Optimization of the imaginary time step evolution for the Dirac equation
Taking the single neutron levels of ^12C in the Fermi sea as examples,the optimization of the imaginary time step(ITS) evolution with the box size and mesh size for the Dirac equation is investigated.For the weakly bound states,in order to reproduce the exact single-particle energies and wave functi...
Saved in:
Published in | Science China. Physics, mechanics & astronomy Vol. 54; no. 2; pp. 231 - 235 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
SP Science China Press
01.02.2011
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Taking the single neutron levels of ^12C in the Fermi sea as examples,the optimization of the imaginary time step(ITS) evolution with the box size and mesh size for the Dirac equation is investigated.For the weakly bound states,in order to reproduce the exact single-particle energies and wave functions,a relatively large box size is required.As long as the exact results can be reproduced,the ITS evolution with a smaller box size converges faster,while for both the weakly and deeply bound states,the ITS evolutions are less sensitive to the mesh size.Moreover,one can find a parabola relationship between the mesh size and the corresponding critical time step,i.e.,the largest time step to guarantee the convergence,which suggests that the ITS evolution with a larger mesh size allows larger critical time step,and thus can converge faster to the exact result.These conclusions are very helpful for optimizing the evolution procedure in the future self-consistent calculations. |
---|---|
AbstractList | Taking the single neutron levels of 12C in the Fermi sea as examples, the optimization of the imaginary time step (ITS) evolution with the box size and mesh size for the Dirac equation is investigated. For the weakly bound states, in order to reproduce the exact single-particle energies and wave functions, a relatively large box size is required. As long as the exact results can be reproduced, the ITS evolution with a smaller box size converges faster, while for both the weakly and deeply bound states, the ITS evolutions are less sensitive to the mesh size. Moreover, one can find a parabola relationship between the mesh size and the corresponding critical time step, i.e., the largest time step to guarantee the convergence, which suggests that the ITS evolution with a larger mesh size allows larger critical time step, and thus can converge faster to the exact result. These conclusions are very helpful for optimizing the evolution procedure in the future self-consistent calculations. Taking the single neutron levels of 12 C in the Fermi sea as examples, the optimization of the imaginary time step (ITS) evolution with the box size and mesh size for the Dirac equation is investigated. For the weakly bound states, in order to reproduce the exact single-particle energies and wave functions, a relatively large box size is required. As long as the exact results can be reproduced, the ITS evolution with a smaller box size converges faster, while for both the weakly and deeply bound states, the ITS evolutions are less sensitive to the mesh size. Moreover, one can find a parabola relationship between the mesh size and the corresponding critical time step, i.e., the largest time step to guarantee the convergence, which suggests that the ITS evolution with a larger mesh size allows larger critical time step, and thus can converge faster to the exact result. These conclusions are very helpful for optimizing the evolution procedure in the future self-consistent calculations. Taking the single neutron levels of ^12C in the Fermi sea as examples,the optimization of the imaginary time step(ITS) evolution with the box size and mesh size for the Dirac equation is investigated.For the weakly bound states,in order to reproduce the exact single-particle energies and wave functions,a relatively large box size is required.As long as the exact results can be reproduced,the ITS evolution with a smaller box size converges faster,while for both the weakly and deeply bound states,the ITS evolutions are less sensitive to the mesh size.Moreover,one can find a parabola relationship between the mesh size and the corresponding critical time step,i.e.,the largest time step to guarantee the convergence,which suggests that the ITS evolution with a larger mesh size allows larger critical time step,and thus can converge faster to the exact result.These conclusions are very helpful for optimizing the evolution procedure in the future self-consistent calculations. |
Author | LI FangQiong ZHANG Ying LIANG HaoZhao MENG Jie |
AuthorAffiliation | Guizhou University for Nationalities, Guiyang 550025, China Stute Key Lab Nuclear Physics & Technology; School of Physics, Peking University, Beijing 100871, China Institut de Physique Nucl(aire, IN2P3-CNRS and Universit( Paris-Sud, F-91406 Orsay Cedex, France School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China Department of Physics, University of Stellenbosch, Stellenbosch, South Africa |
Author_xml | – sequence: 1 givenname: FangQiong surname: Li fullname: Li, FangQiong organization: Guizhou University for Nationalities – sequence: 2 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: State Key Lab Nuclear Physics & Technology, School of Physics, Peking University – sequence: 3 givenname: HaoZhao surname: Liang fullname: Liang, HaoZhao organization: State Key Lab Nuclear Physics & Technology, School of Physics, Peking University, Institut de Physique Nucléaire, IN2P3-CNRS and Université Paris-Sud – sequence: 4 givenname: Jie surname: Meng fullname: Meng, Jie email: mengj@pku.edu.cn organization: State Key Lab Nuclear Physics & Technology, School of Physics, Peking University, School of Physics and Nuclear Energy Engineering, Beihang University, Department of Physics, University of Stellenbosch |
BookMark | eNp9kE1PwyAch4mZiXPuA3hr9OAJhUKhHM18mcmSXfRMaAsbsysdtCbz08vWJSYe5AIJz-__8lyCUeMaDcA1RvcYIf4QMKaEQIQRpClmkJ2BMc6ZgFikfBTfjFPICc0vwDSEDYqHCEQ5HYP5su3s1n6rzromcSbp1jqxW7WyjfL7JP7pJHS6TfSXq_sjZJw_Uk_WqzLRu_6YvQLnRtVBT0_3BHy8PL_P5nCxfH2bPS5gSTHuoBCF4kwLRDJhcFYVvCJMlanghghemZJknGcpUrpCVRoRjlimqcEVYzkqGJmAu6Fu692u16GTWxtKXdeq0a4PUiAuaBqXjeTtH3Ljet_E4WQqcJ4JLJCIFB6o0rsQvDay9XF_v5cYyYNdOdiV0a482JWHGdIhEyLbrLT_rfxf6ObUaO2a1S7mZKHKT2NrLQnjPCoh5Adopohy |
CitedBy_id | crossref_primary_10_1007_s11434_012_5491_6 crossref_primary_10_1103_PhysRevC_88_024323 crossref_primary_10_1007_s11433_012_4944_x crossref_primary_10_1088_0031_8949_91_8_083005 crossref_primary_10_1016_j_physrep_2014_12_005 |
Cites_doi | 10.1007/s11434-009-0719-9 10.1103/RevModPhys.76.215 10.1016/j.physrep.2004.10.001 10.1103/PhysRevLett.55.2676 10.1103/PhysRevLett.80.460 10.1088/0256-307X/26/9/092401 10.1016/0375-9474(80)90509-6 10.1007/s11433-009-0194-y 10.1016/S0375-9474(03)01391-5 10.1016/0146-6410(96)00054-3 10.1103/PhysRevC.68.034323 10.1103/PhysRevC.36.354 10.1016/j.cpc.2005.05.001 10.1142/S0218301310014637 10.1103/PhysRevLett.77.3963 10.1016/j.ppnp.2005.06.001 10.1007/s11433-010-0121-2 10.1016/S0370-2693(97)01386-5 10.1016/j.physrep.2003.07.004 10.1103/PhysRevC.82.011301 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2010 Science China Press and Springer-Verlag Berlin Heidelberg 2010. |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2010 – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2010. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PCBAR PQEST PQQKQ PQUKI PTHSS 7TG KL. |
DOI | 10.1007/s11433-010-4216-6 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest Engineering Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Optimization of the imaginary time step evolution for the Dirac equation |
EISSN | 1869-1927 |
EndPage | 235 |
ExternalDocumentID | 10_1007_s11433_010_4216_6 36779033 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMYLF ARMRJ AXYYD B-. BDATZ BGNMA CAG CCEZO CCVFK CDYEO CHBEP COF CQIGP CSCUP DNIVK EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IPNFZ IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NQJWS NU0 O9J P9T PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SNE SNX SOJ SPH SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z7R Z7X Z7Y Z83 Z88 ZMTXR ~A9 ~WA AATNV AAYFA ABTKH ABWNU ADOXG ADTPH AESKC AEVLU AFNRJ AMXSW AOCGG DDRTE DPUIP IAO IKXTQ IWAJR NPVJJ SNPRN SOHCF -SA -S~ 0R~ AACDK AAJBT AASML AAXDM AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AGQEE AGRTI AIGIU BENPR BGLVJ CAJEA CITATION CJPJV Q-- U1G U5K 8FE 8FG AAYZH ABJCF AFKRA ARAPS BHPHI BKSAR CCPQU DWQXO HCIFZ L6V M7S P62 PCBAR PQEST PQQKQ PQUKI PTHSS 7TG KL. |
ID | FETCH-LOGICAL-c411t-99ba76e90359f15db7d36ac297f397dfc3577520aed0d29f17065e4f1d6680b63 |
IEDL.DBID | 8FG |
ISSN | 1674-7348 |
IngestDate | Fri Oct 25 09:20:22 EDT 2024 Sat Oct 26 08:05:54 EDT 2024 Thu Sep 12 19:52:19 EDT 2024 Sat Dec 16 12:01:38 EST 2023 Fri Nov 25 02:35:20 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Schrödinger-like equation convergence imaginary time step method Dirac equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-99ba76e90359f15db7d36ac297f397dfc3577520aed0d29f17065e4f1d6680b63 |
Notes | 11-5000/N O413.1 Dirac equation,Schrdinger-like equation,imaginary time step method,convergence TG839 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2918591909 |
PQPubID | 2044215 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_907942734 proquest_journals_2918591909 crossref_primary_10_1007_s11433_010_4216_6 springer_journals_10_1007_s11433_010_4216_6 chongqing_backfile_36779033 |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Beijing |
PublicationTitle | Science China. Physics, mechanics & astronomy |
PublicationTitleAbbrev | Sci. China Phys. Mech. Astron |
PublicationTitleAlternate | SCIENCE CHINA Physics, Mechanics & Astronomy |
PublicationYear | 2011 |
Publisher | SP Science China Press Springer Nature B.V |
Publisher_xml | – name: SP Science China Press – name: Springer Nature B.V |
References | Price, Walker (CR14) 1987; 36 Meng, Tanihata, Yamaji (CR12) 1998; 419 Zhang, Liang, Meng (CR21) 2009; 26 Li, Zhang, Yao (CR10) 2009; 52 Bertulani, Hussein, Münzengerg (CR2) 2001 Zhou, Meng, Ring (CR16) 2003; 68 Li, Zhang, Meng (CR23) 2010; 53 CR17 Zhou, Meng, Ring (CR18) 2010; 82 Meng, Ring (CR13) 1998; 80 Davies, Flocard, Krieger (CR19) 1980; 342 Jonson (CR3) 2004; 389 Serot, Walecka (CR6) 1986; 16 Ring (CR7) 1996; 37 Meng, Ring (CR11) 1996; 77 Meng, Toki, Zhou (CR9) 2006; 57 Zhang, Liang, Meng (CR20) 2010; 19 Tanihata (CR1) 1985; 55 Meng, Lü, Zhang (CR15) 2003; 722 Bonche, Flocard, Heenen (CR22) 2005; 171 Xu, Tu, Yuan (CR5) 2009; 54 Jensen, Riisager, Fedorov (CR4) 2004; 76 Vretenar, Afanasjev, Lalazissis (CR8) 2005; 40 H. S. Xu (4216_CR5) 2009; 54 B. D. Serot (4216_CR6) 1986; 16 D. Vretenar (4216_CR8) 2005; 40 P. Ring (4216_CR7) 1996; 37 4216_CR17 F. Q. Li (4216_CR23) 2010; 53 J. Meng (4216_CR12) 1998; 419 J. Meng (4216_CR13) 1998; 80 B. Jonson (4216_CR3) 2004; 389 J. Meng (4216_CR11) 1996; 77 J. Meng (4216_CR9) 2006; 57 K. T. R. Davies (4216_CR19) 1980; 342 Y. Zhang (4216_CR21) 2009; 26 P. Bonche (4216_CR22) 2005; 171 S. G. Zhou (4216_CR16) 2003; 68 C. E. Price (4216_CR14) 1987; 36 S. G. Zhou (4216_CR18) 2010; 82 A. S. Jensen (4216_CR4) 2004; 76 J. Meng (4216_CR15) 2003; 722 J. Li (4216_CR10) 2009; 52 C. A. Bertulani (4216_CR2) 2001 Y. Zhang (4216_CR20) 2010; 19 I. Tanihata (4216_CR1) 1985; 55 |
References_xml | – volume: 54 start-page: 4749 year: 2009 end-page: 4752 ident: CR5 article-title: First mass measurement of short-lived nuclides at HIRFL-CSR publication-title: Chin Sci Bull doi: 10.1007/s11434-009-0719-9 contributor: fullname: Yuan – volume: 76 start-page: 215 year: 2004 end-page: 261 ident: CR4 article-title: Structure and reactions of quantum halos publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.76.215 contributor: fullname: Fedorov – volume: 40 start-page: 101 year: 2005 end-page: 259 ident: CR8 article-title: Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure publication-title: Phys Rep doi: 10.1016/j.physrep.2004.10.001 contributor: fullname: Lalazissis – volume: 16 start-page: 1 year: 1986 end-page: 327 ident: CR6 article-title: The relativistic nuclear many-body problem publication-title: Adv Nucl Phys contributor: fullname: Walecka – volume: 55 start-page: 2676 year: 1985 end-page: 2679 ident: CR1 article-title: Measurements of interaction cross sections and nuclear radii in the light -shell region publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.55.2676 contributor: fullname: Tanihata – volume: 80 start-page: 460 year: 1998 end-page: 463 ident: CR13 article-title: Giant halo at the neutron drip line publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.80.460 contributor: fullname: Ring – volume: 26 start-page: 092401 year: 2009 ident: CR21 article-title: Solving the dirac equation with nonlocal potential by imaginary time step method publication-title: Chin Phys Lett doi: 10.1088/0256-307X/26/9/092401 contributor: fullname: Meng – volume: 342 start-page: 111 year: 1980 end-page: 123 ident: CR19 article-title: Application of the imaginary time step method to the solution of the static Hartree-Fock problem publication-title: Nucl Phys A doi: 10.1016/0375-9474(80)90509-6 contributor: fullname: Krieger – volume: 52 start-page: 1586 year: 2009 end-page: 1592 ident: CR10 article-title: Magnetic moments of Mg in the timeodd relativistic mean field approach publication-title: Sci China Ser G-PhysMech Astron doi: 10.1007/s11433-009-0194-y contributor: fullname: Yao – volume: 722 start-page: 366c year: 2003 end-page: 371c ident: CR15 article-title: Giant, hyperon, and deformed halos near the particle drip line publication-title: Nucl Phys A doi: 10.1016/S0375-9474(03)01391-5 contributor: fullname: Zhang – volume: 37 start-page: 193 year: 1996 end-page: 263 ident: CR7 article-title: Relativistic mean field theory in finite nuclei publication-title: Prog Part Nucl Phys doi: 10.1016/0146-6410(96)00054-3 contributor: fullname: Ring – volume: 68 start-page: 034323 year: 2003 ident: CR16 article-title: Spherical relativistic Hartree theory in a Woods-Saxon basis publication-title: Phys Rev C doi: 10.1103/PhysRevC.68.034323 contributor: fullname: Ring – volume: 36 start-page: 354 year: 1987 end-page: 364 ident: CR14 article-title: Self-consistent Hartree description of deformed nuclei in a relativistic quantum field theory publication-title: Phys Rev C doi: 10.1103/PhysRevC.36.354 contributor: fullname: Walker – ident: CR17 – volume: 171 start-page: 49 year: 2005 end-page: 62 ident: CR22 article-title: Solution of the Skyrme HF + BCS equation on a 3D mesh publication-title: Com Phys Com doi: 10.1016/j.cpc.2005.05.001 contributor: fullname: Heenen – volume: 19 start-page: 55 year: 2010 end-page: 62 ident: CR20 article-title: Avoid the Tsunami of the Dirac sea in the imaginary time step method publication-title: Int J Mod Phys E doi: 10.1142/S0218301310014637 contributor: fullname: Meng – volume: 77 start-page: 3963 year: 1996 end-page: 3966 ident: CR11 article-title: Relativistic Hartree-Bogoliubov description of the neutron halo in Li publication-title: Rev Lett doi: 10.1103/PhysRevLett.77.3963 contributor: fullname: Ring – volume: 57 start-page: 470 year: 2006 end-page: 563 ident: CR9 article-title: Relativisitc continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei publication-title: Prog Part Nucl Phys doi: 10.1016/j.ppnp.2005.06.001 contributor: fullname: Zhou – volume: 53 start-page: 327 year: 2010 end-page: 330 ident: CR23 article-title: Convergence for imaginary time step evolution in the Fermi and Dirac seas publication-title: Sci China Ser G-Phys Mech Astron doi: 10.1007/s11433-010-0121-2 contributor: fullname: Meng – volume: 419 start-page: 1 year: 1998 end-page: 6 ident: CR12 article-title: The proton and neutron distributions in Na isotopes: The development of halo and shell structure publication-title: Phys Lett B doi: 10.1016/S0370-2693(97)01386-5 contributor: fullname: Yamaji – volume: 82 start-page: 011301^(R year: 2010 ident: CR18 article-title: Neutron halo in deformed nuclei publication-title: Phys Rev C contributor: fullname: Ring – year: 2001 ident: CR2 publication-title: Physics of Radioactive Beams contributor: fullname: Münzengerg – volume: 389 start-page: 1 year: 2004 end-page: 59 ident: CR3 article-title: Light dripline nuclei publication-title: Phys Rep doi: 10.1016/j.physrep.2003.07.004 contributor: fullname: Jonson – volume: 19 start-page: 55 year: 2010 ident: 4216_CR20 publication-title: Int J Mod Phys E doi: 10.1142/S0218301310014637 contributor: fullname: Y. Zhang – volume: 82 start-page: 011301^(R year: 2010 ident: 4216_CR18 publication-title: Phys Rev C doi: 10.1103/PhysRevC.82.011301 contributor: fullname: S. G. Zhou – volume: 55 start-page: 2676 year: 1985 ident: 4216_CR1 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.55.2676 contributor: fullname: I. Tanihata – volume: 37 start-page: 193 year: 1996 ident: 4216_CR7 publication-title: Prog Part Nucl Phys doi: 10.1016/0146-6410(96)00054-3 contributor: fullname: P. Ring – volume: 77 start-page: 3963 year: 1996 ident: 4216_CR11 publication-title: Rev Lett doi: 10.1103/PhysRevLett.77.3963 contributor: fullname: J. Meng – volume: 80 start-page: 460 year: 1998 ident: 4216_CR13 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.80.460 contributor: fullname: J. Meng – volume: 53 start-page: 327 year: 2010 ident: 4216_CR23 publication-title: Sci China Ser G-Phys Mech Astron doi: 10.1007/s11433-010-0121-2 contributor: fullname: F. Q. Li – ident: 4216_CR17 – volume: 171 start-page: 49 year: 2005 ident: 4216_CR22 publication-title: Com Phys Com doi: 10.1016/j.cpc.2005.05.001 contributor: fullname: P. Bonche – volume: 57 start-page: 470 year: 2006 ident: 4216_CR9 publication-title: Prog Part Nucl Phys doi: 10.1016/j.ppnp.2005.06.001 contributor: fullname: J. Meng – volume: 342 start-page: 111 year: 1980 ident: 4216_CR19 publication-title: Nucl Phys A doi: 10.1016/0375-9474(80)90509-6 contributor: fullname: K. T. R. Davies – volume: 16 start-page: 1 year: 1986 ident: 4216_CR6 publication-title: Adv Nucl Phys contributor: fullname: B. D. Serot – volume: 419 start-page: 1 year: 1998 ident: 4216_CR12 publication-title: Phys Lett B doi: 10.1016/S0370-2693(97)01386-5 contributor: fullname: J. Meng – volume: 68 start-page: 034323 year: 2003 ident: 4216_CR16 publication-title: Phys Rev C doi: 10.1103/PhysRevC.68.034323 contributor: fullname: S. G. Zhou – volume-title: Physics of Radioactive Beams year: 2001 ident: 4216_CR2 contributor: fullname: C. A. Bertulani – volume: 36 start-page: 354 year: 1987 ident: 4216_CR14 publication-title: Phys Rev C doi: 10.1103/PhysRevC.36.354 contributor: fullname: C. E. Price – volume: 722 start-page: 366c year: 2003 ident: 4216_CR15 publication-title: Nucl Phys A doi: 10.1016/S0375-9474(03)01391-5 contributor: fullname: J. Meng – volume: 40 start-page: 101 year: 2005 ident: 4216_CR8 publication-title: Phys Rep doi: 10.1016/j.physrep.2004.10.001 contributor: fullname: D. Vretenar – volume: 26 start-page: 092401 year: 2009 ident: 4216_CR21 publication-title: Chin Phys Lett doi: 10.1088/0256-307X/26/9/092401 contributor: fullname: Y. Zhang – volume: 54 start-page: 4749 year: 2009 ident: 4216_CR5 publication-title: Chin Sci Bull doi: 10.1007/s11434-009-0719-9 contributor: fullname: H. S. Xu – volume: 389 start-page: 1 year: 2004 ident: 4216_CR3 publication-title: Phys Rep doi: 10.1016/j.physrep.2003.07.004 contributor: fullname: B. Jonson – volume: 76 start-page: 215 year: 2004 ident: 4216_CR4 publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.76.215 contributor: fullname: A. S. Jensen – volume: 52 start-page: 1586 year: 2009 ident: 4216_CR10 publication-title: Sci China Ser G-PhysMech Astron doi: 10.1007/s11433-009-0194-y contributor: fullname: J. Li |
SSID | ssj0000390474 |
Score | 1.9087135 |
Snippet | Taking the single neutron levels of ^12C in the Fermi sea as examples,the optimization of the imaginary time step(ITS) evolution with the box size and mesh... Taking the single neutron levels of 12 C in the Fermi sea as examples, the optimization of the imaginary time step (ITS) evolution with the box size and mesh... Taking the single neutron levels of 12C in the Fermi sea as examples, the optimization of the imaginary time step (ITS) evolution with the box size and mesh... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 231 |
SubjectTerms | Astronomy Classical and Continuum Physics Convergence Dirac equation Dirac方程 Evolution Observations and Techniques Optimization Physics Physics and Astronomy Research Paper Wave functions 单粒子能量 大肠杆菌 收敛速度 时间演化 步长优化 狄拉克方程 网目尺寸 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8QwEIYHXRG8iJ9YXSUHT0qkH0naHEWUxYNeXPAWkjZREbuuuwr-e2e67S6KHjw3NDCZZN5kJk8Ajq0rgpCp5YVTngvhNNe20NwXQYXEy1K6hvZ5owZDcX0v75cgnR9d1M9nXUayWagXd90wslPpT8xFmiiulmFFEg0NfXiYns_PVWLcxIsGvkz19ZzgLV0y87e_EFLhcVQ_jLHH76FpoTd_pEibyHO1AeutZGTnszHehCVfb8FqU7pZTrZhcIuz_qW9TslGgaGkY08v9PqQfftk9Hg8w6F8Zf6jdTOGQrVpheudLZkfz3DfOzC8ury7GPD2fQReiiSZcq2dzZXXROELiaxcXmXKlqnOA6qMKpSZzHOZxtZXcZViE0ppehGSSqkidirbhV49qv0eMOcrn-eVVaH0ghhtXhCXJgSLgk4WSQQHczNhfC2fiRplMkW0wiyL4KQznHmdQTLMAodMFjdocUMWNyqCfmda086XiUl1QiA9HesI2PwzejqlL2ztR-8Tg9t4LYjGE8FpNyKLP_zZ3_6_Wh_A2uzUmApW-tCbvr37Q5QdU3fU-NkX7t_NQg priority: 102 providerName: Springer Nature |
Title | Optimization of the imaginary time step evolution for the Dirac equation |
URI | http://lib.cqvip.com/qk/60109X/20112/36779033.html https://link.springer.com/article/10.1007/s11433-010-4216-6 https://www.proquest.com/docview/2918591909 https://search.proquest.com/docview/907942734 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0DsEX8RPrnUcefFKCTZsmzZOssnuLwiniwvkU8umJXLt7u3dw_72ZbLuLgj4V2tDATDLzy8zkNwCvjG0jbypDWysC5dwqqkyraGijiCw0rrGZ7fNMzBf843lzPgTc1kNZ5WgTs6H2vcMY-dtKMaRaU6V6t1xR7BqF2dWhhcZdOGSVlHj4amenuxhLmQ70PBMxY609RSKXMbGZb88lrIDFRCXlFRM00ytc9N2PVXIaf7qpPfb8K12avdDsITwY4COZbPX9CO6E7jHcy2Wcbv0E5p-TBbgcrlaSPpIE78jPS-xEZK5uCTaSJ0mtSxJuhiVHEmjNo5LtM46E1Zb6-yksZtNvH-Z06JVAHWdsQ5WyRoqgkJEvssZb6WthXKVkTIjDR1c3UjZVaYIvfZWGYHoz8Mi8EG1pRf0MDrq-C8-B2OCDlN6I6AJHvrbAkaMmRpPAXdOyAo52Ykq-1v1CBildC2QurOsCXo-C08stYYbeUyOjxHWSuEaJa1HA8ShaPeydtd5rugCy-5xWPaYyTBf667VOR3rFkZmngDejRvZ_-Od8L_4_3xHc34aMsVrlGA42V9fhZcIcG3uSF9YJHE5Ov3-apuf76dmXr-ntopr8BhBt1XM |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3da9RAEMAHbRH7In5i2lr3wSdlMR-bTfZJVFquWk-RFvq27GcVaXLXuwr-953Jbe5QsM8JWZjZzMzOzP4G4JWxbRR1aXhrZeBCWMWVaRUPbZSxCLWr7UD7nMrJmfh0Xp-nhNsitVWONnEw1L53lCN_W6qCUGsqV-9mc05To6i6mkZo3IVtQlXh4Wv7w-H02_d1liXHI70YUMzUbc8J5TKWNof7cxgtUDtRzkVZSD4AFn703cUc3cbfjmoTff5TMB380NFDeJACSPZ-pfFHcCd0j-He0MjpFk9g8hVtwGW6XMn6yDDAYz8vaRaRufrDaJQ8Q8XOWPidNh3DsHV4C62fcSzMV_Dvp3B2dHj6ccLTtATuRFEsuVLWNDIoYvLFova28ZU0rlRNxJjDR1fVTVOXuQk-9yW-QgXOIGLhpWxzK6tnsNX1XXgOzAYfmsYbGV0QRGwLgig1MRoM7-q2yGBvLSb0tu4XMaR0JYldWFUZvB4Fp2crZIbewJFJ4holrkniWmawP4pWp79noTe6zoCtH-O-p2KG6UJ_vdB4qFeC2DwZvBk1svnCf9fbvX29l3B_cvrlRJ8cTz_vwc4qgUy9K_uwtby6Di8wAlnag7TNbgB71NWt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBH7aJWvdAnasqjPnBqZcjDceIjoizbUkEPRaIn10-oENmFzSK1vx5PHkQgeqh6jmXLnrFn4hl_A7CpdOlZnipaau4oY1pQoUpBXem5T1xuct3QPg_55Jh9OclPujqn8z7bvQ9Jtm8akNJU1dsz67eHh2_BzGMeUExZmnDKH8MSQzDSCJZ29n8cDNcscfinZw2LGdPtKbJc-tjmQ_0gYeFsWp1ehvHvWqrB_bwXMW0M0fg5_Oyn0OafnG8tar1l_tyjO_7HHF_Acuekkp1Wq17CI1e9gidNsqiZv4bJUThnLroHnGTqSXAiya8LrHekrn4TLFdPgvLMiLvuFJsE17hpFU5YZYi7bAHjb-B4vPd9d0K7igzUsCSpqRBaFdwJ5P75JLe6sBlXJhWFD36N9SbLiyJPY-VsbNPQBIOojvnEcl7GmmcrMKqmlXsLRDvrisIq7o1jSIVzDEk43qvgQuZlEsHqrSSCRTfnyKmSGUc-YpZF8KGXjZy1WA45AJhx4WRYOIkLJ3kEa730ZLdD5zIVCaL7RCwiILefw97CgImq3HQxlyIOpxXyfyL42Mtr6OGv4737p9bv4em3T2P59fPhwSo8a6-sMVtmDUb11cKtB5-n1hudXt8Apav2OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+imaginary+time+step+evolution+for+the+Dirac+equation&rft.jtitle=Science+China.+Physics%2C+mechanics+%26+astronomy&rft.au=Li%2C+FangQiong&rft.au=Zhang%2C+Ying&rft.au=Liang%2C+HaoZhao&rft.au=Meng%2C+Jie&rft.date=2011-02-01&rft.issn=1674-7348&rft.eissn=1869-1927&rft.volume=54&rft.issue=2&rft.spage=231&rft.epage=235&rft_id=info:doi/10.1007%2Fs11433-010-4216-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11433_010_4216_6 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60109X%2F60109X.jpg |