Dimension reduction techniques for the integrative analysis of multi-omics data
State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease....
Saved in:
Published in | Briefings in bioinformatics Vol. 17; no. 4; pp. 628 - 641 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease. |
---|---|
AbstractList | State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput ‘omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease. State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease.State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease. |
Author | Meng, Chen Culhane, Aedín C. Zeleznik, Oana A. Thallinger, Gerhard G. Gholami, Amin M. Kuster, Bernhard |
Author_xml | – sequence: 1 givenname: Chen surname: Meng fullname: Meng, Chen – sequence: 2 givenname: Oana A. surname: Zeleznik fullname: Zeleznik, Oana A. – sequence: 3 givenname: Gerhard G. surname: Thallinger fullname: Thallinger, Gerhard G. – sequence: 4 givenname: Bernhard surname: Kuster fullname: Kuster, Bernhard – sequence: 5 givenname: Amin M. surname: Gholami fullname: Gholami, Amin M. – sequence: 6 givenname: Aedín C. surname: Culhane fullname: Culhane, Aedín C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26969681$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFjEQhYNU7Ife-ANkL0VYm-_N3gjSqhUKvdHrMJvM9o3sJjXJvtB_313eVlQEmYsZyDOHkzmn5CimiIS8ZvQ9o704H8JwPgx7Rs0zcsJk17WSKnm0zbprldTimJyW8oNSTjvDXpBjrvu1DDshN5dhxlhCik1Gv7i6TRXdLoafC5ZmTLmpO2xCrHiboYY9NhBhui-hNGls5mWqoU1zcKXxUOEleT7CVPDVYz8j3z9_-nZx1V7ffPl68fG6dZKx2gJ4IThI17uR-8E7r7reKwAcjV5dy044GBXlHjT3tPOjRi-QG2dE36EWZ-TDQfduGWb0DmPNMNm7HGbI9zZBsH--xLCzt2lvZS-VEWwVePsokNP202rnUBxOE0RMS7GcK8GVEsz8F2WGSqN1z_sVffO7rV9-ng6-AvQAuJxKyThaFypsV19dhskyardM7ZqpPWS6rrz7a-VJ9R_wA63Fpjw |
CitedBy_id | crossref_primary_10_3390_ijms22115751 crossref_primary_10_1186_s12859_018_2481_y crossref_primary_10_1093_bioinformatics_bty726 crossref_primary_10_1093_bioinformatics_bty847 crossref_primary_10_1021_acs_jproteome_4c00650 crossref_primary_10_1109_TIM_2022_3143881 crossref_primary_10_1016_j_bbadis_2024_167339 crossref_primary_10_1016_j_imu_2022_100965 crossref_primary_10_3389_fimmu_2022_773264 crossref_primary_10_1093_bib_bbaa042 crossref_primary_10_5808_GI_2018_16_4_e33 crossref_primary_10_1039_D1MO00411E crossref_primary_10_15252_msb_20178124 crossref_primary_10_3390_ht7010008 crossref_primary_10_1186_s12859_018_2371_3 crossref_primary_10_1093_bfgp_elx029 crossref_primary_10_1038_s12276_020_0409_x crossref_primary_10_1007_s40572_021_00306_8 crossref_primary_10_3389_fmicb_2024_1509117 crossref_primary_10_1016_j_infrared_2023_104553 crossref_primary_10_1016_j_kint_2018_11_048 crossref_primary_10_1016_j_yjmcc_2020_02_010 crossref_primary_10_1093_bib_bbac207 crossref_primary_10_1002_wcms_1658 crossref_primary_10_1007_s12561_024_09450_9 crossref_primary_10_1109_TIM_2021_3086906 crossref_primary_10_1093_cvr_cvaa307 crossref_primary_10_1038_s41598_020_60334_6 crossref_primary_10_1002_ece3_10747 crossref_primary_10_1093_bioinformatics_btx656 crossref_primary_10_1093_biostatistics_kxaa029 crossref_primary_10_1186_s12859_018_2564_9 crossref_primary_10_1007_s00439_019_01970_5 crossref_primary_10_1177_1176935119832910 crossref_primary_10_1093_nar_gky466 crossref_primary_10_1016_j_tcb_2022_01_003 crossref_primary_10_1093_bioinformatics_btac281 crossref_primary_10_3390_ijms21218202 crossref_primary_10_3389_fmicb_2022_927702 crossref_primary_10_1080_14737159_2019_1567333 crossref_primary_10_1007_s00521_022_07615_5 crossref_primary_10_3390_cancers11101434 crossref_primary_10_1038_s41587_021_00895_7 crossref_primary_10_1016_j_csbj_2023_11_045 crossref_primary_10_3390_biomedicines12071496 crossref_primary_10_1093_bioinformatics_btz822 crossref_primary_10_1016_j_molmed_2017_08_003 crossref_primary_10_1016_j_algal_2023_103278 crossref_primary_10_21693_1933_088X_23_2_33 crossref_primary_10_1016_j_crmeth_2024_100731 crossref_primary_10_1007_s00521_025_11055_2 crossref_primary_10_1093_bib_bbz070 crossref_primary_10_1002_mco2_315 crossref_primary_10_1093_bib_bbaa169 crossref_primary_10_1111_tpj_13485 crossref_primary_10_3389_frai_2023_1098308 crossref_primary_10_3389_fonc_2020_00973 crossref_primary_10_1371_journal_pone_0272093 crossref_primary_10_1186_s12859_019_3286_3 crossref_primary_10_1155_2022_5816145 crossref_primary_10_1515_sagmb_2018_0028 crossref_primary_10_1016_j_scienta_2025_113971 crossref_primary_10_1016_j_jgg_2019_11_009 crossref_primary_10_1080_02664763_2024_2313458 crossref_primary_10_1016_j_csbj_2018_02_005 crossref_primary_10_1016_j_jvcir_2021_103218 crossref_primary_10_1002_tpg2_20503 crossref_primary_10_1038_s41467_020_20430_7 crossref_primary_10_1080_19490976_2023_2297860 crossref_primary_10_1073_pnas_2308500120 crossref_primary_10_1186_s13148_020_00842_4 crossref_primary_10_1016_j_compag_2024_109218 crossref_primary_10_1016_j_tplants_2022_08_018 crossref_primary_10_1371_journal_pcbi_1006907 crossref_primary_10_1016_j_csbj_2021_06_030 crossref_primary_10_1038_s42003_024_06724_2 crossref_primary_10_3389_fgene_2019_00995 crossref_primary_10_1016_j_aca_2020_10_038 crossref_primary_10_1016_j_compbiomed_2024_109322 crossref_primary_10_3390_math9091006 crossref_primary_10_1038_s41596_023_00950_4 crossref_primary_10_1073_pnas_1708283115 crossref_primary_10_1097_MOP_0000000000000875 crossref_primary_10_1109_ACCESS_2022_3194072 crossref_primary_10_1097_JBR_0000000000000049 crossref_primary_10_1016_j_heliyon_2022_e09715 crossref_primary_10_1093_bib_bbab315 crossref_primary_10_1016_j_csbj_2024_07_012 crossref_primary_10_3390_ijms20133114 crossref_primary_10_1002_jrs_6679 crossref_primary_10_3389_fgene_2024_1425456 crossref_primary_10_3390_genes10020087 crossref_primary_10_1016_j_chemolab_2023_104999 crossref_primary_10_1038_s12276_020_0422_0 crossref_primary_10_1038_s41467_022_31411_3 crossref_primary_10_1155_2021_9990297 crossref_primary_10_3389_fgene_2022_948240 crossref_primary_10_1016_j_tig_2018_07_003 crossref_primary_10_1016_j_coisb_2019_04_001 crossref_primary_10_3390_cancers12030603 crossref_primary_10_1038_s41467_018_04608_8 crossref_primary_10_1093_bib_bbae612 crossref_primary_10_1136_bmjopen_2018_023318 crossref_primary_10_1534_g3_117_042408 crossref_primary_10_1038_s42003_023_04529_3 crossref_primary_10_1093_bioadv_vbae075 crossref_primary_10_18632_aging_205321 crossref_primary_10_1016_j_ymeth_2018_05_020 crossref_primary_10_2174_1567201821666230905090621 crossref_primary_10_1016_j_ymeth_2017_08_012 crossref_primary_10_1038_s44220_023_00149_2 crossref_primary_10_1108_ER_07_2023_0347 crossref_primary_10_1016_j_rhisph_2022_100655 crossref_primary_10_1039_C6MB00476H crossref_primary_10_1093_bib_bbac433 crossref_primary_10_1097_IM9_0000000000000007 crossref_primary_10_1111_1751_7915_12855 crossref_primary_10_1016_S2665_9913_19_30042_6 crossref_primary_10_1038_s41598_022_21758_4 crossref_primary_10_1007_s40495_017_0107_0 crossref_primary_10_3390_ht8010004 crossref_primary_10_1016_j_foodqual_2018_09_002 crossref_primary_10_1038_s41386_024_01938_8 crossref_primary_10_1016_j_jbiomech_2021_110409 crossref_primary_10_1007_s11897_020_00469_9 crossref_primary_10_1098_rsif_2023_0344 crossref_primary_10_24190_ISSN2564_615X_2017_01_02 crossref_primary_10_1093_nar_gky889 crossref_primary_10_1371_journal_pone_0255579 crossref_primary_10_1038_s41598_022_26434_1 crossref_primary_10_1111_evo_13397 crossref_primary_10_1186_s13059_021_02433_9 crossref_primary_10_1007_s12561_021_09310_w crossref_primary_10_3389_fbioe_2024_1375626 crossref_primary_10_1038_s10038_020_0763_5 crossref_primary_10_3390_ai5030078 crossref_primary_10_1016_j_rsma_2020_101077 crossref_primary_10_1007_s12551_018_0491_7 crossref_primary_10_1016_j_ymeth_2020_07_008 crossref_primary_10_1016_j_neucom_2021_11_094 crossref_primary_10_1093_bioinformatics_btaf015 crossref_primary_10_1021_acsfoodscitech_4c00101 crossref_primary_10_1002_ima_22369 crossref_primary_10_1186_s12864_021_07948_w crossref_primary_10_21603_2074_9414_2022_1_144_155 crossref_primary_10_1093_gigascience_giac087 crossref_primary_10_1093_bib_bbz138 crossref_primary_10_1093_bib_bbz015 crossref_primary_10_1038_s41537_017_0027_3 crossref_primary_10_1038_s41592_019_0616_3 crossref_primary_10_1093_bib_bbz132 crossref_primary_10_1371_journal_pcbi_1007084 crossref_primary_10_1093_bioinformatics_btad647 crossref_primary_10_1186_s12864_023_09833_0 crossref_primary_10_3389_fgene_2021_620453 crossref_primary_10_1002_adhm_202000529 crossref_primary_10_1186_s12911_024_02457_8 crossref_primary_10_1097_JBR_0000000000000053 crossref_primary_10_1093_bioinformatics_bty1054 crossref_primary_10_1007_s11259_023_10208_9 crossref_primary_10_1016_j_dam_2018_11_025 crossref_primary_10_1093_bib_bbx060 crossref_primary_10_3389_fcell_2024_1376639 crossref_primary_10_1093_ajcn_nqz270 crossref_primary_10_1007_s13042_022_01635_2 crossref_primary_10_1016_j_compbiomed_2023_107223 crossref_primary_10_1142_S2811032322500047 crossref_primary_10_1016_j_jbiotec_2020_12_002 crossref_primary_10_1093_bib_bbz121 crossref_primary_10_1038_s41576_019_0093_7 crossref_primary_10_3390_cells10010071 crossref_primary_10_1016_j_eclinm_2020_100379 crossref_primary_10_1093_bib_bbac072 crossref_primary_10_18632_oncotarget_22345 crossref_primary_10_1093_bib_bbae499 crossref_primary_10_3390_jpm13010050 crossref_primary_10_1038_s43588_021_00086_z crossref_primary_10_1093_nar_gky510 crossref_primary_10_1002_cem_3289 crossref_primary_10_2196_50890 crossref_primary_10_1093_bib_bby027 crossref_primary_10_1093_nar_gkz281 crossref_primary_10_1093_bioadv_vbae164 crossref_primary_10_3389_fnut_2022_899401 crossref_primary_10_1002_mas_21849 crossref_primary_10_1007_s10886_018_0932_6 crossref_primary_10_1093_bib_bby019 crossref_primary_10_3390_biom11040565 crossref_primary_10_1002_dev_21778 crossref_primary_10_3390_cancers14174080 crossref_primary_10_1093_bfgp_elab024 crossref_primary_10_1111_imr_12814 crossref_primary_10_1093_bioinformatics_btab125 crossref_primary_10_1248_bpb_b19_00571 crossref_primary_10_1530_JME_18_0055 crossref_primary_10_1016_j_jmb_2023_168116 crossref_primary_10_3389_fgene_2020_610798 crossref_primary_10_1186_s12967_019_2073_2 crossref_primary_10_3389_fmicb_2021_685935 crossref_primary_10_1134_S1054661820030141 crossref_primary_10_1093_bib_bbx167 crossref_primary_10_4236_jdaip_2021_93013 crossref_primary_10_1016_j_csbj_2023_02_027 crossref_primary_10_1093_nar_gkac352 crossref_primary_10_1038_s41598_022_07238_9 crossref_primary_10_1038_s41598_021_03034_z crossref_primary_10_1186_s12864_020_6652_7 crossref_primary_10_3390_ijms20184414 crossref_primary_10_1186_s12859_020_3455_4 crossref_primary_10_1093_bfgp_elab033 crossref_primary_10_3390_computation9120146 crossref_primary_10_1093_bioinformatics_btaf066 crossref_primary_10_3389_fpls_2017_00172 crossref_primary_10_1007_s10654_020_00625_4 crossref_primary_10_1214_21_AOAS1537 crossref_primary_10_3389_fgene_2021_783713 crossref_primary_10_1111_1462_2920_14975 crossref_primary_10_1186_s12870_018_1239_z crossref_primary_10_1016_j_chroma_2020_460871 crossref_primary_10_1186_s13567_017_0426_5 crossref_primary_10_26634_jse_17_1_19087 crossref_primary_10_1089_omi_2022_0155 crossref_primary_10_5713_ab_21_0042 crossref_primary_10_1186_s12911_020_1114_3 crossref_primary_10_1016_j_inffus_2020_01_005 crossref_primary_10_1093_bioinformatics_btaa183 crossref_primary_10_5924_abgri_52_27 crossref_primary_10_3389_fonc_2020_00423 crossref_primary_10_36628_ijhf_2023_0050 crossref_primary_10_1016_j_ins_2019_04_041 crossref_primary_10_1155_2022_5637971 crossref_primary_10_1016_j_chemosphere_2024_142465 crossref_primary_10_1093_bib_bbae454 crossref_primary_10_1134_S1995082919040175 crossref_primary_10_3389_fcvm_2022_961991 crossref_primary_10_1093_bioinformatics_btab158 crossref_primary_10_14218_JCTH_2021_00219 crossref_primary_10_1111_rssc_12583 crossref_primary_10_1016_j_compenvurbsys_2020_101521 crossref_primary_10_1016_j_csbj_2020_02_011 crossref_primary_10_1080_14789450_2017_1387053 crossref_primary_10_1093_bib_bbae448 crossref_primary_10_1074_mcp_TIR118_001251 crossref_primary_10_1016_j_pbiomolbio_2023_08_002 |
Cites_doi | 10.1007/978-3-642-70880-0_3 10.1182/blood-2009-08-240101 10.1038/44565 10.1038/ng.2764 10.1038/srep06207 10.1186/1471-2105-4-59 10.1007/s11634-011-0085-8 10.1890/03-0178 10.1007/0-306-47815-3_5 10.1109/TCYB.2014.2298401 10.2307/1939004 10.1016/j.cell.2014.06.049 10.1186/1471-2164-10-32 10.4149/neo_2013_056 10.56021/9781421407944 10.1371/journal.pone.0028072 10.1073/pnas.0530258100 10.1137/07070111X 10.2307/1938672 10.1093/biostatistics/kxp008 10.1162/neco.2008.11-06-407 10.1038/nm.3915 10.1016/j.chemolab.2010.05.010 10.1016/j.leukres.2009.11.019 10.1186/1471-2105-10-315 10.1007/s11336-008-9065-0 10.1007/s11336-011-9206-8 10.1186/1471-2105-9-559 10.18637/jss.v034.i10 10.1073/pnas.181597298 10.1093/bioinformatics/btv197 10.1093/bib/bbl016 10.1093/biostatistics/kxu001 10.2202/1544-6115.1470 10.1038/leu.2014.133 10.1186/1471-2105-12-253 10.1111/j.1365-2427.1994.tb01741.x 10.1093/bioinformatics/bts438 10.1186/1471-2105-15-162 10.1093/bioinformatics/btq096 10.1002/wics.1322 10.3324/haematol.2009.015099 10.1093/bioinformatics/btu679 10.1111/j.0006-341X.2003.00130.x 10.1186/1471-2105-14-245 10.1038/nrg2825 10.1186/1741-7015-11-220 10.1109/TPAMI.2012.254 10.1016/0165-1684(94)90029-9 10.1214/10-AOAS372 10.1080/14786440109462720 10.1002/047001153X.g405202 10.1017/CBO9780511844249.007 10.1016/j.cell.2014.06.037 10.1109/BIBE.2007.4375705 10.1038/onc.2011.345 10.1016/0169-7439(92)80100-I 10.18637/jss.v057.i07 10.1038/nbt0308-303 10.1162/153244303322753616 10.1201/9781420011234 10.1093/biomet/28.3-4.321 10.1093/nar/gkt145 10.1038/leu.2011.273 10.1016/j.celrep.2014.10.035 10.1037/h0071325 10.2202/1544-6115.1406 10.1186/1471-2105-10-34 10.1016/j.csda.2007.07.015 10.1016/j.jmva.2007.06.007 10.1158/1078-0432.CCR-14-0305 10.1093/bioinformatics/btn634 10.1016/S0065-2504(08)60183-X 10.1002/pmic.200600898 10.1093/nar/gks725 10.1002/gepi.21621 10.1016/j.ejor.2014.01.008 |
ContentType | Journal Article |
Copyright | The Author 2016. Published by Oxford University Press. The Author 2016. Published by Oxford University Press. 2016 |
Copyright_xml | – notice: The Author 2016. Published by Oxford University Press. – notice: The Author 2016. Published by Oxford University Press. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1093/bib/bbv108 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 641 |
ExternalDocumentID | PMC4945831 26969681 10_1093_bib_bbv108 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P50 CA101942 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 ABQTQ CGR CUY CVF ECM EIF M49 NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c411t-aad332a4c9cf2dbdcd579d5aaef86467473caf502da62d07df6ed3e28c8397e63 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:45:24 EDT 2025 Thu Jul 10 18:33:08 EDT 2025 Fri Jul 11 06:11:51 EDT 2025 Thu Apr 03 07:02:21 EDT 2025 Tue Jul 01 03:39:24 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | multi-assay integrative genomics exploratory data analysis multi-omics data integration dimension reduction multivariate analysis |
Language | English |
License | The Author 2016. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c411t-aad332a4c9cf2dbdcd579d5aaef86467473caf502da62d07df6ed3e28c8397e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4945831 |
PMID | 26969681 |
PQID | 1804866929 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4945831 proquest_miscellaneous_2253255318 proquest_miscellaneous_1804866929 pubmed_primary_26969681 crossref_citationtrail_10_1093_bib_bbv108 crossref_primary_10_1093_bib_bbv108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016071423575783000_17.4.628.61 2016071423575783000_17.4.628.60 2016071423575783000_17.4.628.21 2016071423575783000_17.4.628.20 2016071423575783000_17.4.628.64 2016071423575783000_17.4.628.63 2016071423575783000_17.4.628.25 2016071423575783000_17.4.628.69 2016071423575783000_17.4.628.68 2016071423575783000_17.4.628.23 2016071423575783000_17.4.628.22 2016071423575783000_17.4.628.29 2016071423575783000_17.4.628.28 2016071423575783000_17.4.628.27 2016071423575783000_17.4.628.26 2016071423575783000_17.4.628.19 Chessel (2016071423575783000_17.4.628.70) 1996; 44 Pearson (2016071423575783000_17.4.628.9) 1901; 6 2016071423575783000_17.4.628.50 2016071423575783000_17.4.628.94 2016071423575783000_17.4.628.93 2016071423575783000_17.4.628.92 2016071423575783000_17.4.628.91 2016071423575783000_17.4.628.10 2016071423575783000_17.4.628.52 2016071423575783000_17.4.628.51 2016071423575783000_17.4.628.14 2016071423575783000_17.4.628.58 Escoufier (2016071423575783000_17.4.628.65) 1987; 14 2016071423575783000_17.4.628.13 2016071423575783000_17.4.628.57 2016071423575783000_17.4.628.12 2016071423575783000_17.4.628.56 2016071423575783000_17.4.628.11 Witten (2016071423575783000_17.4.628.54) 2009; 8 2016071423575783000_17.4.628.55 2016071423575783000_17.4.628.18 2016071423575783000_17.4.628.17 Abdi (2016071423575783000_17.4.628.62) 2012; 4 2016071423575783000_17.4.628.16 2016071423575783000_17.4.628.15 2016071423575783000_17.4.628.59 Abdi (2016071423575783000_17.4.628.24) 2010; 2 2016071423575783000_17.4.628.8 Giordani (2016071423575783000_17.4.628.66) 2014; 57 2016071423575783000_17.4.628.90 2016071423575783000_17.4.628.83 2016071423575783000_17.4.628.82 2016071423575783000_17.4.628.81 2016071423575783000_17.4.628.80 2016071423575783000_17.4.628.43 2016071423575783000_17.4.628.87 2016071423575783000_17.4.628.42 2016071423575783000_17.4.628.86 2016071423575783000_17.4.628.85 2016071423575783000_17.4.628.40 2016071423575783000_17.4.628.84 2016071423575783000_17.4.628.5 2016071423575783000_17.4.628.47 2016071423575783000_17.4.628.4 2016071423575783000_17.4.628.46 2016071423575783000_17.4.628.7 2016071423575783000_17.4.628.45 Leibovici (2016071423575783000_17.4.628.67) 2010; 34 2016071423575783000_17.4.628.89 2016071423575783000_17.4.628.44 2016071423575783000_17.4.628.88 2016071423575783000_17.4.628.1 2016071423575783000_17.4.628.3 2016071423575783000_17.4.628.49 2016071423575783000_17.4.628.2 2016071423575783000_17.4.628.48 Carroll (2016071423575783000_17.4.628.72) 1968; 3 2016071423575783000_17.4.628.71 2016071423575783000_17.4.628.32 2016071423575783000_17.4.628.76 2016071423575783000_17.4.628.31 2016071423575783000_17.4.628.75 2016071423575783000_17.4.628.30 2016071423575783000_17.4.628.74 2016071423575783000_17.4.628.73 2016071423575783000_17.4.628.36 2016071423575783000_17.4.628.35 Zhao (2016071423575783000_17.4.628.41) 2015; 7 2016071423575783000_17.4.628.79 2016071423575783000_17.4.628.34 2016071423575783000_17.4.628.78 2016071423575783000_17.4.628.33 Parkhomenko (2016071423575783000_17.4.628.53) 2009; 8 2016071423575783000_17.4.628.77 2016071423575783000_17.4.628.39 2016071423575783000_17.4.628.38 2016071423575783000_17.4.628.37 Verhaak (2016071423575783000_17.4.628.6) 2013; 123 |
References_xml | – ident: 2016071423575783000_17.4.628.3 – ident: 2016071423575783000_17.4.628.75 – volume: 14 start-page: 139 year: 1987 ident: 2016071423575783000_17.4.628.65 article-title: The duality diagram: a means for better practical applications publication-title: Devel Num Ecol doi: 10.1007/978-3-642-70880-0_3 – ident: 2016071423575783000_17.4.628.83 doi: 10.1182/blood-2009-08-240101 – ident: 2016071423575783000_17.4.628.34 doi: 10.1038/44565 – ident: 2016071423575783000_17.4.628.92 doi: 10.1038/ng.2764 – ident: 2016071423575783000_17.4.628.23 – volume: 123 start-page: 517 year: 2013 ident: 2016071423575783000_17.4.628.6 article-title: Prognostically relevant gene signatures of high-grade serous ovarian carcinoma publication-title: J Clin Invest – volume: 44 start-page: 35 year: 1996 ident: 2016071423575783000_17.4.628.70 article-title: Analyses de la co-inertie de K nuages de points publication-title: Rev Stat Appl – ident: 2016071423575783000_17.4.628.7 doi: 10.1038/srep06207 – ident: 2016071423575783000_17.4.628.43 doi: 10.1186/1471-2105-4-59 – ident: 2016071423575783000_17.4.628.64 doi: 10.1007/s11634-011-0085-8 – ident: 2016071423575783000_17.4.628.13 doi: 10.1890/03-0178 – ident: 2016071423575783000_17.4.628.21 doi: 10.1007/0-306-47815-3_5 – ident: 2016071423575783000_17.4.628.40 doi: 10.1109/TCYB.2014.2298401 – ident: 2016071423575783000_17.4.628.29 doi: 10.2307/1939004 – ident: 2016071423575783000_17.4.628.5 doi: 10.1016/j.cell.2014.06.049 – ident: 2016071423575783000_17.4.628.61 doi: 10.1186/1471-2164-10-32 – ident: 2016071423575783000_17.4.628.87 doi: 10.4149/neo_2013_056 – ident: 2016071423575783000_17.4.628.14 doi: 10.56021/9781421407944 – ident: 2016071423575783000_17.4.628.59 doi: 10.1371/journal.pone.0028072 – ident: 2016071423575783000_17.4.628.42 doi: 10.1073/pnas.0530258100 – ident: 2016071423575783000_17.4.628.68 doi: 10.1137/07070111X – ident: 2016071423575783000_17.4.628.46 doi: 10.2307/1938672 – ident: 2016071423575783000_17.4.628.36 doi: 10.1093/biostatistics/kxp008 – ident: 2016071423575783000_17.4.628.79 doi: 10.1162/neco.2008.11-06-407 – ident: 2016071423575783000_17.4.628.91 doi: 10.1038/nm.3915 – ident: 2016071423575783000_17.4.628.71 doi: 10.1016/j.chemolab.2010.05.010 – ident: 2016071423575783000_17.4.628.88 doi: 10.1016/j.leukres.2009.11.019 – volume: 4 start-page: 124 volume-title: Statis and Distatis: Optimum Multitable Principal Component Analysis and Three Way Metric Multidimensional Scaling year: 2012 ident: 2016071423575783000_17.4.628.62 – ident: 2016071423575783000_17.4.628.52 doi: 10.1186/1471-2105-10-315 – ident: 2016071423575783000_17.4.628.30 – ident: 2016071423575783000_17.4.628.73 doi: 10.1007/s11336-008-9065-0 – ident: 2016071423575783000_17.4.628.74 doi: 10.1007/s11336-011-9206-8 – ident: 2016071423575783000_17.4.628.94 doi: 10.1186/1471-2105-9-559 – volume: 34 start-page: 1 issue: 10 year: 2010 ident: 2016071423575783000_17.4.628.67 article-title: Spatio-temporal multiway decompositions using principal tensor analysis on k-modes: the R package PTAk publication-title: J Stat Software doi: 10.18637/jss.v034.i10 – ident: 2016071423575783000_17.4.628.33 doi: 10.1073/pnas.181597298 – ident: 2016071423575783000_17.4.628.39 doi: 10.1093/bioinformatics/btv197 – ident: 2016071423575783000_17.4.628.57 doi: 10.1093/bib/bbl016 – ident: 2016071423575783000_17.4.628.76 doi: 10.1093/biostatistics/kxu001 – volume: 8 start-page: article 28 year: 2009 ident: 2016071423575783000_17.4.628.54 article-title: Extensions of sparse canonical correlation analysis with applications to genomic data publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1470 – ident: 2016071423575783000_17.4.628.89 doi: 10.1038/leu.2014.133 – ident: 2016071423575783000_17.4.628.56 doi: 10.1186/1471-2105-12-253 – ident: 2016071423575783000_17.4.628.58 doi: 10.1111/j.1365-2427.1994.tb01741.x – ident: 2016071423575783000_17.4.628.8 doi: 10.1093/bioinformatics/bts438 – ident: 2016071423575783000_17.4.628.60 doi: 10.1186/1471-2105-15-162 – ident: 2016071423575783000_17.4.628.93 doi: 10.1093/bioinformatics/btq096 – volume: 7 start-page: 10 year: 2015 ident: 2016071423575783000_17.4.628.41 article-title: Integrative analysis of ‘-omics’ data using penalty functions publication-title: Wiley Interdiscip Rev Comput Stat doi: 10.1002/wics.1322 – ident: 2016071423575783000_17.4.628.86 doi: 10.3324/haematol.2009.015099 – ident: 2016071423575783000_17.4.628.80 doi: 10.1093/bioinformatics/btu679 – ident: 2016071423575783000_17.4.628.26 doi: 10.1111/j.0006-341X.2003.00130.x – ident: 2016071423575783000_17.4.628.55 doi: 10.1186/1471-2105-14-245 – ident: 2016071423575783000_17.4.628.2 doi: 10.1038/nrg2825 – ident: 2016071423575783000_17.4.628.12 – ident: 2016071423575783000_17.4.628.16 doi: 10.1186/1741-7015-11-220 – ident: 2016071423575783000_17.4.628.77 doi: 10.1109/TPAMI.2012.254 – ident: 2016071423575783000_17.4.628.35 doi: 10.1016/0165-1684(94)90029-9 – ident: 2016071423575783000_17.4.628.49 doi: 10.1214/10-AOAS372 – volume: 6 start-page: 559 issue: 2 year: 1901 ident: 2016071423575783000_17.4.628.9 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philos Magazine Series doi: 10.1080/14786440109462720 – ident: 2016071423575783000_17.4.628.48 – volume: 3 start-page: 227 year: 1968 ident: 2016071423575783000_17.4.628.72 article-title: Generalization of canonical correlation analysis to three or more sets of variables publication-title: Proc. 76th Convent. Am. Psych. Assoc. – ident: 2016071423575783000_17.4.628.1 doi: 10.1002/047001153X.g405202 – ident: 2016071423575783000_17.4.628.15 doi: 10.1017/CBO9780511844249.007 – ident: 2016071423575783000_17.4.628.28 doi: 10.1016/j.cell.2014.06.037 – ident: 2016071423575783000_17.4.628.44 – ident: 2016071423575783000_17.4.628.78 doi: 10.1109/BIBE.2007.4375705 – ident: 2016071423575783000_17.4.628.85 doi: 10.1038/onc.2011.345 – ident: 2016071423575783000_17.4.628.63 doi: 10.1016/0169-7439(92)80100-I – volume: 57 start-page: 7 year: 2014 ident: 2016071423575783000_17.4.628.66 article-title: Three-way component analysis using the R package threeway publication-title: J Stat Software doi: 10.18637/jss.v057.i07 – ident: 2016071423575783000_17.4.628.20 doi: 10.1038/nbt0308-303 – ident: 2016071423575783000_17.4.628.17 doi: 10.1162/153244303322753616 – ident: 2016071423575783000_17.4.628.27 doi: 10.1201/9781420011234 – ident: 2016071423575783000_17.4.628.47 doi: 10.1093/biomet/28.3-4.321 – ident: 2016071423575783000_17.4.628.11 – ident: 2016071423575783000_17.4.628.19 – ident: 2016071423575783000_17.4.628.50 doi: 10.1093/nar/gkt145 – ident: 2016071423575783000_17.4.628.51 – ident: 2016071423575783000_17.4.628.82 doi: 10.1038/leu.2011.273 – ident: 2016071423575783000_17.4.628.4 doi: 10.1016/j.celrep.2014.10.035 – ident: 2016071423575783000_17.4.628.10 doi: 10.1037/h0071325 – volume: 2 start-page: 433 issue: 4 volume-title: Principal Component Analysis year: 2010 ident: 2016071423575783000_17.4.628.24 – volume: 8 start-page: article 1 year: 2009 ident: 2016071423575783000_17.4.628.53 article-title: Sparse canonical correlation analysis with application to genomic data integration publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1406 – ident: 2016071423575783000_17.4.628.45 doi: 10.1186/1471-2105-10-34 – ident: 2016071423575783000_17.4.628.25 doi: 10.1016/j.csda.2007.07.015 – ident: 2016071423575783000_17.4.628.37 doi: 10.1016/j.jmva.2007.06.007 – ident: 2016071423575783000_17.4.628.90 doi: 10.1158/1078-0432.CCR-14-0305 – ident: 2016071423575783000_17.4.628.84 doi: 10.1093/bioinformatics/btn634 – ident: 2016071423575783000_17.4.628.22 doi: 10.1016/S0065-2504(08)60183-X – ident: 2016071423575783000_17.4.628.32 doi: 10.1002/pmic.200600898 – ident: 2016071423575783000_17.4.628.81 doi: 10.1093/nar/gks725 – ident: 2016071423575783000_17.4.628.38 doi: 10.1002/gepi.21621 – ident: 2016071423575783000_17.4.628.18 – ident: 2016071423575783000_17.4.628.31 – ident: 2016071423575783000_17.4.628.69 doi: 10.1016/j.ejor.2014.01.008 |
SSID | ssj0020781 |
Score | 2.589394 |
SecondaryResourceType | review_article |
Snippet | State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of... State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput ‘omics' technologies enable the efficient generation of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 628 |
SubjectTerms | data collection Genomics High-Throughput Nucleotide Sequencing proteomics Special Issue continued: Computational Systems Biomedicine Papers transcriptomics |
Title | Dimension reduction techniques for the integrative analysis of multi-omics data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26969681 https://www.proquest.com/docview/1804866929 https://www.proquest.com/docview/2253255318 https://pubmed.ncbi.nlm.nih.gov/PMC4945831 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqISReEL8pDGQELyjK1tiJ3TyOAZtAUB46qeIlcmJHiwTp1KZI23_Df8pdnDguGwj2YlWJW6u-L3e--LvPhLwSkkc60UUo0xISFMPgkRLTPExZwlRuJqiHh2yLz-L4JP6wSBaj0U-PtbRp8r3i4sq6kutYFa6BXbFK9j8s634ULsBnsC-0YGFo_8nGb1GaH193BStUYG1N6URZ145B2EtCIElIeSIkLZkwxLLkddDVqPliR6Zsj_Ss6iCvlp3AauOR45EQa3fsh3KyrxDFLuqqdbEzGCs42BuoJ6rV_7YYOTIrrPcKjtz9j5v-kJA3ZlX31f79G4lIOPZq87dKR8_JonNGGX4bg7prUkIuawWlnWeWHgJjz82KrqDcRmxhpbMuBQMrlJVXObb5j6gVkGg8XJx9b4HBRCsRFA0h0REVv3w6jFPcWoYE-waDTARd6Xy2cDk9aiXZAjb7l3oF3JTvw8D7dlhUnO7G2F7-XMppfqfmemud-R1yu0tS6IFF3F0yMvU9ctMeW3p-n8wc7qjDHR1wR8EwFHBHPdzRHnd0WVIPdxRx94CcvH83PzwOu4M5wiKOoiZUSnPOVFykRcl0rgudyFQnSplyKvD4GskLVSYTppVgeiJ1KYzm4AcKWI5LI_hDslMva_OY0IhHCpIMprkw8dQolcYSVSKliYROCzUmr_v5yopOtR4PT_mWWfYEz2CaMzvNY_LS9T2zWi1X9nrRT3sGrhT3x1Rtlpt1Fk1Rf1JAwvDnPhD-OGThEAnH5JE1lRurt_GYyC0jug4o5b59p65OW0n3DmRPrv3Np-TW8Cjukp1mtTHPYLnc5M9bwP4CBTzJSA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension+reduction+techniques+for+the+integrative+analysis+of+multi-omics+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Meng%2C+Chen&rft.au=Zeleznik%2C+Oana+A.&rft.au=Thallinger%2C+Gerhard+G.&rft.au=Kuster%2C+Bernhard&rft.date=2016-07-01&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=17&rft.issue=4&rft.spage=628&rft.epage=641&rft_id=info:doi/10.1093%2Fbib%2Fbbv108&rft_id=info%3Apmid%2F26969681&rft.externalDocID=PMC4945831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |