A Clinical PET Imaging Tracer ([18F]DASA-23) to Monitor Pyruvate Kinase M2–Induced Glycolytic Reprogramming in Glioblastoma

Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 27; no. 23; pp. 6467 - 6478
Main Authors Beinat, Corinne, Patel, Chirag B., Haywood, Tom, Murty, Surya, Naya, Lewis, Castillo, Jessa B., Reyes, Samantha T., Phillips, Megan, Buccino, Pablo, Shen, Bin, Park, Jun Hyung, Koran, Mary Ellen I., Alam, Israt S., James, Michelle L., Holley, Dawn, Halbert, Kim, Gandhi, Harsh, He, Joy Q., Granucci, Monica, Johnson, Eli, Liu, Daniel Dan, Uchida, Nobuko, Sinha, Rahul, Chu, Pauline, Born, Donald E., Warnock, Geoffrey I., Weissman, Irving, Hayden-Gephart, Melanie, Khalighi, Mehdi, Massoud, Tarik F., Iagaru, Andrei, Davidzon, Guido, Thomas, Reena, Nagpal, Seema, Recht, Lawrence D., Gambhir, Sanjiv Sam
Format Journal Article
LanguageEnglish
Published United States 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[ F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([ F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. [ F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/μmol and radiochemical purity >95%. We performed initial testing of [ F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [ F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. In mouse imaging studies, [ F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [ F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [ F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [ F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. We developed and translated [ F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [ F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.
AbstractList Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM.PURPOSEPyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM.[18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/μmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma.EXPERIMENTAL DESIGN[18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/μmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma.In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation.RESULTSIn mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation.We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.CONCLUSIONSWe developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.
Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[ F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([ F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. [ F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/μmol and radiochemical purity >95%. We performed initial testing of [ F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [ F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. In mouse imaging studies, [ F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [ F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [ F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [ F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. We developed and translated [ F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [ F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.
Author Thomas, Reena
Naya, Lewis
Recht, Lawrence D.
Hayden-Gephart, Melanie
He, Joy Q.
Chu, Pauline
Haywood, Tom
Johnson, Eli
Khalighi, Mehdi
Castillo, Jessa B.
Halbert, Kim
Holley, Dawn
Gandhi, Harsh
Born, Donald E.
Gambhir, Sanjiv Sam
Alam, Israt S.
Patel, Chirag B.
James, Michelle L.
Weissman, Irving
Reyes, Samantha T.
Koran, Mary Ellen I.
Shen, Bin
Liu, Daniel Dan
Phillips, Megan
Iagaru, Andrei
Beinat, Corinne
Massoud, Tarik F.
Davidzon, Guido
Nagpal, Seema
Granucci, Monica
Warnock, Geoffrey I.
Buccino, Pablo
Sinha, Rahul
Murty, Surya
Park, Jun Hyung
Uchida, Nobuko
AuthorAffiliation 3 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94305, USA
7 Department of Pathology, Neuropathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
10 Departments of Bioengineering and Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
4 Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
1 Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
5 Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
8 PMOD Technologies Ltd, Zurich, Switzerland
2 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
6 Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA, 94305, USA
9 Divisi
AuthorAffiliation_xml – name: 3 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94305, USA
– name: 10 Departments of Bioengineering and Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
– name: 4 Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
– name: 7 Department of Pathology, Neuropathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
– name: 2 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
– name: 1 Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
– name: 6 Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA, 94305, USA
– name: 5 Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
– name: 8 PMOD Technologies Ltd, Zurich, Switzerland
– name: 9 Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
Author_xml – sequence: 1
  givenname: Corinne
  orcidid: 0000-0003-1718-3272
  surname: Beinat
  fullname: Beinat, Corinne
– sequence: 2
  givenname: Chirag B.
  surname: Patel
  fullname: Patel, Chirag B.
– sequence: 3
  givenname: Tom
  surname: Haywood
  fullname: Haywood, Tom
– sequence: 4
  givenname: Surya
  surname: Murty
  fullname: Murty, Surya
– sequence: 5
  givenname: Lewis
  orcidid: 0000-0003-4701-2554
  surname: Naya
  fullname: Naya, Lewis
– sequence: 6
  givenname: Jessa B.
  surname: Castillo
  fullname: Castillo, Jessa B.
– sequence: 7
  givenname: Samantha T.
  orcidid: 0000-0002-2584-5902
  surname: Reyes
  fullname: Reyes, Samantha T.
– sequence: 8
  givenname: Megan
  surname: Phillips
  fullname: Phillips, Megan
– sequence: 9
  givenname: Pablo
  surname: Buccino
  fullname: Buccino, Pablo
– sequence: 10
  givenname: Bin
  surname: Shen
  fullname: Shen, Bin
– sequence: 11
  givenname: Jun Hyung
  surname: Park
  fullname: Park, Jun Hyung
– sequence: 12
  givenname: Mary Ellen I.
  orcidid: 0000-0002-3322-9114
  surname: Koran
  fullname: Koran, Mary Ellen I.
– sequence: 13
  givenname: Israt S.
  surname: Alam
  fullname: Alam, Israt S.
– sequence: 14
  givenname: Michelle L.
  surname: James
  fullname: James, Michelle L.
– sequence: 15
  givenname: Dawn
  surname: Holley
  fullname: Holley, Dawn
– sequence: 16
  givenname: Kim
  surname: Halbert
  fullname: Halbert, Kim
– sequence: 17
  givenname: Harsh
  surname: Gandhi
  fullname: Gandhi, Harsh
– sequence: 18
  givenname: Joy Q.
  surname: He
  fullname: He, Joy Q.
– sequence: 19
  givenname: Monica
  surname: Granucci
  fullname: Granucci, Monica
– sequence: 20
  givenname: Eli
  surname: Johnson
  fullname: Johnson, Eli
– sequence: 21
  givenname: Daniel Dan
  orcidid: 0000-0003-0100-5973
  surname: Liu
  fullname: Liu, Daniel Dan
– sequence: 22
  givenname: Nobuko
  surname: Uchida
  fullname: Uchida, Nobuko
– sequence: 23
  givenname: Rahul
  surname: Sinha
  fullname: Sinha, Rahul
– sequence: 24
  givenname: Pauline
  surname: Chu
  fullname: Chu, Pauline
– sequence: 25
  givenname: Donald E.
  orcidid: 0000-0001-6102-512X
  surname: Born
  fullname: Born, Donald E.
– sequence: 26
  givenname: Geoffrey I.
  surname: Warnock
  fullname: Warnock, Geoffrey I.
– sequence: 27
  givenname: Irving
  surname: Weissman
  fullname: Weissman, Irving
– sequence: 28
  givenname: Melanie
  surname: Hayden-Gephart
  fullname: Hayden-Gephart, Melanie
– sequence: 29
  givenname: Mehdi
  orcidid: 0000-0001-5623-1922
  surname: Khalighi
  fullname: Khalighi, Mehdi
– sequence: 30
  givenname: Tarik F.
  orcidid: 0000-0002-9694-1408
  surname: Massoud
  fullname: Massoud, Tarik F.
– sequence: 31
  givenname: Andrei
  orcidid: 0000-0003-0839-5329
  surname: Iagaru
  fullname: Iagaru, Andrei
– sequence: 32
  givenname: Guido
  orcidid: 0000-0001-5579-6825
  surname: Davidzon
  fullname: Davidzon, Guido
– sequence: 33
  givenname: Reena
  surname: Thomas
  fullname: Thomas, Reena
– sequence: 34
  givenname: Seema
  orcidid: 0000-0002-0289-2319
  surname: Nagpal
  fullname: Nagpal, Seema
– sequence: 35
  givenname: Lawrence D.
  surname: Recht
  fullname: Recht, Lawrence D.
– sequence: 36
  givenname: Sanjiv Sam
  orcidid: 0000-0002-2711-7554
  surname: Gambhir
  fullname: Gambhir, Sanjiv Sam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34475101$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1qFDEUx4NU7Ic-gpLLejFtMkkmMwjCMrZ1scVS1yuRkEkyaySTrEmmsBeC7-Ab-iSdoV1RL7w6B87_A87vEOz54A0AzzE6wZjVpxjxukCUlCdte1OUuECM0kfgADPGC1JWbG_ad5p9cJjSV4QwxYg-AfuEUs4wwgfg-wK2znqrpIPXZyu4HOTa-jVcRalMhMefcH3--c3iw6IoyUuYA7wK3uYQ4fU2jrcyG_jOepkMvCp__fi59HpURsMLt1XBbbNV8MZsYlhHOQxzrPXTzYbOyZTDIJ-Cx710yTx7mEfg4_nZqn1bXL6_WLaLy0JRjHMhUd1RhkzPMKuMrrSuNa-6njc96puOG4p1bRDteEdk2XBGVdM0iGiu6542HTkCr-9zN2M3GK2Mz1E6sYl2kHErgrTi74u3X8Q63Iq6IlNcOQUcPwTE8G00KYvBJmWck96EMYmSVQ2pSdXwSfriz67fJbufT4JX9wIVQ0rR9ELZLLMNc7V1AiMxExYzPTHTExNhUWIxE57c7B_3ruD_vjsdFaqt
CitedBy_id crossref_primary_10_1016_j_biomaterials_2022_121701
crossref_primary_10_1016_j_nucmedbio_2023_108382
crossref_primary_10_1021_acs_jmedchem_4c02326
crossref_primary_10_1093_neuonc_noad103
crossref_primary_10_1002_mrm_29830
crossref_primary_10_1007_s00259_022_06033_y
crossref_primary_10_1093_jmcb_mjac047
crossref_primary_10_3390_cells12091277
crossref_primary_10_3389_fphys_2023_1103354
Cites_doi 10.1186/s13046-019-1214-z
10.1007/s11060-018-2877-6
10.1093/neuonc/now058
10.3892/ol.2016.4168
10.1007/s00259-018-4240-8
10.3340/jkns.2014.55.1.5
10.3390/bioengineering5040104
10.1016/j.cell.2013.09.025
10.1371/journal.pone.0057610
10.4103/1673-5374.167749
10.1016/j.cpet.2013.10.006
10.1093/neuonc/noz150
10.1038/nrc882
10.1148/radiol.2015141550
10.1007/s00259-020-04687-0
10.1073/pnas.1901645116
10.1590/S1807-59322011001300005
10.1158/0008-5472.CAN-14-0849
10.1093/neuonc/nov125
10.1007/s11307-018-1194-y
10.1097/WCO.0b013e328332363e
10.1007/s002590050541
10.1186/s13578-019-0317-8
10.1093/neuonc/noy049
10.1021/ac900038y
10.1126/science.1125949
10.2967/jnumed.106.037689
10.1126/scitranslmed.aac6117
10.3389/fneur.2019.00460
10.1093/neuonc/not002
10.1007/s00259-003-1118-0
10.1158/1078-0432.CCR-04-2626
10.1002/glia.22667
10.1038/nature06734
10.1371/journal.pone.0141153
10.3389/fonc.2020.00159
10.1007/s11307-019-01353-2
10.1021/jm300371c
10.1148/radiol.11101139
10.1002/jnr.10081
10.1038/nchembio.1060
10.1007/s11307-017-1068-8
ContentType Journal Article
Copyright 2021 American Association for Cancer Research.
Copyright_xml – notice: 2021 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/1078-0432.CCR-21-0544
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 6478
ExternalDocumentID PMC8639752
34475101
10_1158_1078_0432_CCR_21_0544
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA216054
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WOQ
YKV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c411t-a08b450ef5156ed6dd8d76bf79f0f9b7e41d8e04b7b3a29754c99903d7d8f49b3
ISSN 1078-0432
1557-3265
IngestDate Thu Aug 21 14:10:23 EDT 2025
Wed Jul 30 11:28:57 EDT 2025
Thu Apr 03 07:01:00 EDT 2025
Tue Jul 01 01:30:43 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License 2021 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-a08b450ef5156ed6dd8d76bf79f0f9b7e41d8e04b7b3a29754c99903d7d8f49b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authorship note: CB and CBP contributed equally to this work
ORCID 0000-0002-2711-7554
0000-0003-0839-5329
0000-0002-9694-1408
0000-0003-0100-5973
0000-0002-0289-2319
0000-0003-4701-2554
0000-0002-2584-5902
0000-0001-6102-512X
0000-0001-5579-6825
0000-0001-5623-1922
0000-0003-1718-3272
0000-0002-3322-9114
OpenAccessLink https://aacrjournals.org/clincancerres/article-pdf/27/23/6467/3015432/6467.pdf
PMID 34475101
PQID 2569383697
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8639752
proquest_miscellaneous_2569383697
pubmed_primary_34475101
crossref_citationtrail_10_1158_1078_0432_CCR_21_0544
crossref_primary_10_1158_1078_0432_CCR_21_0544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2021
References Zhang (2022061020331445900_bib17) 2019; 9
Najjar (2022061020331445900_bib13) 2018; 5
Mittra (2022061020331445900_bib34) 2011; 260
Witney (2022061020331445900_bib23) 2015; 7
Albert (2022061020331445900_bib7) 2016; 18
Humbert (2022061020331445900_bib32) 2019; 46
Iagaru (2022061020331445900_bib43) 2015; 277
Berti (2022061020331445900_bib5) 2014; 9
Arevalo (2022061020331445900_bib39) 2019; 10
Boxerman (2022061020331445900_bib42) 2018; 20
Israelsen (2022061020331445900_bib20) 2013; 155
Marie (2022061020331445900_bib44) 2011; 66
Pafundi (2022061020331445900_bib30) 2013; 15
Chen (2022061020331445900_bib6) 2007; 48
Haywood (2022061020331445900_bib33) 2019; 116
Dong (2022061020331445900_bib15) 2016; 11
Ostrom (2022061020331445900_bib21) 2019; 21
Nijland (2022061020331445900_bib38) 2014; 62
Christofk (2022061020331445900_bib16) 2008; 452
Zahra (2022061020331445900_bib19) 2020; 10
Beinat (2022061020331445900_bib26) 2018; 20
Brandsma (2022061020331445900_bib41) 2009; 22
Pauleit (2022061020331445900_bib35) 2003; 30
Lin (2022061020331445900_bib14) 2019; 38
Ravera (2022061020331445900_bib36) 2015; 10
Gambhir (2022061020331445900_bib1) 2002; 2
Park (2022061020331445900_bib46) 2014; 74
Chang (2022061020331445900_bib40) 2014; 55
Beinat (2022061020331445900_bib24) 2017; 19
Kelloff (2022061020331445900_bib4) 2005; 11
Weissleder (2022061020331445900_bib2) 2006; 312
Brown (2022061020331445900_bib37) 2001; 66
Wester (2022061020331445900_bib8) 1999; 40
Kläsner (2022061020331445900_bib10) 2015; 10
Anastasiou (2022061020331445900_bib18) 2012; 8
Mukherjee (2022061020331445900_bib22) 2013; 8
Chen (2022061020331445900_bib11) 2006; 47
Gambhir (2022061020331445900_bib3) 2001; 42
Acquadro (2022061020331445900_bib31) 2009; 81
Weber (2022061020331445900_bib9) 2000; 27
Agnihotri (2022061020331445900_bib45) 2016; 18
Patel (2022061020331445900_bib12) 2018; 139
Ellingson (2022061020331445900_bib29) 2015; 17
James (2022061020331445900_bib27) 2012; 55
Beinat (2022061020331445900_bib25) 2019; 22
Beinat (2022061020331445900_bib28) 2020; 47
36357593 - Eur J Nucl Med Mol Imaging. 2023 Jan;50(2):251-252. doi: 10.1007/s00259-022-06033-y
References_xml – volume: 38
  start-page: 218
  year: 2019
  ident: 2022061020331445900_bib14
  article-title: The roles of glucose metabolic reprogramming in chemo- and radio-resistance
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-019-1214-z
– volume: 139
  start-page: 399
  year: 2018
  ident: 2022061020331445900_bib12
  article-title: (18)F-FDOPA PET and MRI characteristics correlate with degree of malignancy and predict survival in treatment-naïve gliomas: a cross-sectional study
  publication-title: J Neurooncol
  doi: 10.1007/s11060-018-2877-6
– volume: 18
  start-page: 1199
  year: 2016
  ident: 2022061020331445900_bib7
  article-title: Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/now058
– volume: 11
  start-page: 1980
  year: 2016
  ident: 2022061020331445900_bib15
  article-title: PKM2 and cancer: the function of PKM2 beyond glycolysis
  publication-title: Oncol Lett
  doi: 10.3892/ol.2016.4168
– volume: 46
  start-page: 558
  year: 2019
  ident: 2022061020331445900_bib32
  article-title: (18)F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-018-4240-8
– volume: 55
  start-page: 5
  year: 2014
  ident: 2022061020331445900_bib40
  article-title: Pseudoprogression and pseudoresponse in the management of high-grade glioma: optimal decision timing according to the response assessment of the neuro-oncology working group
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2014.55.1.5
– volume: 5
  start-page: 104
  year: 2018
  ident: 2022061020331445900_bib13
  article-title: The emerging role of amino acid PET in neuro-oncology
  publication-title: Bioengineering
  doi: 10.3390/bioengineering5040104
– volume: 155
  start-page: 397
  year: 2013
  ident: 2022061020331445900_bib20
  article-title: PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.025
– volume: 8
  start-page: e57610
  year: 2013
  ident: 2022061020331445900_bib22
  article-title: Pyruvate kinase M2 expression, but not pyruvate kinase activity, is up-regulated in a grade-specific manner in human glioma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057610
– volume: 10
  start-page: 1570
  year: 2015
  ident: 2022061020331445900_bib36
  article-title: Role of myelin sheath energy metabolism in neurodegenerative diseases
  publication-title: Neural Regen Res
  doi: 10.4103/1673-5374.167749
– volume: 9
  start-page: 129
  year: 2014
  ident: 2022061020331445900_bib5
  article-title: Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging
  publication-title: PET Clin
  doi: 10.1016/j.cpet.2013.10.006
– volume: 47
  start-page: 904
  year: 2006
  ident: 2022061020331445900_bib11
  article-title: 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy
  publication-title: J Nucl Med
– volume: 21
  start-page: v1
  year: 2019
  ident: 2022061020331445900_bib21
  article-title: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz150
– volume: 2
  start-page: 683
  year: 2002
  ident: 2022061020331445900_bib1
  article-title: Molecular imaging of cancer with positron emission tomography
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc882
– volume: 277
  start-page: 497
  year: 2015
  ident: 2022061020331445900_bib43
  article-title: Glioblastoma multiforme recurrence: an exploratory study of (18)F FPPRGD2 PET/CT
  publication-title: Radiology
  doi: 10.1148/radiol.2015141550
– volume: 47
  start-page: 2123
  year: 2020
  ident: 2022061020331445900_bib28
  article-title: Human biodistribution and radiation dosimetry of [(18)F]DASA-23, a PET probe targeting pyruvate kinase M2
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-04687-0
– volume: 116
  start-page: 11402
  year: 2019
  ident: 2022061020331445900_bib33
  article-title: Positron emission tomography reporter gene strategy for use in the central nervous system
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1901645116
– volume: 66
  start-page: 33
  year: 2011
  ident: 2022061020331445900_bib44
  article-title: Metabolism and brain cancer
  publication-title: Clinics
  doi: 10.1590/S1807-59322011001300005
– volume: 74
  start-page: 7115
  year: 2014
  ident: 2022061020331445900_bib46
  article-title: Changes in pyruvate metabolism detected by magnetic resonance imaging are linked to DNA damage and serve as a sensor of temozolomide response in glioblastoma cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0849
– volume: 18
  start-page: 160
  year: 2016
  ident: 2022061020331445900_bib45
  article-title: Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nov125
– volume: 20
  start-page: 1015
  year: 2018
  ident: 2022061020331445900_bib26
  article-title: The utility of [(18)F]DASA-23 for molecular imaging of prostate cancer with positron emission tomography
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-018-1194-y
– volume: 22
  start-page: 633
  year: 2009
  ident: 2022061020331445900_bib41
  article-title: Pseudoprogression and pseudoresponse in the treatment of gliomas
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e328332363e
– volume: 27
  start-page: 542
  year: 2000
  ident: 2022061020331445900_bib9
  article-title: O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study
  publication-title: Eur J Nucl Med
  doi: 10.1007/s002590050541
– volume: 9
  start-page: 52
  year: 2019
  ident: 2022061020331445900_bib17
  article-title: PKM2, function and expression and regulation
  publication-title: Cell Biosci
  doi: 10.1186/s13578-019-0317-8
– volume: 20
  start-page: 1400
  year: 2018
  ident: 2022061020331445900_bib42
  article-title: Prognostic value of contrast enhancement and FLAIR for survival in newly diagnosed glioblastoma treated with and without bevacizumab: results from ACRIN 6686
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noy049
– volume: 81
  start-page: 2779
  year: 2009
  ident: 2022061020331445900_bib31
  article-title: Matrix-assisted laser desorption ionization imaging mass spectrometry detection of a magnetic resonance imaging contrast agent in mouse liver
  publication-title: Anal Chem
  doi: 10.1021/ac900038y
– volume: 17
  start-page: 1188
  year: 2015
  ident: 2022061020331445900_bib29
  article-title: Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials
  publication-title: Neuro Oncol
– volume: 312
  start-page: 1168
  year: 2006
  ident: 2022061020331445900_bib2
  article-title: Molecular imaging in cancer
  publication-title: Science
  doi: 10.1126/science.1125949
– volume: 48
  start-page: 1468
  year: 2007
  ident: 2022061020331445900_bib6
  article-title: Clinical applications of PET in brain tumors
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.106.037689
– volume: 7
  start-page: 310ra169
  year: 2015
  ident: 2022061020331445900_bib23
  article-title: PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aac6117
– volume: 10
  start-page: 460
  year: 2019
  ident: 2022061020331445900_bib39
  article-title: Assessment of glioblastoma response in the era of bevacizumab: longstanding and emergent challenges in the imaging evaluation of pseudoresponse
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.00460
– volume: 15
  start-page: 1058
  year: 2013
  ident: 2022061020331445900_bib30
  article-title: Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/not002
– volume: 42
  start-page: 1s
  year: 2001
  ident: 2022061020331445900_bib3
  article-title: A tabulated summary of the FDG PET literature
  publication-title: J Nucl Med
– volume: 30
  start-page: 519
  year: 2003
  ident: 2022061020331445900_bib35
  article-title: Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-L-tyrosine
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-003-1118-0
– volume: 11
  start-page: 2785
  year: 2005
  ident: 2022061020331445900_bib4
  article-title: Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-2626
– volume: 40
  start-page: 205
  year: 1999
  ident: 2022061020331445900_bib8
  article-title: Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging
  publication-title: J Nucl Med
– volume: 62
  start-page: 1125
  year: 2014
  ident: 2022061020331445900_bib38
  article-title: Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions
  publication-title: Glia
  doi: 10.1002/glia.22667
– volume: 452
  start-page: 230
  year: 2008
  ident: 2022061020331445900_bib16
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature
  doi: 10.1038/nature06734
– volume: 10
  start-page: e0141153
  year: 2015
  ident: 2022061020331445900_bib10
  article-title: Early [18F]FET-PET in gliomas after surgical resection: comparison with MRI and histopathology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141153
– volume: 10
  start-page: 159
  year: 2020
  ident: 2022061020331445900_bib19
  article-title: Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.00159
– volume: 22
  start-page: 124
  year: 2019
  ident: 2022061020331445900_bib25
  article-title: Evaluation of glycolytic response to multiple classes of anti-glioblastoma drugs by noninvasive measurement of pyruvate kinase M2 using [18F]DASA-23
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-019-01353-2
– volume: 55
  start-page: 8272
  year: 2012
  ident: 2022061020331445900_bib27
  article-title: New positron emission tomography (PET) radioligand for imaging σ-1 receptors in living subjects
  publication-title: J Med Chem
  doi: 10.1021/jm300371c
– volume: 260
  start-page: 182
  year: 2011
  ident: 2022061020331445900_bib34
  article-title: Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging α(v)β(3) integrin levels
  publication-title: Radiology
  doi: 10.1148/radiol.11101139
– volume: 66
  start-page: 839
  year: 2001
  ident: 2022061020331445900_bib37
  article-title: Metabolic substrates other than glucose support axon function in central white matter
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.10081
– volume: 8
  start-page: 839
  year: 2012
  ident: 2022061020331445900_bib18
  article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1060
– volume: 19
  start-page: 665
  year: 2017
  ident: 2022061020331445900_bib24
  article-title: Development of [(18)F]DASA-23 for imaging tumor glycolysis through noninvasive measurement of pyruvate kinase M2
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-017-1068-8
– reference: 36357593 - Eur J Nucl Med Mol Imaging. 2023 Jan;50(2):251-252. doi: 10.1007/s00259-022-06033-y
SSID ssj0014104
Score 2.4450471
Snippet Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM)...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6467
SubjectTerms Animals
Brain Neoplasms - pathology
Diazonium Compounds
Glioblastoma - pathology
Glycolysis
Humans
Mice
Positron-Emission Tomography - methods
Pyruvate Kinase - metabolism
Sulfanilic Acids
Title A Clinical PET Imaging Tracer ([18F]DASA-23) to Monitor Pyruvate Kinase M2–Induced Glycolytic Reprogramming in Glioblastoma
URI https://www.ncbi.nlm.nih.gov/pubmed/34475101
https://www.proquest.com/docview/2569383697
https://pubmed.ncbi.nlm.nih.gov/PMC8639752
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7KCsu-iHfrjRFcUEJqMpkkk8de9uZSKW4XFkRCJplooU2WmgrVv-UP9ExmJk21oO5LKGmSGfJ9OZeZc0HoFXGDLEpJYkeC-LZstm1H4PzYhPGQZDnosFSuQ47fB6eX9N2Vf9Xp_GxFLa0q3ku_78wruQmqcA5wlVmy_4Fs81A4Ab8BXzgCwnD8J4z71tAkNk6OptbZQrUcAv2TygoRhB36A5cdH_qjUf-ib8vqCZE0NtWHvLQm6-XqGxib1vmsAG1mjYklW3nIkICT-Roosq7qOHsdxLXQ-S8n81nJwequSi3UTaUDM5lUUmlp6UJCzYLzQMAwKsxEhv1tNvQnMIe52vyfLZPP1qC3EYxrExQ0VS9Qs0P1MrgARiTthQvitoJAlKx1ZHFfqpc3hZa_Psg8otpHGAGtigdoIhKvJW4Dqnp5aNUt82Z3qwWf1SsUesDecPjBhgmBuUrb1wO614uaK3UdRFfPdrse92Q8ZHI31AfFf4uAcyL7ZozOzpu9K-rWTSub0XTeGMzh7c4ZHKB9M9y2cfSHx_N74G7LEpreQbe1C4P7io93UUcU99D-WAdp3Ec_-tgwAQMtsaYlVrTErz8CJT9pQr7BVYk1HbGhI1Z0xGOCNR3xho54i454VuA2HR-gy-Oj6fDU1j0-7JS6bmUnDuPUd0QOdnUgsiDLWBYGPA-j3MkjHgrqZkw4lIfcS2QWOE3BpXG8LMxYTiPuPUR7RVmIxwiHVIgQFJLwU0ITzhkcEl8kPEqT1PFYF1HzcuNUF8CXfVjmce0I-yyW8MQSnhjgiYkbS3i6qNfcdq0qwPzthpcGuRhktdyASwpRrr7G4F5EHvOCKOyiRwrJ5pGGAl0UbmHcXCDrwG__U8y-1PXgNR2f3PjOp-hg84E-Q3vVciWeg61d8Rc1tX8BTsLM7g
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Clinical+PET+Imaging+Tracer+%28%5B18F%5DDASA-23%29+to+Monitor+Pyruvate+Kinase+M2+Induced+Glycolytic+Reprogramming+in+Glioblastoma&rft.jtitle=Clinical+cancer+research&rft.au=Beinat%2C+Corinne&rft.au=Patel%2C+Chirag+B.&rft.au=Haywood%2C+Tom&rft.au=Murty%2C+Surya&rft.date=2021-12-01&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=27&rft.issue=23&rft.spage=6467&rft.epage=6478&rft_id=info:doi/10.1158%2F1078-0432.CCR-21-0544&rft_id=info%3Apmid%2F34475101&rft.externalDocID=PMC8639752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon