Impacts of urban expansion on fog types in Shanghai, China: Numerical experiments by WRF model

Fog is a hazard to transportation activities in Shanghai, China, but it is not known how this fog is influenced by urban expansion. Here we use a numerical model to run, for the first time for Shanghai, sensitivity experiments of the fog response to urban expansion, including the changes of land use...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric research Vol. 220; pp. 57 - 74
Main Authors Gu, Ying, Kusaka, Hiroyuki, Doan, Van Quang, Tan, Jianguo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fog is a hazard to transportation activities in Shanghai, China, but it is not known how this fog is influenced by urban expansion. Here we use a numerical model to run, for the first time for Shanghai, sensitivity experiments of the fog response to urban expansion, including the changes of land use and anthropogenic heat. Instead of using ‘fog days’ as a measure, we use the 29-year (1989–2017) meteorological observations of fog events at Hongqiao International Airport in central Shanghai, and classify the fog into radiation, advection, advection–radiation, and precipitation types. The results show that (1) Fog events generally decrease over these 29 years, with the decline in winter accounting for 50.2% of the total reduction. (2) Radiation fog decreases the most, but remains the most common type throughout the period. (3) Numerical sensitivity experiments show that the urban expansion in the past 29 years caused both an increase in surface air temperature and a decrease in water-vapor mixing ratio, resulting in a decrease in relative humidity and an increase in visibility for radiation fog. (4) For advection fog, the increased surface air temperature allowed an increase in water-vapor mixing ratio, but a decrease in liquid water. (5) Due to warmer near-surface air, the inversion layer weakened. Hence, urban expansion in Shanghai has reduced the amount of not only radiation fog, but also advection fog. •All four types of fog events in Shanghai centre decreased over past 29 years.•The increased surface air temperature reduced fog duration due to urban expansion.•Nocturnal cooling and water vapor density were reduced for the radiation fog event.•Less water vapor can condense into liquid water for the advection fog event.
AbstractList Fog is a hazard to transportation activities in Shanghai, China, but it is not known how this fog is influenced by urban expansion. Here we use a numerical model to run, for the first time for Shanghai, sensitivity experiments of the fog response to urban expansion, including the changes of land use and anthropogenic heat. Instead of using ‘fog days’ as a measure, we use the 29-year (1989–2017) meteorological observations of fog events at Hongqiao International Airport in central Shanghai, and classify the fog into radiation, advection, advection–radiation, and precipitation types. The results show that (1) Fog events generally decrease over these 29 years, with the decline in winter accounting for 50.2% of the total reduction. (2) Radiation fog decreases the most, but remains the most common type throughout the period. (3) Numerical sensitivity experiments show that the urban expansion in the past 29 years caused both an increase in surface air temperature and a decrease in water-vapor mixing ratio, resulting in a decrease in relative humidity and an increase in visibility for radiation fog. (4) For advection fog, the increased surface air temperature allowed an increase in water-vapor mixing ratio, but a decrease in liquid water. (5) Due to warmer near-surface air, the inversion layer weakened. Hence, urban expansion in Shanghai has reduced the amount of not only radiation fog, but also advection fog. •All four types of fog events in Shanghai centre decreased over past 29 years.•The increased surface air temperature reduced fog duration due to urban expansion.•Nocturnal cooling and water vapor density were reduced for the radiation fog event.•Less water vapor can condense into liquid water for the advection fog event.
Fog is a hazard to transportation activities in Shanghai, China, but it is not known how this fog is influenced by urban expansion. Here we use a numerical model to run, for the first time for Shanghai, sensitivity experiments of the fog response to urban expansion, including the changes of land use and anthropogenic heat. Instead of using ‘fog days’ as a measure, we use the 29-year (1989–2017) meteorological observations of fog events at Hongqiao International Airport in central Shanghai, and classify the fog into radiation, advection, advection–radiation, and precipitation types. The results show that (1) Fog events generally decrease over these 29 years, with the decline in winter accounting for 50.2% of the total reduction. (2) Radiation fog decreases the most, but remains the most common type throughout the period. (3) Numerical sensitivity experiments show that the urban expansion in the past 29 years caused both an increase in surface air temperature and a decrease in water-vapor mixing ratio, resulting in a decrease in relative humidity and an increase in visibility for radiation fog. (4) For advection fog, the increased surface air temperature allowed an increase in water-vapor mixing ratio, but a decrease in liquid water. (5) Due to warmer near-surface air, the inversion layer weakened. Hence, urban expansion in Shanghai has reduced the amount of not only radiation fog, but also advection fog.
Author Doan, Van Quang
Kusaka, Hiroyuki
Gu, Ying
Tan, Jianguo
Author_xml – sequence: 1
  givenname: Ying
  surname: Gu
  fullname: Gu, Ying
  organization: School of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
– sequence: 2
  givenname: Hiroyuki
  orcidid: 0000-0002-0326-7179
  surname: Kusaka
  fullname: Kusaka, Hiroyuki
  email: kusaka@ccs.tsukuba.ac.jp
  organization: Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
– sequence: 3
  givenname: Van Quang
  surname: Doan
  fullname: Doan, Van Quang
  organization: Center for Climate Research Singapore, 537054, Singapore
– sequence: 4
  givenname: Jianguo
  surname: Tan
  fullname: Tan, Jianguo
  organization: Shanghai Meteorological Service, Shanghai Climate Center, Shanghai 200030, China
BookMark eNqFkE1r3DAQhkVIIZu0fyHo2EPtSrIl2yWHhiVpA6GFftBbxFgeZ7XYkiNpS_ffV8s2l14CgtHhfd4ZnnNy6rxDQi45Kznj6v22hDT7GDCWgvG25KJkQp2QFW-bqhBtJ0_JKge7omWdPCPnMW4ZY5LV3Yo83M0LmBSpH-ku9OAo_lnAResdzW_0jzTtF4zUOvp9A-5xA_YdXW-sgw_0y27GYA1MByj_ZnS5qd_TX99u6ewHnF6TVyNMEd_8mxfk5-3Nj_Xn4v7rp7v19X1has5TAUqO0AySGdaoisnOqEb10kgpRC-asWHIsUbF2gFqAf0omqbuVDtUrKtw5NUFeXvsXYJ_2mFMerbR4DSBQ7-LWgjBWpl3VTmqjlETfMzWRr3kyyHsNWf6IFRv9bNQfRCqudBZaAav_gONTZCyqRTATi_jH484Zg-_LQYdjUVncLABTdKDty9V_AXj85iN
CitedBy_id crossref_primary_10_1016_j_rsase_2022_100832
crossref_primary_10_1016_j_ufug_2021_127012
crossref_primary_10_1002_met_2048
crossref_primary_10_1016_j_atmosres_2019_06_011
crossref_primary_10_61186_ifej_12_2_15
crossref_primary_10_1007_s00704_022_03966_0
crossref_primary_10_5194_acp_20_5559_2020
crossref_primary_10_1002_met_2191
crossref_primary_10_1016_j_atmosenv_2024_121014
crossref_primary_10_1039_D2RA00424K
crossref_primary_10_1002_joc_7832
crossref_primary_10_1002_joc_7823
crossref_primary_10_1007_s42452_020_03569_2
crossref_primary_10_3390_atmos11111239
crossref_primary_10_1016_j_scs_2024_105584
crossref_primary_10_1007_s11707_022_1002_5
crossref_primary_10_1016_j_atmosenv_2022_119321
crossref_primary_10_1029_2024JD040760
crossref_primary_10_1029_2023JD039772
crossref_primary_10_1007_s12210_022_01060_1
Cites_doi 10.1007/s00704-014-1321-x
10.1002/2015GL063266
10.1175/2007JCLI1604.1
10.1023/A:1019207923078
10.1016/j.atmosenv.2007.10.062
10.5194/acp-10-4597-2010
10.5194/acp-15-4279-2015
10.1007/s11442-006-0406-6
10.1007/s10546-013-9894-y
10.1016/j.atmosres.2016.06.016
10.1007/s00024-011-0366-3
10.1016/j.atmosres.2018.03.011
10.1002/joc.4582
10.1016/j.atmosres.2007.11.010
10.1029/2009JD013484
10.1007/s00024-015-1159-x
10.1007/s00382-012-1414-0
10.4209/aaqr.2015.05.0353
10.1029/95GL00907
10.1038/ngeo414
10.1016/j.atmosres.2016.12.009
10.2747/0272-3646.27.3.206
10.3390/ijgi6080257
10.1007/s11430-013-4774-3
10.1007/s00024-011-0356-5
10.1175/JAM2516.1
10.5194/acp-16-8353-2016
10.5194/nhess-9-1541-2009
10.1016/j.atmosres.2014.04.003
10.1029/2007WR006624
10.1016/j.atmosenv.2008.08.002
10.1002/2014GL060018
10.1016/j.atmosenv.2015.09.011
10.1007/s13351-017-6187-2
10.5194/acp-14-11949-2014
10.5194/acp-14-12499-2014
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.atmosres.2018.12.026
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1873-2895
EndPage 74
ExternalDocumentID 10_1016_j_atmosres_2018_12_026
S0169809518310603
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
ZMT
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
SEP
SEW
SSH
T9H
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c411t-a65fa7d50c0763059c676b5c5522b27f70e1e4e608da42abf2774968d3093ef13
IEDL.DBID .~1
ISSN 0169-8095
IngestDate Fri Jul 11 06:48:31 EDT 2025
Tue Jul 01 01:03:55 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Fri Feb 23 02:35:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Urban expansion
WRF
Fog event
Shanghai
Climatological characteristics
Fog type
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-a65fa7d50c0763059c676b5c5522b27f70e1e4e608da42abf2774968d3093ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0326-7179
PQID 2220854113
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2220854113
crossref_primary_10_1016_j_atmosres_2018_12_026
crossref_citationtrail_10_1016_j_atmosres_2018_12_026
elsevier_sciencedirect_doi_10_1016_j_atmosres_2018_12_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Atmospheric research
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Forthun, Johnson, Schmitz, Blume, Caldwell (bb0045) 2006; 27
Syed, Körnich, Tjernström (bb0150) 2012; 39
Byers (bb0020) 1959
Jin, Shi (bb0075) 2008; 27
Stolaki, Kazadzis, Foris, Karacostas (bb0145) 2009; 9
Niu, Li, Li, Lee, Wang (bb0120) 2010; 115
Li, Yang, Shi, Pu (bb0105) 2012; 169
Witiw, LaDochy (bb0180) 2008; 87
Sachweh, Koepke (bb0125) 1995; 22
Kusaka, Kondo, Kikegawa, Kimura (bb0085) 2001; 101
Moriwaki, Kanda, Senoo, Hagishima (bb0115) 2008; 44
Chaouch, Temimi, Weston, Ghedira (bb0025) 2017; 187
Chen, Shi, Wang, Dong (bb0030) 2006; 16
Fu, Xu, Yang, Li, Zhao (bb0050) 2014; 14
Zhang, Musson-Genon, Dupont, Milliez, Carissimo (bb0190) 2014; 151
Shen, Sun, Zhang, Zhang, Zhang, Che, Ma, Yu, Yue, Zhang (bb0135) 2015; 120
Leng, Zhang, Zhang, Xu, Cheng, Zhang, Tao, Chen, Zha, Zhang, Li, Kong, Gao (bb0100) 2014; 14
Lin, Zhang, Pu, Wang (bb0110) 2017; 31
Twomey (bb0160) 2007; 41
Baldocchi, Waller (bb0010) 2014; 41
Zhong, Zhang, Wang, Liu, Dong (bb0195) 2018; 209
Zhou, Zhang, Guo (bb0205) 1981
Seidel, Grant, Pszenny, Allman (bb0130) 2007; 20
Williams, Schwartz, Iacobellis, Seager, Cook, Still, Husak, Michaelsen (bb0175) 2015; 42
Doran, Roohr, Beberwyk, Brooks, Gayno, Williams, Lewis, Lefevre (bb2555) 1999
Lee, Chen, Kleeman, Zhang, DeNero, Joe (bb0095) 2016; 16
LaDochy, Witiw (bb0090) 2012; 169
Vautard, Yiou, Van Oldenborgh (bb0170) 2009; 2
Dupont, Haeffelin, Stolaki, Elias (bb0040) 2016; 173
Zhou, Zheng (bb0200) 1987; 45
Gao, Zhang, Liu, Wang, Wang, Xia, Tao, Zhu (bb0055) 2015; 15
Klemm, Lin (bb0080) 2016; 16
Belorid, Lee, Kim, Cheon (bb0015) 2015; 122
Doan, Kusaka (bb0035) 2016; 36
Shi, Roth, Zhang, Li (bb0140) 2008; 42
Akimoto, Kusaka (bb0005) 2015; 151
IPCC (bb0070) 2007
Gong, Simwanda, Murayama (bb0060) 2017; 6
Hu, Fu, Wang, Kong, Chen, Chen (bb0065) 2016; 181
Van Oldenborgh, Yiou, Vautard (bb0165) 2010; 10
Zhang, Li, Zhang (bb0185) 2014; 57
Tardif, Rasmussen (bb0155) 2007; 46
Shen (10.1016/j.atmosres.2018.12.026_bb0135) 2015; 120
Akimoto (10.1016/j.atmosres.2018.12.026_bb0005) 2015; 151
Zhang (10.1016/j.atmosres.2018.12.026_bb0185) 2014; 57
Twomey (10.1016/j.atmosres.2018.12.026_bb0160) 2007; 41
Niu (10.1016/j.atmosres.2018.12.026_bb0120) 2010; 115
Lee (10.1016/j.atmosres.2018.12.026_bb0095) 2016; 16
Tardif (10.1016/j.atmosres.2018.12.026_bb0155) 2007; 46
Zhang (10.1016/j.atmosres.2018.12.026_bb0190) 2014; 151
Leng (10.1016/j.atmosres.2018.12.026_bb0100) 2014; 14
Chaouch (10.1016/j.atmosres.2018.12.026_bb0025) 2017; 187
Gao (10.1016/j.atmosres.2018.12.026_bb0055) 2015; 15
Vautard (10.1016/j.atmosres.2018.12.026_bb0170) 2009; 2
Van Oldenborgh (10.1016/j.atmosres.2018.12.026_bb0165) 2010; 10
Byers (10.1016/j.atmosres.2018.12.026_bb0020) 1959
Klemm (10.1016/j.atmosres.2018.12.026_bb0080) 2016; 16
Chen (10.1016/j.atmosres.2018.12.026_bb0030) 2006; 16
Jin (10.1016/j.atmosres.2018.12.026_bb0075) 2008; 27
Lin (10.1016/j.atmosres.2018.12.026_bb0110) 2017; 31
Stolaki (10.1016/j.atmosres.2018.12.026_bb0145) 2009; 9
Zhong (10.1016/j.atmosres.2018.12.026_bb0195) 2018; 209
Forthun (10.1016/j.atmosres.2018.12.026_bb0045) 2006; 27
Dupont (10.1016/j.atmosres.2018.12.026_bb0040) 2016; 173
Hu (10.1016/j.atmosres.2018.12.026_bb0065) 2016; 181
Sachweh (10.1016/j.atmosres.2018.12.026_bb0125) 1995; 22
LaDochy (10.1016/j.atmosres.2018.12.026_bb0090) 2012; 169
Witiw (10.1016/j.atmosres.2018.12.026_bb0180) 2008; 87
IPCC (10.1016/j.atmosres.2018.12.026_bb0070) 2007
Moriwaki (10.1016/j.atmosres.2018.12.026_bb0115) 2008; 44
Belorid (10.1016/j.atmosres.2018.12.026_bb0015) 2015; 122
Li (10.1016/j.atmosres.2018.12.026_bb0105) 2012; 169
Fu (10.1016/j.atmosres.2018.12.026_bb0050) 2014; 14
Kusaka (10.1016/j.atmosres.2018.12.026_bb0085) 2001; 101
Doan (10.1016/j.atmosres.2018.12.026_bb0035) 2016; 36
Baldocchi (10.1016/j.atmosres.2018.12.026_bb0010) 2014; 41
Shi (10.1016/j.atmosres.2018.12.026_bb0140) 2008; 42
Syed (10.1016/j.atmosres.2018.12.026_bb0150) 2012; 39
Seidel (10.1016/j.atmosres.2018.12.026_bb0130) 2007; 20
Zhou (10.1016/j.atmosres.2018.12.026_bb0205) 1981
Zhou (10.1016/j.atmosres.2018.12.026_bb0200) 1987; 45
Doran (10.1016/j.atmosres.2018.12.026_bb2555) 1999
Williams (10.1016/j.atmosres.2018.12.026_bb0175) 2015; 42
Gong (10.1016/j.atmosres.2018.12.026_bb0060) 2017; 6
References_xml – volume: 151
  start-page: 200
  year: 2015
  end-page: 211
  ident: bb0005
  article-title: A climatological study of fog in Japan based on event data
  publication-title: Atmos. Res.
– volume: 46
  start-page: 1141
  year: 2007
  end-page: 1168
  ident: bb0155
  article-title: Event-based climatology and typology of fog in the New York City region
  publication-title: J. Appl. Meteorol. Climatol.
– start-page: 277
  year: 1959
  end-page: 279
  ident: bb0020
  article-title: General Meteorology
– volume: 14
  start-page: 12499
  year: 2014
  end-page: 12512
  ident: bb0100
  article-title: Variations of cloud condensation nuclei (CCN) and aerosol activity during fog-haze episode: a case study from Shanghai
  publication-title: Atmos. Chem. Phys.
– volume: 31
  start-page: 874
  year: 2017
  end-page: 889
  ident: bb0110
  article-title: Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model
  publication-title: J. Meteorol. Res.
– volume: 10
  start-page: 4597
  year: 2010
  end-page: 4609
  ident: bb0165
  article-title: On the roles of circulation and aerosols in the decline of mist and dense fog in Europe over the last 30 years
  publication-title: Atmos. Chem. Phys.
– volume: 169
  start-page: 1157
  year: 2012
  end-page: 1163
  ident: bb0090
  article-title: The continued reduction in dense fog in the southern California region: possible causes
  publication-title: Pure Appl. Geophys.
– volume: 44
  start-page: W11424
  year: 2008
  ident: bb0115
  article-title: Anthropogenic water vapour emissions in Tokyo
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 138
  year: 2008
  end-page: 143
  ident: bb0075
  article-title: Climatic Characteristics and Change Laws of fog and Haze Days in Shanghai
  publication-title: Plateau Meteor.
– volume: 57
  start-page: 26
  year: 2014
  end-page: 35
  ident: bb0185
  article-title: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013
  publication-title: Sci. China Earth Sci.
– volume: 36
  start-page: 3633
  year: 2016
  end-page: 3650
  ident: bb0035
  article-title: Numerical study on regional climate change due to the rapid urbanization of greater Ho Chi Minh City's metropolitan area over the past 20 years
  publication-title: Int. J. Climatol.
– volume: 16
  start-page: 8353
  year: 2016
  end-page: 8374
  ident: bb0095
  article-title: Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California
  publication-title: Atmos. Chem. Phys.
– volume: 101
  start-page: 329
  year: 2001
  end-page: 358
  ident: bb0085
  article-title: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models
  publication-title: Bound.-Layer Meteorol.
– volume: 120
  start-page: 307
  year: 2015
  end-page: 316
  ident: bb0135
  article-title: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta
  publication-title: China. Atmos. Environ.
– start-page: 153
  year: 2007
  end-page: 185
  ident: bb0070
  article-title: Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC
– volume: 115
  start-page: 1
  year: 2010
  end-page: 12
  ident: bb0120
  article-title: Increase of wintertime fog in China: potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading
  publication-title: J. Geophys. Res. Atmos.
– volume: 87
  start-page: 293
  year: 2008
  end-page: 300
  ident: bb0180
  article-title: Trends in fog frequencies in the Los Angeles Basin
  publication-title: Atmos. Res.
– volume: 16
  start-page: 430
  year: 2006
  end-page: 438
  ident: bb0030
  article-title: Impact of climate variation on fog in China
  publication-title: J. Geogr. Sci.
– year: 1999
  ident: bb2555
  article-title: The MM5 at the Air Force Weather Agency-New products to support military operations
  publication-title: The 8th Conference on Aviation, Range, and Aerospace Meteorology
– volume: 6
  start-page: 257
  year: 2017
  ident: bb0060
  article-title: An Internet-based GIS Platform Providing Data for Visualization and Spatial Analysis of Urbanization in Major Asian and African Cities
  publication-title: ISPRS Int. J. Geo-Information
– volume: 169
  start-page: 927
  year: 2012
  end-page: 939
  ident: bb0105
  article-title: Urbanization effects on fog in China: Field research and modeling
  publication-title: Pure Appl. Geophys.
– volume: 209
  start-page: 59
  year: 2018
  end-page: 64
  ident: bb0195
  article-title: Heavy aerosol pollution episodes in winter Beijing enhanced by radiative cooling effects of aerosols
  publication-title: Atmos. Res.
– volume: 15
  start-page: 4279
  year: 2015
  end-page: 4295
  ident: bb0055
  article-title: Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain
  publication-title: Atmos. Chem. Phys.
– volume: 41
  start-page: 3251
  year: 2014
  end-page: 3256
  ident: bb0010
  article-title: Winter fog is decreasing in the fruit growing region of the Central Valley of California
  publication-title: Geophys. Res. Lett.
– volume: 16
  start-page: 1131
  year: 2016
  end-page: 1142
  ident: bb0080
  article-title: What causes observed fog trends: Air quality or climate change?
  publication-title: Aerosol Air Qual. Res.
– volume: 122
  start-page: 699
  year: 2015
  end-page: 710
  ident: bb0015
  article-title: Distribution and long-term trends in various fog types over South Korea
  publication-title: Theor. Appl. Climatol.
– volume: 14
  start-page: 11949
  year: 2014
  end-page: 11958
  ident: bb0050
  article-title: The distribution and trends of fog and haze in the North China Plain over the past 30 years
  publication-title: Atmos. Chem. Phys.
– volume: 27
  start-page: 206
  year: 2006
  end-page: 222
  ident: bb0045
  article-title: Trends in fog frequency and duration in the Southeast United States
  publication-title: Phys. Geogr.
– volume: 9
  start-page: 1541
  year: 2009
  end-page: 1549
  ident: bb0145
  article-title: Fog characteristics at the airport of Thessaloniki
  publication-title: Greece. Nat. Hazards Earth Syst. Sci.
– volume: 20
  start-page: 5629
  year: 2007
  end-page: 5641
  ident: bb0130
  article-title: Dewpoint and humidity measurements and trends at the summit of Mount Washington, New Hampshire, 1935-2004
  publication-title: J. Clim.
– volume: 41
  start-page: 120
  year: 2007
  end-page: 125
  ident: bb0160
  article-title: Pollution and the Planetary Albedo
  publication-title: Atmos. Environ.
– start-page: 11
  year: 1981
  end-page: 18
  ident: bb0205
  article-title: On the formation and classification of fogs of Shanghai
  publication-title: Trans. Oceanol. Limnology
– volume: 187
  start-page: 106
  year: 2017
  end-page: 127
  ident: bb0025
  article-title: Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region
  publication-title: Atmos. Res.
– volume: 181
  start-page: 95
  year: 2016
  end-page: 105
  ident: bb0065
  article-title: The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere
  publication-title: Atmos. Res.
– volume: 22
  start-page: 1073
  year: 1995
  end-page: 1076
  ident: bb0125
  article-title: Radiation fog and urban climate
  publication-title: Geophys. Res. Lett.
– volume: 2
  start-page: 115
  year: 2009
  end-page: 119
  ident: bb0170
  article-title: Decline of fog, mist and haze in Europe over the past 30 years
  publication-title: Nat. Geosci.
– volume: 173
  start-page: 1337
  year: 2016
  end-page: 1358
  ident: bb0040
  article-title: Analysis of dynamical and thermal processes driving fog and quasi-fog life cycles using the 2010–2013 ParisFog dataset
  publication-title: Pure Appl. Geophys.
– volume: 151
  start-page: 293
  year: 2014
  end-page: 315
  ident: bb0190
  article-title: On the Influence of a simple Microphysics Parametrization on Radiation fog Modelling: a Case Study during ParisFog
  publication-title: Boundary-Layer Meteorol.
– volume: 45
  start-page: 366
  year: 1987
  end-page: 369
  ident: bb0200
  article-title: Shanghai urban influence of fog
  publication-title: Acta Meteor. Sinica (in Chinese)
– volume: 42
  start-page: 1527
  year: 2015
  end-page: 1536
  ident: bb0175
  article-title: Urbanization causes increased cloud base height and decreased fog in coastal Southern California
  publication-title: Geophys. Res. Lett.
– volume: 42
  start-page: 8484
  year: 2008
  end-page: 8492
  ident: bb0140
  article-title: Impacts of urbanization on long-term fog variation in Anhui Province
  publication-title: China. Atmos. Environ.
– volume: 39
  start-page: 2993
  year: 2012
  end-page: 3005
  ident: bb0150
  article-title: On the fog variability over South Asia
  publication-title: Clim. Dyn.
– volume: 122
  start-page: 699
  year: 2015
  ident: 10.1016/j.atmosres.2018.12.026_bb0015
  article-title: Distribution and long-term trends in various fog types over South Korea
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-014-1321-x
– volume: 42
  start-page: 1527
  year: 2015
  ident: 10.1016/j.atmosres.2018.12.026_bb0175
  article-title: Urbanization causes increased cloud base height and decreased fog in coastal Southern California
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL063266
– volume: 20
  start-page: 5629
  year: 2007
  ident: 10.1016/j.atmosres.2018.12.026_bb0130
  article-title: Dewpoint and humidity measurements and trends at the summit of Mount Washington, New Hampshire, 1935-2004
  publication-title: J. Clim.
  doi: 10.1175/2007JCLI1604.1
– volume: 101
  start-page: 329
  year: 2001
  ident: 10.1016/j.atmosres.2018.12.026_bb0085
  article-title: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1019207923078
– volume: 41
  start-page: 120
  year: 2007
  ident: 10.1016/j.atmosres.2018.12.026_bb0160
  article-title: Pollution and the Planetary Albedo
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.10.062
– volume: 10
  start-page: 4597
  year: 2010
  ident: 10.1016/j.atmosres.2018.12.026_bb0165
  article-title: On the roles of circulation and aerosols in the decline of mist and dense fog in Europe over the last 30 years
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-4597-2010
– volume: 15
  start-page: 4279
  year: 2015
  ident: 10.1016/j.atmosres.2018.12.026_bb0055
  article-title: Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-4279-2015
– volume: 16
  start-page: 430
  year: 2006
  ident: 10.1016/j.atmosres.2018.12.026_bb0030
  article-title: Impact of climate variation on fog in China
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-006-0406-6
– volume: 151
  start-page: 293
  year: 2014
  ident: 10.1016/j.atmosres.2018.12.026_bb0190
  article-title: On the Influence of a simple Microphysics Parametrization on Radiation fog Modelling: a Case Study during ParisFog
  publication-title: Boundary-Layer Meteorol.
  doi: 10.1007/s10546-013-9894-y
– volume: 181
  start-page: 95
  year: 2016
  ident: 10.1016/j.atmosres.2018.12.026_bb0065
  article-title: The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.06.016
– volume: 169
  start-page: 1157
  year: 2012
  ident: 10.1016/j.atmosres.2018.12.026_bb0090
  article-title: The continued reduction in dense fog in the southern California region: possible causes
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-011-0366-3
– volume: 209
  start-page: 59
  year: 2018
  ident: 10.1016/j.atmosres.2018.12.026_bb0195
  article-title: Heavy aerosol pollution episodes in winter Beijing enhanced by radiative cooling effects of aerosols
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.03.011
– volume: 36
  start-page: 3633
  year: 2016
  ident: 10.1016/j.atmosres.2018.12.026_bb0035
  article-title: Numerical study on regional climate change due to the rapid urbanization of greater Ho Chi Minh City's metropolitan area over the past 20 years
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4582
– volume: 87
  start-page: 293
  year: 2008
  ident: 10.1016/j.atmosres.2018.12.026_bb0180
  article-title: Trends in fog frequencies in the Los Angeles Basin
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2007.11.010
– volume: 45
  start-page: 366
  year: 1987
  ident: 10.1016/j.atmosres.2018.12.026_bb0200
  article-title: Shanghai urban influence of fog
  publication-title: Acta Meteor. Sinica (in Chinese)
– start-page: 153
  year: 2007
  ident: 10.1016/j.atmosres.2018.12.026_bb0070
– volume: 115
  start-page: 1
  year: 2010
  ident: 10.1016/j.atmosres.2018.12.026_bb0120
  article-title: Increase of wintertime fog in China: potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2009JD013484
– volume: 173
  start-page: 1337
  year: 2016
  ident: 10.1016/j.atmosres.2018.12.026_bb0040
  article-title: Analysis of dynamical and thermal processes driving fog and quasi-fog life cycles using the 2010–2013 ParisFog dataset
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-015-1159-x
– volume: 39
  start-page: 2993
  year: 2012
  ident: 10.1016/j.atmosres.2018.12.026_bb0150
  article-title: On the fog variability over South Asia
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-012-1414-0
– volume: 16
  start-page: 1131
  year: 2016
  ident: 10.1016/j.atmosres.2018.12.026_bb0080
  article-title: What causes observed fog trends: Air quality or climate change?
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2015.05.0353
– volume: 22
  start-page: 1073
  year: 1995
  ident: 10.1016/j.atmosres.2018.12.026_bb0125
  article-title: Radiation fog and urban climate
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/95GL00907
– start-page: 11
  issue: 1
  year: 1981
  ident: 10.1016/j.atmosres.2018.12.026_bb0205
  article-title: On the formation and classification of fogs of Shanghai
  publication-title: Trans. Oceanol. Limnology
– start-page: 277
  year: 1959
  ident: 10.1016/j.atmosres.2018.12.026_bb0020
– volume: 2
  start-page: 115
  year: 2009
  ident: 10.1016/j.atmosres.2018.12.026_bb0170
  article-title: Decline of fog, mist and haze in Europe over the past 30 years
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo414
– volume: 187
  start-page: 106
  year: 2017
  ident: 10.1016/j.atmosres.2018.12.026_bb0025
  article-title: Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.12.009
– volume: 27
  start-page: 206
  year: 2006
  ident: 10.1016/j.atmosres.2018.12.026_bb0045
  article-title: Trends in fog frequency and duration in the Southeast United States
  publication-title: Phys. Geogr.
  doi: 10.2747/0272-3646.27.3.206
– volume: 6
  start-page: 257
  year: 2017
  ident: 10.1016/j.atmosres.2018.12.026_bb0060
  article-title: An Internet-based GIS Platform Providing Data for Visualization and Spatial Analysis of Urbanization in Major Asian and African Cities
  publication-title: ISPRS Int. J. Geo-Information
  doi: 10.3390/ijgi6080257
– volume: 57
  start-page: 26
  year: 2014
  ident: 10.1016/j.atmosres.2018.12.026_bb0185
  article-title: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-013-4774-3
– volume: 169
  start-page: 927
  year: 2012
  ident: 10.1016/j.atmosres.2018.12.026_bb0105
  article-title: Urbanization effects on fog in China: Field research and modeling
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-011-0356-5
– volume: 46
  start-page: 1141
  year: 2007
  ident: 10.1016/j.atmosres.2018.12.026_bb0155
  article-title: Event-based climatology and typology of fog in the New York City region
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAM2516.1
– volume: 16
  start-page: 8353
  year: 2016
  ident: 10.1016/j.atmosres.2018.12.026_bb0095
  article-title: Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-8353-2016
– volume: 9
  start-page: 1541
  year: 2009
  ident: 10.1016/j.atmosres.2018.12.026_bb0145
  article-title: Fog characteristics at the airport of Thessaloniki
  publication-title: Greece. Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-9-1541-2009
– volume: 151
  start-page: 200
  year: 2015
  ident: 10.1016/j.atmosres.2018.12.026_bb0005
  article-title: A climatological study of fog in Japan based on event data
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2014.04.003
– volume: 44
  start-page: W11424
  year: 2008
  ident: 10.1016/j.atmosres.2018.12.026_bb0115
  article-title: Anthropogenic water vapour emissions in Tokyo
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006624
– volume: 42
  start-page: 8484
  year: 2008
  ident: 10.1016/j.atmosres.2018.12.026_bb0140
  article-title: Impacts of urbanization on long-term fog variation in Anhui Province
  publication-title: China. Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.08.002
– year: 1999
  ident: 10.1016/j.atmosres.2018.12.026_bb2555
  article-title: The MM5 at the Air Force Weather Agency-New products to support military operations
– volume: 27
  start-page: 138
  year: 2008
  ident: 10.1016/j.atmosres.2018.12.026_bb0075
  article-title: Climatic Characteristics and Change Laws of fog and Haze Days in Shanghai
  publication-title: Plateau Meteor.
– volume: 41
  start-page: 3251
  year: 2014
  ident: 10.1016/j.atmosres.2018.12.026_bb0010
  article-title: Winter fog is decreasing in the fruit growing region of the Central Valley of California
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL060018
– volume: 120
  start-page: 307
  year: 2015
  ident: 10.1016/j.atmosres.2018.12.026_bb0135
  article-title: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta
  publication-title: China. Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.09.011
– volume: 31
  start-page: 874
  year: 2017
  ident: 10.1016/j.atmosres.2018.12.026_bb0110
  article-title: Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-017-6187-2
– volume: 14
  start-page: 11949
  year: 2014
  ident: 10.1016/j.atmosres.2018.12.026_bb0050
  article-title: The distribution and trends of fog and haze in the North China Plain over the past 30 years
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-11949-2014
– volume: 14
  start-page: 12499
  year: 2014
  ident: 10.1016/j.atmosres.2018.12.026_bb0100
  article-title: Variations of cloud condensation nuclei (CCN) and aerosol activity during fog-haze episode: a case study from Shanghai
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-12499-2014
SSID ssj0005049
Score 2.3499253
Snippet Fog is a hazard to transportation activities in Shanghai, China, but it is not known how this fog is influenced by urban expansion. Here we use a numerical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms advection
air
air temperature
airports
China
Climatological characteristics
Fog event
Fog type
heat
land use
liquids
mathematical models
meteorological data
mixing ratio
relative humidity
Shanghai
Urban expansion
urbanization
water vapor
winter
WRF
Title Impacts of urban expansion on fog types in Shanghai, China: Numerical experiments by WRF model
URI https://dx.doi.org/10.1016/j.atmosres.2018.12.026
https://www.proquest.com/docview/2220854113
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9sIF8RTLoxokxImwseNHllu16moL6h4oFT1h2Y4DqZak2ocEF347M94ECkLqASkXR54oGtszn8Yz8zH2wotKcWdC5lwhMlmHMvPOySwWphLcV-hBKDRwutDzc_n2Ql3sselQC0Nplb3t39n0ZK37N-Nem-OrphmfUR-RkhACcWXp1PFTSkO7_PWPa2kePQTGyRnNvlYlfIkr8rVDT0Rtu3mZwoLUZOHfDuovU538z-wOu90DRzja_dtdthfbe2x0ipi3W6XQOLyE6bJBAJpG99mnk1QAuYauhu3KuxbiNzz6FB0DfOruM1D8dQ1NC2cUNv7imleQ-LTfwGK7u8lZwm8KgDX47_Dx_QwSe84Ddj47_jCdZz2bQhYk55vMaVU7U6k85GhTEFUFbbRXQSEC88LUJo88yqjzsnJSOF8LRIYTXVZ0VxprXjxk-23XxkcMjHQF517kUTsZijCJOgQejMkrVZpYj5gaVGhD32qcGC-Wdsgpu7SD6i2p3nJhUfUjNv4ld7VrtnGjxGRYIfvHtrHoEW6UfT4sqcUzRRclro3dFicJYi5FrRWP_-P7T9gtHE0o1YCrp2x_s9rGZ4hgNv4wbdFDdnB08m6--AmPt_Ih
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcigXBBTE8qorIU6EjR0_stzQqqvtY_dAW9ETlu04JdWSVPuQ6KW_nRlvQktVqQekXJKMo2jGnvk0Hs9HyAfHC8ms9om1GU9E6fPEWSuSkOmCM1dABMHUwGSqxqfi4EyebZBhdxYGyypb37_26dFbt0_6rTb7l1XVP8Y-IjkiBOTKUtjx85GA5Ys0Bp-vb9V5tBgYpBMUv3VM-AJM8quBUIR9u1ke84LYZeH-CHXHV8cANHpKnrTIkX5d_9wzshHq56Q3AdDbzGNunH6kw1kFCDTebZMf-_EE5II2JV3Nna1p-A1rH9NjFK6yOaeYgF3QqqbHmDf-aatPNBJqf6HT1XorZ0ZvOAAW1F3R799GNNLnvCCno72T4Thp6RQSLxhbJlbJ0upCpj4FpwKwyiutnPQSIJjjutRpYEEEleaFFdy6kgM0HKi8wM3SULLsJdmsmzq8IlQLmzHmeBqUFT7zg6C8Z17rtJC5DmWPyE6Fxre9xpHyYma6orIL06neoOoN4wZU3yP9v-Mu1902Hhwx6Cxk_pk3BkLCg2N3O5MaWFS4U2Lr0KxAiCN1KWgte_0f398hW-OTyZE52p8eviGP4c0A6w6YfEs2l_NVeAdwZunex-n6BxmP868
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacts+of+urban+expansion+on+fog+types+in+Shanghai%2C+China%3A+Numerical+experiments+by+WRF+model&rft.jtitle=Atmospheric+research&rft.au=Gu%2C+Ying&rft.au=Kusaka%2C+Hiroyuki&rft.au=Doan%2C+Van+Quang&rft.au=Tan%2C+Jianguo&rft.date=2019-05-15&rft.issn=0169-8095&rft.volume=220&rft.spage=57&rft.epage=74&rft_id=info:doi/10.1016%2Fj.atmosres.2018.12.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atmosres_2018_12_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-8095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-8095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-8095&client=summon