slurry, which is then oxidised to facilitate extn. of sodium hydroxide. JP49010868-A; JP76040870-B, JP49010868-A 30 Jan 1974 197435 JP76040870-B 06 Nov 1976 197649, 1974.
Zobel, Kullmann, Starosta (bb0960) 1978; 22
Showa Denko K.K., Sumitomo Chem. Ind. K.K., Ishikawajima Harima Heavy Ind. 1983. Artificial construction aggregates — from granular red mud discharge from Bayer's process. JP51007022-A; JP83023339-B, JP51007022-A 21 Jan 1976 197610 JP83023339-B 14 May 1983 198323, 1983.
Anon (bb0040) 2003; 11
EU Radiation Protection 1999. Radiological Protection Principles concerning the Natural Radioactivity of Building Materials (Document 112). In: Directorate-General Environment Nuclear Safety and Civil Protection (Editor). Radiation Protection Provisions of the Euratom Treaty. European Commission.
Maddocks, Reichelt-Brushett, McConchie, Vangronsveld (bb0535) 2005; 24
Summers, Smirk, Karafilis (bb0780) 1996; 34
Jitsangiam, Nikraz, Jamieson (bb0405) 2007
Bott, Langeloh, Hahn (bb0100) 2005
Paradis, Duchesne, Lamontagne, Isabel (bb0610) 2006; 43
Sglavo (bb0700) 2000; 20
Singh, Upadhayay, Prasad (bb0735) 1997; 27
Genc-Fuhrman, Bregnhoj, McConchie (bb0265) 2005; 39
McPharlin, Jeffrey, Toussaint, Cooper (bb0565) 1994; 25
Paramguru, Rath, Misra (bb0620) 2005; 26
Gräfe, Power, Klauber (bb0300) 2009
Jamieson, Jones, Cooling, Stockton (bb0390) 2006; 19
Khale, Chaudhary (bb0435) 2007; 42
McConchie (bb0560) 2005
Ochsenkuhn-Petropoulou, Lyberopulu, Parissakis (bb0575) 1995; 315
Genc-Fuhrman, Mikkelsen, Ledin (bb0270) 2007; 41
Ryle, G., 2002. The great red mud experiment that went radioactive, Sydney Morning Herald. May 7th.
Showa Denko K.K., Sumitomo Chem. Ind. K.K., Ishikawajima Harima Heavy Ind. 1976a. Artificial construction aggregates — from granular red mud discharged from Bayers process. JP51007024-A, JP51007024-A 21 Jan 1976 197610, 1976.
Carnicero, D. et al., 2009. Preliminary study of neutralization and inhibition of chemolitotrophic bacteria in an acid mine drainage from Rio Tinto site. Adv. Mater. Res. (Zuerich, Switz.), 71–73(Biohydrometallurgy): 677–680.
Hutson, Attwood (bb0370) 2008; 5
Orescanin, Durgo, Franekic-Colic, Nad, Valkovic (bb0590) 2003; 21
Jamieson, Cooling, Fu (bb0385) 2005
Kirkpatrick (bb0440) 1996
Ochsenkuhn-Petropoulou, Lyberopulu, Ochsenkuhn, Parissakis (bb0580) 1996; 319
Tsakiridis, Agatzini-Leonardou, Oustadakis (bb0830) 2004; 116
Genc-Fuhrman, Tjell, McConchie (bb0255) 2004; 38
Lombi, Zhao, Wieshammer, Zhang, McGrath (bb0510) 2002; 118
Lopez (bb0520) 1998; 32
Summers, Guise, Smirk, Summers (bb0775) 1996; 34
Carter, van der Sloot, Cooling, van Zomeren, Matheson (bb0125) 2008; 25
Gordon, Pinnock, Moore (bb0285) 1996; 18
Pinnock (bb0645) 1999; 81
Summers, Van Gool, Guise, Heady, Allen (bb0785) 1999; 73
Thakur, Sant (bb0815) 1983; 42
Kogel (bb0450) 2006
Thakur, Sant (bb0820) 1983; 42
Guilfoyle, Hay, Cooling (bb0320) 2005
Coruh, Ergun (bb0150) 2010; 173
Anon (bb0045) 2007
Doye, Duchesne (bb0185) 2003; 18
Pappu, Saxena, Asolekar (bb0605) 2007; 42
Kovler (bb0465) 2004; Volume 2
Ziegenbalg, S. et al., 1983. Recovering alkali content esp. of red mud — by redn. smelting with coke, lime and sand. Veb Mansfeld-Komb Pieck W (Mapi) DD200896-A.
Bollmann, U., Kobelke, J., Gruhn, G., Lange, R., John, H., Becker, K., Sommer, H., Kunze, P., 1986b. Liq. phase hydrogenation of heavy hydrocarbon feeds from petroleum — and coal etc. uses suspended catalyst of high surface area red mud dehydrated and activated by shock heating. DD248138-A1; DD248138-A, 1986.
Doye, Duchesne (bb0190) 2005; 131
Vaclavikova, M., Misaelides, P., Gallios, G., Jakabsky, S., Hredzak, S., 2005. Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydro metallurgical waste. Oxide based materials: new sources, novel phases, new applications, Studies in Surface Science and Catalysis 155: 517–525.
Cement Industry Federation (bb0130) 2001
Sushil, Batra (bb0805) 2008; 81
Thakur, Sant (bb0810) 1974; 33
Vlahos, Summers, Bell, Gilkes (bb0895) 1989; 27
Amritphale, Anshul, Chandra, Ramakrishnan (bb0030) 2007; 27
Akhurst, Jones, Clark, McConchie (bb0005) 2006; 3
Liu, Yang, Xiao (bb0505) 2009; 93
Mishra, Staley, Kirkpatrick (bb0570) 2002; 19
Lapointe, Fytas, McConchie (bb0475) 2006; 25
U.S. Geological Survey, 1997. Fact Sheet FS-163-97. Radioactive elements in coal and fly ash: abundance, forms, and environmental significance. In: U.S. Department of the Interior (Editor). U.S. Geological Survey.
Van Beers, Bossikov, Lund (bb0885) 2009; 53
Zhang, Qu, Wu (bb0935) 2001; 41
Vangelatos, Angelopoulos, Boufounos (bb0890) 2009; 168
Willet, J.C., 2009. Mineral Commodities Summary, Stone (crushed), January 2009. In: U.S. Department of the Interior (Editor). U.S. Geological Survey.
Peng, Liang, Shao, Hu (bb0630) 2005; 59
Yang, Xiao (bb0925) 2008; 22
Gräfe, M., Power, G., Klauber, C., 2011. Bauxite residue issues: III. alkalinity and associated chemistry. Hydrometallurgy.
Halasz, Hodos, Hannus, Tasi, Kiricsi (bb0335) 2005; 265
Liu (bb0495) 2007; 19
Dzombak (bb0205) 1990
U.S. Geological Survey, 2004. Mineral Commodity Summaries 2004. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
U.S. Geological Survey, 2009a. Mineral Commodity Summaries 2009 — Cement. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
Paradis, Duchesne, Lamontagne, Isabel (bb0615) 2007; 22
Fois, Lallai, Mura (bb0230) 2007; 46
Summers, Clarke, Pope, O'Dea (bb0790) 2000; 38
Gräfe, Nachtegaal, Sparks (bb0295) 2004; 38
Luan, Z., Zhang, S., Jia, Z., 2006. Preparation of iron-modified red mud used for removing arsenic and anions including fluorine or phosphate from wastewater and drinking water, by extracting residue red mud using bauxite. CN101176840-A, 2006.
Orescanin (bb0595) 2004; 39
Rios, Williams, Roberts (bb0675) 2008; 156
Summers (bb0760) 1996
U.S. Geological Survey, 2009b. Mineral Commodity Summaries 2009 — Scandium. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
Sourkouniargirusi (bb0750) 1994; 47
Ercag, Apak (bb0215) 1997; 70
Tuazon, Corder (bb0835) 2008; 52
Genc, Tjell, McConchie, Schuiling (bb0250) 2003; 264
Komnitsas, Bartzas, Paspaliaris (bb0455) 2004; 17
Atasoy (bb0050) 2007; 90
Li (bb0485) 2006; 137
Goldstein, Reimers (bb0280) 1999
Sagoe-Crentsil, Brown (bb0685) 2005
Kuo, C.S., 2009. 2007 Minerals Yearbook, India. In: U.S. Department of the Interior (Editor). U.S. Geological Survey.
Ward, Summers (bb0900) 1993; 36
Babel, Kurniawan (bb0055) 2003; 97
Becker, K., John, H., Spindler, H., Bollmann, U., Engels, S., Gruhn, G., Lange, R., Kunze, P., 1987. Prodn. of slurry-phase hydrogenation catalysts — by combustion of mixt. of red mud and hydrogenation residue and/or lignite fines. DD263463-A, 1987.Veb Leuna-Werke Ulbricht W (Velw).
UNSCEAR 2000 Report Vol. 1, 2000. Sources and effects of ionizing radiation.
Lee, Lee, Jeong Choi, Kim (bb0480) 2009; 77
He, Huang, Zhang (bb0350) 2006
International Maritime Organization (bb0380) 2005
Horvath (bb0360) 1974; 79
Couillard (bb0160) 1982; 25
Summers, Guise, Smirk (bb0770) 1993; 34
Lombi (bb0515) 2002; 118
Piga, Pochetti, Stoppa (bb0635) 1993; 45
U.S. Geological Survey, 2008. Mineral Commodity Summaries 2008. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
Summers, Bollandm, Clarke (bb0795) 2001; 39
Bollmann, U.; Kobelke, J.; Engels, S.; Lange, R.; John, H.; Becker, K.; Sommer, H.; Kunze, P., 1986a. Liq phase hydrogenation of coal slurried in oil — using suspended high surface area catalyst, prepd. from red mud by shock hea
Harris (10.1016/j.hydromet.2011.02.007_bb0345) 2007; No. 2
10.1016/j.hydromet.2011.02.007_bb0715
Anich (10.1016/j.hydromet.2011.02.007_bb0035) 2002
Lee (10.1016/j.hydromet.2011.02.007_bb0480) 2009; 77
Van Beers (10.1016/j.hydromet.2011.02.007_bb0885) 2009; 53
Davoodi (10.1016/j.hydromet.2011.02.007_bb0165) 2007
Ochsenkuhn-Petropoulou (10.1016/j.hydromet.2011.02.007_bb0585) 2002; 41
Habashi (10.1016/j.hydromet.2011.02.007_bb0330) 1988
Yalcin (10.1016/j.hydromet.2011.02.007_bb0920) 2000; 26
Eamsiri (10.1016/j.hydromet.2011.02.007_bb0210) 1992; 71
Singh (10.1016/j.hydromet.2011.02.007_bb0730) 1996; 16
Ercag (10.1016/j.hydromet.2011.02.007_bb0215) 1997; 70
Kirkpatrick (10.1016/j.hydromet.2011.02.007_bb0440) 1996
Genc-Fuhrman (10.1016/j.hydromet.2011.02.007_bb0270) 2007; 41
Dilmore (10.1016/j.hydromet.2011.02.007_bb0175) 2008; 22
Liu (10.1016/j.hydromet.2011.02.007_bb0500) 2007; 146
Cooling (10.1016/j.hydromet.2011.02.007_bb0140) 2002
10.1016/j.hydromet.2011.02.007_bb0395
10.1016/j.hydromet.2011.02.007_bb0310
Piga (10.1016/j.hydromet.2011.02.007_bb0635) 1993; 45
Ward (10.1016/j.hydromet.2011.02.007_bb0900) 1993; 36
10.1016/j.hydromet.2011.02.007_bb0950
Summers (10.1016/j.hydromet.2011.02.007_bb0800) 2002
Zhang (10.1016/j.hydromet.2011.02.007_bb0940) 2008; 152
10.1016/j.hydromet.2011.02.007_bb0710
Matheson (10.1016/j.hydromet.2011.02.007_bb0550) 2005
Smirnov (10.1016/j.hydromet.2011.02.007_bb0740) 1997; 45
Lin (10.1016/j.hydromet.2011.02.007_bb0490) 2002; 40
Pinnock (10.1016/j.hydromet.2011.02.007_bb0640) 1991; 61
Summers (10.1016/j.hydromet.2011.02.007_bb0795) 2001; 39
Zobel (10.1016/j.hydromet.2011.02.007_bb0965) 1978; 23
Doye (10.1016/j.hydromet.2011.02.007_bb0185) 2003; 18
Duvallet (10.1016/j.hydromet.2011.02.007_bb0200) 2009
Genc (10.1016/j.hydromet.2011.02.007_bb0250) 2003; 264
Bacaud (10.1016/j.hydromet.2011.02.007_bb0060) 1994; 18
Rios (10.1016/j.hydromet.2011.02.007_bb0675) 2008; 156
Tuazon (10.1016/j.hydromet.2011.02.007_bb0835) 2008; 52
McConchie (10.1016/j.hydromet.2011.02.007_bb0560) 2005
American Coal Ash Association (10.1016/j.hydromet.2011.02.007_bb0025) 2008
Rechcigl (10.1016/j.hydromet.2011.02.007_bb0670) 1988; 19
Hedrick (10.1016/j.hydromet.2011.02.007_bb0355) 1996
Gräfe (10.1016/j.hydromet.2011.02.007_bb0295) 2004; 38
Singh (10.1016/j.hydromet.2011.02.007_bb0735) 1997; 27
Kogel (10.1016/j.hydromet.2011.02.007_bb0450) 2006
Bayer (10.1016/j.hydromet.2011.02.007_bb0070) 1892
Maddocks (10.1016/j.hydromet.2011.02.007_bb0535) 2005; 24
Summers (10.1016/j.hydromet.2011.02.007_bb0775) 1996; 34
Zhu (10.1016/j.hydromet.2011.02.007_bb0945) 2007; 57
Cement Industry Federation (10.1016/j.hydromet.2011.02.007_bb0130) 2001
Goldberg (10.1016/j.hydromet.2011.02.007_bb0275) 1985; 90
Lapointe (10.1016/j.hydromet.2011.02.007_bb0475) 2006; 25
10.1016/j.hydromet.2011.02.007_bb0690
Orescanin (10.1016/j.hydromet.2011.02.007_bb0595) 2004; 39
Fois (10.1016/j.hydromet.2011.02.007_bb0230) 2007; 46
Vangelatos (10.1016/j.hydromet.2011.02.007_bb0890) 2009; 168
10.1016/j.hydromet.2011.02.007_bb0695
Jamieson (10.1016/j.hydromet.2011.02.007_bb0390) 2006; 19
Pradip (10.1016/j.hydromet.2011.02.007_bb0660) 1991; 44
Sglavo (10.1016/j.hydromet.2011.02.007_bb0705) 2000; 20
10.1016/j.hydromet.2011.02.007_bb0850
Clark (10.1016/j.hydromet.2011.02.007_bb0135) 2005
10.1016/j.hydromet.2011.02.007_bb0855
Akinci (10.1016/j.hydromet.2011.02.007_bb0010) 2008; 59
Amritphale (10.1016/j.hydromet.2011.02.007_bb0030) 2007; 27
Somlai (10.1016/j.hydromet.2011.02.007_bb0745) 2008; 150
10.1016/j.hydromet.2011.02.007_bb0725
Babel (10.1016/j.hydromet.2011.02.007_bb0055) 2003; 97
Huang (10.1016/j.hydromet.2011.02.007_bb0365) 2007; 144
Dzombak (10.1016/j.hydromet.2011.02.007_bb0205) 1990
Summers (10.1016/j.hydromet.2011.02.007_bb0765) 1997; 64
Carter (10.1016/j.hydromet.2011.02.007_bb0120) 2005
Li (10.1016/j.hydromet.2011.02.007_bb0485) 2006; 137
Orescanin (10.1016/j.hydromet.2011.02.007_bb0600) 2006; 84
Sourkouniargirusi (10.1016/j.hydromet.2011.02.007_bb0750) 1994; 47
Costa (10.1016/j.hydromet.2011.02.007_bb0155) 2010; 78
Kavas (10.1016/j.hydromet.2011.02.007_bb0430) 2006; 41
10.1016/j.hydromet.2011.02.007_bb0290
Pappu (10.1016/j.hydromet.2011.02.007_bb0605) 2007; 42
Paradis (10.1016/j.hydromet.2011.02.007_bb0610) 2006; 43
Fursman (10.1016/j.hydromet.2011.02.007_bb0240) 1970
Fergusson (10.1016/j.hydromet.2011.02.007_bb0225) 2007
10.1016/j.hydromet.2011.02.007_bb0680
Brown (10.1016/j.hydromet.2011.02.007_bb0105) 1999
Genc (10.1016/j.hydromet.2011.02.007_bb0245) 2003; 107
McPharlin (10.1016/j.hydromet.2011.02.007_bb0565) 1994; 25
Paramguru (10.1016/j.hydromet.2011.02.007_bb0620) 2005; 26
10.1016/j.hydromet.2011.02.007_bb0720
Summers (10.1016/j.hydromet.2011.02.007_bb0790) 2000; 38
10.1016/j.hydromet.2011.02.007_bb0325
Coruh (10.1016/j.hydromet.2011.02.007_bb0150) 2010; 173
10.1016/j.hydromet.2011.02.007_bb0845
Komnitsas (10.1016/j.hydromet.2011.02.007_bb0455) 2004; 17
Prasad (10.1016/j.hydromet.2011.02.007_bb0665) 1997; 50
Zhang (10.1016/j.hydromet.2011.02.007_bb0935) 2001; 41
Jones (10.1016/j.hydromet.2011.02.007_bb0410) 2006; 3
Liu (10.1016/j.hydromet.2011.02.007_bb0495) 2007; 19
Genc-Fuhrman (10.1016/j.hydromet.2011.02.007_bb0260) 2004; 271
Doye (10.1016/j.hydromet.2011.02.007_bb0190) 2005; 131
De Gioannis (10.1016/j.hydromet.2011.02.007_bb0170) 2008; 43
He (10.1016/j.hydromet.2011.02.007_bb0350) 2006
Jamieson (10.1016/j.hydromet.2011.02.007_bb0385) 2005
Duchesne (10.1016/j.hydromet.2011.02.007_bb0195) 2005; 131
10.1016/j.hydromet.2011.02.007_bb0470
Lopez (10.1016/j.hydromet.2011.02.007_bb0520) 1998; 32
10.1016/j.hydromet.2011.02.007_bb0075
Gordon (10.1016/j.hydromet.2011.02.007_bb0285) 1996; 18
Horvath (10.1016/j.hydromet.2011.02.007_bb0360) 1974; 79
Maitra (10.1016/j.hydromet.2011.02.007_bb0540) 1994
Genc-Fuhrman (10.1016/j.hydromet.2011.02.007_bb0255) 2004; 38
Hutson (10.1016/j.hydromet.2011.02.007_bb0370) 2008; 5
Tsakanika (10.1016/j.hydromet.2011.02.007_bb0825) 2004; 379
10.1016/j.hydromet.2011.02.007_bb0870
Ochsenkuhn-Petropoulou (10.1016/j.hydromet.2011.02.007_bb0575) 1995; 315
Summers (10.1016/j.hydromet.2011.02.007_bb0780) 1996; 34
10.1016/j.hydromet.2011.02.007_bb0115
Jones (10.1016/j.hydromet.2011.02.007_bb0415) 2010; 91
Sagoe-Crentsil (10.1016/j.hydromet.2011.02.007_bb0685) 2005
10.1016/j.hydromet.2011.02.007_bb0875
10.1016/j.hydromet.2011.02.007_bb0755
10.1016/j.hydromet.2011.02.007_bb0910
Summers (10.1016/j.hydromet.2011.02.007_bb0770) 1993; 34
Halasz (10.1016/j.hydromet.2011.02.007_bb0335) 2005; 265
Atasoy (10.1016/j.hydromet.2011.02.007_bb0050) 2007; 90
10.1016/j.hydromet.2011.02.007_bb0905
Klieger (10.1016/j.hydromet.2011.02.007_bb0445) 1994
International Maritime Organization (10.1016/j.hydromet.2011.02.007_bb0380) 2005
Sushil (10.1016/j.hydromet.2011.02.007_bb0805) 2008; 81
Cooper (10.1016/j.hydromet.2011.02.007_bb0145) 1995; 194
Pontikes (10.1016/j.hydromet.2011.02.007_bb0650) 2009; 35
Pawlek (10.1016/j.hydromet.2011.02.007_bb0625) 2008
Orescanin (10.1016/j.hydromet.2011.02.007_bb0590) 2003; 21
10.1016/j.hydromet.2011.02.007_bb0340
Maddocks (10.1016/j.hydromet.2011.02.007_bb0530) 2004; 127
Peng (10.1016/j.hydromet.2011.02.007_bb0630) 2005; 59
10.1016/j.hydromet.2011.02.007_bb0220
Bertocchi (10.1016/j.hydromet.2011.02.007_bb0080) 2006; 134
Genc-Fuhrman (10.1016/j.hydromet.2011.02.007_bb0265) 2005; 39
10.1016/j.hydromet.2011.02.007_bb0860
Lombi (10.1016/j.hydromet.2011.02.007_bb0515) 2002; 118
Summers (10.1016/j.hydromet.2011.02.007_bb0785) 1999; 73
10.1016/j.hydromet.2011.02.007_bb0865
Jitsangiam (10.1016/j.hydromet.2011.02.007_bb0405) 2007
Pinnock (10.1016/j.hydromet.2011.02.007_bb0645) 1999; 81
Liu (10.1016/j.hydromet.2011.02.007_bb0505) 2009; 93
Korshunov (10.1016/j.hydromet.2011.02.007_bb0460) 2005
Mishra (10.1016/j.hydromet.2011.02.007_bb0570) 2002; 19
Gräfe (10.1016/j.hydromet.2011.02.007_bb0305)
Akhurst (10.1016/j.hydromet.2011.02.007_bb0005) 2006; 3
Gräfe (10.1016/j.hydromet.2011.02.007_bb0300) 2009
U.S. Environmental Protection Agency (10.1016/j.hydromet.2011.02.007_bb0840) 2002
Anon (10.1016/j.hydromet.2011.02.007_bb0040) 2003; 11
Thakur (10.1016/j.hydromet.2011.02.007_bb0815) 1983; 42
Katz (10.1016/j.hydromet.2011.02.007_bb0425) 2004; 24
Justiz-Smith (10.1016/j.hydromet.2011.02.007_bb0420) 2006; 420
Bott (10.1016/j.hydromet.2011.02.007_bb0095) 2002
Summers (10.1016/j.hydromet.2011.02.007_bb0760) 1996
Tsakiridis (10.1016/j.hydromet.2011.02.007_bb0830) 2004; 116
Khale (10.1016/j.hydromet.2011.02.007_bb0435) 2007; 42
McCarthy (10.1016/j.hydromet.2011.02.007_bb0555) 1992
Vlahos (10.1016/j.hydromet.2011.02.007_bb0895) 1989; 27
10.1016/j.hydromet.2011.02.007_bb0375
Guilfoyle (10.1016/j.hydromet.2011.02.007_bb0320) 2005
Sglavo (10.1016/j.hydromet.2011.02.007_bb0700) 2000; 20
10.1016/j.hydromet.2011.02.007_bb0655
Bott (10.1016/j.hydromet.2011.02.007_bb0100) 2005
Alva (10.1016/j.hydromet.2011.02.007_bb0015) 2002; 25
Barrow (10.1016/j.hydromet.2011.02.007_bb0065) 1982; 33
Yang (10.1016/j.hydromet.2011.02.007_bb0925) 2008; 22
Anon (10.1016/j.hydromet.2011.02.007_bb0045) 2007
Ochsenkuhn-Petropoulou (10.1016/j.hydromet.2011.02.007_bb0580) 1996; 319
Thakur (10.1016/j.hydromet.2011.02.007_bb0810) 1974; 33
Goldstein (10.1016/j.hydromet.2011.02.007_bb0280) 1999
Thakur (10.1016/j.hydromet.2011.02.007_bb0820) 1983; 42
Dimas (10.1016/j.hydromet.2011.02.007_bb0180) 2009; 30
Xu (10.1016/j.hydromet.2011.02.007_bb0915) 2000; 59
10.1016/j.hydromet.2011.02.007_bb0090
Zijlstra (10.1016/j.hydromet.2011.02.007_bb0955) 2010; 82
Zobel (10.1016/j.hydromet.2011.02.007_bb0960) 1978; 22
Lombi (10.1016/j.hydromet.2011.02.007_bb0510) 2002; 118
Couillard (10.1016/j.hydromet.2011.02.007_bb0160) 1982; 25
Paradis (10.1016/j.hydromet.2011.02.007_bb0615) 2007; 22
10.1016/j.hydromet.2011.02.007_bb0085
Kovler (10.1016/j.hydromet.2011.02.007_bb0465) 2004; Volume 2
10.1016/j.hydromet.2011.02.007_bb0880
10.1016/j.hydromet.2011.02.007_bb0400
Brunori (10.1016/j.hydromet.2011.02.007_bb0110) 2005; 117
Alvarez (10.1016/j.hydromet.2011.02.007_bb0020) 1999; 180
Carter (10.1016/j.hydromet.2011.02.007_bb0125) 2008; 25
10.1016/j.hydromet.2011.02.007_bb0525
References_xml – volume: 21
  start-page: 123
  year: 2003
  end-page: 132
  ident: bb0590
  article-title: Physical, chemical, and genotoxic properties of waste mud by-product of waste water treatment
  publication-title: J. Trace Micropore Tech.
– volume: 107
  start-page: 537
  year: 2003
  end-page: 540
  ident: bb0245
  article-title: Effects of phosphate, silicate, sulphate, and bicarbonate on arsenate removal using activated seawater neutralised red mud (bauxsol)
  publication-title: J. Phys. IV
– volume: 25
  start-page: 2001
  year: 2002
  end-page: 2014
  ident: bb0015
  article-title: Evaluation of root growth limiting factors in Spodic horizons of Spodosols
  publication-title: J. Plant Nutr.
– volume: 173
  start-page: 468
  year: 2010
  end-page: 473
  ident: bb0150
  article-title: Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste
  publication-title: J. Hazard. Mater.
– volume: 20
  start-page: 235
  year: 2000
  end-page: 244
  ident: bb0700
  article-title: Bauxite ‘red mud’ in the ceramic industry. Part 1: thermal behaviour
  publication-title: J. Eur. Cer. Soc.
– reference: Schuiling, R.D., 2001. Preparation of granular material for removing metal salts from water, comprises heating aqueous mixture of Bauxsol, sand and burnt lime. NL1018084-C2.
– volume: 118
  start-page: 435
  year: 2002
  end-page: 443
  ident: bb0515
  article-title: In situ fixation of metals in soils using bauxite residue: chemical assessment
  publication-title: Environ. Pollut.
– volume: 77
  start-page: 1069
  year: 2009
  end-page: 1075
  ident: bb0480
  article-title: In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments
  publication-title: Chemosphere
– volume: 146
  start-page: 255
  year: 2007
  end-page: 261
  ident: bb0500
  article-title: Characterization of red mud derived from a combined Bayer process and bauxite calcination method
  publication-title: J. Hazard. Mater.
– volume: 40
  start-page: 805
  year: 2002
  end-page: 815
  ident: bb0490
  article-title: Effects of Bauxsol (TM) on the immobilisation of soluble acid and environmentally significant metals in acid sulfate soils
  publication-title: Aust. J. Soil Res.
– volume: 26
  start-page: 485
  year: 2000
  end-page: 493
  ident: bb0920
  article-title: Utilization of bauxite waste in ceramic glazes
  publication-title: Ceram. Int.
– volume: 19
  start-page: 1603
  year: 2006
  end-page: 1605
  ident: bb0390
  article-title: Magnetic separation of red sand to produce value
  publication-title: Min. Eng.
– start-page: 647
  year: 2007
  end-page: 651
  ident: bb0405
  article-title: Pozzolanic-Stabilised Mixture (PSM) for red sand as road base materials
  publication-title: 4th International Conference on Structural Engineering and Construction, Melbourne, Australia
– reference: U.S. Geological Survey, 2009b. Mineral Commodity Summaries 2009 — Scandium. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
– volume: 59
  start-page: 899
  year: 2005
  end-page: 903
  ident: bb0630
  article-title: Nano-crystal glass-ceramics obtained by crystallization of vitrified red mud
  publication-title: Chemosphere
– volume: 64
  start-page: 219
  year: 1997
  end-page: 232
  ident: bb0765
  article-title: Nutrient and metal content of water, sediment and soils amended with bauxite residue in the catchment of the Peel Inlet and Harvey Estuary, Western Australia
  publication-title: Agric. Ecosyst. Environ.
– volume: 39
  start-page: 2944
  year: 2005
  end-page: 2954
  ident: bb0265
  article-title: Arsenate removal from water using sand-red mud columns
  publication-title: Water Res.
– reference: Bollmann, U., Kobelke, J., Gruhn, G., Lange, R., John, H., Becker, K., Sommer, H., Kunze, P., 1986b. Liq. phase hydrogenation of heavy hydrocarbon feeds from petroleum — and coal etc. uses suspended catalyst of high surface area red mud dehydrated and activated by shock heating. DD248138-A1; DD248138-A, 1986.
– volume: 43
  start-page: 1167
  year: 2006
  end-page: 1179
  ident: bb0610
  article-title: Using red mud bauxite for the neutralization of acid mine tailings: a column leaching test
  publication-title: Can. Geotech. J.
– reference: UNSCEAR 2000 Report Vol. 1, 2000. Sources and effects of ionizing radiation.
– reference: Gräfe, M., Power, G., Klauber, C., 2011. Bauxite residue issues: III. alkalinity and associated chemistry. Hydrometallurgy.
– volume: 27
  start-page: 651
  year: 1989
  end-page: 662
  ident: bb0895
  article-title: Reducing phosphorus leaching from sandy soils with red mud bauxite processing residues
  publication-title: Aust. J. Soil Res.
– year: 2010
  ident: bb0305
  article-title: BRaDD: Bauxite Residue and Disposal Database
– volume: 319
  start-page: 249
  year: 1996
  end-page: 254
  ident: bb0580
  article-title: Recovery of lanthanides and yttrium from red mud by selective leaching
  publication-title: Anal. Chim. Acta
– start-page: 262
  year: 2002
  end-page: 269
  ident: bb0800
  article-title: The use of bauxite residue to control diffuse phosphorous pollution in Western Australia — a win–win–win outcome
  publication-title: Proceedings of the 6th International Alumina Quality Workshop
– reference: Gräfe, M., Klauber, C., 2011. Bauxite Residue Issues: IV. old obstacles and new pathways for in situ bioremediation. Hydrometallurgy.
– year: 2008
  ident: bb0625
  article-title: Alumina Refineries and Producers of the World
– volume: 93
  start-page: 220
  year: 2009
  end-page: 231
  ident: bb0505
  article-title: Review on treatment and utilization of bauxite residues in China
  publication-title: Int. J. Miner. Process.
– volume: 41
  start-page: 5794
  year: 2002
  end-page: 5801
  ident: bb0585
  article-title: Pilot-plant investigation of the leaching process for the recovery of scandium from red mud
  publication-title: Ind. Eng. Chem. Res.
– volume: 36
  start-page: 151
  year: 1993
  end-page: 156
  ident: bb0900
  article-title: Modifying sandy soils with fine residue from bauxite refining to retain phosphorus and increase plant-yield
  publication-title: Fert. Res.
– volume: 44
  start-page: 419
  year: 1991
  end-page: 431
  ident: bb0660
  article-title: New reagents for mineral processing application in India
  publication-title: Trans. Ind. Inst. Met.
– reference: EU Radiation Protection 1999. Radiological Protection Principles concerning the Natural Radioactivity of Building Materials (Document 112). In: Directorate-General Environment Nuclear Safety and Civil Protection (Editor). Radiation Protection Provisions of the Euratom Treaty. European Commission.
– volume: 34
  start-page: 569
  year: 1996
  end-page: 581
  ident: bb0775
  article-title: Bauxite residue (red mud) improves pasture growth on sandy soils in Western Australia
  publication-title: Aust. J. Soil Res.
– reference: Vaclavikova, M., Misaelides, P., Gallios, G., Jakabsky, S., Hredzak, S., 2005. Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydro metallurgical waste. Oxide based materials: new sources, novel phases, new applications, Studies in Surface Science and Catalysis 155: 517–525.
– volume: 57
  start-page: 161
  year: 2007
  end-page: 169
  ident: bb0945
  article-title: Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM)
  publication-title: Sep. Purif. Technol.
– volume: 25
  start-page: 181
  year: 1982
  end-page: 191
  ident: bb0160
  article-title: Use of read mud, a residue of alumina production by the Bayer process, in water treatment
  publication-title: Sci. Total Environ.
– start-page: 193
  year: 2002
  end-page: 198
  ident: bb0035
  article-title: The Alumina Technology Roadmap
– volume: 61
  start-page: 647
  year: 1991
  end-page: 651
  ident: bb0640
  article-title: Measurements of radioactivity in Jamaican building materials and gamma dose equivalents in a prototype red mud house
  publication-title: Health Phys.
– year: 2006
  ident: bb0350
  article-title: Supported noble metal catalyst for catalytic oxidizing benzene homologues gases, comprises active carbon, red mud, molecular screen and at least one noble metal component supported on the metal oxide carrier
  publication-title: Res. Cent. Eco. Environmental Sci Acad Sin (REEC-Non-standard)
– volume: 16
  start-page: 665
  year: 1996
  end-page: 670
  ident: bb0730
  article-title: Preparation of special cements from red mud
  publication-title: Waste Manage.
– volume: 90
  start-page: 341
  year: 1985
  end-page: 358
  ident: bb0275
  article-title: Thermodynamics of solution of SO
  publication-title: J. Res. Nat. Bur. Stand.
– volume: 45
  start-page: 54
  year: 1993
  end-page: 59
  ident: bb0635
  article-title: Recovering metals from red mud generated during alumina production
  publication-title: J. Met.
– start-page: 5
  year: 2009
  end-page: 10
  ident: bb0300
  article-title: The Asia-Pacific Partnership: an important new initiative for a sustainable alumina industry
  publication-title: Light Metals
– volume: 39
  start-page: 1281
  year: 2004
  end-page: 1294
  ident: bb0595
  article-title: Toxicological characterization of the new water cleaning product and its waste by-product
  publication-title: J. Environ. Sci. Health A — Tox./Haz. Subst. Environ. Eng.
– volume: 180
  start-page: 399
  year: 1999
  end-page: 409
  ident: bb0020
  article-title: A new method for enhancing the performance of red mud as a hydrogenation catalyst
  publication-title: Appl. Catal. A Gen.
– volume: 11
  start-page: 22
  year: 2003
  end-page: 24
  ident: bb0040
  article-title: Red menace: alumina waste products neutralised
  publication-title: Mater. World
– volume: 19
  start-page: 87
  year: 2002
  end-page: 94
  ident: bb0570
  article-title: Recovery of value-added products from red mud
  publication-title: Miner. Metall. Process
– volume: 168
  start-page: 473
  year: 2009
  end-page: 478
  ident: bb0890
  article-title: Utilization of ferroalumina as raw material in the production of ordinary Portland cement
  publication-title: J. Hazard. Mater.
– reference: Western Australian Parliamentary Debates, Legislative Council, Tuesday 14th, May 2002, 10233–10234.
– volume: 42
  start-page: 729
  year: 2007
  end-page: 746
  ident: bb0435
  article-title: Mechanism of geopolymerization and factors influencing its development: a review
  publication-title: J. Mater. Sci.
– volume: 3
  start-page: 65
  year: 2006
  end-page: 74
  ident: bb0005
  article-title: Phosphate removal from aqueous solutions using neutralized bauxite refinery residues (Bauxsol™)
  publication-title: Environ. Chem.
– volume: 33
  start-page: 275
  year: 1982
  end-page: 285
  ident: bb0065
  article-title: Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soils
  publication-title: Aust. J. Agric. Res.
– volume: No. 2
  year: 2007
  ident: bb0345
  article-title: Regulatory and policy issues of regional synergies in the Kwinana industrial area: a scoping study
  publication-title: Bulletin
– start-page: 66
  year: 2005
  end-page: 68
  ident: bb0560
  article-title: Recent advances in the treatment and reuse of bauxite refinery residues (Bauxsol™)
  publication-title: Proceedings of the 7th International Alumina Quality Workshop
– reference: Kuo, C.S., 2009. 2007 Minerals Yearbook, India. In: U.S. Department of the Interior (Editor). U.S. Geological Survey.
– start-page: 159
  year: 1994
  end-page: 165
  ident: bb0540
  article-title: Recovery of TiO
– reference: .
– start-page: 24
  year: 2002
  end-page: 32
  ident: bb0095
  article-title: Dry bauxite residue by hi-bar
  publication-title: Proceedings of the 6th International Alumina Quality Workshop
– volume: 3
  start-page: 297
  year: 2006
  end-page: 303
  ident: bb0410
  article-title: Carbon capture and the aluminium industry: preliminary studies
  publication-title: Environ. Chem.
– volume: 17
  start-page: 183
  year: 2004
  end-page: 194
  ident: bb0455
  article-title: Efficiency of limestone and red mud barriers: laboratory column studies
  publication-title: Min. Eng.
– reference: Willet, J.C., 2009. Mineral Commodities Summary, Stone (crushed), January 2009. In: U.S. Department of the Interior (Editor). U.S. Geological Survey.
– volume: 22
  start-page: 2299
  year: 2008
  end-page: 2307
  ident: bb0925
  article-title: Development of unsintered construction materials from red mud wastes produced in the sintering alumina process
  publication-title: Constr. Build. Mater.
– volume: 50
  start-page: 427
  year: 1997
  end-page: 442
  ident: bb0665
  article-title: Problems and prospects of red mud utilisation
  publication-title: Trans. Ind. Inst. Met.
– volume: 84
  start-page: 265
  year: 2006
  end-page: 269
  ident: bb0600
  article-title: Utilization of bauxite slag for the purification of industrial wastewaters
  publication-title: Process Saf. Environ. Prot.
– volume: 22
  start-page: 2326
  year: 2007
  end-page: 2333
  ident: bb0615
  article-title: Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings
  publication-title: Appl. Geochem.
– volume: 379
  start-page: 796
  year: 2004
  end-page: 802
  ident: bb0825
  article-title: Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC
  publication-title: Anal. Bioanal. Chem.
– volume: 150
  start-page: 541
  year: 2008
  end-page: 545
  ident: bb0745
  article-title: Radiological aspects of the usability of red mud as building material additive
  publication-title: J. Hazard. Mater.
– volume: 22
  start-page: 343
  year: 2008
  end-page: 353
  ident: bb0175
  article-title: Sequestration of CO
  publication-title: Energy Fuels
– volume: 19
  start-page: 1166
  year: 2007
  end-page: 1170
  ident: bb0495
  article-title: Adsorption removal of phosphate from aqueous solution by active red mud
  publication-title: J. Environ. Sci. China
– reference: Bollmann, U.; Kobelke, J.; Engels, S.; Lange, R.; John, H.; Becker, K.; Sommer, H.; Kunze, P., 1986a. Liq phase hydrogenation of coal slurried in oil — using suspended high surface area catalyst, prepd. from red mud by shock heating, which is cheap, more active and stable in suspension. DD248137-A, 1986.
– volume: 47
  start-page: 373
  year: 1994
  end-page: 377
  ident: bb0750
  article-title: Use of catalytic red mud-based additives for hydrocracking. 1. Preparation and base tests
  publication-title: Erdol Kohle Erdgas Petrochem.
– volume: 46
  start-page: 6770
  year: 2007
  end-page: 6776
  ident: bb0230
  article-title: Sulfur dioxide absorption in a bubbling reactor with suspensions of Bayer red mud
  publication-title: Ind. Eng. Chem. Res.
– volume: 5
  start-page: 281
  year: 2008
  end-page: 288
  ident: bb0370
  article-title: Binding of vapour-phase Hg(0) on chemically treated bauxite residues (red mud)
  publication-title: Environ. Chem.
– start-page: 236
  year: 2005
  end-page: 241
  ident: bb0100
  article-title: Re-usage of dry bauxite residue
  publication-title: Proceedings of the 7th International Alumina Quality Workshop
– reference: Gurmendi, A.C., 2008. 2006 Minerals Yearbook, Spain. In: U.S. Department of the Interior (Editor). U.S. Geological Survey.
– volume: 79
  start-page: 413
  year: 1974
  end-page: 449
  ident: bb0360
  article-title: Red mud smelting experiments
  publication-title: Acta Tech. Acad. Sci. Hung.
– volume: 35
  start-page: 401
  year: 2009
  end-page: 407
  ident: bb0650
  article-title: Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue
  publication-title: Ceram. Int.
– start-page: 271
  year: 2007
  end-page: 277
  ident: bb0165
  article-title: Chemical and physical characterization of coarse bauxite residue (red sand) for concrete making
  publication-title: International Conference on Sustainable Construction Materials and Technologies
– start-page: 185
  year: 2002
  end-page: 190
  ident: bb0140
  article-title: Carbonation of bauxite residue
  publication-title: Proceedings of the 6th International Alumina Quality Workshop
– start-page: 105
  year: 2007
  end-page: 111
  ident: bb0225
  article-title: The conversion and sustainable use of aluminum refinery residues: global solution examples
  publication-title: Light Metals
– volume: 25
  start-page: 475
  year: 2008
  end-page: 488
  ident: bb0125
  article-title: Characterization of untreated and neutralized bauxite residue for improved waste management
  publication-title: Environ. Eng. Sci.
– volume: 18
  start-page: 1197
  year: 2003
  end-page: 1213
  ident: bb0185
  article-title: Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch-leaching tests
  publication-title: Appl. Geochem.
– volume: 97
  start-page: 219
  year: 2003
  end-page: 243
  ident: bb0055
  article-title: Low-cost adsorbents for heavy metals uptake from contaminated water: a review
  publication-title: J. Hazard. Mater.
– reference: Showa Denko K.K., Sumitomo Chem. Ind. K.K., Ishikawajima Harima Heavy Ind. 1976a. Artificial construction aggregates — from granular red mud discharged from Bayers process. JP51007024-A, JP51007024-A 21 Jan 1976 197610, 1976.
– volume: 315
  start-page: 231
  year: 1995
  end-page: 237
  ident: bb0575
  article-title: Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method
  publication-title: Anal. Chim. Acta
– start-page: 40
  year: 2007
  end-page: 41
  ident: bb0045
  publication-title: Mud-to-Money, Light Metal Age
– reference: Showa Denko K.K., Sumitomo Chem. Ind. K.K., Ishikawajima Harima Heavy Ind. 1982. Artificial construction aggregates — from granular red mud discharged from Bayers process. JP51007023-A; JP82007588-B, JP51007023-A 21 Jan 1976 197610 JP82007588-B 12 Feb 1982 198210, 1982.
– reference: Ji, S., Wu, D., Ye, Y., Zhang, W., 2004. Synthesis of layered double oxides and layered double hydroxides or hydrotalcites for use as e.g. catalysts comprises utilizing red mud from Bayer process of producing alumina as raw material. AU2004222753-A1.
– volume: 20
  start-page: 245
  year: 2000
  end-page: 252
  ident: bb0705
  article-title: Bauxite ‘red mud’ in the ceramic industry. Part 2. production of clay-based ceramics
  publication-title: J. Eur. Cer. Soc.
– reference: U.S. Geological Survey, 2009a. Mineral Commodity Summaries 2009 — Cement. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
– volume: 33
  start-page: 408
  year: 1974
  end-page: 416
  ident: bb0810
  article-title: Utilization of red mud
  publication-title: J. Sci. Ind. Res.
– volume: 59
  start-page: 247
  year: 2000
  end-page: 266
  ident: bb0915
  article-title: The geopolymerisation of alumino-silicate minerals
  publication-title: Int. J. Miner. Process.
– volume: 117
  start-page: 55
  year: 2005
  end-page: 63
  ident: bb0110
  article-title: Reuse of a treated red mud bauxite waste: studies on environmental compatibility
  publication-title: J. Hazard. Mater.
– year: 1990
  ident: bb0205
  publication-title: Surface Complexation Modeling: Hydrous Ferric Oxide
– volume: 116
  start-page: 103
  year: 2004
  end-page: 110
  ident: bb0830
  article-title: Red mud addition in the raw meal for the production of Portland cement clinker
  publication-title: J. Hazard. Mater.
– volume: 34
  start-page: 555
  year: 1996
  end-page: 567
  ident: bb0780
  article-title: Phosphorus retention and leachates from sandy soil amended with bauxite residue (red mud)
  publication-title: Aust. J. Soil Res.
– start-page: 75
  year: 1996
  end-page: 80
  ident: bb0440
  article-title: Red mud product development
  publication-title: Light Metals
– volume: 25
  start-page: 2925
  year: 1994
  end-page: 2944
  ident: bb0565
  article-title: Phosphorus, nitrogen and radionuclide retention and leaching from a Joel Sand amended with red mud/gypsum
  publication-title: Commun. Soil Sci. Plant Anal.
– start-page: 19
  year: 1999
  end-page: 24
  ident: bb0280
  article-title: Trace element partitioning and bioavailability in red mud synthetic freshwater sentiment
  publication-title: Light Metals
– start-page: 54
  year: 2005
  ident: bb0380
  publication-title: Report of the Twenty-Eighth Meeting of the Scientific Group
– volume: 45
  start-page: 249
  year: 1997
  end-page: 259
  ident: bb0740
  article-title: The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production
  publication-title: Hydrometallurgy
– reference: Jerrard, S., 2008. Bridge to close gaps in Perth to Bunbury Highway, The West Australian, 24th May.
– year: 1892
  ident: bb0070
  article-title: Verfahren zur darstellung von thonerhydrat und alkalialuminat
– volume: 42
  start-page: 456
  year: 1983
  end-page: 469
  ident: bb0820
  article-title: Utilization of red mud. 2. Recovery of alkali, iron, aluminum, titanium, and other constituents and the pollution problems
  publication-title: J. Sci. Ind. Res.
– volume: 53
  start-page: 365
  year: 2009
  end-page: 378
  ident: bb0885
  article-title: Development of large scale reuses of inorganic by-products in Australia: the case study of Kwinana, Western Australia
  publication-title: Resources Conserv. Recyc.
– volume: 27
  start-page: 1037
  year: 1997
  end-page: 1046
  ident: bb0735
  article-title: Preparation of iron rich cements using red mud
  publication-title: Cem. Concr. Res.
– volume: 26
  start-page: 1
  year: 2005
  end-page: 29
  ident: bb0620
  article-title: Trends in red mud utilization — a review
  publication-title: Miner. Process. Extract. Metall. Rev.
– volume: 38
  start-page: 735
  year: 2000
  end-page: 744
  ident: bb0790
  article-title: Comparison of single superphosphate and superphosphate coated with bauxite residue for subterranean clover production on phosphorus-leaching soils
  publication-title: Aust. J. Soil Res.
– reference: U.S. Geological Survey, 2004. Mineral Commodity Summaries 2004. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
– start-page: 3
  year: 1988
  end-page: 11
  ident: bb0330
  article-title: A hundred years of the Bayer process for alumina production
  publication-title: Light Metals
– volume: 34
  start-page: 85
  year: 1993
  end-page: 94
  ident: bb0770
  article-title: Bauxite residue (red mud) increases phosphorous retention in sandy soil catchments in Western Australia
  publication-title: Fert. Res.
– start-page: 218
  year: 2005
  end-page: 220
  ident: bb0320
  article-title: Use of flue gas for carbonation of bauxite residue
  publication-title: Proceedings of the 7th International Alumina Quality Workshop
– volume: 91
  start-page: 2281
  year: 2010
  end-page: 2288
  ident: bb0415
  article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties
  publication-title: J. Environ. Manage.
– year: 2006
  ident: bb0450
  article-title: Industrial Minerals & Rocks
– volume: 41
  start-page: 249
  year: 2001
  end-page: 256
  ident: bb0935
  article-title: Engineering geological properties and comprehensive utilization of the solid waste (red mud) in aluminium industry
  publication-title: Environ. Geol.
– volume: Volume 2
  start-page: 899
  year: 2004
  end-page: 907
  ident: bb0465
  article-title: The problems of utilizing industrial by-products contaminated with natural radionuclides in construction
  publication-title: RILEM Proc., PRO 40
– volume: 70
  start-page: 241
  year: 1997
  end-page: 246
  ident: bb0215
  article-title: Furnace smelting and extractive metallurgy of red mud: recovery of TiO
  publication-title: J. Chem. Technol. Biotechnol.
– start-page: 210
  year: 2005
  end-page: 213
  ident: bb0385
  article-title: High volume resources from bauxite residue
  publication-title: Proceedings of the 7th International Alumina Quality Workshop
– volume: 38
  start-page: 6561
  year: 2004
  end-page: 6570
  ident: bb0295
  article-title: Formation of metal–arsenate precipitates at the goethite–water interface
  publication-title: Environ. Sci. Technol.
– volume: 59
  start-page: 417
  year: 2008
  end-page: 421
  ident: bb0010
  article-title: Characterization of trace elements and radionuclides and their risk assessment in red mud
  publication-title: Mater. Char.
– start-page: 25
  year: 1999
  end-page: 30
  ident: bb0105
  article-title: Red mud product development
  publication-title: Light Metals
– reference: Becker, K., John, H., Spindler, H., Bollmann, U., Engels, S., Gruhn, G., Lange, R., Kunze, P., 1987. Prodn. of slurry-phase hydrogenation catalysts — by combustion of mixt. of red mud and hydrogenation residue and/or lignite fines. DD263463-A, 1987.Veb Leuna-Werke Ulbricht W (Velw).
– year: 2008
  ident: bb0025
  article-title: 2007 Coal Combustion Product (CCP) Production & Use Survey Results (Revised)
– volume: 38
  start-page: 2428
  year: 2004
  end-page: 2434
  ident: bb0255
  article-title: Adsorption of arsenic from water using activated neutralized red mud
  publication-title: Environ. Sci. Technol.
– volume: 134
  start-page: 112
  year: 2006
  end-page: 119
  ident: bb0080
  article-title: Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn
  publication-title: J. Hazard. Mater.
– volume: 156
  start-page: 23
  year: 2008
  end-page: 35
  ident: bb0675
  article-title: Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites
  publication-title: J. Hazard. Mater.
– volume: 131
  start-page: 1221
  year: 2005
  end-page: 1229
  ident: bb0190
  article-title: Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings
  publication-title: J. Environ. Eng. ASCE
– volume: 73
  start-page: 271
  year: 1999
  end-page: 279
  ident: bb0785
  article-title: The phosphorus content in the run-off from the coastal catchment of the Peel Inlet and Harvey Estuary and its associations with land characteristics
  publication-title: Agric. Ecosyst. Environ.
– reference: Ziegenbalg, S. et al., 1983. Recovering alkali content esp. of red mud — by redn. smelting with coke, lime and sand. Veb Mansfeld-Komb Pieck W (Mapi) DD200896-A.
– reference: U.S. Geological Survey, 1997. Fact Sheet FS-163-97. Radioactive elements in coal and fly ash: abundance, forms, and environmental significance. In: U.S. Department of the Interior (Editor). U.S. Geological Survey.
– reference: Science Advisory Board U.S. Environmental Protection Agency, 1999. EPA-SAB-EEC-COM-99-002.
– volume: 194
  start-page: 379
  year: 1995
  end-page: 387
  ident: bb0145
  article-title: An investigation of radionuclide uptake into food crops grown in soils treated with bauxite mining residues
  publication-title: J. Radioanal. Nucl. Chem.
– reference: U.S. Geological Survey, 2001. Mineral Commodity Summaries 2001 — bauxite and alumina. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
– volume: 19
  start-page: 989
  year: 1988
  end-page: 1001
  ident: bb0670
  article-title: Soil solution aluminum as a measure of aluminum toxicity to alfalfa in acid soils
  publication-title: Commun. Soil Sci. Plant Anal.
– reference: Sumitomo Chem. Co. Ltd., 1974. Absorbing sulphur dioxide from waste gases — by a red mud slurry, which is then oxidised to facilitate extn. of sodium hydroxide. JP49010868-A; JP76040870-B, JP49010868-A 30 Jan 1974 197435 JP76040870-B 06 Nov 1976 197649, 1974.
– volume: 18
  start-page: 167
  year: 1994
  end-page: 176
  ident: bb0060
  article-title: Development and evaluation of iron-based catalysis for the hydroliquefaction of coal
  publication-title: Int. J. Energy Res.
– volume: 41
  start-page: 1779
  year: 2006
  end-page: 1783
  ident: bb0430
  article-title: Use of boron waste as a fluxing agent in production of red mud brick
  publication-title: Build. Environ.
– volume: 81
  start-page: 291
  year: 1999
  end-page: 299
  ident: bb0645
  article-title: Radon levels and related doses in a prototype Jamaican house constructed with bauxite waste blocks
  publication-title: Radiat. Prot. Dosim.
– volume: 52
  start-page: 1307
  year: 2008
  end-page: 1314
  ident: bb0835
  article-title: Life cycle assessment of seawater neutralised red mud for treatment of acid mine drainage
  publication-title: Res. Cons. Recycl.
– start-page: 471
  year: 1996
  end-page: 481
  ident: bb0355
  article-title: Rare-earth metal prices in the USA ca. 1960 to 1994
  publication-title: 21st Rare Earth Research Conference, Duluth, Mn
– year: 1992
  ident: bb0555
  article-title: Utilization of Jamaica bauxite tailings as a building material and its socio-economic considerations
  publication-title: International Bauxite Tailings Workshop
– volume: 152
  start-page: 486
  year: 2008
  end-page: 492
  ident: bb0940
  article-title: Arsenate removal from aqueous solutions using modified red mud
  publication-title: J. Hazard. Mater.
– volume: 71
  start-page: 449
  year: 1992
  end-page: 453
  ident: bb0210
  article-title: Activated red mud as a catalyst for the hydrogenation of coals and of aromatic-compounds
  publication-title: Fuel
– volume: 265
  start-page: 171
  year: 2005
  end-page: 177
  ident: bb0335
  article-title: Catalytic detoxification of C-2-chlorohydrocarbons over iron-containing oxide and zeolite catalysts
  publication-title: Colloids Surf. A
– reference: Iannicelli, J., 2006. Sorbent for extracting heavy metals, e.g. mercury, from groundwater, water streams, runoff, mines, petroleum streams and industrial waste streams, comprises reaction product of sulfidizing compound and red mud. EP1837075-A2; US2007224112-A1; EP1837075-A3, 2006.
– reference: Ryle, G., 2002. The great red mud experiment that went radioactive, Sydney Morning Herald. May 7th.
– volume: 42
  start-page: 87
  year: 1983
  end-page: 108
  ident: bb0815
  article-title: Utilization of red mud. 1. Analysis and utilization as raw-material for absorbents, building-materials, catalysts, filler, paints and pigments
  publication-title: J. Sci. Ind. Res.
– volume: 137
  start-page: 374
  year: 2006
  end-page: 383
  ident: bb0485
  article-title: Phosphate removal from aqueous solutions using raw and activated red mud and fly ash
  publication-title: J. Hazard. Mater.
– volume: 24
  start-page: 554
  year: 2005
  end-page: 563
  ident: bb0535
  article-title: Bioaccumulation of metals in
  publication-title: Environ. Toxicol. Chem.
– volume: 144
  start-page: 52
  year: 2007
  end-page: 58
  ident: bb0365
  article-title: Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash
  publication-title: J. Hazard. Mater.
– reference: Luan, Z., Zhang, S., Jia, Z., 2006. Preparation of iron-modified red mud used for removing arsenic and anions including fluorine or phosphate from wastewater and drinking water, by extracting residue red mud using bauxite. CN101176840-A, 2006.
– volume: 23
  start-page: 149
  year: 1978
  ident: bb0965
  article-title: Zur moeglischen Verwendung von Rotschlamm als Bodenverbesserungsmittel
  publication-title: Neue Huette
– reference: Power, G., Gräfe, M., Klauber, C., 2011. Bauxite residue issues: I. current management, disposal and storage practices. Hydrometallurgy.
– volume: 41
  start-page: 591
  year: 2007
  end-page: 602
  ident: bb0270
  article-title: Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents
  publication-title: Water Res.
– volume: 32
  start-page: 1314
  year: 1998
  end-page: 1322
  ident: bb0520
  article-title: Adsorbent properties of red mud and its use for wastewater treatment
  publication-title: Water Res.
– year: 2005
  ident: bb0550
  article-title: Literature Review of Red Mud Treatments for Safe Disposal, Utilization and Value Recovery
– volume: 78
  start-page: 1116
  year: 2010
  end-page: 1120
  ident: bb0155
  article-title: Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI)
  publication-title: Chemosphere
– volume: 82
  start-page: 319
  year: 2010
  end-page: 327
  ident: bb0955
  article-title: Treatment of percolate from metal sulfide mine tailings with a permeable reactive barrier of transformed red mud
  publication-title: Water Environ. Res.
– year: 2009
  ident: bb0200
  article-title: Low-energy, low CO
  publication-title: World Coal Ash, Proc., 3rd: 44/1-44/13
– reference: Harries, J., 1997. Acid mine drainage in Australia: Its extent and potential future liability. In: Australian Government, Department of the Environment, Water, Heritage and the Arts (Editor). Supervising Scientist Report.
– volume: 27
  start-page: 1945
  year: 2007
  end-page: 1951
  ident: bb0030
  article-title: A novel process for making radiopaque materials using bauxite — red mud
  publication-title: J. Eur. Cer. Soc.
– start-page: 31
  year: 1970
  ident: bb0240
  publication-title: Utilization of Red Mud Residues from Alumina Production
– volume: 43
  start-page: 969
  year: 2008
  end-page: 974
  ident: bb0170
  article-title: Chromate adsorption in a transformed red mud permeable reactive barrier using electrokinesis
  publication-title: J. Environ. Sci. Health. A
– year: 2001
  ident: bb0130
  article-title: Submission to the Fuel Taxation Inquiry
– year: 2005
  ident: bb0460
  article-title: Reworking Red Mud of Alumina Production Process
– volume: 264
  start-page: 327
  year: 2003
  end-page: 334
  ident: bb0250
  article-title: Adsorption of arsenate from water using neutralized red mud
  publication-title: J. Colloid Interface Sci.
– volume: 118
  start-page: 445
  year: 2002
  end-page: 452
  ident: bb0510
  article-title: In situ fixation of metals in soils using bauxite residue: biological effects
  publication-title: Environ. Pollut.
– volume: 25
  start-page: 37
  year: 2006
  end-page: 44
  ident: bb0475
  article-title: Efficiency of Bauxsol in permeable reactive barriers to treat acid rock drainage
  publication-title: Mine Water Environ.
– volume: 39
  start-page: 979
  year: 2001
  end-page: 990
  ident: bb0795
  article-title: Effect of application of bauxite residue (red mud) to very sandy soils on subterranean clover yield and P response
  publication-title: Aust. J. Soil Res.
– start-page: 225
  year: 2005
  end-page: 230
  ident: bb0120
  article-title: New approach to leach testing of bauxite residue to support managment decisions in view of beneficial application and storage
  publication-title: Proceedings of the 7th International Alumina Quality Workshop
– volume: 131
  start-page: 1230
  year: 2005
  end-page: 1235
  ident: bb0195
  article-title: Effectiveness of covers and liners made of red mud bauxite and/or cement kiln dust for limiting acid mine drainage
  publication-title: J. Environ. Eng. ASCE
– volume: 90
  start-page: 153
  year: 2007
  end-page: 158
  ident: bb0050
  article-title: The comparison of the Bayer process wastes on the base of chemical and physical properties
  publication-title: J. Therm. Anal. Calorim.
– volume: 271
  start-page: 313
  year: 2004
  end-page: 320
  ident: bb0260
  article-title: Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol™)
  publication-title: J. Colloid Interface Sci.
– volume: 42
  start-page: 2311
  year: 2007
  end-page: 2320
  ident: bb0605
  article-title: Solid wastes generation in India and their recycling potential in building materials
  publication-title: Build. Environ.
– start-page: 214
  year: 2005
  end-page: 217
  ident: bb0685
  article-title: Bayer process waste stream as potential feedstock material for geopolymer binder systems
  publication-title: Proceedings of the 7th International Alumina Quality Workshop
– volume: 420
  start-page: 250
  year: 2006
  end-page: 253
  ident: bb0420
  article-title: The potential application of red mud in the production of castings
  publication-title: Mater. Sci. Eng. A
– volume: 81
  start-page: 64
  year: 2008
  end-page: 77
  ident: bb0805
  article-title: Catalytic applications of red mud, an aluminium industry waste: a review
  publication-title: Appl. Catal. B Environ
– reference: Showa Denko K.K., Sumitomo Chem. Ind. K.K., Ishikawajima Harima Heavy Ind. 1983. Artificial construction aggregates — from granular red mud discharge from Bayer's process. JP51007022-A; JP83023339-B, JP51007022-A 21 Jan 1976 197610 JP83023339-B 14 May 1983 198323, 1983.
– year: 1994
  ident: bb0445
  article-title: Significance of Tests and Properties of Concrete and Concrete-making Materials
– year: 2002
  ident: bb0840
  article-title: U.S. Environmental Protection Agency, Bauxsol Treatability Study Report (2001), Gilt Edge Mine NPL Site, Lawrence County, South Dakota
– reference: U.S. Geological Survey, 2008. Mineral Commodity Summaries 2008. In: U.S. Department of the Interior (Editor). Mineral Commodities Summaries. U.S. Geological Survey.
– volume: 30
  start-page: 211
  year: 2009
  end-page: 239
  ident: bb0180
  article-title: Utilization of alumina red mud for synthesis of inorganic polymeric materials
  publication-title: Miner. Process. Extr. Metall. Rev.
– volume: 18
  start-page: 371
  year: 1996
  end-page: 379
  ident: bb0285
  article-title: A preliminary investigation of strength development in Jamaican red mud composites
  publication-title: Cement Concr. Compos.
– reference: Carnicero, D. et al., 2009. Preliminary study of neutralization and inhibition of chemolitotrophic bacteria in an acid mine drainage from Rio Tinto site. Adv. Mater. Res. (Zuerich, Switz.), 71–73(Biohydrometallurgy): 677–680.
– reference: Showa Denko K.K., Sumitomo Chem. Ind. K.K., Ishikawajima Harima Heavy Ind. 1976b. Artificial construction aggregates — from granular red mud discharge from Bayer's process. JP51007022-A; JP83023339-B, JP51007022-A 21 Jan 1976 197610 JP83023339-B 14 May 1983 198323, 1976.
– volume: 24
  start-page: 501
  year: 2004
  end-page: 512
  ident: bb0425
  article-title: Utilization of industrial by-products for the production of controlled low strength materials (CLSM)
  publication-title: Waste Manage.
– volume: 22
  start-page: 293
  year: 1978
  end-page: 297
  ident: bb0960
  article-title: Red mud, a potential soil conditioner
  publication-title: Arch. Agron. Soil Sci.
– year: 1996
  ident: bb0760
  article-title: Residue Carbonation Pilot Plant Progress Report — 1996 Trials
– start-page: 56
  year: 2005
  end-page: 58
  ident: bb0135
  article-title: The development of porous pellets of seawater-neutralised bauxite refinery residues (red mud) and Bauxsol™ for use in water treatment systems
  publication-title: Proceedings of the 7th International Alumina Quality Workshop
– volume: 127
  start-page: 157
  year: 2004
  end-page: 167
  ident: bb0530
  article-title: Effects of Bauxsol (TM) and biosolids on soil conditions of acid-generating mine spoil for plant growth
  publication-title: Environ. Pollut.
– volume: 264
  start-page: 327
  issue: 2
  year: 2003
  ident: 10.1016/j.hydromet.2011.02.007_bb0250
  article-title: Adsorption of arsenate from water using neutralized red mud
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00447-8
– ident: 10.1016/j.hydromet.2011.02.007_bb0680
– ident: 10.1016/j.hydromet.2011.02.007_bb0905
– volume: 90
  start-page: 153
  issue: 1
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0050
  article-title: The comparison of the Bayer process wastes on the base of chemical and physical properties
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-005-7671-y
– volume: 43
  start-page: 1167
  issue: 11
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0610
  article-title: Using red mud bauxite for the neutralization of acid mine tailings: a column leaching test
  publication-title: Can. Geotech. J.
  doi: 10.1139/t06-071
– volume: 38
  start-page: 6561
  issue: 24
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0295
  article-title: Formation of metal–arsenate precipitates at the goethite–water interface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035166p
– year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0025
– volume: 25
  start-page: 37
  issue: 1
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0475
  article-title: Efficiency of Bauxsol in permeable reactive barriers to treat acid rock drainage
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-006-0106-6
– start-page: 3
  year: 1988
  ident: 10.1016/j.hydromet.2011.02.007_bb0330
  article-title: A hundred years of the Bayer process for alumina production
– volume: 137
  start-page: 374
  issue: 1
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0485
  article-title: Phosphate removal from aqueous solutions using raw and activated red mud and fly ash
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.02.011
– volume: 19
  start-page: 1603
  issue: 15
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0390
  article-title: Magnetic separation of red sand to produce value
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2006.08.002
– volume: 420
  start-page: 250
  issue: 1–2
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0420
  article-title: The potential application of red mud in the production of castings
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.01.038
– volume: 36
  start-page: 151
  issue: 2
  year: 1993
  ident: 10.1016/j.hydromet.2011.02.007_bb0900
  article-title: Modifying sandy soils with fine residue from bauxite refining to retain phosphorus and increase plant-yield
  publication-title: Fert. Res.
  doi: 10.1007/BF00747586
– volume: 82
  start-page: 319
  issue: 4
  year: 2010
  ident: 10.1016/j.hydromet.2011.02.007_bb0955
  article-title: Treatment of percolate from metal sulfide mine tailings with a permeable reactive barrier of transformed red mud
  publication-title: Water Environ. Res.
  doi: 10.2175/106143009X12487095236432
– year: 1994
  ident: 10.1016/j.hydromet.2011.02.007_bb0445
– start-page: 225
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0120
  article-title: New approach to leach testing of bauxite residue to support managment decisions in view of beneficial application and storage
– volume: 194
  start-page: 379
  issue: 2
  year: 1995
  ident: 10.1016/j.hydromet.2011.02.007_bb0145
  article-title: An investigation of radionuclide uptake into food crops grown in soils treated with bauxite mining residues
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/BF02038437
– volume: 26
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0620
  article-title: Trends in red mud utilization — a review
  publication-title: Miner. Process. Extract. Metall. Rev.
  doi: 10.1080/08827500490477603
– volume: 41
  start-page: 5794
  issue: 23
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0585
  article-title: Pilot-plant investigation of the leaching process for the recovery of scandium from red mud
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie011047b
– start-page: 54
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0380
– volume: 26
  start-page: 485
  issue: 5
  year: 2000
  ident: 10.1016/j.hydromet.2011.02.007_bb0920
  article-title: Utilization of bauxite waste in ceramic glazes
  publication-title: Ceram. Int.
  doi: 10.1016/S0272-8842(99)00083-8
– volume: 25
  start-page: 2001
  issue: 9
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0015
  article-title: Evaluation of root growth limiting factors in Spodic horizons of Spodosols
  publication-title: J. Plant Nutr.
  doi: 10.1081/PLN-120013290
– ident: 10.1016/j.hydromet.2011.02.007_bb0845
– volume: 38
  start-page: 735
  issue: 3
  year: 2000
  ident: 10.1016/j.hydromet.2011.02.007_bb0790
  article-title: Comparison of single superphosphate and superphosphate coated with bauxite residue for subterranean clover production on phosphorus-leaching soils
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR99070
– volume: 41
  start-page: 249
  issue: 3–4
  year: 2001
  ident: 10.1016/j.hydromet.2011.02.007_bb0935
  article-title: Engineering geological properties and comprehensive utilization of the solid waste (red mud) in aluminium industry
  publication-title: Environ. Geol.
  doi: 10.1007/s002540100399
– volume: 5
  start-page: 281
  issue: 4
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0370
  article-title: Binding of vapour-phase Hg(0) on chemically treated bauxite residues (red mud)
  publication-title: Environ. Chem.
  doi: 10.1071/EN08026
– volume: 42
  start-page: 729
  issue: 3
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0435
  article-title: Mechanism of geopolymerization and factors influencing its development: a review
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0401-4
– volume: 70
  start-page: 241
  issue: 3
  year: 1997
  ident: 10.1016/j.hydromet.2011.02.007_bb0215
  article-title: Furnace smelting and extractive metallurgy of red mud: recovery of TiO2, Al2O3 and pig iron
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/(SICI)1097-4660(199711)70:3<241::AID-JCTB769>3.0.CO;2-X
– start-page: 105
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0225
  article-title: The conversion and sustainable use of aluminum refinery residues: global solution examples
– volume: 81
  start-page: 291
  issue: 4
  year: 1999
  ident: 10.1016/j.hydromet.2011.02.007_bb0645
  article-title: Radon levels and related doses in a prototype Jamaican house constructed with bauxite waste blocks
  publication-title: Radiat. Prot. Dosim.
  doi: 10.1093/oxfordjournals.rpd.a032597
– volume: 168
  start-page: 473
  issue: 1
  year: 2009
  ident: 10.1016/j.hydromet.2011.02.007_bb0890
  article-title: Utilization of ferroalumina as raw material in the production of ordinary Portland cement
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.02.049
– volume: 78
  start-page: 1116
  issue: 9
  year: 2010
  ident: 10.1016/j.hydromet.2011.02.007_bb0155
  article-title: Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.12.032
– volume: 45
  start-page: 249
  issue: 3
  year: 1997
  ident: 10.1016/j.hydromet.2011.02.007_bb0740
  article-title: The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(96)00070-9
– volume: 52
  start-page: 1307
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0835
  article-title: Life cycle assessment of seawater neutralised red mud for treatment of acid mine drainage
  publication-title: Res. Cons. Recycl.
  doi: 10.1016/j.resconrec.2008.07.010
– volume: 180
  start-page: 399
  issue: 1–2
  year: 1999
  ident: 10.1016/j.hydromet.2011.02.007_bb0020
  article-title: A new method for enhancing the performance of red mud as a hydrogenation catalyst
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(98)00373-1
– volume: 34
  start-page: 85
  issue: 1
  year: 1993
  ident: 10.1016/j.hydromet.2011.02.007_bb0770
  article-title: Bauxite residue (red mud) increases phosphorous retention in sandy soil catchments in Western Australia
  publication-title: Fert. Res.
  doi: 10.1007/BF00749964
– ident: 10.1016/j.hydromet.2011.02.007_bb0725
– volume: 27
  start-page: 1037
  issue: 7
  year: 1997
  ident: 10.1016/j.hydromet.2011.02.007_bb0735
  article-title: Preparation of iron rich cements using red mud
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(97)00101-4
– volume: 22
  start-page: 343
  issue: 1
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0175
  article-title: Sequestration of CO2 in mixtures of bauxite residue and saline wastewater
  publication-title: Energy Fuels
  doi: 10.1021/ef7003943
– volume: 20
  start-page: 235
  issue: 3
  year: 2000
  ident: 10.1016/j.hydromet.2011.02.007_bb0700
  article-title: Bauxite ‘red mud’ in the ceramic industry. Part 1: thermal behaviour
  publication-title: J. Eur. Cer. Soc.
  doi: 10.1016/S0955-2219(99)00088-6
– volume: 22
  start-page: 293
  issue: 5
  year: 1978
  ident: 10.1016/j.hydromet.2011.02.007_bb0960
  article-title: Red mud, a potential soil conditioner
  publication-title: Arch. Agron. Soil Sci.
– ident: 10.1016/j.hydromet.2011.02.007_bb0075
– volume: 3
  start-page: 297
  issue: 4
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0410
  article-title: Carbon capture and the aluminium industry: preliminary studies
  publication-title: Environ. Chem.
  doi: 10.1071/EN06018
– year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0840
– volume: 131
  start-page: 1230
  issue: 8
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0195
  article-title: Effectiveness of covers and liners made of red mud bauxite and/or cement kiln dust for limiting acid mine drainage
  publication-title: J. Environ. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9372(2005)131:8(1230)
– volume: 59
  start-page: 417
  issue: 4
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0010
  article-title: Characterization of trace elements and radionuclides and their risk assessment in red mud
  publication-title: Mater. Char.
  doi: 10.1016/j.matchar.2007.02.008
– year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0350
  article-title: Supported noble metal catalyst for catalytic oxidizing benzene homologues gases, comprises active carbon, red mud, molecular screen and at least one noble metal component supported on the metal oxide carrier
– volume: 39
  start-page: 1281
  issue: 5
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0595
  article-title: Toxicological characterization of the new water cleaning product and its waste by-product
  publication-title: J. Environ. Sci. Health A — Tox./Haz. Subst. Environ. Eng.
  doi: 10.1081/ESE-120030331
– volume: 59
  start-page: 247
  issue: 3
  year: 2000
  ident: 10.1016/j.hydromet.2011.02.007_bb0915
  article-title: The geopolymerisation of alumino-silicate minerals
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(99)00074-5
– volume: 117
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0110
  article-title: Reuse of a treated red mud bauxite waste: studies on environmental compatibility
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.09.010
– volume: 50
  start-page: 427
  issue: 5
  year: 1997
  ident: 10.1016/j.hydromet.2011.02.007_bb0665
  article-title: Problems and prospects of red mud utilisation
  publication-title: Trans. Ind. Inst. Met.
– volume: 84
  start-page: 265
  issue: B4
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0600
  article-title: Utilization of bauxite slag for the purification of industrial wastewaters
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1205/psep.05163
– volume: 118
  start-page: 435
  issue: 3
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0515
  article-title: In situ fixation of metals in soils using bauxite residue: chemical assessment
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00294-9
– volume: 46
  start-page: 6770
  issue: 21
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0230
  article-title: Sulfur dioxide absorption in a bubbling reactor with suspensions of Bayer red mud
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0616904
– start-page: 236
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0100
  article-title: Re-usage of dry bauxite residue
– ident: 10.1016/j.hydromet.2011.02.007_bb0525
– volume: 42
  start-page: 456
  issue: 8
  year: 1983
  ident: 10.1016/j.hydromet.2011.02.007_bb0820
  article-title: Utilization of red mud. 2. Recovery of alkali, iron, aluminum, titanium, and other constituents and the pollution problems
  publication-title: J. Sci. Ind. Res.
– volume: 45
  start-page: 54
  issue: 11
  year: 1993
  ident: 10.1016/j.hydromet.2011.02.007_bb0635
  article-title: Recovering metals from red mud generated during alumina production
  publication-title: J. Met.
– start-page: 185
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0140
  article-title: Carbonation of bauxite residue
– start-page: 40
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0045
– volume: 146
  start-page: 255
  issue: 1–2
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0500
  article-title: Characterization of red mud derived from a combined Bayer process and bauxite calcination method
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.12.015
– volume: 47
  start-page: 373
  issue: 10
  year: 1994
  ident: 10.1016/j.hydromet.2011.02.007_bb0750
  article-title: Use of catalytic red mud-based additives for hydrocracking. 1. Preparation and base tests
  publication-title: Erdol Kohle Erdgas Petrochem.
– volume: 22
  start-page: 2326
  issue: 11
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0615
  article-title: Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2007.04.021
– ident: 10.1016/j.hydromet.2011.02.007_bb0875
– volume: 79
  start-page: 413
  issue: 3–4
  year: 1974
  ident: 10.1016/j.hydromet.2011.02.007_bb0360
  article-title: Red mud smelting experiments
  publication-title: Acta Tech. Acad. Sci. Hung.
– ident: 10.1016/j.hydromet.2011.02.007_bb0720
– volume: 41
  start-page: 1779
  issue: 12
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0430
  article-title: Use of boron waste as a fluxing agent in production of red mud brick
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2005.07.019
– volume: 81
  start-page: 64
  issue: 1–2
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0805
  article-title: Catalytic applications of red mud, an aluminium industry waste: a review
  publication-title: Appl. Catal. B Environ
  doi: 10.1016/j.apcatb.2007.12.002
– volume: 16
  start-page: 665
  issue: 8
  year: 1996
  ident: 10.1016/j.hydromet.2011.02.007_bb0730
  article-title: Preparation of special cements from red mud
  publication-title: Waste Manage.
  doi: 10.1016/S0956-053X(97)00004-4
– ident: 10.1016/j.hydromet.2011.02.007_bb0870
– volume: 38
  start-page: 2428
  issue: 8
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0255
  article-title: Adsorption of arsenic from water using activated neutralized red mud
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035207h
– start-page: 66
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0560
  article-title: Recent advances in the treatment and reuse of bauxite refinery residues (Bauxsol™)
– ident: 10.1016/j.hydromet.2011.02.007_bb0910
– volume: 17
  start-page: 183
  issue: 2
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0455
  article-title: Efficiency of limestone and red mud barriers: laboratory column studies
  publication-title: Min. Eng.
  doi: 10.1016/j.mineng.2003.11.006
– volume: 33
  start-page: 275
  year: 1982
  ident: 10.1016/j.hydromet.2011.02.007_bb0065
  article-title: Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soils
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR9820275
– year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0450
– year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0625
– volume: 93
  start-page: 220
  issue: 3–4
  year: 2009
  ident: 10.1016/j.hydromet.2011.02.007_bb0505
  article-title: Review on treatment and utilization of bauxite residues in China
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2009.08.005
– volume: 59
  start-page: 899
  issue: 6
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0630
  article-title: Nano-crystal glass-ceramics obtained by crystallization of vitrified red mud
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.11.002
– year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0460
– year: 1996
  ident: 10.1016/j.hydromet.2011.02.007_bb0760
– volume: 61
  start-page: 647
  issue: 5
  year: 1991
  ident: 10.1016/j.hydromet.2011.02.007_bb0640
  article-title: Measurements of radioactivity in Jamaican building materials and gamma dose equivalents in a prototype red mud house
  publication-title: Health Phys.
  doi: 10.1097/00004032-199111000-00009
– volume: 97
  start-page: 219
  issue: 1–3
  year: 2003
  ident: 10.1016/j.hydromet.2011.02.007_bb0055
  article-title: Low-cost adsorbents for heavy metals uptake from contaminated water: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/S0304-3894(02)00263-7
– start-page: 271
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0165
  article-title: Chemical and physical characterization of coarse bauxite residue (red sand) for concrete making
– ident: 10.1016/j.hydromet.2011.02.007_bb0305
– volume: 27
  start-page: 1945
  issue: 4
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0030
  article-title: A novel process for making radiopaque materials using bauxite — red mud
  publication-title: J. Eur. Cer. Soc.
  doi: 10.1016/j.jeurceramsoc.2006.05.106
– volume: 118
  start-page: 445
  issue: 3
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0510
  article-title: In situ fixation of metals in soils using bauxite residue: biological effects
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(01)00295-0
– volume: 127
  start-page: 157
  issue: 2
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0530
  article-title: Effects of Bauxsol (TM) and biosolids on soil conditions of acid-generating mine spoil for plant growth
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2003.08.001
– start-page: 56
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0135
  article-title: The development of porous pellets of seawater-neutralised bauxite refinery residues (red mud) and Bauxsol™ for use in water treatment systems
– start-page: 210
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0385
  article-title: High volume resources from bauxite residue
– start-page: 75
  year: 1996
  ident: 10.1016/j.hydromet.2011.02.007_bb0440
  article-title: Red mud product development
– volume: 144
  start-page: 52
  issue: 1–2
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0365
  article-title: Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.09.094
– start-page: 31
  year: 1970
  ident: 10.1016/j.hydromet.2011.02.007_bb0240
– start-page: 5
  year: 2009
  ident: 10.1016/j.hydromet.2011.02.007_bb0300
  article-title: The Asia-Pacific Partnership: an important new initiative for a sustainable alumina industry
– start-page: 214
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0685
  article-title: Bayer process waste stream as potential feedstock material for geopolymer binder systems
– volume: 25
  start-page: 475
  issue: 4
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0125
  article-title: Characterization of untreated and neutralized bauxite residue for improved waste management
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2006.0234
– year: 1892
  ident: 10.1016/j.hydromet.2011.02.007_bb0070
– volume: 64
  start-page: 219
  issue: 3
  year: 1997
  ident: 10.1016/j.hydromet.2011.02.007_bb0765
  article-title: Nutrient and metal content of water, sediment and soils amended with bauxite residue in the catchment of the Peel Inlet and Harvey Estuary, Western Australia
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(97)00040-6
– volume: 19
  start-page: 87
  issue: 2
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0570
  article-title: Recovery of value-added products from red mud
  publication-title: Miner. Metall. Process
– ident: 10.1016/j.hydromet.2011.02.007_bb0115
  doi: 10.4028/www.scientific.net/AMR.71-73.677
– ident: 10.1016/j.hydromet.2011.02.007_bb0340
– volume: 379
  start-page: 796
  issue: 5–6
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0825
  article-title: Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC
  publication-title: Anal. Bioanal. Chem.
– volume: 25
  start-page: 2925
  issue: 17–18
  year: 1994
  ident: 10.1016/j.hydromet.2011.02.007_bb0565
  article-title: Phosphorus, nitrogen and radionuclide retention and leaching from a Joel Sand amended with red mud/gypsum
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629409369235
– year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0550
– volume: 34
  start-page: 569
  issue: 4
  year: 1996
  ident: 10.1016/j.hydromet.2011.02.007_bb0775
  article-title: Bauxite residue (red mud) improves pasture growth on sandy soils in Western Australia
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9960569
– volume: 156
  start-page: 23
  issue: 1–3
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0675
  article-title: Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.11.123
– ident: 10.1016/j.hydromet.2011.02.007_bb0395
– volume: 33
  start-page: 408
  issue: 8
  year: 1974
  ident: 10.1016/j.hydromet.2011.02.007_bb0810
  article-title: Utilization of red mud
  publication-title: J. Sci. Ind. Res.
– year: 2009
  ident: 10.1016/j.hydromet.2011.02.007_bb0200
  article-title: Low-energy, low CO2-emitting cements produced from coal combustion by-products and red mud
– start-page: 19
  year: 1999
  ident: 10.1016/j.hydromet.2011.02.007_bb0280
  article-title: Trace element partitioning and bioavailability in red mud synthetic freshwater sentiment
– volume: 18
  start-page: 167
  issue: 2
  year: 1994
  ident: 10.1016/j.hydromet.2011.02.007_bb0060
  article-title: Development and evaluation of iron-based catalysis for the hydroliquefaction of coal
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4440180214
– volume: 27
  start-page: 651
  issue: 4
  year: 1989
  ident: 10.1016/j.hydromet.2011.02.007_bb0895
  article-title: Reducing phosphorus leaching from sandy soils with red mud bauxite processing residues
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9890651
– year: 1990
  ident: 10.1016/j.hydromet.2011.02.007_bb0205
– ident: 10.1016/j.hydromet.2011.02.007_bb0850
– volume: 152
  start-page: 486
  issue: 2
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0940
  article-title: Arsenate removal from aqueous solutions using modified red mud
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.07.031
– volume: 41
  start-page: 591
  issue: 3
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0270
  article-title: Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.10.024
– start-page: 218
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0320
  article-title: Use of flue gas for carbonation of bauxite residue
– ident: 10.1016/j.hydromet.2011.02.007_bb0220
– year: 1992
  ident: 10.1016/j.hydromet.2011.02.007_bb0555
  article-title: Utilization of Jamaica bauxite tailings as a building material and its socio-economic considerations
– volume: 42
  start-page: 87
  issue: 2
  year: 1983
  ident: 10.1016/j.hydromet.2011.02.007_bb0815
  article-title: Utilization of red mud. 1. Analysis and utilization as raw-material for absorbents, building-materials, catalysts, filler, paints and pigments
  publication-title: J. Sci. Ind. Res.
– year: 2001
  ident: 10.1016/j.hydromet.2011.02.007_bb0130
– volume: No. 2
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0345
  article-title: Regulatory and policy issues of regional synergies in the Kwinana industrial area: a scoping study
– ident: 10.1016/j.hydromet.2011.02.007_bb0375
– volume: 53
  start-page: 365
  year: 2009
  ident: 10.1016/j.hydromet.2011.02.007_bb0885
  article-title: Development of large scale reuses of inorganic by-products in Australia: the case study of Kwinana, Western Australia
  publication-title: Resources Conserv. Recyc.
  doi: 10.1016/j.resconrec.2009.02.006
– ident: 10.1016/j.hydromet.2011.02.007_bb0085
– volume: 20
  start-page: 245
  issue: 3
  year: 2000
  ident: 10.1016/j.hydromet.2011.02.007_bb0705
  article-title: Bauxite ‘red mud’ in the ceramic industry. Part 2. production of clay-based ceramics
  publication-title: J. Eur. Cer. Soc.
  doi: 10.1016/S0955-2219(99)00156-9
– start-page: 262
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0800
  article-title: The use of bauxite residue to control diffuse phosphorous pollution in Western Australia — a win–win–win outcome
– ident: 10.1016/j.hydromet.2011.02.007_bb0715
– ident: 10.1016/j.hydromet.2011.02.007_bb0950
– volume: 57
  start-page: 161
  issue: 1
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0945
  article-title: Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM)
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2007.03.013
– volume: 18
  start-page: 1197
  issue: 8
  year: 2003
  ident: 10.1016/j.hydromet.2011.02.007_bb0185
  article-title: Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch-leaching tests
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(02)00246-9
– volume: 22
  start-page: 2299
  issue: 12
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0925
  article-title: Development of unsintered construction materials from red mud wastes produced in the sintering alumina process
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.10.005
– ident: 10.1016/j.hydromet.2011.02.007_bb0400
– ident: 10.1016/j.hydromet.2011.02.007_bb0855
– ident: 10.1016/j.hydromet.2011.02.007_bb0310
  doi: 10.1016/j.hydromet.2011.02.004
– ident: 10.1016/j.hydromet.2011.02.007_bb0655
  doi: 10.1016/j.hydromet.2011.02.006
– ident: 10.1016/j.hydromet.2011.02.007_bb0290
  doi: 10.1016/j.hydromet.2011.02.005
– volume: 43
  start-page: 969
  issue: 8
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0170
  article-title: Chromate adsorption in a transformed red mud permeable reactive barrier using electrokinesis
  publication-title: J. Environ. Sci. Health. A
  doi: 10.1080/10934520801974582
– volume: 150
  start-page: 541
  issue: 3
  year: 2008
  ident: 10.1016/j.hydromet.2011.02.007_bb0745
  article-title: Radiological aspects of the usability of red mud as building material additive
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.05.004
– volume: 134
  start-page: 112
  issue: 1–3
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0080
  article-title: Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.10.043
– start-page: 24
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0095
  article-title: Dry bauxite residue by hi-barR steam pressure filtration
– volume: 24
  start-page: 554
  issue: 3
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0535
  article-title: Bioaccumulation of metals in Eisenia fetida after exposure to a metal-loaded Bauxsol (TM) reagent
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/04-087R.1
– ident: 10.1016/j.hydromet.2011.02.007_bb0470
– volume: 315
  start-page: 231
  issue: 1–2
  year: 1995
  ident: 10.1016/j.hydromet.2011.02.007_bb0575
  article-title: Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(95)00309-N
– ident: 10.1016/j.hydromet.2011.02.007_bb0695
– ident: 10.1016/j.hydromet.2011.02.007_bb0865
– ident: 10.1016/j.hydromet.2011.02.007_bb0710
– volume: 23
  start-page: 149
  issue: 4
  year: 1978
  ident: 10.1016/j.hydromet.2011.02.007_bb0965
  article-title: Zur moeglischen Verwendung von Rotschlamm als Bodenverbesserungsmittel
  publication-title: Neue Huette
– volume: 21
  start-page: 123
  issue: 1
  year: 2003
  ident: 10.1016/j.hydromet.2011.02.007_bb0590
  article-title: Physical, chemical, and genotoxic properties of waste mud by-product of waste water treatment
  publication-title: J. Trace Micropore Tech.
  doi: 10.1081/TMA-120017903
– volume: 25
  start-page: 181
  issue: 2
  year: 1982
  ident: 10.1016/j.hydromet.2011.02.007_bb0160
  article-title: Use of read mud, a residue of alumina production by the Bayer process, in water treatment
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(82)90085-7
– volume: 30
  start-page: 211
  issue: 3
  year: 2009
  ident: 10.1016/j.hydromet.2011.02.007_bb0180
  article-title: Utilization of alumina red mud for synthesis of inorganic polymeric materials
  publication-title: Miner. Process. Extr. Metall. Rev.
  doi: 10.1080/08827500802498199
– volume: 18
  start-page: 371
  issue: 6
  year: 1996
  ident: 10.1016/j.hydromet.2011.02.007_bb0285
  article-title: A preliminary investigation of strength development in Jamaican red mud composites
  publication-title: Cement Concr. Compos.
  doi: 10.1016/S0958-9465(96)00027-3
– start-page: 193
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0035
  article-title: The Alumina Technology Roadmap
– start-page: 471
  year: 1996
  ident: 10.1016/j.hydromet.2011.02.007_bb0355
  article-title: Rare-earth metal prices in the USA ca. 1960 to 1994
– volume: 19
  start-page: 989
  issue: 7–12
  year: 1988
  ident: 10.1016/j.hydromet.2011.02.007_bb0670
  article-title: Soil solution aluminum as a measure of aluminum toxicity to alfalfa in acid soils
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103628809367989
– volume: 34
  start-page: 555
  issue: 4
  year: 1996
  ident: 10.1016/j.hydromet.2011.02.007_bb0780
  article-title: Phosphorus retention and leachates from sandy soil amended with bauxite residue (red mud)
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9960555
– volume: 32
  start-page: 1314
  issue: 4
  year: 1998
  ident: 10.1016/j.hydromet.2011.02.007_bb0520
  article-title: Adsorbent properties of red mud and its use for wastewater treatment
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00326-6
– volume: 44
  start-page: 419
  issue: 6
  year: 1991
  ident: 10.1016/j.hydromet.2011.02.007_bb0660
  article-title: New reagents for mineral processing application in India
  publication-title: Trans. Ind. Inst. Met.
– volume: 35
  start-page: 401
  issue: 1
  year: 2009
  ident: 10.1016/j.hydromet.2011.02.007_bb0650
  article-title: Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2007.11.013
– start-page: 647
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0405
  article-title: Pozzolanic-Stabilised Mixture (PSM) for red sand as road base materials
– volume: 107
  start-page: 537
  year: 2003
  ident: 10.1016/j.hydromet.2011.02.007_bb0245
  article-title: Effects of phosphate, silicate, sulphate, and bicarbonate on arsenate removal using activated seawater neutralised red mud (bauxsol)
  publication-title: J. Phys. IV
  doi: 10.1051/jp4:20030359
– ident: 10.1016/j.hydromet.2011.02.007_bb0755
– volume: 39
  start-page: 979
  issue: 5
  year: 2001
  ident: 10.1016/j.hydromet.2011.02.007_bb0795
  article-title: Effect of application of bauxite residue (red mud) to very sandy soils on subterranean clover yield and P response
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR97095
– start-page: 25
  year: 1999
  ident: 10.1016/j.hydromet.2011.02.007_bb0105
  article-title: Red mud product development
– volume: 19
  start-page: 1166
  issue: 10
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0495
  article-title: Adsorption removal of phosphate from aqueous solution by active red mud
  publication-title: J. Environ. Sci. China
  doi: 10.1016/S1001-0742(07)60190-9
– ident: 10.1016/j.hydromet.2011.02.007_bb0325
– volume: 39
  start-page: 2944
  issue: 13
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0265
  article-title: Arsenate removal from water using sand-red mud columns
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.04.050
– ident: 10.1016/j.hydromet.2011.02.007_bb0860
– volume: 71
  start-page: 449
  issue: 4
  year: 1992
  ident: 10.1016/j.hydromet.2011.02.007_bb0210
  article-title: Activated red mud as a catalyst for the hydrogenation of coals and of aromatic-compounds
  publication-title: Fuel
  doi: 10.1016/0016-2361(92)90036-N
– volume: 40
  start-page: 805
  issue: 5
  year: 2002
  ident: 10.1016/j.hydromet.2011.02.007_bb0490
  article-title: Effects of Bauxsol (TM) on the immobilisation of soluble acid and environmentally significant metals in acid sulfate soils
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR01060
– volume: 173
  start-page: 468
  issue: 1–3
  year: 2010
  ident: 10.1016/j.hydromet.2011.02.007_bb0150
  article-title: Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.08.108
– volume: 24
  start-page: 501
  issue: 5
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0425
  article-title: Utilization of industrial by-products for the production of controlled low strength materials (CLSM)
  publication-title: Waste Manage.
  doi: 10.1016/S0956-053X(03)00134-X
– volume: 91
  start-page: 2281
  year: 2010
  ident: 10.1016/j.hydromet.2011.02.007_bb0415
  article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.06.013
– volume: 73
  start-page: 271
  issue: 3
  year: 1999
  ident: 10.1016/j.hydromet.2011.02.007_bb0785
  article-title: The phosphorus content in the run-off from the coastal catchment of the Peel Inlet and Harvey Estuary and its associations with land characteristics
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(99)00049-3
– volume: 131
  start-page: 1221
  issue: 8
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0190
  article-title: Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings
  publication-title: J. Environ. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9372(2005)131:8(1221)
– volume: 319
  start-page: 249
  issue: 1–2
  year: 1996
  ident: 10.1016/j.hydromet.2011.02.007_bb0580
  article-title: Recovery of lanthanides and yttrium from red mud by selective leaching
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(95)00486-6
– ident: 10.1016/j.hydromet.2011.02.007_bb0690
– volume: Volume 2
  start-page: 899
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0465
  article-title: The problems of utilizing industrial by-products contaminated with natural radionuclides in construction
– volume: 42
  start-page: 2311
  issue: 6
  year: 2007
  ident: 10.1016/j.hydromet.2011.02.007_bb0605
  article-title: Solid wastes generation in India and their recycling potential in building materials
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.04.015
– ident: 10.1016/j.hydromet.2011.02.007_bb0880
  doi: 10.1016/S0167-2991(05)80179-X
– volume: 90
  start-page: 341
  issue: 5
  year: 1985
  ident: 10.1016/j.hydromet.2011.02.007_bb0275
  article-title: Thermodynamics of solution of SO2 (g) in water and of aqueous dioxide solutions
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.090.024
– volume: 11
  start-page: 22
  issue: 6
  year: 2003
  ident: 10.1016/j.hydromet.2011.02.007_bb0040
  article-title: Red menace: alumina waste products neutralised
  publication-title: Mater. World
– volume: 116
  start-page: 103
  issue: 1–2
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0830
  article-title: Red mud addition in the raw meal for the production of Portland cement clinker
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.08.002
– volume: 77
  start-page: 1069
  issue: 8
  year: 2009
  ident: 10.1016/j.hydromet.2011.02.007_bb0480
  article-title: In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.08.056
– ident: 10.1016/j.hydromet.2011.02.007_bb0090
– volume: 3
  start-page: 65
  issue: 1
  year: 2006
  ident: 10.1016/j.hydromet.2011.02.007_bb0005
  article-title: Phosphate removal from aqueous solutions using neutralized bauxite refinery residues (Bauxsol™)
  publication-title: Environ. Chem.
  doi: 10.1071/EN05038
– start-page: 159
  year: 1994
  ident: 10.1016/j.hydromet.2011.02.007_bb0540
  article-title: Recovery of TiO2 from Red Mud for Abatement of Pollution and for Conservation of Land and Mineral Resources
– volume: 271
  start-page: 313
  issue: 2
  year: 2004
  ident: 10.1016/j.hydromet.2011.02.007_bb0260
  article-title: Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol™)
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2003.10.011
– volume: 265
  start-page: 171
  issue: 1–3
  year: 2005
  ident: 10.1016/j.hydromet.2011.02.007_bb0335
  article-title: Catalytic detoxification of C-2-chlorohydrocarbons over iron-containing oxide and zeolite catalysts
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2005.03.030
SSID ssj0006371
Score 2.5033786
Snippet Worldwide bauxite residue disposal areas contain an estimated 2.7 billion tonnes of residue, increasing by approximately 120 million tonnes per annum. The...
Worldwide bauxite residue disposal areas contain an estimated 2.7billiontonnes of residue, increasing by approximately 120milliontonnesperannum. The question...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Aggregate
Aluminum base alloys
Applied sciences
Bauxite
Bauxite residue
Bayer process
Byproducts
Cement
Effluent treatment
Exact sciences and technology
Geopolymer
Metal recovery
Metals. Metallurgy
Production of metals
Red mud
Red sand
Residues
Risk
Soil amendment
Utilization
Waste utilization
Wastes
Title Bauxite residue issues: II. options for residue utilization
URI https://dx.doi.org/10.1016/j.hydromet.2011.02.007
https://www.proquest.com/docview/889381887
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFG4IvmiM8RrxQvbg69il67rpExIJaORFSXhreiNCyCCyJfrib_d0F4QYw4OvW7suX09Pv9P2fEXoBscau1KHNgTIHAIUT9pCj4kdCTeWQvrKoyZR-HkQ9obB44iMaqhT5cKYY5Wl7y98eu6tyydOiaazmEycF7Oph6NwZETPIMozsttBQI2Vt75-jnmEOA-6TGHblF7LEp623j5zUYC0lPI02p30rwlqf8GXANu4uO_il-vO56PuITooiaTVLv71CNV0coz21uQFT9DdPc8-gFJaEFJPVKatHOTlrdXvt6x5cZrFAtK6eg9GOCvzMk_RsPvw2unZ5WUJtgw8L7VFQAVM3YoEgDwWwCNipZQngM55nBMScUF8CmU8JWEQCo6VD-yDE0xCSWBgn6F6Mk_0ObK09nksyNgPqBuIGHMI4YSgUkcq9uFTDUQqhJgslcTNhRYzVh0Zm7IKWWaQZa7PANkGclb1FoWWxtYacdUBbMMqGDj8rXWbGz22ahJIiQnawgayqi5kMKbMRglP9DxbsghIHBCZiF78o_1LtFusP5sVmytUT98zfQ0EJhXN3EKbaKfdf-oNvgGwRfFR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTwIxFH5BPKgxxjXignPwOgyzdBY9KZGAAhch4dZ0I0IIEBkSvfjbfZ0FIcZw8DrTTidf-16_174F4NaNlFsVyjfRQGZooNjC5GpAzJBXI8GFI-1ABwq3O36j5z33Sb8AtTwWRrtVZro_1emJts6eWBma1mw4tF71pZ4b-n2d9AytPH8Ltj0UX13GoPL14-fhu4nVpVubuvlKmPCo8vaZZAWIs1yeOnln8NcOtT9jc8RtkBa8-KW7kw2pfggHGZM0HtKfPYKCmhzD3kp-wRO4f2SLD-SUBtrUQ7lQRoLy_M5oNivGNHVnMZC1Lt_jKhxngZmn0Ks_dWsNM6uWYArPtmOTewHHvVsSD6F3ORKJSEppc-RzNmOEhIwTJ8A2thQohZy50kH6wYhLfEFQss-gOJlO1DkYSjks4mTgeEHV45HL0IbjPBAqlJGDnyoByRGiIkslritajGnuMzaiObJUI0urDkVkS2At-83SZBobe0T5BNC1ZUFR42_sW16bseWQyEq01eaXwMinkKJQ6ZsSNlHTxZyGyOKQyYTBxT_Gv4GdRrfdoq1m5-USdtPDaH18cwXF-H2hrpHNxLycrNZvNzTy3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bauxite+residue+issues%3A+II.+options+for+residue+utilization&rft.jtitle=Hydrometallurgy&rft.au=Klauber%2C+C.&rft.au=Gr%C3%A4fe%2C+M.&rft.au=Power%2C+G.&rft.date=2011-06-01&rft.issn=0304-386X&rft.volume=108&rft.issue=1-2&rft.spage=11&rft.epage=32&rft_id=info:doi/10.1016%2Fj.hydromet.2011.02.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_hydromet_2011_02_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-386X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-386X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-386X&client=summon