Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer

No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, we compared changes ("delta") in the radiomic texture (DelRADx) of CT patterns both within...

Full description

Saved in:
Bibliographic Details
Published inCancer immunology research Vol. 8; no. 1; p. 108
Main Authors Khorrami, Mohammadhadi, Prasanna, Prateek, Gupta, Amit, Patil, Pradnya, Velu, Priya D, Thawani, Rajat, Corredor, German, Alilou, Mehdi, Bera, Kaustav, Fu, Pingfu, Feldman, Michael, Velcheti, Vamsidhar, Madabhushi, Anant
Format Journal Article
LanguageEnglish
Published United States 01.01.2020
Online AccessGet more information

Cover

Loading…
Abstract No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, we compared changes ("delta") in the radiomic texture (DelRADx) of CT patterns both within and outside tumor nodules before and after two to three cycles of ICI therapy. We found that DelRADx patterns could predict response to ICI therapy and overall survival (OS) for patients with NSCLC. We retrospectively analyzed data acquired from 139 patients with NSCLC at two institutions, who were divided into a discovery set (D = 50) and two independent validation sets (D = 62, D = 27). Intranodular and perinodular texture descriptors were extracted, and the relative differences were computed. A linear discriminant analysis (LDA) classifier was trained with 8 DelRADx features to predict RECIST-derived response. Association of delta-radiomic risk score (DRS) with OS was determined. The association of DelRADx features with tumor-infiltrating lymphocyte (TIL) density on the diagnostic biopsies ( = 36) was also evaluated. The LDA classifier yielded an AUC of 0.88 ± 0.08 in distinguishing responders from nonresponders in D , and 0.85 and 0.81 in D and D DRS was associated with OS [HR: 1.64; 95% confidence interval (CI), 1.22-2.21; = 0.0011; C-index = 0.72). Peritumoral Gabor features were associated with the density of TILs on diagnostic biopsy samples. Our results show that DelRADx could be used to identify early functional responses in patients with NSCLC.
AbstractList No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, we compared changes ("delta") in the radiomic texture (DelRADx) of CT patterns both within and outside tumor nodules before and after two to three cycles of ICI therapy. We found that DelRADx patterns could predict response to ICI therapy and overall survival (OS) for patients with NSCLC. We retrospectively analyzed data acquired from 139 patients with NSCLC at two institutions, who were divided into a discovery set (D = 50) and two independent validation sets (D = 62, D = 27). Intranodular and perinodular texture descriptors were extracted, and the relative differences were computed. A linear discriminant analysis (LDA) classifier was trained with 8 DelRADx features to predict RECIST-derived response. Association of delta-radiomic risk score (DRS) with OS was determined. The association of DelRADx features with tumor-infiltrating lymphocyte (TIL) density on the diagnostic biopsies ( = 36) was also evaluated. The LDA classifier yielded an AUC of 0.88 ± 0.08 in distinguishing responders from nonresponders in D , and 0.85 and 0.81 in D and D DRS was associated with OS [HR: 1.64; 95% confidence interval (CI), 1.22-2.21; = 0.0011; C-index = 0.72). Peritumoral Gabor features were associated with the density of TILs on diagnostic biopsy samples. Our results show that DelRADx could be used to identify early functional responses in patients with NSCLC.
Author Madabhushi, Anant
Alilou, Mehdi
Velcheti, Vamsidhar
Velu, Priya D
Gupta, Amit
Patil, Pradnya
Fu, Pingfu
Feldman, Michael
Corredor, German
Prasanna, Prateek
Thawani, Rajat
Bera, Kaustav
Khorrami, Mohammadhadi
Author_xml – sequence: 1
  givenname: Mohammadhadi
  surname: Khorrami
  fullname: Khorrami, Mohammadhadi
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
– sequence: 2
  givenname: Prateek
  surname: Prasanna
  fullname: Prasanna, Prateek
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
– sequence: 3
  givenname: Amit
  orcidid: 0000-0001-5345-6763
  surname: Gupta
  fullname: Gupta, Amit
  organization: Department of Radiology-Cardiothoracic Imaging, University Hospitals, Cleveland, Ohio
– sequence: 4
  givenname: Pradnya
  surname: Patil
  fullname: Patil, Pradnya
  organization: Department of Solid Tumor Oncology, Cleveland Clinic, Cleveland, Ohio
– sequence: 5
  givenname: Priya D
  surname: Velu
  fullname: Velu, Priya D
  organization: Pathology and Laboratory Medicine, Weill Cornell Medicine Physicians, New York, New York
– sequence: 6
  givenname: Rajat
  orcidid: 0000-0002-5378-9434
  surname: Thawani
  fullname: Thawani, Rajat
  organization: Department of Internal Medicine, Maimonides Medical Center, Brooklyn, New York
– sequence: 7
  givenname: German
  surname: Corredor
  fullname: Corredor, German
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
– sequence: 8
  givenname: Mehdi
  surname: Alilou
  fullname: Alilou, Mehdi
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
– sequence: 9
  givenname: Kaustav
  orcidid: 0000-0001-9831-6000
  surname: Bera
  fullname: Bera, Kaustav
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
– sequence: 10
  givenname: Pingfu
  orcidid: 0000-0002-2334-5218
  surname: Fu
  fullname: Fu, Pingfu
  organization: Department of Population and Quantitative Health Sciences, CWRU, Cleveland, Ohio
– sequence: 11
  givenname: Michael
  orcidid: 0000-0002-6661-4940
  surname: Feldman
  fullname: Feldman, Michael
  organization: Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 12
  givenname: Vamsidhar
  surname: Velcheti
  fullname: Velcheti, Vamsidhar
  organization: Department of Hematology and Oncology, NYU Langone Health, New York, New York
– sequence: 13
  givenname: Anant
  orcidid: 0000-0002-5741-0399
  surname: Madabhushi
  fullname: Madabhushi, Anant
  email: axm788@case.edu
  organization: Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31719058$$D View this record in MEDLINE/PubMed
BookMark eNo1UN1OwjAUboxGEHkETV9g2HZl3S7JFCUhYgCvSf_GarZ2WTvM3sWHdUQ8F-dLvvP9JOcOXFtnNQAPGM0wnqdPJCZJlKAkmeWrbYSzCFGWXIHxhWd0BKbef6Fh0pTiOb0FoxgznKF5OgY_ecntUXtoLMz3cMuVcbWRcKl56NqBX3jvpOFBK_htQgnXfd2UTvZBw2fjQ2tEF4yz8KPVysgANyfd8qqCu649mROvILcKbrVvnPUaBgdXdd1ZF8pB1vTn2ndno1199uR6WOvOHmHOrdTtPbgpeOX19IIT8Ll82edv0XrzusoX60hSjEPEFVMcayJFJhiilOBC0YSnXKAUxwxlKVVEJQINRxFTmWQKsVgITopCMSnJBDz-5TadqLU6NK2pedsf_t9EfgFGJm6u
CitedBy_id crossref_primary_10_1038_s41698_023_00473_x
crossref_primary_10_2139_ssrn_4070416
crossref_primary_10_1089_aipo_2023_0002
crossref_primary_10_1136_jitc_2022_004848
crossref_primary_10_3389_fonc_2021_657615
crossref_primary_10_1126_sciadv_abq4609
crossref_primary_10_1016_j_critrevonc_2020_103068
crossref_primary_10_3389_fonc_2022_952749
crossref_primary_10_1080_21645515_2020_1704575
crossref_primary_10_1177_03008916211000808
crossref_primary_10_1002_hed_27878
crossref_primary_10_3892_ol_2023_14071
crossref_primary_10_3389_fonc_2023_1145128
crossref_primary_10_1007_s00330_023_10241_x
crossref_primary_10_3174_ajnr_A7911
crossref_primary_10_1016_j_ejca_2021_02_008
crossref_primary_10_1111_1759_7714_14620
crossref_primary_10_1177_15330338221141793
crossref_primary_10_1186_s13014_022_02136_w
crossref_primary_10_3389_fonc_2022_990608
crossref_primary_10_1016_j_ctro_2021_03_006
crossref_primary_10_1177_15330338221142400
crossref_primary_10_1038_s41698_022_00277_5
crossref_primary_10_1016_j_intonc_2024_11_003
crossref_primary_10_1158_2159_8290_CD_24_0042
crossref_primary_10_3389_fonc_2021_692329
crossref_primary_10_1038_s41568_024_00705_7
crossref_primary_10_1016_j_semcancer_2022_11_008
crossref_primary_10_1038_s41467_022_32816_w
crossref_primary_10_1148_radiol_222729
crossref_primary_10_1016_j_lungcan_2021_11_017
crossref_primary_10_3390_ijms22073736
crossref_primary_10_1016_j_annonc_2023_10_125
crossref_primary_10_3389_fimmu_2024_1327779
crossref_primary_10_3389_fonc_2022_816766
crossref_primary_10_3389_fimmu_2024_1379812
crossref_primary_10_3389_fonc_2022_877594
crossref_primary_10_1186_s12967_024_05708_4
crossref_primary_10_1136_jitc_2022_005086
crossref_primary_10_3389_fonc_2024_1348678
crossref_primary_10_3390_jpm11100991
crossref_primary_10_1016_j_pccm_2023_05_001
crossref_primary_10_3389_fonc_2022_1047905
crossref_primary_10_1016_j_xgen_2023_100444
crossref_primary_10_1016_j_clon_2021_10_006
crossref_primary_10_3389_fonc_2021_744724
crossref_primary_10_33457_ijhsrp_1298068
crossref_primary_10_1186_s13014_023_02273_w
crossref_primary_10_3390_cancers16030615
crossref_primary_10_1016_j_clbc_2023_06_004
crossref_primary_10_1200_EDBK_358995
crossref_primary_10_1002_advs_202408069
crossref_primary_10_1097_RCT_0000000000001611
crossref_primary_10_1136_jitc_2020_001429
crossref_primary_10_3390_cancers17010058
crossref_primary_10_1016_j_jtho_2023_02_012
crossref_primary_10_1007_s00262_024_03644_2
crossref_primary_10_1016_j_acra_2024_01_033
crossref_primary_10_1093_ejcts_ezae335
crossref_primary_10_1259_bjr_20200112
crossref_primary_10_3389_fonc_2023_992096
crossref_primary_10_3390_cancers14235931
crossref_primary_10_1186_s12967_023_04748_6
crossref_primary_10_1007_s00330_022_09123_5
crossref_primary_10_1016_j_phrs_2021_105643
crossref_primary_10_1016_j_intimp_2024_111489
crossref_primary_10_2147_IJN_S463144
crossref_primary_10_1186_s12967_023_04004_x
crossref_primary_10_1038_s41392_021_00729_7
crossref_primary_10_1038_s41598_024_70208_w
crossref_primary_10_1016_j_radmp_2023_10_002
crossref_primary_10_3389_fimmu_2023_1088874
crossref_primary_10_1016_j_acra_2023_10_020
crossref_primary_10_1136_jitc_2023_007987
crossref_primary_10_1016_j_ejro_2023_100511
crossref_primary_10_1038_s41698_024_00790_9
crossref_primary_10_3390_cancers15041105
crossref_primary_10_3390_curroncol31090369
crossref_primary_10_7759_cureus_61220
crossref_primary_10_3390_cancers14020435
crossref_primary_10_1186_s12967_023_04586_6
crossref_primary_10_3389_fonc_2023_1260374
crossref_primary_10_3390_cancers15102700
crossref_primary_10_1186_s12967_024_04904_6
crossref_primary_10_1007_s12032_023_02036_3
crossref_primary_10_1055_s_0042_1755571
crossref_primary_10_1016_j_phrs_2023_106992
crossref_primary_10_3390_cancers12123663
crossref_primary_10_3389_fonc_2021_688679
crossref_primary_10_1053_j_ro_2023_02_001
crossref_primary_10_1038_s41698_024_00666_y
crossref_primary_10_3389_fimmu_2024_1434171
crossref_primary_10_3390_diagnostics12112644
crossref_primary_10_1007_s00259_021_05509_7
crossref_primary_10_1016_j_radonc_2023_109793
crossref_primary_10_3389_fimmu_2021_799455
crossref_primary_10_1615_CritRevOncog_2023050439
crossref_primary_10_1016_j_acra_2023_04_011
crossref_primary_10_3390_cancers14205076
crossref_primary_10_1111_1754_9485_13426
crossref_primary_10_1007_s00330_022_09337_7
crossref_primary_10_1038_s41581_020_0321_6
crossref_primary_10_1136_jitc_2022_005292
crossref_primary_10_36516_jocass_1427896
crossref_primary_10_1002_acm2_13869
crossref_primary_10_1093_oncolo_oyac036
crossref_primary_10_3389_fonc_2022_982983
crossref_primary_10_3389_fpubh_2022_938113
crossref_primary_10_1016_j_lungcan_2020_04_006
crossref_primary_10_1136_jitc_2020_000550
crossref_primary_10_1016_j_bspc_2021_103373
crossref_primary_10_1016_j_clon_2024_06_053
crossref_primary_10_1016_j_ijrobp_2020_06_026
crossref_primary_10_1136_jitc_2023_007369
crossref_primary_10_1016_j_ejro_2022_100440
crossref_primary_10_1016_j_aca_2023_341908
crossref_primary_10_1080_14737140_2024_2311684
crossref_primary_10_3390_biomedicines10061237
crossref_primary_10_1016_j_aca_2021_338821
crossref_primary_10_3390_jcm11061740
crossref_primary_10_1172_JCI175834
crossref_primary_10_1186_s13046_022_02379_1
crossref_primary_10_3390_ijms21082856
crossref_primary_10_1016_j_compbiomed_2023_107371
crossref_primary_10_1038_s41523_023_00574_7
crossref_primary_10_1016_j_jtho_2023_01_089
crossref_primary_10_1080_2162402X_2022_2028962
crossref_primary_10_1016_j_xcrm_2023_101146
crossref_primary_10_1186_s13058_024_01776_y
crossref_primary_10_3390_cancers15215125
crossref_primary_10_1016_j_ejmp_2023_103200
crossref_primary_10_1007_s11633_022_1364_x
crossref_primary_10_1007_s00262_020_02810_6
crossref_primary_10_1016_j_jtho_2023_03_011
crossref_primary_10_1016_j_radonc_2023_109938
crossref_primary_10_1097_RTI_0000000000000801
crossref_primary_10_12677_acm_2024_1451488
crossref_primary_10_1038_s41571_021_00560_7
crossref_primary_10_1088_1361_6560_ad0d43
crossref_primary_10_1136_jitc_2020_001752
crossref_primary_10_3389_fonc_2022_986579
crossref_primary_10_1186_s12967_023_04437_4
crossref_primary_10_1136_jitc_2021_003778
crossref_primary_10_3233_XST_230326
crossref_primary_10_3389_fonc_2022_1059874
crossref_primary_10_1016_j_ejca_2022_02_024
crossref_primary_10_2139_ssrn_4135321
crossref_primary_10_3390_cancers14051337
crossref_primary_10_32708_uutfd_891274
crossref_primary_10_1038_s41698_024_00534_9
crossref_primary_10_1158_1078_0432_CCR_21_4148
crossref_primary_10_1016_j_adro_2024_101457
crossref_primary_10_1016_j_iotech_2021_100028
crossref_primary_10_1080_21645515_2024_2406063
crossref_primary_10_1159_000510385
crossref_primary_10_3389_fimmu_2023_1249980
crossref_primary_10_3389_fonc_2022_927974
crossref_primary_10_1200_CCI_20_00049
crossref_primary_10_1136_jitc_2020_001343
crossref_primary_10_1016_j_acra_2024_07_028
crossref_primary_10_1016_j_bspc_2024_106800
crossref_primary_10_1038_s41467_023_40890_x
crossref_primary_10_3390_cancers14020350
crossref_primary_10_3390_cancers15071968
crossref_primary_10_3390_cancers14051228
crossref_primary_10_3390_diagnostics11060979
crossref_primary_10_3389_fonc_2025_1510071
crossref_primary_10_1183_13993003_02792_2021
crossref_primary_10_1016_S2589_7500_23_00082_1
crossref_primary_10_71423_aimed_20250101
crossref_primary_10_1007_s40259_020_00425_y
crossref_primary_10_1007_s00330_022_09174_8
crossref_primary_10_1016_j_ebiom_2022_104364
crossref_primary_10_1016_j_oor_2024_100676
crossref_primary_10_3389_fimmu_2024_1373330
crossref_primary_10_1016_j_media_2024_103199
ContentType Journal Article
Copyright 2019 American Association for Cancer Research.
Copyright_xml – notice: 2019 American Association for Cancer Research.
DBID NPM
DOI 10.1158/2326-6066.CIR-19-0476
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 2326-6074
ExternalDocumentID 31719058
Genre Journal Article
GrantInformation_xml – fundername: BLRD VA
  grantid: I01 BX004121
– fundername: NCI NIH HHS
  grantid: R01 CA208236
– fundername: NCI NIH HHS
  grantid: R01 CA216579
– fundername: NCI NIH HHS
  grantid: U01 CA239055
– fundername: NCI NIH HHS
  grantid: R01 CA220581
– fundername: NCI NIH HHS
  grantid: U24 CA199374
GroupedDBID 53G
ADCOW
AENEX
AFHIN
AFUMD
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
H13
NPM
OK1
RCR
RHI
ID FETCH-LOGICAL-c411t-ad7da1e2cb9b704421fd46a8ab081370984d2d6b0704b34c69d073bba2ffd7cc2
IngestDate Thu Apr 03 06:59:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2019 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-ad7da1e2cb9b704421fd46a8ab081370984d2d6b0704b34c69d073bba2ffd7cc2
ORCID 0000-0001-5345-6763
0000-0002-5378-9434
0000-0001-9831-6000
0000-0002-6661-4940
0000-0002-2334-5218
0000-0002-5741-0399
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7718609
PMID 31719058
ParticipantIDs pubmed_primary_31719058
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer immunology research
PublicationTitleAlternate Cancer Immunol Res
PublicationYear 2020
SSID ssj0000884154
Score 2.594076
Snippet No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI)...
SourceID pubmed
SourceType Index Database
StartPage 108
Title Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/31719058
Volume 8
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWcFghyKbrvBQ-9GUy1UIuPgdA2aeO0cB0gt4CLBAuoJMOVA7jf0n_qL3WGpGQ1ddHlIhikRcuch9HjYN4MIS89rYpwonwWFX7OOE8UE0prloYyTzyVRFKjUHh6Fh-f83cX0cVo9H2QtbRu5aH6ulNX8j9WhTGwK6pk_8Gy_aIwAJ_BvnAFC8P1r2xspQEmozWbj2dCl6gxHiOtW8Mxut_7LsX8dAO2a9SmzbHqZt_rCvMwdKna8YcrjFB9Bm8CDuTKVRGY2Sxa02LjBNUkTrNlBINnTc0-VXhPhkHA0zVmESCQVkPWa0fGpbnb1HxyNYb6WPT7RbNaicqkFkybhagqoRfwf3rPvRJfRG31ax-xukXeK4zerpeWAR9V5UDM3drgNnxZ1xsxDG4E3iC4kRsnCIQvZrFnO_l0Hjv9BZjW-_qmRMSOt0KESge3VBwfZiczhtotblvPDJCyrAxUgFQBUYrSP89eK9bdTe2RPTi2YB9WFzwyxCBNgS5xpyODh3q185EOyH63zLWzjuE889vkljus0COLvDtklNd3yf7UpWPcI98cAGlZ02xOOwDSDoB0C0CKAKRbANIhAKkDIHUApB0AKQCQdgCkbUN_AiD-bA9AigCkCEBq4XafnL95Pc-OmWv3wRT3_ZYJnWjh54GSE5l4nAd-oXksUiGBtoaJN0m5DnQs4SXFZchVPNHwfpJSBEWhE6WCB-RG3dT5I0I9T4dCCy9VvOCJF8GyKJnWkSryQE7UY_LQ7uvl0tZ0uex2_MlvZ56Sgy1Cn5GbBTiR_Dkw0la-MHb-AZA8kZE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+CT+Radiomic+Features+Associated+with+Lymphocyte+Distribution+Predict+Overall+Survival+and+Response+to+Immunotherapy+in+Non-Small+Cell+Lung+Cancer&rft.jtitle=Cancer+immunology+research&rft.au=Khorrami%2C+Mohammadhadi&rft.au=Prasanna%2C+Prateek&rft.au=Gupta%2C+Amit&rft.au=Patil%2C+Pradnya&rft.date=2020-01-01&rft.eissn=2326-6074&rft.volume=8&rft.issue=1&rft.spage=108&rft_id=info:doi/10.1158%2F2326-6066.CIR-19-0476&rft_id=info%3Apmid%2F31719058&rft_id=info%3Apmid%2F31719058&rft.externalDocID=31719058