Dimension reduction techniques for the integrative analysis of multi-omics data

State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease....

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 17; no. 4; pp. 628 - 641
Main Authors Meng, Chen, Zeleznik, Oana A., Thallinger, Gerhard G., Kuster, Bernhard, Gholami, Amin M., Culhane, Aedín C.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease.
AbstractList State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput ‘omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease.
State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease.State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease.
Author Meng, Chen
Culhane, Aedín C.
Zeleznik, Oana A.
Thallinger, Gerhard G.
Gholami, Amin M.
Kuster, Bernhard
Author_xml – sequence: 1
  givenname: Chen
  surname: Meng
  fullname: Meng, Chen
– sequence: 2
  givenname: Oana A.
  surname: Zeleznik
  fullname: Zeleznik, Oana A.
– sequence: 3
  givenname: Gerhard G.
  surname: Thallinger
  fullname: Thallinger, Gerhard G.
– sequence: 4
  givenname: Bernhard
  surname: Kuster
  fullname: Kuster, Bernhard
– sequence: 5
  givenname: Amin M.
  surname: Gholami
  fullname: Gholami, Amin M.
– sequence: 6
  givenname: Aedín C.
  surname: Culhane
  fullname: Culhane, Aedín C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26969681$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFjEQhYNU7Ife-ANkL0VYm-_N3gjSqhUKvdHrMJvM9o3sJjXJvtB_313eVlQEmYsZyDOHkzmn5CimiIS8ZvQ9o704H8JwPgx7Rs0zcsJk17WSKnm0zbprldTimJyW8oNSTjvDXpBjrvu1DDshN5dhxlhCik1Gv7i6TRXdLoafC5ZmTLmpO2xCrHiboYY9NhBhui-hNGls5mWqoU1zcKXxUOEleT7CVPDVYz8j3z9_-nZx1V7ffPl68fG6dZKx2gJ4IThI17uR-8E7r7reKwAcjV5dy044GBXlHjT3tPOjRi-QG2dE36EWZ-TDQfduGWb0DmPNMNm7HGbI9zZBsH--xLCzt2lvZS-VEWwVePsokNP202rnUBxOE0RMS7GcK8GVEsz8F2WGSqN1z_sVffO7rV9-ng6-AvQAuJxKyThaFypsV19dhskyardM7ZqpPWS6rrz7a-VJ9R_wA63Fpjw
CitedBy_id crossref_primary_10_3390_ijms22115751
crossref_primary_10_1186_s12859_018_2481_y
crossref_primary_10_1093_bioinformatics_bty726
crossref_primary_10_1093_bioinformatics_bty847
crossref_primary_10_1021_acs_jproteome_4c00650
crossref_primary_10_1109_TIM_2022_3143881
crossref_primary_10_1016_j_bbadis_2024_167339
crossref_primary_10_1016_j_imu_2022_100965
crossref_primary_10_3389_fimmu_2022_773264
crossref_primary_10_1093_bib_bbaa042
crossref_primary_10_5808_GI_2018_16_4_e33
crossref_primary_10_1039_D1MO00411E
crossref_primary_10_15252_msb_20178124
crossref_primary_10_3390_ht7010008
crossref_primary_10_1186_s12859_018_2371_3
crossref_primary_10_1093_bfgp_elx029
crossref_primary_10_1038_s12276_020_0409_x
crossref_primary_10_1007_s40572_021_00306_8
crossref_primary_10_3389_fmicb_2024_1509117
crossref_primary_10_1016_j_infrared_2023_104553
crossref_primary_10_1016_j_kint_2018_11_048
crossref_primary_10_1016_j_yjmcc_2020_02_010
crossref_primary_10_1093_bib_bbac207
crossref_primary_10_1002_wcms_1658
crossref_primary_10_1007_s12561_024_09450_9
crossref_primary_10_1109_TIM_2021_3086906
crossref_primary_10_1093_cvr_cvaa307
crossref_primary_10_1038_s41598_020_60334_6
crossref_primary_10_1002_ece3_10747
crossref_primary_10_1093_bioinformatics_btx656
crossref_primary_10_1093_biostatistics_kxaa029
crossref_primary_10_1186_s12859_018_2564_9
crossref_primary_10_1007_s00439_019_01970_5
crossref_primary_10_1177_1176935119832910
crossref_primary_10_1093_nar_gky466
crossref_primary_10_1016_j_tcb_2022_01_003
crossref_primary_10_1093_bioinformatics_btac281
crossref_primary_10_3390_ijms21218202
crossref_primary_10_3389_fmicb_2022_927702
crossref_primary_10_1080_14737159_2019_1567333
crossref_primary_10_1007_s00521_022_07615_5
crossref_primary_10_3390_cancers11101434
crossref_primary_10_1038_s41587_021_00895_7
crossref_primary_10_1016_j_csbj_2023_11_045
crossref_primary_10_3390_biomedicines12071496
crossref_primary_10_1093_bioinformatics_btz822
crossref_primary_10_1016_j_molmed_2017_08_003
crossref_primary_10_1016_j_algal_2023_103278
crossref_primary_10_21693_1933_088X_23_2_33
crossref_primary_10_1016_j_crmeth_2024_100731
crossref_primary_10_1007_s00521_025_11055_2
crossref_primary_10_1093_bib_bbz070
crossref_primary_10_1002_mco2_315
crossref_primary_10_1093_bib_bbaa169
crossref_primary_10_1111_tpj_13485
crossref_primary_10_3389_frai_2023_1098308
crossref_primary_10_3389_fonc_2020_00973
crossref_primary_10_1371_journal_pone_0272093
crossref_primary_10_1186_s12859_019_3286_3
crossref_primary_10_1155_2022_5816145
crossref_primary_10_1515_sagmb_2018_0028
crossref_primary_10_1016_j_scienta_2025_113971
crossref_primary_10_1016_j_jgg_2019_11_009
crossref_primary_10_1080_02664763_2024_2313458
crossref_primary_10_1016_j_csbj_2018_02_005
crossref_primary_10_1016_j_jvcir_2021_103218
crossref_primary_10_1002_tpg2_20503
crossref_primary_10_1038_s41467_020_20430_7
crossref_primary_10_1080_19490976_2023_2297860
crossref_primary_10_1073_pnas_2308500120
crossref_primary_10_1186_s13148_020_00842_4
crossref_primary_10_1016_j_compag_2024_109218
crossref_primary_10_1016_j_tplants_2022_08_018
crossref_primary_10_1371_journal_pcbi_1006907
crossref_primary_10_1016_j_csbj_2021_06_030
crossref_primary_10_1038_s42003_024_06724_2
crossref_primary_10_3389_fgene_2019_00995
crossref_primary_10_1016_j_aca_2020_10_038
crossref_primary_10_1016_j_compbiomed_2024_109322
crossref_primary_10_3390_math9091006
crossref_primary_10_1038_s41596_023_00950_4
crossref_primary_10_1073_pnas_1708283115
crossref_primary_10_1097_MOP_0000000000000875
crossref_primary_10_1109_ACCESS_2022_3194072
crossref_primary_10_1097_JBR_0000000000000049
crossref_primary_10_1016_j_heliyon_2022_e09715
crossref_primary_10_1093_bib_bbab315
crossref_primary_10_1016_j_csbj_2024_07_012
crossref_primary_10_3390_ijms20133114
crossref_primary_10_1002_jrs_6679
crossref_primary_10_3389_fgene_2024_1425456
crossref_primary_10_3390_genes10020087
crossref_primary_10_1016_j_chemolab_2023_104999
crossref_primary_10_1038_s12276_020_0422_0
crossref_primary_10_1038_s41467_022_31411_3
crossref_primary_10_1155_2021_9990297
crossref_primary_10_3389_fgene_2022_948240
crossref_primary_10_1016_j_tig_2018_07_003
crossref_primary_10_1016_j_coisb_2019_04_001
crossref_primary_10_3390_cancers12030603
crossref_primary_10_1038_s41467_018_04608_8
crossref_primary_10_1093_bib_bbae612
crossref_primary_10_1136_bmjopen_2018_023318
crossref_primary_10_1534_g3_117_042408
crossref_primary_10_1038_s42003_023_04529_3
crossref_primary_10_1093_bioadv_vbae075
crossref_primary_10_18632_aging_205321
crossref_primary_10_1016_j_ymeth_2018_05_020
crossref_primary_10_2174_1567201821666230905090621
crossref_primary_10_1016_j_ymeth_2017_08_012
crossref_primary_10_1038_s44220_023_00149_2
crossref_primary_10_1108_ER_07_2023_0347
crossref_primary_10_1016_j_rhisph_2022_100655
crossref_primary_10_1039_C6MB00476H
crossref_primary_10_1093_bib_bbac433
crossref_primary_10_1097_IM9_0000000000000007
crossref_primary_10_1111_1751_7915_12855
crossref_primary_10_1016_S2665_9913_19_30042_6
crossref_primary_10_1038_s41598_022_21758_4
crossref_primary_10_1007_s40495_017_0107_0
crossref_primary_10_3390_ht8010004
crossref_primary_10_1016_j_foodqual_2018_09_002
crossref_primary_10_1038_s41386_024_01938_8
crossref_primary_10_1016_j_jbiomech_2021_110409
crossref_primary_10_1007_s11897_020_00469_9
crossref_primary_10_1098_rsif_2023_0344
crossref_primary_10_24190_ISSN2564_615X_2017_01_02
crossref_primary_10_1093_nar_gky889
crossref_primary_10_1371_journal_pone_0255579
crossref_primary_10_1038_s41598_022_26434_1
crossref_primary_10_1111_evo_13397
crossref_primary_10_1186_s13059_021_02433_9
crossref_primary_10_1007_s12561_021_09310_w
crossref_primary_10_3389_fbioe_2024_1375626
crossref_primary_10_1038_s10038_020_0763_5
crossref_primary_10_3390_ai5030078
crossref_primary_10_1016_j_rsma_2020_101077
crossref_primary_10_1007_s12551_018_0491_7
crossref_primary_10_1016_j_ymeth_2020_07_008
crossref_primary_10_1016_j_neucom_2021_11_094
crossref_primary_10_1093_bioinformatics_btaf015
crossref_primary_10_1021_acsfoodscitech_4c00101
crossref_primary_10_1002_ima_22369
crossref_primary_10_1186_s12864_021_07948_w
crossref_primary_10_21603_2074_9414_2022_1_144_155
crossref_primary_10_1093_gigascience_giac087
crossref_primary_10_1093_bib_bbz138
crossref_primary_10_1093_bib_bbz015
crossref_primary_10_1038_s41537_017_0027_3
crossref_primary_10_1038_s41592_019_0616_3
crossref_primary_10_1093_bib_bbz132
crossref_primary_10_1371_journal_pcbi_1007084
crossref_primary_10_1093_bioinformatics_btad647
crossref_primary_10_1186_s12864_023_09833_0
crossref_primary_10_3389_fgene_2021_620453
crossref_primary_10_1002_adhm_202000529
crossref_primary_10_1186_s12911_024_02457_8
crossref_primary_10_1097_JBR_0000000000000053
crossref_primary_10_1093_bioinformatics_bty1054
crossref_primary_10_1007_s11259_023_10208_9
crossref_primary_10_1016_j_dam_2018_11_025
crossref_primary_10_1093_bib_bbx060
crossref_primary_10_3389_fcell_2024_1376639
crossref_primary_10_1093_ajcn_nqz270
crossref_primary_10_1007_s13042_022_01635_2
crossref_primary_10_1016_j_compbiomed_2023_107223
crossref_primary_10_1142_S2811032322500047
crossref_primary_10_1016_j_jbiotec_2020_12_002
crossref_primary_10_1093_bib_bbz121
crossref_primary_10_1038_s41576_019_0093_7
crossref_primary_10_3390_cells10010071
crossref_primary_10_1016_j_eclinm_2020_100379
crossref_primary_10_1093_bib_bbac072
crossref_primary_10_18632_oncotarget_22345
crossref_primary_10_1093_bib_bbae499
crossref_primary_10_3390_jpm13010050
crossref_primary_10_1038_s43588_021_00086_z
crossref_primary_10_1093_nar_gky510
crossref_primary_10_1002_cem_3289
crossref_primary_10_2196_50890
crossref_primary_10_1093_bib_bby027
crossref_primary_10_1093_nar_gkz281
crossref_primary_10_1093_bioadv_vbae164
crossref_primary_10_3389_fnut_2022_899401
crossref_primary_10_1002_mas_21849
crossref_primary_10_1007_s10886_018_0932_6
crossref_primary_10_1093_bib_bby019
crossref_primary_10_3390_biom11040565
crossref_primary_10_1002_dev_21778
crossref_primary_10_3390_cancers14174080
crossref_primary_10_1093_bfgp_elab024
crossref_primary_10_1111_imr_12814
crossref_primary_10_1093_bioinformatics_btab125
crossref_primary_10_1248_bpb_b19_00571
crossref_primary_10_1530_JME_18_0055
crossref_primary_10_1016_j_jmb_2023_168116
crossref_primary_10_3389_fgene_2020_610798
crossref_primary_10_1186_s12967_019_2073_2
crossref_primary_10_3389_fmicb_2021_685935
crossref_primary_10_1134_S1054661820030141
crossref_primary_10_1093_bib_bbx167
crossref_primary_10_4236_jdaip_2021_93013
crossref_primary_10_1016_j_csbj_2023_02_027
crossref_primary_10_1093_nar_gkac352
crossref_primary_10_1038_s41598_022_07238_9
crossref_primary_10_1038_s41598_021_03034_z
crossref_primary_10_1186_s12864_020_6652_7
crossref_primary_10_3390_ijms20184414
crossref_primary_10_1186_s12859_020_3455_4
crossref_primary_10_1093_bfgp_elab033
crossref_primary_10_3390_computation9120146
crossref_primary_10_1093_bioinformatics_btaf066
crossref_primary_10_3389_fpls_2017_00172
crossref_primary_10_1007_s10654_020_00625_4
crossref_primary_10_1214_21_AOAS1537
crossref_primary_10_3389_fgene_2021_783713
crossref_primary_10_1111_1462_2920_14975
crossref_primary_10_1186_s12870_018_1239_z
crossref_primary_10_1016_j_chroma_2020_460871
crossref_primary_10_1186_s13567_017_0426_5
crossref_primary_10_26634_jse_17_1_19087
crossref_primary_10_1089_omi_2022_0155
crossref_primary_10_5713_ab_21_0042
crossref_primary_10_1186_s12911_020_1114_3
crossref_primary_10_1016_j_inffus_2020_01_005
crossref_primary_10_1093_bioinformatics_btaa183
crossref_primary_10_5924_abgri_52_27
crossref_primary_10_3389_fonc_2020_00423
crossref_primary_10_36628_ijhf_2023_0050
crossref_primary_10_1016_j_ins_2019_04_041
crossref_primary_10_1155_2022_5637971
crossref_primary_10_1016_j_chemosphere_2024_142465
crossref_primary_10_1093_bib_bbae454
crossref_primary_10_1134_S1995082919040175
crossref_primary_10_3389_fcvm_2022_961991
crossref_primary_10_1093_bioinformatics_btab158
crossref_primary_10_14218_JCTH_2021_00219
crossref_primary_10_1111_rssc_12583
crossref_primary_10_1016_j_compenvurbsys_2020_101521
crossref_primary_10_1016_j_csbj_2020_02_011
crossref_primary_10_1080_14789450_2017_1387053
crossref_primary_10_1093_bib_bbae448
crossref_primary_10_1074_mcp_TIR118_001251
crossref_primary_10_1016_j_pbiomolbio_2023_08_002
Cites_doi 10.1007/978-3-642-70880-0_3
10.1182/blood-2009-08-240101
10.1038/44565
10.1038/ng.2764
10.1038/srep06207
10.1186/1471-2105-4-59
10.1007/s11634-011-0085-8
10.1890/03-0178
10.1007/0-306-47815-3_5
10.1109/TCYB.2014.2298401
10.2307/1939004
10.1016/j.cell.2014.06.049
10.1186/1471-2164-10-32
10.4149/neo_2013_056
10.56021/9781421407944
10.1371/journal.pone.0028072
10.1073/pnas.0530258100
10.1137/07070111X
10.2307/1938672
10.1093/biostatistics/kxp008
10.1162/neco.2008.11-06-407
10.1038/nm.3915
10.1016/j.chemolab.2010.05.010
10.1016/j.leukres.2009.11.019
10.1186/1471-2105-10-315
10.1007/s11336-008-9065-0
10.1007/s11336-011-9206-8
10.1186/1471-2105-9-559
10.18637/jss.v034.i10
10.1073/pnas.181597298
10.1093/bioinformatics/btv197
10.1093/bib/bbl016
10.1093/biostatistics/kxu001
10.2202/1544-6115.1470
10.1038/leu.2014.133
10.1186/1471-2105-12-253
10.1111/j.1365-2427.1994.tb01741.x
10.1093/bioinformatics/bts438
10.1186/1471-2105-15-162
10.1093/bioinformatics/btq096
10.1002/wics.1322
10.3324/haematol.2009.015099
10.1093/bioinformatics/btu679
10.1111/j.0006-341X.2003.00130.x
10.1186/1471-2105-14-245
10.1038/nrg2825
10.1186/1741-7015-11-220
10.1109/TPAMI.2012.254
10.1016/0165-1684(94)90029-9
10.1214/10-AOAS372
10.1080/14786440109462720
10.1002/047001153X.g405202
10.1017/CBO9780511844249.007
10.1016/j.cell.2014.06.037
10.1109/BIBE.2007.4375705
10.1038/onc.2011.345
10.1016/0169-7439(92)80100-I
10.18637/jss.v057.i07
10.1038/nbt0308-303
10.1162/153244303322753616
10.1201/9781420011234
10.1093/biomet/28.3-4.321
10.1093/nar/gkt145
10.1038/leu.2011.273
10.1016/j.celrep.2014.10.035
10.1037/h0071325
10.2202/1544-6115.1406
10.1186/1471-2105-10-34
10.1016/j.csda.2007.07.015
10.1016/j.jmva.2007.06.007
10.1158/1078-0432.CCR-14-0305
10.1093/bioinformatics/btn634
10.1016/S0065-2504(08)60183-X
10.1002/pmic.200600898
10.1093/nar/gks725
10.1002/gepi.21621
10.1016/j.ejor.2014.01.008
ContentType Journal Article
Copyright The Author 2016. Published by Oxford University Press.
The Author 2016. Published by Oxford University Press. 2016
Copyright_xml – notice: The Author 2016. Published by Oxford University Press.
– notice: The Author 2016. Published by Oxford University Press. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1093/bib/bbv108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 641
ExternalDocumentID PMC4945831
26969681
10_1093_bib_bbv108
Genre Journal Article
Review
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P50 CA101942
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c411t-aad332a4c9cf2dbdcd579d5aaef86467473caf502da62d07df6ed3e28c8397e63
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:45:24 EDT 2025
Thu Jul 10 18:33:08 EDT 2025
Fri Jul 11 06:11:51 EDT 2025
Thu Apr 03 07:02:21 EDT 2025
Tue Jul 01 03:39:24 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords multi-assay
integrative genomics
exploratory data analysis
multi-omics data integration
dimension reduction
multivariate analysis
Language English
License The Author 2016. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-aad332a4c9cf2dbdcd579d5aaef86467473caf502da62d07df6ed3e28c8397e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4945831
PMID 26969681
PQID 1804866929
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4945831
proquest_miscellaneous_2253255318
proquest_miscellaneous_1804866929
pubmed_primary_26969681
crossref_citationtrail_10_1093_bib_bbv108
crossref_primary_10_1093_bib_bbv108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016071423575783000_17.4.628.61
2016071423575783000_17.4.628.60
2016071423575783000_17.4.628.21
2016071423575783000_17.4.628.20
2016071423575783000_17.4.628.64
2016071423575783000_17.4.628.63
2016071423575783000_17.4.628.25
2016071423575783000_17.4.628.69
2016071423575783000_17.4.628.68
2016071423575783000_17.4.628.23
2016071423575783000_17.4.628.22
2016071423575783000_17.4.628.29
2016071423575783000_17.4.628.28
2016071423575783000_17.4.628.27
2016071423575783000_17.4.628.26
2016071423575783000_17.4.628.19
Chessel (2016071423575783000_17.4.628.70) 1996; 44
Pearson (2016071423575783000_17.4.628.9) 1901; 6
2016071423575783000_17.4.628.50
2016071423575783000_17.4.628.94
2016071423575783000_17.4.628.93
2016071423575783000_17.4.628.92
2016071423575783000_17.4.628.91
2016071423575783000_17.4.628.10
2016071423575783000_17.4.628.52
2016071423575783000_17.4.628.51
2016071423575783000_17.4.628.14
2016071423575783000_17.4.628.58
Escoufier (2016071423575783000_17.4.628.65) 1987; 14
2016071423575783000_17.4.628.13
2016071423575783000_17.4.628.57
2016071423575783000_17.4.628.12
2016071423575783000_17.4.628.56
2016071423575783000_17.4.628.11
Witten (2016071423575783000_17.4.628.54) 2009; 8
2016071423575783000_17.4.628.55
2016071423575783000_17.4.628.18
2016071423575783000_17.4.628.17
Abdi (2016071423575783000_17.4.628.62) 2012; 4
2016071423575783000_17.4.628.16
2016071423575783000_17.4.628.15
2016071423575783000_17.4.628.59
Abdi (2016071423575783000_17.4.628.24) 2010; 2
2016071423575783000_17.4.628.8
Giordani (2016071423575783000_17.4.628.66) 2014; 57
2016071423575783000_17.4.628.90
2016071423575783000_17.4.628.83
2016071423575783000_17.4.628.82
2016071423575783000_17.4.628.81
2016071423575783000_17.4.628.80
2016071423575783000_17.4.628.43
2016071423575783000_17.4.628.87
2016071423575783000_17.4.628.42
2016071423575783000_17.4.628.86
2016071423575783000_17.4.628.85
2016071423575783000_17.4.628.40
2016071423575783000_17.4.628.84
2016071423575783000_17.4.628.5
2016071423575783000_17.4.628.47
2016071423575783000_17.4.628.4
2016071423575783000_17.4.628.46
2016071423575783000_17.4.628.7
2016071423575783000_17.4.628.45
Leibovici (2016071423575783000_17.4.628.67) 2010; 34
2016071423575783000_17.4.628.89
2016071423575783000_17.4.628.44
2016071423575783000_17.4.628.88
2016071423575783000_17.4.628.1
2016071423575783000_17.4.628.3
2016071423575783000_17.4.628.49
2016071423575783000_17.4.628.2
2016071423575783000_17.4.628.48
Carroll (2016071423575783000_17.4.628.72) 1968; 3
2016071423575783000_17.4.628.71
2016071423575783000_17.4.628.32
2016071423575783000_17.4.628.76
2016071423575783000_17.4.628.31
2016071423575783000_17.4.628.75
2016071423575783000_17.4.628.30
2016071423575783000_17.4.628.74
2016071423575783000_17.4.628.73
2016071423575783000_17.4.628.36
2016071423575783000_17.4.628.35
Zhao (2016071423575783000_17.4.628.41) 2015; 7
2016071423575783000_17.4.628.79
2016071423575783000_17.4.628.34
2016071423575783000_17.4.628.78
2016071423575783000_17.4.628.33
Parkhomenko (2016071423575783000_17.4.628.53) 2009; 8
2016071423575783000_17.4.628.77
2016071423575783000_17.4.628.39
2016071423575783000_17.4.628.38
2016071423575783000_17.4.628.37
Verhaak (2016071423575783000_17.4.628.6) 2013; 123
References_xml – ident: 2016071423575783000_17.4.628.3
– ident: 2016071423575783000_17.4.628.75
– volume: 14
  start-page: 139
  year: 1987
  ident: 2016071423575783000_17.4.628.65
  article-title: The duality diagram: a means for better practical applications
  publication-title: Devel Num Ecol
  doi: 10.1007/978-3-642-70880-0_3
– ident: 2016071423575783000_17.4.628.83
  doi: 10.1182/blood-2009-08-240101
– ident: 2016071423575783000_17.4.628.34
  doi: 10.1038/44565
– ident: 2016071423575783000_17.4.628.92
  doi: 10.1038/ng.2764
– ident: 2016071423575783000_17.4.628.23
– volume: 123
  start-page: 517
  year: 2013
  ident: 2016071423575783000_17.4.628.6
  article-title: Prognostically relevant gene signatures of high-grade serous ovarian carcinoma
  publication-title: J Clin Invest
– volume: 44
  start-page: 35
  year: 1996
  ident: 2016071423575783000_17.4.628.70
  article-title: Analyses de la co-inertie de K nuages de points
  publication-title: Rev Stat Appl
– ident: 2016071423575783000_17.4.628.7
  doi: 10.1038/srep06207
– ident: 2016071423575783000_17.4.628.43
  doi: 10.1186/1471-2105-4-59
– ident: 2016071423575783000_17.4.628.64
  doi: 10.1007/s11634-011-0085-8
– ident: 2016071423575783000_17.4.628.13
  doi: 10.1890/03-0178
– ident: 2016071423575783000_17.4.628.21
  doi: 10.1007/0-306-47815-3_5
– ident: 2016071423575783000_17.4.628.40
  doi: 10.1109/TCYB.2014.2298401
– ident: 2016071423575783000_17.4.628.29
  doi: 10.2307/1939004
– ident: 2016071423575783000_17.4.628.5
  doi: 10.1016/j.cell.2014.06.049
– ident: 2016071423575783000_17.4.628.61
  doi: 10.1186/1471-2164-10-32
– ident: 2016071423575783000_17.4.628.87
  doi: 10.4149/neo_2013_056
– ident: 2016071423575783000_17.4.628.14
  doi: 10.56021/9781421407944
– ident: 2016071423575783000_17.4.628.59
  doi: 10.1371/journal.pone.0028072
– ident: 2016071423575783000_17.4.628.42
  doi: 10.1073/pnas.0530258100
– ident: 2016071423575783000_17.4.628.68
  doi: 10.1137/07070111X
– ident: 2016071423575783000_17.4.628.46
  doi: 10.2307/1938672
– ident: 2016071423575783000_17.4.628.36
  doi: 10.1093/biostatistics/kxp008
– ident: 2016071423575783000_17.4.628.79
  doi: 10.1162/neco.2008.11-06-407
– ident: 2016071423575783000_17.4.628.91
  doi: 10.1038/nm.3915
– ident: 2016071423575783000_17.4.628.71
  doi: 10.1016/j.chemolab.2010.05.010
– ident: 2016071423575783000_17.4.628.88
  doi: 10.1016/j.leukres.2009.11.019
– volume: 4
  start-page: 124
  volume-title: Statis and Distatis: Optimum Multitable Principal Component Analysis and Three Way Metric Multidimensional Scaling
  year: 2012
  ident: 2016071423575783000_17.4.628.62
– ident: 2016071423575783000_17.4.628.52
  doi: 10.1186/1471-2105-10-315
– ident: 2016071423575783000_17.4.628.30
– ident: 2016071423575783000_17.4.628.73
  doi: 10.1007/s11336-008-9065-0
– ident: 2016071423575783000_17.4.628.74
  doi: 10.1007/s11336-011-9206-8
– ident: 2016071423575783000_17.4.628.94
  doi: 10.1186/1471-2105-9-559
– volume: 34
  start-page: 1
  issue: 10
  year: 2010
  ident: 2016071423575783000_17.4.628.67
  article-title: Spatio-temporal multiway decompositions using principal tensor analysis on k-modes: the R package PTAk
  publication-title: J Stat Software
  doi: 10.18637/jss.v034.i10
– ident: 2016071423575783000_17.4.628.33
  doi: 10.1073/pnas.181597298
– ident: 2016071423575783000_17.4.628.39
  doi: 10.1093/bioinformatics/btv197
– ident: 2016071423575783000_17.4.628.57
  doi: 10.1093/bib/bbl016
– ident: 2016071423575783000_17.4.628.76
  doi: 10.1093/biostatistics/kxu001
– volume: 8
  start-page: article 28
  year: 2009
  ident: 2016071423575783000_17.4.628.54
  article-title: Extensions of sparse canonical correlation analysis with applications to genomic data
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1470
– ident: 2016071423575783000_17.4.628.89
  doi: 10.1038/leu.2014.133
– ident: 2016071423575783000_17.4.628.56
  doi: 10.1186/1471-2105-12-253
– ident: 2016071423575783000_17.4.628.58
  doi: 10.1111/j.1365-2427.1994.tb01741.x
– ident: 2016071423575783000_17.4.628.8
  doi: 10.1093/bioinformatics/bts438
– ident: 2016071423575783000_17.4.628.60
  doi: 10.1186/1471-2105-15-162
– ident: 2016071423575783000_17.4.628.93
  doi: 10.1093/bioinformatics/btq096
– volume: 7
  start-page: 10
  year: 2015
  ident: 2016071423575783000_17.4.628.41
  article-title: Integrative analysis of ‘-omics’ data using penalty functions
  publication-title: Wiley Interdiscip Rev Comput Stat
  doi: 10.1002/wics.1322
– ident: 2016071423575783000_17.4.628.86
  doi: 10.3324/haematol.2009.015099
– ident: 2016071423575783000_17.4.628.80
  doi: 10.1093/bioinformatics/btu679
– ident: 2016071423575783000_17.4.628.26
  doi: 10.1111/j.0006-341X.2003.00130.x
– ident: 2016071423575783000_17.4.628.55
  doi: 10.1186/1471-2105-14-245
– ident: 2016071423575783000_17.4.628.2
  doi: 10.1038/nrg2825
– ident: 2016071423575783000_17.4.628.12
– ident: 2016071423575783000_17.4.628.16
  doi: 10.1186/1741-7015-11-220
– ident: 2016071423575783000_17.4.628.77
  doi: 10.1109/TPAMI.2012.254
– ident: 2016071423575783000_17.4.628.35
  doi: 10.1016/0165-1684(94)90029-9
– ident: 2016071423575783000_17.4.628.49
  doi: 10.1214/10-AOAS372
– volume: 6
  start-page: 559
  issue: 2
  year: 1901
  ident: 2016071423575783000_17.4.628.9
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philos Magazine Series
  doi: 10.1080/14786440109462720
– ident: 2016071423575783000_17.4.628.48
– volume: 3
  start-page: 227
  year: 1968
  ident: 2016071423575783000_17.4.628.72
  article-title: Generalization of canonical correlation analysis to three or more sets of variables
  publication-title: Proc. 76th Convent. Am. Psych. Assoc.
– ident: 2016071423575783000_17.4.628.1
  doi: 10.1002/047001153X.g405202
– ident: 2016071423575783000_17.4.628.15
  doi: 10.1017/CBO9780511844249.007
– ident: 2016071423575783000_17.4.628.28
  doi: 10.1016/j.cell.2014.06.037
– ident: 2016071423575783000_17.4.628.44
– ident: 2016071423575783000_17.4.628.78
  doi: 10.1109/BIBE.2007.4375705
– ident: 2016071423575783000_17.4.628.85
  doi: 10.1038/onc.2011.345
– ident: 2016071423575783000_17.4.628.63
  doi: 10.1016/0169-7439(92)80100-I
– volume: 57
  start-page: 7
  year: 2014
  ident: 2016071423575783000_17.4.628.66
  article-title: Three-way component analysis using the R package threeway
  publication-title: J Stat Software
  doi: 10.18637/jss.v057.i07
– ident: 2016071423575783000_17.4.628.20
  doi: 10.1038/nbt0308-303
– ident: 2016071423575783000_17.4.628.17
  doi: 10.1162/153244303322753616
– ident: 2016071423575783000_17.4.628.27
  doi: 10.1201/9781420011234
– ident: 2016071423575783000_17.4.628.47
  doi: 10.1093/biomet/28.3-4.321
– ident: 2016071423575783000_17.4.628.11
– ident: 2016071423575783000_17.4.628.19
– ident: 2016071423575783000_17.4.628.50
  doi: 10.1093/nar/gkt145
– ident: 2016071423575783000_17.4.628.51
– ident: 2016071423575783000_17.4.628.82
  doi: 10.1038/leu.2011.273
– ident: 2016071423575783000_17.4.628.4
  doi: 10.1016/j.celrep.2014.10.035
– ident: 2016071423575783000_17.4.628.10
  doi: 10.1037/h0071325
– volume: 2
  start-page: 433
  issue: 4
  volume-title: Principal Component Analysis
  year: 2010
  ident: 2016071423575783000_17.4.628.24
– volume: 8
  start-page: article 1
  year: 2009
  ident: 2016071423575783000_17.4.628.53
  article-title: Sparse canonical correlation analysis with application to genomic data integration
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1406
– ident: 2016071423575783000_17.4.628.45
  doi: 10.1186/1471-2105-10-34
– ident: 2016071423575783000_17.4.628.25
  doi: 10.1016/j.csda.2007.07.015
– ident: 2016071423575783000_17.4.628.37
  doi: 10.1016/j.jmva.2007.06.007
– ident: 2016071423575783000_17.4.628.90
  doi: 10.1158/1078-0432.CCR-14-0305
– ident: 2016071423575783000_17.4.628.84
  doi: 10.1093/bioinformatics/btn634
– ident: 2016071423575783000_17.4.628.22
  doi: 10.1016/S0065-2504(08)60183-X
– ident: 2016071423575783000_17.4.628.32
  doi: 10.1002/pmic.200600898
– ident: 2016071423575783000_17.4.628.81
  doi: 10.1093/nar/gks725
– ident: 2016071423575783000_17.4.628.38
  doi: 10.1002/gepi.21621
– ident: 2016071423575783000_17.4.628.18
– ident: 2016071423575783000_17.4.628.31
– ident: 2016071423575783000_17.4.628.69
  doi: 10.1016/j.ejor.2014.01.008
SSID ssj0020781
Score 2.589394
SecondaryResourceType review_article
Snippet State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput 'omics' technologies enable the efficient generation of...
State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput ‘omics' technologies enable the efficient generation of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 628
SubjectTerms data collection
Genomics
High-Throughput Nucleotide Sequencing
proteomics
Special Issue continued: Computational Systems Biomedicine Papers
transcriptomics
Title Dimension reduction techniques for the integrative analysis of multi-omics data
URI https://www.ncbi.nlm.nih.gov/pubmed/26969681
https://www.proquest.com/docview/1804866929
https://www.proquest.com/docview/2253255318
https://pubmed.ncbi.nlm.nih.gov/PMC4945831
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqISReEL8pDGQELyjK1tiJ3TyOAZtAUB46qeIlcmJHiwTp1KZI23_Df8pdnDguGwj2YlWJW6u-L3e--LvPhLwSkkc60UUo0xISFMPgkRLTPExZwlRuJqiHh2yLz-L4JP6wSBaj0U-PtbRp8r3i4sq6kutYFa6BXbFK9j8s634ULsBnsC-0YGFo_8nGb1GaH193BStUYG1N6URZ145B2EtCIElIeSIkLZkwxLLkddDVqPliR6Zsj_Ss6iCvlp3AauOR45EQa3fsh3KyrxDFLuqqdbEzGCs42BuoJ6rV_7YYOTIrrPcKjtz9j5v-kJA3ZlX31f79G4lIOPZq87dKR8_JonNGGX4bg7prUkIuawWlnWeWHgJjz82KrqDcRmxhpbMuBQMrlJVXObb5j6gVkGg8XJx9b4HBRCsRFA0h0REVv3w6jFPcWoYE-waDTARd6Xy2cDk9aiXZAjb7l3oF3JTvw8D7dlhUnO7G2F7-XMppfqfmemud-R1yu0tS6IFF3F0yMvU9ctMeW3p-n8wc7qjDHR1wR8EwFHBHPdzRHnd0WVIPdxRx94CcvH83PzwOu4M5wiKOoiZUSnPOVFykRcl0rgudyFQnSplyKvD4GskLVSYTppVgeiJ1KYzm4AcKWI5LI_hDslMva_OY0IhHCpIMprkw8dQolcYSVSKliYROCzUmr_v5yopOtR4PT_mWWfYEz2CaMzvNY_LS9T2zWi1X9nrRT3sGrhT3x1Rtlpt1Fk1Rf1JAwvDnPhD-OGThEAnH5JE1lRurt_GYyC0jug4o5b59p65OW0n3DmRPrv3Np-TW8Cjukp1mtTHPYLnc5M9bwP4CBTzJSA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension+reduction+techniques+for+the+integrative+analysis+of+multi-omics+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Meng%2C+Chen&rft.au=Zeleznik%2C+Oana+A.&rft.au=Thallinger%2C+Gerhard+G.&rft.au=Kuster%2C+Bernhard&rft.date=2016-07-01&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=17&rft.issue=4&rft.spage=628&rft.epage=641&rft_id=info:doi/10.1093%2Fbib%2Fbbv108&rft_id=info%3Apmid%2F26969681&rft.externalDocID=PMC4945831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon