α-Tocopherol: New Perspectives and Challenges for Achieving the Sustainable Development Goals (SDG) Target

Vitamin E (VE) is a lipophilic vitamin, and Evans and Bishop demonstrated the existence of a hitherto unrecognized dietary factor essential for normal reproduction in rat. During 100 years after the discovery, α-tocopherol (α-Toc) has been the representative species in VE homologues, and both natura...

Full description

Saved in:
Bibliographic Details
Published inJournal of Oleo Science Vol. 73; no. 4; pp. 519 - 538
Main Authors Ogawa, Shigesaburo, Iuchi, Katsuya
Format Journal Article
LanguageEnglish
Published Japan Japan Oil Chemists' Society 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vitamin E (VE) is a lipophilic vitamin, and Evans and Bishop demonstrated the existence of a hitherto unrecognized dietary factor essential for normal reproduction in rat. During 100 years after the discovery, α-tocopherol (α-Toc) has been the representative species in VE homologues, and both naturally occurring and synthetically prepared α-Toc have been widely used and studied. Although it is indicated by a single-word VE, research on VE involves various chemical species. It is important to understand the fine structure and accurate characteristics of individual VE species when using VE. Each VE sample has compositional and/or isomer issues, and furthermore, the usability greatly varies depending on the modified species of esterification. The VE industry involves many interdisciplinary fields. Improvements in formulation technology and confirmation of the novel biological activity of VE greatly owns its utility and opens up new applications. As the interim period between the start and end of the agenda for Sustainable Development Goals (SDGs), in this minireview, the recent trends and future guidelines of VE, especially α- Toc, in relation to the SDGs have been demonstrated.
AbstractList Vitamin E (VE) is a lipophilic vitamin, and Evans and Bishop demonstrated the existence of a hitherto unrecognized dietary factor essential for normal reproduction in rat. During 100 years after the discovery, α-tocopherol (α-Toc) has been the representative species in VE homologues, and both naturally occurring and synthetically prepared α-Toc have been widely used and studied. Although it is indicated by a single-word VE, research on VE involves various chemical species. It is important to understand the fine structure and accurate characteristics of individual VE species when using VE. Each VE sample has compositional and/or isomer issues, and furthermore, the usability greatly varies depending on the modified species of esterification. The VE industry involves many interdisciplinary fields. Improvements in formulation technology and confirmation of the novel biological activity of VE greatly owns its utility and opens up new applications. As the interim period between the start and end of the agenda for Sustainable Development Goals (SDGs), in this minireview, the recent trends and future guidelines of VE, especially α- Toc, in relation to the SDGs have been demonstrated.
ArticleNumber ess23199
Author Iuchi, Katsuya
Ogawa, Shigesaburo
Author_xml – sequence: 1
  fullname: Ogawa, Shigesaburo
  organization: Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bio-industry, Tokyo University of Agriculture
– sequence: 2
  fullname: Iuchi, Katsuya
  organization: Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38556286$$D View this record in MEDLINE/PubMed
BookMark eNo9kF1PwjAUhhuDkQ-989r0UhOHa7tuq3cIiiZETcDrpXSnbDjWpR0Yf5Z_xN_kAOHmvOfjyZuct4tapSkBoUvi93nI_bulcX1wjjIixAnqEBZEHmOctnY992LBozbqOrf0_WbPozPUZjHnIY3DDvr8_fFmRpkqA2uKe_wKX_gdrKtA1fkGHJZlioeZLAooF82ojcUDleWwycsFrjPA07WrZV7KeQF4BBsoTLWCssZjIwuHr6ej8Q2eSbuA-hyd6mYHF__aQx9Pj7Phszd5G78MBxNPBYTUntAQ-4GSsWCCKyFAEC1ISFOVBloyqimTYUBplG5FhyDnTLOIAXCZqoCxHrrd-yprnLOgk8rmK2m_E-In28ySJrPkkFmDX-3xaj1fQXqEDyE1wMMeWDafLuAISFvnqoCdW8SSYFsOrsejyqRNoGR_cO6EkQ
Cites_doi 10.1177/0145561319870483
10.1073/pnas.93.12.6002
10.3389/fimmu.2023.1116238
10.1038/d41586-019-03907-4
10.1016/j.freeradbiomed.2021.10.029
10.1038/s41418-021-00859-z
10.1111/1541-4337.12867
10.1016/j.tifs.2019.11.015
10.3390/pr9101838
10.1080/10915810290169819
10.1371/journal.pone.0064182
10.1073/pnas.241024298
10.4103/2229-5178.185494
10.1074/jbc.M114.552141
10.1021/ja01300a036
10.1039/C5CC00636H
10.1080/00071660701593951
10.1002/mnfr.200400049
10.1093/jn/nxaa249
10.1038/s41591-021-01370-1
10.1042/BJ20111318
10.1002/app.44858
10.3390/ph15060764
10.1038/s41573-021-00163-y
10.3389/fpls.2018.01862
10.3390/antiox11112270
10.1016/j.jfoodeng.2008.04.018
10.1089/15230860050192170
10.1016/j.plaphy.2017.11.008
10.1016/j.foodchem.2023.135719
10.1039/9781788016216-00064
10.1205/cerd.82.11.1432.52034
10.1158/2159-8290.CD-21-0900
10.1039/9781788016216-00189
10.1016/j.freeradbiomed.2021.09.021
10.1002/biof.198
10.3233/JBR-210009
10.1002/14651858.CD002854.pub4
10.3390/molecules23051161
10.1039/9781788016216-00051
10.1016/j.freeradbiomed.2005.05.016
10.1038/s41598-023-34584-z
10.1038/s41598-020-80902-0
10.1155/2015/584862
10.1038/s41598-020-73741-6
10.1177/156482651103200206
10.1093/brain/awt339
10.1111/ics.12837
10.1080/10408398.2018.1474169
10.3389/fgene.2023.1187985
10.1016/j.freeradbiomed.2021.07.042
10.1177/1091581818794455
10.3389/fonc.2023.1119369
10.1002/ptr.6494
10.1039/9781788016216-00134
10.3390/antiox12010138
10.1016/j.redox.2019.101259
10.1016/j.foodres.2022.112386
10.2903/j.efsa.2015.4247
10.1016/j.mam.2007.06.001
10.1016/j.ijpharm.2021.120457
10.1016/j.lwt.2016.01.001
10.3390/cells11081315
10.1016/j.freeradbiomed.2021.11.012
10.1155/2022/2405943
10.1016/j.freeradbiomed.2021.09.025
10.3390/biology10050399
10.1007/s12562-020-01404-6
10.1016/j.foodhyd.2021.106998
10.1155/2020/8885865
10.1021/acsomega.2c05819
10.1016/j.nutres.2021.07.005
10.12998/wjcc.v10.i23.8271
10.1093/ajcn/63.5.722
10.5772/intechopen.98336
10.1001/jama.2021.15650
10.1016/j.jcis.2012.08.069
10.1016/j.fct.2005.10.013
10.1126/science.56.1458.650
10.3390/antiox10020173
10.1002/iub.1976
10.3390/cosmetics8040106
10.1007/s00394-019-01962-1
10.1016/j.freeradbiomed.2018.11.036
10.1039/9781788016216-00088
10.1371/journal.pone.0201369
10.1002/hsr2.766
10.1159/000246843
10.1080/2162402X.2023.2182992
10.1111/1541-4337.12924
10.1002/iub.1978
10.1016/j.freeradbiomed.2014.03.035
10.1016/j.ijpharm.2023.122781
10.20473/bikk.V32.1.2020.40-47
10.1016/S0021-9258(18)74918-1
10.1038/s41467-022-28718-6
10.1039/9781788016216-00001
10.1016/j.xinn.2022.100228
10.1016/S0083-6729(07)76010-7
10.1007/s10875-010-9490-6
10.1016/j.foodchem.2019.05.185
10.3390/antiox12020326
10.1016/j.biopha.2022.113279
10.1002/ejoc.202201190
10.1038/s41420-022-01218-8
10.1080/15548627.2020.1810918
10.1016/j.jconrel.2014.03.009
10.1038/nri1594
10.1016/j.foodchem.2019.125931
10.1039/9781788016216-00075
10.3390/ijms17101745
10.1073/pnas.1920925117
10.1038/s41467-022-31218-2
10.1016/S1360-1385(02)00002-X
10.1016/j.foodchem.2022.133084
10.1111/j.1524-4725.2005.31724
10.5650/jos.ess21064
10.3390/catal11060739
10.1002/hlca.193802101153
10.1016/j.cell.2022.06.003
10.3390/cosmetics8030061
10.1038/s41565-022-01129-w
10.1038/s41419-022-04628-9
10.1016/B978-0-12-394598-3.00002-2
10.1016/j.abb.2009.12.015
10.1002/bab.2176
10.3390/antiox10030490
10.1021/ar00127a001
10.3390/ma16062223
10.1016/j.freeradbiomed.2018.09.043
10.1093/cdn/nzy055
10.1146/annurev-food-041715-033120
10.19080/OAJNN.2023.18.555979
10.3390/antiox6010020
10.1080/10408390601079975
10.1586/erv.11.192
10.4162/nrp.2007.1.4.247
10.1038/d41586-023-01989-9
10.1016/j.redox.2022.102262
10.1038/s41419-023-05930-w
10.1038/s41416-023-02361-4
10.3390/antiox11050989
10.1016/j.vaccine.2011.01.011
10.1038/s41419-021-04008-9
10.1159/000510653
10.1002/med.21933
10.1038/ncb3064
10.1016/S0083-6729(07)76007-7
10.5650/jos.ess22207
10.1039/9781788016216-00098
ContentType Journal Article
Copyright 2024 by Japan Oil Chemists' Society
Copyright_xml – notice: 2024 by Japan Oil Chemists' Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.5650/jos.ess23199
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3352
EndPage 538
ExternalDocumentID 10_5650_jos_ess23199
38556286
article_jos_73_4_73_ess23199_article_char_en
Genre Journal Article
GroupedDBID ---
2WC
5GY
ACIWK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
DIK
DU5
EBS
EJD
F5P
FAC
GROUPED_DOAJ
GX1
HH5
JMI
JSF
JSH
KQ8
MOJWN
OK1
RJT
RZJ
TKC
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ID FETCH-LOGICAL-c411t-9fe804ca89395c99e91f9162dcd4fa32f23a64227da642f6eab3f373ee5adc433
ISSN 1345-8957
IngestDate Fri Aug 23 01:02:06 EDT 2024
Wed Apr 03 01:31:15 EDT 2024
Fri May 10 01:25:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords formulation
antioxidant
tocopherol
ferroptosis
SDGs
vitamin E
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-9fe804ca89395c99e91f9162dcd4fa32f23a64227da642f6eab3f373ee5adc433
OpenAccessLink http://dx.doi.org/10.5650/jos.ess23199
PMID 38556286
PageCount 20
ParticipantIDs crossref_primary_10_5650_jos_ess23199
pubmed_primary_38556286
jstage_primary_article_jos_73_4_73_ess23199_article_char_en
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Oleo Science
PublicationTitleAlternate J Oleo Sci
PublicationYear 2024
Publisher Japan Oil Chemists' Society
Publisher_xml – name: Japan Oil Chemists' Society
References 99) Kichou, H.; Caritá, A.C.; Gillet, G.; Bougassaa, L.; Perse, X. et al. Efficiency of emulsifier-free emulsions in delivering caffeine and α-tocopherol to human skin. Int. J. Cosmet. 45, 329-344 (2023). doi: 10.1111/ics.12837
53) Lashkari, S.; Clausen, T.N.; Foldager, L.; Jensen, S.K. Absorption of α-tocopheryl acetate is limited in mink kits (Mustela vison) during weaning. Sci. Rep. 11, 2686 (2021). doi: 10.1038/s41598-020-80902-0
115) Li, Q.; Chen, Z.; Zhou, X.; Li, G.; Zhang, C.; Yang, Y. Ferroptosis and multi-organ complications in COVID-19: mechanisms and potential therapies. Front. Genet. 14, 1187985 (2023). doi: 10.3389/fgene.2023. 1187985
18) Beppu, F.; Aida, Y.; Kaneko, M.; Kasatani, S.; Aoki, Y.; Gotoh, N. Functional evaluation of marine-derived tocopherol, a minor homolog of vitamin E, on adipocyte differentiation and inflammation using 3T3-L1 and RAW264.7 cells. Fish. Sci. 86, 415-425 (2020). doi: 10.1007/s12562-020-01404-6
50) Winklhofer-Roob, B.M.; van’t Hof, M.A.; Shmerling, D.H. Long-term oral vitamin E supplementation in cystic fibrosis patients: RRR-alpha-tocopherol compared with all-rac-alpha-tocopheryl acetate preparations. Am. J. Clin. 63, 722-728 (1996). doi: 10.1093/ajcn/63.5.722
21) Brigelius-Flohé, R. Vitamin E research: Past, now and future. Free Radic. Biol. Med. 177, 381-390 (2021). doi: 10.1016/j.freeradbiomed.2021.10.029
23) Jiang, Q. Natural forms of vitamin E and metabolites—regulation of cancer cell death and underlying mechanisms. IUBMB life 71, 495-506 (2019). doi: 10.1002/iub.1978
116) Tavakol, S.; Seifalian, A.M. Vitamin E at a high dose as an anti-ferroptosis drug and not just a supplement for COVID-19 treatment. Biotechnol. Appl. Biochem. 69, 1058-1060 (2022). doi: 10.1002/bab.2176
111) Hu, Q.; Zhang, Y.; Lou, H.; Ou, Z.; Liu, J. et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis. 12, 706 (2021). doi: 10.1038/s41419-021-04008-9
45) Rhodes, J.S.; Rendeiro, C.; Mun, J.G.; Du, K.; Thaman, P. et al. Brain α-tocopherol concentration and stereoisomer profile alter hippocampal gene expression in weanling mice. J. Nutr. 150, 3075-3085 (2020). doi: 10.1093/jn/nxaa249
65) Delgado, A.; Al-Hamimi, S.; Ramadan, M.F.; Wit, M.D.; Durazzo, A. et al. Contribution of tocols to food sensorial properties, stability, and overall quality. J. Food Qual. 2020, 1-8 (2020). doi: 10.1155/2020/8885865
19) Brigelius-Flohé, R. Metabolism of Vitamin E. in Vitamin E: Chemistry and Nutritional Benefits (Niki, E. ed.). Royal Society of Chemistry, pp. 189-207 (2019). doi: 10.1039/9781788016216-00189
104) Garcon, N.; Vaughn, D.W.; Didierlaurent, A.M. Development and evaluation of AS03, an Adjuvant System containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 11, 349-366 (2012). doi: 10.1586/erv.11.192
86) Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D. et al. Safety assessment of tocopherols and tocotrienols as used in cosmetics. Int. J. Toxicol. 37, 61S-94S (2018). doi: 10.1177/1091581818794455
44) Han, S.N.; Pang, E.; Zingg, J.M.; Meydani, S.N.; Meydani, M.; Azzi, A. Differential effects of natural and synthetic vitamin E on gene transcription in murine T lymphocytes. Arch. Biochem. Biophys. 495, 49-55 (2010). doi: 10.1016/j.abb.2009.12.015
128) Lim, Y.; Traber, M.G. Alpha-Tocopherol transfer protein (alpha-TTP) : Insights from alpha-tocopherol transfer protein knockout mice. Nutr. Res. Pract. 1, 247-253 (2007). doi: 10.4162/nrp.2007.1.4.247
139) Van Coillie, S.; Van San, E.; Goetschalckx, I.; Wiernicki, B.; Mukhopadhyay, B. et al. Targeting ferroptosis protects against experimental (multi) organ dysfunction and death. Nat. Commun. 13, 1046 (2022). doi: 10.1038/s41467-022-28718-6
149) Cai, H.; Ren, Y.; Chen, S.; Wang, Y.; Chu, L. Ferroptosis and tumor immunotherapy: A promising combination therapy for tumors. Front. Oncol. 13, 1119369 (2023). doi: 10.3389/fonc.2023.1119369
69) Tang, L.; Cao, M.; Liao, C.; Liu, R.; Chang, M.; Wang, X. Migration of tocopherols from the oil phase to the oil–water interface using phospholipids improved the oxidative stability of O/W emulsions. Food Chem. 414, 135719 (2023). doi: 10.1016/j.foodchem.2023.135719
103) Pulendran, B.; P, S.A.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454-475 (2021). doi: 10.1038/s41573-021-00163-y
62) Burton, G.W.; Ingold, K.U. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc. Chem. Res. 19, 194-201 (1986). doi: 10.1021/ar00127a001
127) Stocker, A.; Azzi, A. Tocopherol-binding proteins: their function and physiological significance. Antioxid. Redox Signal. 2, 397-404 (2000). doi: 10.1089/ 15230860050192170
95) Libinaki, R.; Ogru, E.; Gianello, R.; Bolton, L.; Geytenbeek, S. Evaluation of the safety of mixed tocopheryl phosphates (MTP) —A formulation of α-tocopheryl phosphate plus α-di-tocopheryl phosphate. Food Chem. Toxicol. 44, 916-932 (2006). doi: 10.1016/j.fct.2005.10.013
17) Kruk, J. Novel and rare prenyllipids−Occurrence and biological activity. Plant Physiol. Biochem. 122, 1-9 (2017). doi: 10.1016/j.plaphy.2017.11.008
46) Kuchan, M.J.; Moulton, C.J.; Dyer, R.A.; Jensen, S.K.; Schimpf, K.J.; Innis, S.M. RRR-α-tocopherol is the predominant stereoisomer of α-tocopherol in human milk. Curr. Dev. Nutr. 2, nzy055 (2018). doi: 10.1093/cdn/nzy055
43) Jeon, S.; Li, Q.; Ranard, K.M.; Rubakhin, S.S.; Sweedler, J.V. et al. Spatiotemporal biodistribution of α-tocopherol is impacted by the source of 13C-labeled α-tocopherol in mice following a single oral dose. Nutr. Res. 93, 79-86 (2021). doi: 10.1016/j.nutres.2021.07.005
152) Asbaghi, O.; Sadeghian, M.; Nazarian, B.; Sarreshtedari, M.; Mozaffari-Khosravi, H. et al. The effect of vitamin E supplementation on selected inflammatory biomarkers in adults: a systematic review and meta-analysis of randomized clinical trials. Sci. Rep. 10, 17234 (2020). doi: 10.1038/s41598-020-73741-6
61) Azzi, A. Reflections on a century of vitamin E research: Looking at the past with an eye on the future. Free Radic. Biol. Med. 175, 155-160 (2021). doi: 10.1016/j.freeradbiomed.2021.07.042
49) Schneider, C. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 49, 7-30 (2005). doi: 10.1002/mnfr.200400049
106) Moris, P.; van der Most, R.; Leroux-Roels, I.; Clement, F.; Drame, M. et al. H5N1 influenza vaccine formulated with AS03 A induces strong cross-reactive and polyfunctional CD4 T-cell responses. J. Clin. Immunol. 31, 443-454 (2011). doi: 10.1007/s10875-010-9490-6
59) Abraham, A.; Kattoor, A.J.; Saldeen, T.; Mehta, J.L. Vitamin E and its anticancer effects. Crit. Rev. Food Sci. Nutr. 59, 2831-2838 (2019).
122) Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Organelle-specific regulation of ferroptosis. Cell Death. Differ. 28, 2843-2856 (2021). doi: 10.1038/s41418-021-00859-z
92) Keen, M.A.; Hassan, I. Vitamin E in dermatology. Indian Dermatol. Online J. 7, 311 (2016). doi: 10.4103/2229-5178.185494
108) Ward, B.J.; Gobeil, P.; Seguin, A.; Atkins, J.; Boulay, I. et al. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat. Med. 27, 1071-1078 (2021). doi: 10.1038/s41591-021-01370-1
54) Wu, D.; O’Shea, D.F. Potential for release of pulmonary toxic ketene from vaping pyrolysis of vitamin E acetate. Proc. Natl. Acad. Sci. U.S.A. 117, 6349-6355 (2020).
124) Nakatomi, T.; Itaya-Takahashi, M.; Horikoshi, Y.; Shimizu, N.; Parida, I.S. et al. The difference in the cellular uptake of tocopherol and tocotrienol is influenced by their affinities to albumin. Sci. Rep. 13, 7392 (2023). doi: 10.1038/s41598-023-34584-z
135) Yuan, X.; Duan, Y.; Xiao, Y.; Sun, K.; Qi, Y. et al. Vitamin E enhances cancer immunotherapy by reinvigorating dendritic cells via targeting checkpoint SHP1. Cancer Discov. 12, 1742-1759 (2022). doi: 10.1158/ 2159-8290.CD-21-0900
11) Dror, D.K.; Allen, L.H. Vitamin E deficiency in developing countries. Food Nutr. Bull. 32, 124-143 (2011). doi: 10.1177/156482651103200206
151) Wiernicki, B.; Maschalidi, S.; Pinney, J.; Adjemian, S.; Vanden Berghe, T. et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat. Commun. 13, 3676 (2022). doi: 10.1038/s41467-022-31218-2
38) Zou, Z.; Dai, L.; Liu, D.; Du, W. Research progress in enzymatic synthesis of vitamin E ester derivatives. Catalysts 11, 739 (2021). doi: 10.3390/catal11060739
74) Cheong, J.N.; Tan, C.P.; Man, Y.B.C.; Misran, M. α-Tocopherol nanodispersions: Preparation, characterization and stability evaluation. J. Food Eng. 89, 204-209 (2008).
137) Wang, Y.; Zhang, M.; Bi, R.; Su, Y.; Quan, F. et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol. 51, 102262 (2022). doi: 10.1016/j.redox.2022.102262
10) Nieto-Salazar, M.A.; Ordóñez, K.N.A.; Carcamo, Z.D.S.; Cristina, A.; Ordóñez, A. et al. Neurological dysfunction associated with vitamin deficiencies: A narrative review. Open Access J. Neurol. Neurosurg. 18, 555979 (2023). doi: 10.19080/OAJNN.2023.18.555979
9) Editorials, Get the Sustainable Development Goals back on track. Nature 577, 7-8 (2020). doi: 10.1038/d41586-019-03907-4
70) Fabre, G.; Bayach, I.; Berka, K.; Paloncýová, M.; Starok, M. et al. Synergism of antioxidant action of vitamins E, C and quercetin is related to formation of molecular associations in biomembranes. Chem. Commun. 51, 7713-7716 (2015). doi: 10.1039/C5CC00636H
121) Koeberle, S.C.; Kipp, A.P.; Stuppner, H.; Koeberle, A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med. Res. Rev. 43, 614-682 (2023). doi: 10.1002/med.21933
2) Olcott, H.S.; Mattill, H.A. Antioxidants and the Autoxidation of Fats. VI. Inhibitols. J. Am. Chem. Soc. 58, 1627-1630 (1936). doi: 10.1021/ja01300a036
68) Barouh, N.; Bourlieu-Lacanal, C.; Figueroa-Espinoza, M.C.; Durand, E.; Villen
88
89
110
111
112
113
114
115
116
90
117
91
118
92
119
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
120
121
1
122
2
123
3
124
4
125
5
126
6
127
7
128
8
129
9
20
21
22
23
24
25
26
27
28
29
130
131
132
133
134
135
136
137
138
139
30
31
32
33
34
35
36
37
38
39
140
141
142
143
144
145
146
147
148
149
40
41
42
43
44
45
46
47
48
49
150
151
152
153
154
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – ident: 52
  doi: 10.1177/0145561319870483
– ident: 22
  doi: 10.1073/pnas.93.12.6002
– ident: 109
  doi: 10.3389/fimmu.2023.1116238
– ident: 9
  doi: 10.1038/d41586-019-03907-4
– ident: 21
  doi: 10.1016/j.freeradbiomed.2021.10.029
– ident: 122
  doi: 10.1038/s41418-021-00859-z
– ident: 68
  doi: 10.1111/1541-4337.12867
– ident: 101
  doi: 10.1016/j.tifs.2019.11.015
– ident: 71
  doi: 10.3390/pr9101838
– ident: 39
  doi: 10.1080/10915810290169819
– ident: 134
  doi: 10.1371/journal.pone.0064182
– ident: 16
  doi: 10.1073/pnas.241024298
– ident: 92
  doi: 10.4103/2229-5178.185494
– ident: 143
  doi: 10.1074/jbc.M114.552141
– ident: 2
  doi: 10.1021/ja01300a036
– ident: 70
  doi: 10.1039/C5CC00636H
– ident: 51
  doi: 10.1080/00071660701593951
– ident: 49
  doi: 10.1002/mnfr.200400049
– ident: 45
  doi: 10.1093/jn/nxaa249
– ident: 108
  doi: 10.1038/s41591-021-01370-1
– ident: 133
  doi: 10.1042/BJ20111318
– ident: 82
  doi: 10.1002/app.44858
– ident: 132
  doi: 10.3390/ph15060764
– ident: 103
  doi: 10.1038/s41573-021-00163-y
– ident: 33
  doi: 10.3389/fpls.2018.01862
– ident: 89
  doi: 10.3390/antiox11112270
– ident: 74
  doi: 10.1016/j.jfoodeng.2008.04.018
– ident: 127
  doi: 10.1089/15230860050192170
– ident: 17
  doi: 10.1016/j.plaphy.2017.11.008
– ident: 69
  doi: 10.1016/j.foodchem.2023.135719
– ident: 125
  doi: 10.1039/9781788016216-00064
– ident: 73
  doi: 10.1205/cerd.82.11.1432.52034
– ident: 135
  doi: 10.1158/2159-8290.CD-21-0900
– ident: 19
  doi: 10.1039/9781788016216-00189
– ident: 126
  doi: 10.1016/j.freeradbiomed.2021.09.021
– ident: 25
  doi: 10.1002/biof.198
– ident: 13
  doi: 10.3233/JBR-210009
– ident: 154
  doi: 10.1002/14651858.CD002854.pub4
– ident: 80
  doi: 10.3390/molecules23051161
– ident: 123
  doi: 10.1039/9781788016216-00051
– ident: 24
  doi: 10.1016/j.freeradbiomed.2005.05.016
– ident: 124
  doi: 10.1038/s41598-023-34584-z
– ident: 53
  doi: 10.1038/s41598-020-80902-0
– ident: 58
  doi: 10.1155/2015/584862
– ident: 152
  doi: 10.1038/s41598-020-73741-6
– ident: 11
  doi: 10.1177/156482651103200206
– ident: 130
  doi: 10.1093/brain/awt339
– ident: 99
  doi: 10.1111/ics.12837
– ident: 59
  doi: 10.1080/10408398.2018.1474169
– ident: 115
  doi: 10.3389/fgene.2023.1187985
– ident: 61
  doi: 10.1016/j.freeradbiomed.2021.07.042
– ident: 86
  doi: 10.1177/1091581818794455
– ident: 149
  doi: 10.3389/fonc.2023.1119369
– ident: 100
  doi: 10.1002/ptr.6494
– ident: 7
– ident: 112
  doi: 10.1039/9781788016216-00134
– ident: 85
  doi: 10.3390/antiox12010138
– ident: 15
  doi: 10.1016/j.redox.2019.101259
– ident: 32
  doi: 10.1016/j.foodres.2022.112386
– ident: 47
  doi: 10.2903/j.efsa.2015.4247
– ident: 84
  doi: 10.1016/j.mam.2007.06.001
– ident: 56
  doi: 10.1016/j.ijpharm.2021.120457
– ident: 76
  doi: 10.1016/j.lwt.2016.01.001
– ident: 36
  doi: 10.3390/cells11081315
– ident: 20
  doi: 10.1016/j.freeradbiomed.2021.11.012
– ident: 142
  doi: 10.1155/2022/2405943
– ident: 30
  doi: 10.1016/j.freeradbiomed.2021.09.025
– ident: 120
  doi: 10.3390/biology10050399
– ident: 18
  doi: 10.1007/s12562-020-01404-6
– ident: 98
  doi: 10.1016/j.foodhyd.2021.106998
– ident: 65
  doi: 10.1155/2020/8885865
– ident: 35
  doi: 10.1021/acsomega.2c05819
– ident: 43
  doi: 10.1016/j.nutres.2021.07.005
– ident: 131
  doi: 10.12998/wjcc.v10.i23.8271
– ident: 50
  doi: 10.1093/ajcn/63.5.722
– ident: 96
  doi: 10.5772/intechopen.98336
– ident: 153
  doi: 10.1001/jama.2021.15650
– ident: 75
  doi: 10.1016/j.jcis.2012.08.069
– ident: 95
  doi: 10.1016/j.fct.2005.10.013
– ident: 1
  doi: 10.1126/science.56.1458.650
– ident: 27
  doi: 10.3390/antiox10020173
– ident: 141
  doi: 10.1002/iub.1976
– ident: 102
  doi: 10.3390/cosmetics8040106
– ident: 145
  doi: 10.1007/s00394-019-01962-1
– ident: 26
  doi: 10.1016/j.freeradbiomed.2018.11.036
– ident: 55
  doi: 10.1039/9781788016216-00088
– ident: 29
  doi: 10.1371/journal.pone.0201369
– ident: 93
  doi: 10.1002/hsr2.766
– ident: 94
  doi: 10.1159/000246843
– ident: 150
  doi: 10.1080/2162402X.2023.2182992
– ident: 14
  doi: 10.1111/1541-4337.12924
– ident: 23
  doi: 10.1002/iub.1978
– ident: 140
  doi: 10.1016/j.freeradbiomed.2014.03.035
– ident: 87
  doi: 10.1016/j.ijpharm.2023.122781
– ident: 90
  doi: 10.20473/bikk.V32.1.2020.40-47
– ident: 3
  doi: 10.1016/S0021-9258(18)74918-1
– ident: 139
  doi: 10.1038/s41467-022-28718-6
– ident: 12
  doi: 10.1039/9781788016216-00001
– ident: 37
  doi: 10.1016/j.xinn.2022.100228
– ident: 48
  doi: 10.1016/S0083-6729(07)76010-7
– ident: 41
– ident: 106
  doi: 10.1007/s10875-010-9490-6
– ident: 31
  doi: 10.1016/j.foodchem.2019.05.185
– ident: 117
  doi: 10.3390/antiox12020326
– ident: 136
  doi: 10.1016/j.biopha.2022.113279
– ident: 6
  doi: 10.1002/ejoc.202201190
– ident: 148
  doi: 10.1038/s41420-022-01218-8
– ident: 97
  doi: 10.5772/intechopen.98336
– ident: 119
  doi: 10.1080/15548627.2020.1810918
– ident: 57
  doi: 10.1016/j.jconrel.2014.03.009
– ident: 144
  doi: 10.1038/nri1594
– ident: 42
  doi: 10.1016/j.foodchem.2019.125931
– ident: 60
  doi: 10.1039/9781788016216-00075
– ident: 64
  doi: 10.3390/ijms17101745
– ident: 54
  doi: 10.1073/pnas.1920925117
– ident: 151
  doi: 10.1038/s41467-022-31218-2
– ident: 34
  doi: 10.1016/S1360-1385(02)00002-X
– ident: 66
  doi: 10.1016/j.foodchem.2022.133084
– ident: 83
  doi: 10.1111/j.1524-4725.2005.31724
– ident: 79
  doi: 10.5650/jos.ess21064
– ident: 38
  doi: 10.3390/catal11060739
– ident: 4
  doi: 10.1002/hlca.193802101153
– ident: 114
  doi: 10.1016/j.cell.2022.06.003
– ident: 88
  doi: 10.3390/cosmetics8030061
– ident: 107
  doi: 10.1038/s41565-022-01129-w
– ident: 138
  doi: 10.1038/s41419-022-04628-9
– ident: 72
  doi: 10.1016/B978-0-12-394598-3.00002-2
– ident: 44
  doi: 10.1016/j.abb.2009.12.015
– ident: 116
  doi: 10.1002/bab.2176
– ident: 78
  doi: 10.3390/antiox10030490
– ident: 62
  doi: 10.1021/ar00127a001
– ident: 81
  doi: 10.3390/ma16062223
– ident: 113
  doi: 10.1016/j.freeradbiomed.2018.09.043
– ident: 46
  doi: 10.1093/cdn/nzy055
– ident: 67
  doi: 10.1146/annurev-food-041715-033120
– ident: 10
  doi: 10.19080/OAJNN.2023.18.555979
– ident: 40
  doi: 10.3390/antiox6010020
– ident: 63
  doi: 10.1080/10408390601079975
– ident: 104
  doi: 10.1586/erv.11.192
– ident: 128
  doi: 10.4162/nrp.2007.1.4.247
– ident: 8
  doi: 10.1038/d41586-023-01989-9
– ident: 137
  doi: 10.1016/j.redox.2022.102262
– ident: 147
  doi: 10.1038/s41419-023-05930-w
– ident: 146
  doi: 10.1038/s41416-023-02361-4
– ident: 28
  doi: 10.3390/antiox11050989
– ident: 105
  doi: 10.1016/j.vaccine.2011.01.011
– ident: 111
  doi: 10.1038/s41419-021-04008-9
– ident: 91
  doi: 10.1159/000510653
– ident: 121
  doi: 10.1002/med.21933
– ident: 118
  doi: 10.1038/ncb3064
– ident: 129
– ident: 5
  doi: 10.1016/S0083-6729(07)76007-7
– ident: 77
  doi: 10.5650/jos.ess22207
– ident: 110
  doi: 10.1039/9781788016216-00098
SSID ssj0033557
Score 2.3475125
Snippet Vitamin E (VE) is a lipophilic vitamin, and Evans and Bishop demonstrated the existence of a hitherto unrecognized dietary factor essential for normal...
SourceID crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 519
SubjectTerms alpha-Tocopherol
Animals
antioxidant
ferroptosis
formulation
Isomerism
Rats
SDGs
Sustainable Development
tocopherol
Vitamin E
Vitamins
Title α-Tocopherol: New Perspectives and Challenges for Achieving the Sustainable Development Goals (SDG) Target
URI https://www.jstage.jst.go.jp/article/jos/73/4/73_ess23199/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38556286
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Oleo Science, 2024, Vol.73(4), pp.519-538
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbK4AEeEHfKTX6gEqhKaeK4ieFplLFp0i5SO2lvkeML26gaxFoQ_Az-CX-E38Q5dpK6CCQGL27luknq7-u52OccE_LUiqGRuZERbgJGmEkVCaV5lMeZ0rFm5dDV2d7bH-0cpbvH_LjT-RZELS0X5UB9_W1eyb-gCn2AK2bJXgDZ9qLQAe8BX2gBYWj_CuPeeKv3Oo6mlXLVAaoZ-vcYsXi4SqH0NZjHzZkprvxCf1OdnJpPTabUJEiiCoKI-tsV1lYGE3TyZhtXD6YuavwP5uzBzFSNpGhXbt_Jz844nZzgPpYEAKuWi3gKSx3Pcb78IsPlh2S18LgLynzePzid9cf-aDoX9VHHmgYSlaWAvPBVqAem6QPJxviaGPYnmtR0SwOZymuZ6tUz98VgfpX8YJdiqORZdT4ADQFGqxArDdfGHdZIFTCsyFiRYtMML5oPMd0N2HWJXE4y8B4bN91rd3hqVz22_Vk-mQJv_yK8-ZqZc-UMYMQSDmuei7NgpjfI9Roruukf4CbpmPktci0oSHmbvP_xPWDTSwpcoiGXKHCJrrhEgUu05RIFLtGASzTgEnVcos-ASc-p59EdcvR2azreierjOCKVxvEiEtbkw1RJsHAFV0IYEVtwLhKtdGolS2zCJHizSabxxY6MLJllGTOGS61Sxu6SjXk1N_cJ1aa0JhuVBjf9dWJL0ASxLhXnRis5yruk18xe8cFXXSnAW8VZdtg1s9wlr_zUtqMugnCX3PN4tN9mOeeYq_3gv677kFzFf4pfqHtENhYfl-YxmK6L8onjErT7h3s_AUKqpSI
link.rule.ids 315,786,790,870,4043,27956,27957,27958
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B1-Tocopherol%3A+New+Perspectives+and+Challenges+for+Achieving+the+Sustainable+Development+Goals+%28SDG%29+Target&rft.jtitle=Journal+of+Oleo+Science&rft.au=Ogawa%2C+Shigesaburo&rft.au=Iuchi%2C+Katsuya&rft.date=2024&rft.pub=Japan+Oil+Chemists%27+Society&rft.issn=1345-8957&rft.eissn=1347-3352&rft.volume=73&rft.issue=4&rft.spage=519&rft.epage=538&rft_id=info:doi/10.5650%2Fjos.ess23199&rft.externalDocID=article_jos_73_4_73_ess23199_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-8957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-8957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-8957&client=summon