Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer
No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, we compared changes ("delta") in the radiomic texture (DelRADx) of CT patterns both within...
Saved in:
Published in | Cancer immunology research Vol. 8; no. 1; p. 108 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2020
|
Online Access | Get more information |
Cover
Loading…
Abstract | No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, we compared changes ("delta") in the radiomic texture (DelRADx) of CT patterns both within and outside tumor nodules before and after two to three cycles of ICI therapy. We found that DelRADx patterns could predict response to ICI therapy and overall survival (OS) for patients with NSCLC. We retrospectively analyzed data acquired from 139 patients with NSCLC at two institutions, who were divided into a discovery set (D
= 50) and two independent validation sets (D
= 62, D
= 27). Intranodular and perinodular texture descriptors were extracted, and the relative differences were computed. A linear discriminant analysis (LDA) classifier was trained with 8 DelRADx features to predict RECIST-derived response. Association of delta-radiomic risk score (DRS) with OS was determined. The association of DelRADx features with tumor-infiltrating lymphocyte (TIL) density on the diagnostic biopsies (
= 36) was also evaluated. The LDA classifier yielded an AUC of 0.88 ± 0.08 in distinguishing responders from nonresponders in D
, and 0.85 and 0.81 in D
and D
DRS was associated with OS [HR: 1.64; 95% confidence interval (CI), 1.22-2.21;
= 0.0011; C-index = 0.72). Peritumoral Gabor features were associated with the density of TILs on diagnostic biopsy samples. Our results show that DelRADx could be used to identify early functional responses in patients with NSCLC. |
---|---|
AbstractList | No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, we compared changes ("delta") in the radiomic texture (DelRADx) of CT patterns both within and outside tumor nodules before and after two to three cycles of ICI therapy. We found that DelRADx patterns could predict response to ICI therapy and overall survival (OS) for patients with NSCLC. We retrospectively analyzed data acquired from 139 patients with NSCLC at two institutions, who were divided into a discovery set (D
= 50) and two independent validation sets (D
= 62, D
= 27). Intranodular and perinodular texture descriptors were extracted, and the relative differences were computed. A linear discriminant analysis (LDA) classifier was trained with 8 DelRADx features to predict RECIST-derived response. Association of delta-radiomic risk score (DRS) with OS was determined. The association of DelRADx features with tumor-infiltrating lymphocyte (TIL) density on the diagnostic biopsies (
= 36) was also evaluated. The LDA classifier yielded an AUC of 0.88 ± 0.08 in distinguishing responders from nonresponders in D
, and 0.85 and 0.81 in D
and D
DRS was associated with OS [HR: 1.64; 95% confidence interval (CI), 1.22-2.21;
= 0.0011; C-index = 0.72). Peritumoral Gabor features were associated with the density of TILs on diagnostic biopsy samples. Our results show that DelRADx could be used to identify early functional responses in patients with NSCLC. |
Author | Madabhushi, Anant Alilou, Mehdi Velcheti, Vamsidhar Velu, Priya D Gupta, Amit Patil, Pradnya Fu, Pingfu Feldman, Michael Corredor, German Prasanna, Prateek Thawani, Rajat Bera, Kaustav Khorrami, Mohammadhadi |
Author_xml | – sequence: 1 givenname: Mohammadhadi surname: Khorrami fullname: Khorrami, Mohammadhadi organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio – sequence: 2 givenname: Prateek surname: Prasanna fullname: Prasanna, Prateek organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio – sequence: 3 givenname: Amit orcidid: 0000-0001-5345-6763 surname: Gupta fullname: Gupta, Amit organization: Department of Radiology-Cardiothoracic Imaging, University Hospitals, Cleveland, Ohio – sequence: 4 givenname: Pradnya surname: Patil fullname: Patil, Pradnya organization: Department of Solid Tumor Oncology, Cleveland Clinic, Cleveland, Ohio – sequence: 5 givenname: Priya D surname: Velu fullname: Velu, Priya D organization: Pathology and Laboratory Medicine, Weill Cornell Medicine Physicians, New York, New York – sequence: 6 givenname: Rajat orcidid: 0000-0002-5378-9434 surname: Thawani fullname: Thawani, Rajat organization: Department of Internal Medicine, Maimonides Medical Center, Brooklyn, New York – sequence: 7 givenname: German surname: Corredor fullname: Corredor, German organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio – sequence: 8 givenname: Mehdi surname: Alilou fullname: Alilou, Mehdi organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio – sequence: 9 givenname: Kaustav orcidid: 0000-0001-9831-6000 surname: Bera fullname: Bera, Kaustav organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio – sequence: 10 givenname: Pingfu orcidid: 0000-0002-2334-5218 surname: Fu fullname: Fu, Pingfu organization: Department of Population and Quantitative Health Sciences, CWRU, Cleveland, Ohio – sequence: 11 givenname: Michael orcidid: 0000-0002-6661-4940 surname: Feldman fullname: Feldman, Michael organization: Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 12 givenname: Vamsidhar surname: Velcheti fullname: Velcheti, Vamsidhar organization: Department of Hematology and Oncology, NYU Langone Health, New York, New York – sequence: 13 givenname: Anant orcidid: 0000-0002-5741-0399 surname: Madabhushi fullname: Madabhushi, Anant email: axm788@case.edu organization: Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31719058$$D View this record in MEDLINE/PubMed |
BookMark | eNo1UN1OwjAUboxGEHkETV9g2HZl3S7JFCUhYgCvSf_GarZ2WTvM3sWHdUQ8F-dLvvP9JOcOXFtnNQAPGM0wnqdPJCZJlKAkmeWrbYSzCFGWXIHxhWd0BKbef6Fh0pTiOb0FoxgznKF5OgY_ecntUXtoLMz3cMuVcbWRcKl56NqBX3jvpOFBK_htQgnXfd2UTvZBw2fjQ2tEF4yz8KPVysgANyfd8qqCu649mROvILcKbrVvnPUaBgdXdd1ZF8pB1vTn2ndno1199uR6WOvOHmHOrdTtPbgpeOX19IIT8Ll82edv0XrzusoX60hSjEPEFVMcayJFJhiilOBC0YSnXKAUxwxlKVVEJQINRxFTmWQKsVgITopCMSnJBDz-5TadqLU6NK2pedsf_t9EfgFGJm6u |
CitedBy_id | crossref_primary_10_1038_s41698_023_00473_x crossref_primary_10_2139_ssrn_4070416 crossref_primary_10_1089_aipo_2023_0002 crossref_primary_10_1136_jitc_2022_004848 crossref_primary_10_3389_fonc_2021_657615 crossref_primary_10_1126_sciadv_abq4609 crossref_primary_10_1016_j_critrevonc_2020_103068 crossref_primary_10_3389_fonc_2022_952749 crossref_primary_10_1080_21645515_2020_1704575 crossref_primary_10_1177_03008916211000808 crossref_primary_10_1002_hed_27878 crossref_primary_10_3892_ol_2023_14071 crossref_primary_10_3389_fonc_2023_1145128 crossref_primary_10_1007_s00330_023_10241_x crossref_primary_10_3174_ajnr_A7911 crossref_primary_10_1016_j_ejca_2021_02_008 crossref_primary_10_1111_1759_7714_14620 crossref_primary_10_1177_15330338221141793 crossref_primary_10_1186_s13014_022_02136_w crossref_primary_10_3389_fonc_2022_990608 crossref_primary_10_1016_j_ctro_2021_03_006 crossref_primary_10_1177_15330338221142400 crossref_primary_10_1038_s41698_022_00277_5 crossref_primary_10_1016_j_intonc_2024_11_003 crossref_primary_10_1158_2159_8290_CD_24_0042 crossref_primary_10_3389_fonc_2021_692329 crossref_primary_10_1038_s41568_024_00705_7 crossref_primary_10_1016_j_semcancer_2022_11_008 crossref_primary_10_1038_s41467_022_32816_w crossref_primary_10_1148_radiol_222729 crossref_primary_10_1016_j_lungcan_2021_11_017 crossref_primary_10_3390_ijms22073736 crossref_primary_10_1016_j_annonc_2023_10_125 crossref_primary_10_3389_fimmu_2024_1327779 crossref_primary_10_3389_fonc_2022_816766 crossref_primary_10_3389_fimmu_2024_1379812 crossref_primary_10_3389_fonc_2022_877594 crossref_primary_10_1186_s12967_024_05708_4 crossref_primary_10_1136_jitc_2022_005086 crossref_primary_10_3389_fonc_2024_1348678 crossref_primary_10_3390_jpm11100991 crossref_primary_10_1016_j_pccm_2023_05_001 crossref_primary_10_3389_fonc_2022_1047905 crossref_primary_10_1016_j_xgen_2023_100444 crossref_primary_10_1016_j_clon_2021_10_006 crossref_primary_10_3389_fonc_2021_744724 crossref_primary_10_33457_ijhsrp_1298068 crossref_primary_10_1186_s13014_023_02273_w crossref_primary_10_3390_cancers16030615 crossref_primary_10_1016_j_clbc_2023_06_004 crossref_primary_10_1200_EDBK_358995 crossref_primary_10_1002_advs_202408069 crossref_primary_10_1097_RCT_0000000000001611 crossref_primary_10_1136_jitc_2020_001429 crossref_primary_10_3390_cancers17010058 crossref_primary_10_1016_j_jtho_2023_02_012 crossref_primary_10_1007_s00262_024_03644_2 crossref_primary_10_1016_j_acra_2024_01_033 crossref_primary_10_1093_ejcts_ezae335 crossref_primary_10_1259_bjr_20200112 crossref_primary_10_3389_fonc_2023_992096 crossref_primary_10_3390_cancers14235931 crossref_primary_10_1186_s12967_023_04748_6 crossref_primary_10_1007_s00330_022_09123_5 crossref_primary_10_1016_j_phrs_2021_105643 crossref_primary_10_1016_j_intimp_2024_111489 crossref_primary_10_2147_IJN_S463144 crossref_primary_10_1186_s12967_023_04004_x crossref_primary_10_1038_s41392_021_00729_7 crossref_primary_10_1038_s41598_024_70208_w crossref_primary_10_1016_j_radmp_2023_10_002 crossref_primary_10_3389_fimmu_2023_1088874 crossref_primary_10_1016_j_acra_2023_10_020 crossref_primary_10_1136_jitc_2023_007987 crossref_primary_10_1016_j_ejro_2023_100511 crossref_primary_10_1038_s41698_024_00790_9 crossref_primary_10_3390_cancers15041105 crossref_primary_10_3390_curroncol31090369 crossref_primary_10_7759_cureus_61220 crossref_primary_10_3390_cancers14020435 crossref_primary_10_1186_s12967_023_04586_6 crossref_primary_10_3389_fonc_2023_1260374 crossref_primary_10_3390_cancers15102700 crossref_primary_10_1186_s12967_024_04904_6 crossref_primary_10_1007_s12032_023_02036_3 crossref_primary_10_1055_s_0042_1755571 crossref_primary_10_1016_j_phrs_2023_106992 crossref_primary_10_3390_cancers12123663 crossref_primary_10_3389_fonc_2021_688679 crossref_primary_10_1053_j_ro_2023_02_001 crossref_primary_10_1038_s41698_024_00666_y crossref_primary_10_3389_fimmu_2024_1434171 crossref_primary_10_3390_diagnostics12112644 crossref_primary_10_1007_s00259_021_05509_7 crossref_primary_10_1016_j_radonc_2023_109793 crossref_primary_10_3389_fimmu_2021_799455 crossref_primary_10_1615_CritRevOncog_2023050439 crossref_primary_10_1016_j_acra_2023_04_011 crossref_primary_10_3390_cancers14205076 crossref_primary_10_1111_1754_9485_13426 crossref_primary_10_1007_s00330_022_09337_7 crossref_primary_10_1038_s41581_020_0321_6 crossref_primary_10_1136_jitc_2022_005292 crossref_primary_10_36516_jocass_1427896 crossref_primary_10_1002_acm2_13869 crossref_primary_10_1093_oncolo_oyac036 crossref_primary_10_3389_fonc_2022_982983 crossref_primary_10_3389_fpubh_2022_938113 crossref_primary_10_1016_j_lungcan_2020_04_006 crossref_primary_10_1136_jitc_2020_000550 crossref_primary_10_1016_j_bspc_2021_103373 crossref_primary_10_1016_j_clon_2024_06_053 crossref_primary_10_1016_j_ijrobp_2020_06_026 crossref_primary_10_1136_jitc_2023_007369 crossref_primary_10_1016_j_ejro_2022_100440 crossref_primary_10_1016_j_aca_2023_341908 crossref_primary_10_1080_14737140_2024_2311684 crossref_primary_10_3390_biomedicines10061237 crossref_primary_10_1016_j_aca_2021_338821 crossref_primary_10_3390_jcm11061740 crossref_primary_10_1172_JCI175834 crossref_primary_10_1186_s13046_022_02379_1 crossref_primary_10_3390_ijms21082856 crossref_primary_10_1016_j_compbiomed_2023_107371 crossref_primary_10_1038_s41523_023_00574_7 crossref_primary_10_1016_j_jtho_2023_01_089 crossref_primary_10_1080_2162402X_2022_2028962 crossref_primary_10_1016_j_xcrm_2023_101146 crossref_primary_10_1186_s13058_024_01776_y crossref_primary_10_3390_cancers15215125 crossref_primary_10_1016_j_ejmp_2023_103200 crossref_primary_10_1007_s11633_022_1364_x crossref_primary_10_1007_s00262_020_02810_6 crossref_primary_10_1016_j_jtho_2023_03_011 crossref_primary_10_1016_j_radonc_2023_109938 crossref_primary_10_1097_RTI_0000000000000801 crossref_primary_10_12677_acm_2024_1451488 crossref_primary_10_1038_s41571_021_00560_7 crossref_primary_10_1088_1361_6560_ad0d43 crossref_primary_10_1136_jitc_2020_001752 crossref_primary_10_3389_fonc_2022_986579 crossref_primary_10_1186_s12967_023_04437_4 crossref_primary_10_1136_jitc_2021_003778 crossref_primary_10_3233_XST_230326 crossref_primary_10_3389_fonc_2022_1059874 crossref_primary_10_1016_j_ejca_2022_02_024 crossref_primary_10_2139_ssrn_4135321 crossref_primary_10_3390_cancers14051337 crossref_primary_10_32708_uutfd_891274 crossref_primary_10_1038_s41698_024_00534_9 crossref_primary_10_1158_1078_0432_CCR_21_4148 crossref_primary_10_1016_j_adro_2024_101457 crossref_primary_10_1016_j_iotech_2021_100028 crossref_primary_10_1080_21645515_2024_2406063 crossref_primary_10_1159_000510385 crossref_primary_10_3389_fimmu_2023_1249980 crossref_primary_10_3389_fonc_2022_927974 crossref_primary_10_1200_CCI_20_00049 crossref_primary_10_1136_jitc_2020_001343 crossref_primary_10_1016_j_acra_2024_07_028 crossref_primary_10_1016_j_bspc_2024_106800 crossref_primary_10_1038_s41467_023_40890_x crossref_primary_10_3390_cancers14020350 crossref_primary_10_3390_cancers15071968 crossref_primary_10_3390_cancers14051228 crossref_primary_10_3390_diagnostics11060979 crossref_primary_10_3389_fonc_2025_1510071 crossref_primary_10_1183_13993003_02792_2021 crossref_primary_10_1016_S2589_7500_23_00082_1 crossref_primary_10_71423_aimed_20250101 crossref_primary_10_1007_s40259_020_00425_y crossref_primary_10_1007_s00330_022_09174_8 crossref_primary_10_1016_j_ebiom_2022_104364 crossref_primary_10_1016_j_oor_2024_100676 crossref_primary_10_3389_fimmu_2024_1373330 crossref_primary_10_1016_j_media_2024_103199 |
ContentType | Journal Article |
Copyright | 2019 American Association for Cancer Research. |
Copyright_xml | – notice: 2019 American Association for Cancer Research. |
DBID | NPM |
DOI | 10.1158/2326-6066.CIR-19-0476 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2326-6074 |
ExternalDocumentID | 31719058 |
Genre | Journal Article |
GrantInformation_xml | – fundername: BLRD VA grantid: I01 BX004121 – fundername: NCI NIH HHS grantid: R01 CA208236 – fundername: NCI NIH HHS grantid: R01 CA216579 – fundername: NCI NIH HHS grantid: U01 CA239055 – fundername: NCI NIH HHS grantid: R01 CA220581 – fundername: NCI NIH HHS grantid: U24 CA199374 |
GroupedDBID | 53G ADCOW AENEX AFHIN AFUMD ALMA_UNASSIGNED_HOLDINGS EBS EJD H13 NPM OK1 RCR RHI |
ID | FETCH-LOGICAL-c411t-ad7da1e2cb9b704421fd46a8ab081370984d2d6b0704b34c69d073bba2ffd7cc2 |
IngestDate | Thu Apr 03 06:59:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2019 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c411t-ad7da1e2cb9b704421fd46a8ab081370984d2d6b0704b34c69d073bba2ffd7cc2 |
ORCID | 0000-0001-5345-6763 0000-0002-5378-9434 0000-0001-9831-6000 0000-0002-6661-4940 0000-0002-2334-5218 0000-0002-5741-0399 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7718609 |
PMID | 31719058 |
ParticipantIDs | pubmed_primary_31719058 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer immunology research |
PublicationTitleAlternate | Cancer Immunol Res |
PublicationYear | 2020 |
SSID | ssj0000884154 |
Score | 2.594076 |
Snippet | No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI)... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 108 |
Title | Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31719058 |
Volume | 8 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWcFghyKbrvBQ-9GUy1UIuPgdA2aeO0cB0gt4CLBAuoJMOVA7jf0n_qL3WGpGQ1ddHlIhikRcuch9HjYN4MIS89rYpwonwWFX7OOE8UE0prloYyTzyVRFKjUHh6Fh-f83cX0cVo9H2QtbRu5aH6ulNX8j9WhTGwK6pk_8Gy_aIwAJ_BvnAFC8P1r2xspQEmozWbj2dCl6gxHiOtW8Mxut_7LsX8dAO2a9SmzbHqZt_rCvMwdKna8YcrjFB9Bm8CDuTKVRGY2Sxa02LjBNUkTrNlBINnTc0-VXhPhkHA0zVmESCQVkPWa0fGpbnb1HxyNYb6WPT7RbNaicqkFkybhagqoRfwf3rPvRJfRG31ax-xukXeK4zerpeWAR9V5UDM3drgNnxZ1xsxDG4E3iC4kRsnCIQvZrFnO_l0Hjv9BZjW-_qmRMSOt0KESge3VBwfZiczhtotblvPDJCyrAxUgFQBUYrSP89eK9bdTe2RPTi2YB9WFzwyxCBNgS5xpyODh3q185EOyH63zLWzjuE889vkljus0COLvDtklNd3yf7UpWPcI98cAGlZ02xOOwDSDoB0C0CKAKRbANIhAKkDIHUApB0AKQCQdgCkbUN_AiD-bA9AigCkCEBq4XafnL95Pc-OmWv3wRT3_ZYJnWjh54GSE5l4nAd-oXksUiGBtoaJN0m5DnQs4SXFZchVPNHwfpJSBEWhE6WCB-RG3dT5I0I9T4dCCy9VvOCJF8GyKJnWkSryQE7UY_LQ7uvl0tZ0uex2_MlvZ56Sgy1Cn5GbBTiR_Dkw0la-MHb-AZA8kZE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+CT+Radiomic+Features+Associated+with+Lymphocyte+Distribution+Predict+Overall+Survival+and+Response+to+Immunotherapy+in+Non-Small+Cell+Lung+Cancer&rft.jtitle=Cancer+immunology+research&rft.au=Khorrami%2C+Mohammadhadi&rft.au=Prasanna%2C+Prateek&rft.au=Gupta%2C+Amit&rft.au=Patil%2C+Pradnya&rft.date=2020-01-01&rft.eissn=2326-6074&rft.volume=8&rft.issue=1&rft.spage=108&rft_id=info:doi/10.1158%2F2326-6066.CIR-19-0476&rft_id=info%3Apmid%2F31719058&rft_id=info%3Apmid%2F31719058&rft.externalDocID=31719058 |