Polycrystalline BiCuSeO oxide as a potential thermoelectric material
This work revealed that BiCuSeO oxyselenide is a potential oxide-based thermoelectric material, whose dimensionless figure of merit ( ZT ) reaches ∼0.70 at 773 K. High phase-purity BiCuSeO polycrystalline materials with fine grains were synthesized by a facile method combining a solid-state reaction...
Saved in:
Published in | Energy & environmental science Vol. 5; no. 5; pp. 7188 - 7195 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work revealed that BiCuSeO oxyselenide is a potential oxide-based thermoelectric material, whose dimensionless figure of merit (
ZT
) reaches ∼0.70 at 773 K. High phase-purity BiCuSeO polycrystalline materials with fine grains were synthesized by a facile method combining a solid-state reaction and spark plasma sintering. Purifying the constitutive phase and reducing the grain sizes by introducing a high-energy ball milling process before spark plasma sintering were found to be effective in property enhancement. The resultant single-phased BiCuSeO sample derived from ball-milled powders shows good electrical conductivity above 4.0 × 10
3
S m
−1
and a large Seebeck coefficient above 200 μV K
−1
. This compound has a low thermal conductivity (∼0.5 W m
−1
K
−1
), which is associated with its low phonon transport speed and Young's modulus. Results indicated that BiCuSeO-based materials are promising for energy conversion applications in the moderate temperature range.
Good electrical conductivity, large Seebeck coefficients and low thermal conductivity were obtained for pristine BiCuSeO oxides with a layered structure of alternately stacked conductive (Cu
2
Se
2
)
2−
and insulating (Bi
2
O
2
)
2+
layers, resulting in a high
ZT
value of 0.70 at 773 K. |
---|---|
AbstractList | This work revealed that BiCuSeO oxyselenide is a potential oxide-based thermoelectric material, whose dimensionless figure of merit (ZT) reaches similar to 0.70 at 773 K. High phase-purity BiCuSeO polycrystalline materials with fine grains were synthesized by a facile method combining a solid-state reaction and spark plasma sintering. Purifying the constitutive phase and reducing the grain sizes by introducing a high-energy ball milling process before spark plasma sintering were found to be effective in property enhancement. The resultant single-phased BiCuSeO sample derived from ball-milled powders shows good electrical conductivity above 4.0 10 super(3) S m super(-1) and a large Seebeck coefficient above 200 mu V K super(-1). This compound has a low thermal conductivity ( similar to 0.5 W m super(-1) K super(-1)), which is associated with its low phonon transport speed and Young's modulus. Results indicated that BiCuSeO-based materials are promising for energy conversion applications in the moderate temperature range. This work revealed that BiCuSeO oxyselenide is a potential oxide-based thermoelectric material, whose dimensionless figure of merit ( ZT ) reaches ∼0.70 at 773 K. High phase-purity BiCuSeO polycrystalline materials with fine grains were synthesized by a facile method combining a solid-state reaction and spark plasma sintering. Purifying the constitutive phase and reducing the grain sizes by introducing a high-energy ball milling process before spark plasma sintering were found to be effective in property enhancement. The resultant single-phased BiCuSeO sample derived from ball-milled powders shows good electrical conductivity above 4.0 × 10 3 S m −1 and a large Seebeck coefficient above 200 μV K −1 . This compound has a low thermal conductivity (∼0.5 W m −1 K −1 ), which is associated with its low phonon transport speed and Young's modulus. Results indicated that BiCuSeO-based materials are promising for energy conversion applications in the moderate temperature range. Good electrical conductivity, large Seebeck coefficients and low thermal conductivity were obtained for pristine BiCuSeO oxides with a layered structure of alternately stacked conductive (Cu 2 Se 2 ) 2− and insulating (Bi 2 O 2 ) 2+ layers, resulting in a high ZT value of 0.70 at 773 K. |
Author | Zhang, Bo-Ping Zhao, Li-Dong Li, Jing-Feng Lin, Yuan-Hua Xiang, Kai Nan, Ce-Wen Liu, Yong Li, Fu Zhu, Hong-Min |
AuthorAffiliation | Department of Chemistry School of Materials Science and Engineering Tsinghua University University of Science and Technology Beijing School of Metallurgical and Ecological Engineering Northwestern University Department of Materials Science and Engineering State Key Laboratory of New Ceramics and Fine Processing |
AuthorAffiliation_xml | – name: State Key Laboratory of New Ceramics and Fine Processing – name: School of Metallurgical and Ecological Engineering – name: Department of Chemistry – name: School of Materials Science and Engineering – name: University of Science and Technology Beijing – name: Northwestern University – name: Tsinghua University – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Fu surname: Li fullname: Li, Fu – sequence: 2 givenname: Jing-Feng surname: Li fullname: Li, Jing-Feng – sequence: 3 givenname: Li-Dong surname: Zhao fullname: Zhao, Li-Dong – sequence: 4 givenname: Kai surname: Xiang fullname: Xiang, Kai – sequence: 5 givenname: Yong surname: Liu fullname: Liu, Yong – sequence: 6 givenname: Bo-Ping surname: Zhang fullname: Zhang, Bo-Ping – sequence: 7 givenname: Yuan-Hua surname: Lin fullname: Lin, Yuan-Hua – sequence: 8 givenname: Ce-Wen surname: Nan fullname: Nan, Ce-Wen – sequence: 9 givenname: Hong-Min surname: Zhu fullname: Zhu, Hong-Min |
BookMark | eNqFkM1Lw0AQxRepYFu9eBfiTYToTj52m6PWTyhUUM9hM5ngyiZbd7dg_3tTqhZE9DTDzO-9Gd6IDTrbEWOHwM-Ap8U5JkQJJDJTO2wIMs_iXHIx-OpFkeyxkfevnIuEy2LIrh6sWaFb-aCM0R1Fl3q6fKR5ZN91TZHykYoWNlAXtDJReCHXWjKEwWmMWhXI9fN9ttso4-ngs47Z88310_Quns1v76cXsxgzgBBPmqwWWAhZ5yrrHwBRVaAIpUybqsGJyBTWAE1aJ4lAyStUCHmS1jKrciooHbOTje_C2bcl-VC22iMZozqyS1-C5MBz6C_8j-aCA4h0skZPNyg6672jplw43Sq3KoGX61TLbao9zH_AqIMK2nbBKW1-lxxvJM7jt_V2Xy7qpmeO_mLSD3qzkdQ |
CitedBy_id | crossref_primary_10_1016_j_mtphys_2022_100688 crossref_primary_10_1016_j_ceramint_2018_10_190 crossref_primary_10_1016_j_jallcom_2021_162147 crossref_primary_10_1016_j_mtphys_2023_101018 crossref_primary_10_1007_s11664_022_09513_x crossref_primary_10_3390_ma10020198 crossref_primary_10_1039_c3ta11222e crossref_primary_10_1016_j_pmatsci_2024_101385 crossref_primary_10_1039_C8TC04506B crossref_primary_10_1002_cplu_202000191 crossref_primary_10_1016_j_jallcom_2018_04_307 crossref_primary_10_1111_jace_16469 crossref_primary_10_1016_j_jmrt_2021_10_002 crossref_primary_10_1039_C8QI01402G crossref_primary_10_1111_jace_14726 crossref_primary_10_1039_C5CP05510E crossref_primary_10_1021_acsami_9b16723 crossref_primary_10_1039_C7RA05193J crossref_primary_10_1002_aenm_201600607 crossref_primary_10_1016_j_jallcom_2018_06_021 crossref_primary_10_3390_e21111058 crossref_primary_10_1007_s10853_020_04949_0 crossref_primary_10_1021_acs_inorgchem_2c03444 crossref_primary_10_1007_s12274_022_4810_8 crossref_primary_10_1103_PhysRevB_109_024302 crossref_primary_10_1016_j_jallcom_2017_11_104 crossref_primary_10_1016_j_hybadv_2024_100176 crossref_primary_10_1007_s40843_018_9392_7 crossref_primary_10_1088_1757_899X_342_1_012051 crossref_primary_10_1016_j_jallcom_2019_01_183 crossref_primary_10_1016_j_ceramint_2024_10_242 crossref_primary_10_1038_am_2013_15 crossref_primary_10_1038_s41524_023_01097_2 crossref_primary_10_1016_j_mattod_2018_03_039 crossref_primary_10_1039_D1TA05112A crossref_primary_10_1039_C8EE01151F crossref_primary_10_1007_s10853_017_1238_8 crossref_primary_10_1007_s10876_025_02781_7 crossref_primary_10_1007_s11664_019_07720_7 crossref_primary_10_1002_admi_201600327 crossref_primary_10_1039_C9TC01096C crossref_primary_10_1016_j_jeurceramsoc_2016_10_021 crossref_primary_10_1016_j_jssc_2017_02_025 crossref_primary_10_1016_j_ceramint_2017_02_005 crossref_primary_10_1111_jace_16200 crossref_primary_10_1002_er_5313 crossref_primary_10_1039_D0CP03226C crossref_primary_10_1039_C6RA01686C crossref_primary_10_1016_j_jssc_2019_05_016 crossref_primary_10_1016_j_jmmm_2020_167383 crossref_primary_10_1038_am_2016_67 crossref_primary_10_1016_j_materresbull_2020_110841 crossref_primary_10_1002_adma_201702676 crossref_primary_10_1016_j_matt_2022_11_005 crossref_primary_10_1016_j_apsusc_2019_143736 crossref_primary_10_1021_acs_jpcc_4c06127 crossref_primary_10_1016_j_jallcom_2023_170566 crossref_primary_10_1021_ie401890j crossref_primary_10_1016_j_ceramint_2024_02_114 crossref_primary_10_1002_aenm_201502423 crossref_primary_10_1002_inf2_12481 crossref_primary_10_1016_j_jeurceramsoc_2014_09_015 crossref_primary_10_1039_C4TA01957A crossref_primary_10_1016_j_jallcom_2022_167913 crossref_primary_10_1016_j_nanoen_2016_07_003 crossref_primary_10_1016_j_jmrt_2022_11_091 crossref_primary_10_1016_j_mseb_2024_117665 crossref_primary_10_1142_S1793604713400079 crossref_primary_10_1007_s10854_024_12162_x crossref_primary_10_1021_acsaelm_1c01260 crossref_primary_10_1016_j_jallcom_2018_01_371 crossref_primary_10_1002_adfm_202401735 crossref_primary_10_1016_j_jssc_2021_122645 crossref_primary_10_1039_D0CE01332C crossref_primary_10_1039_D4TC05369A crossref_primary_10_1002_aenm_201800030 crossref_primary_10_1002_advs_201800626 crossref_primary_10_1021_acsami_7b19501 crossref_primary_10_1063_1_4949485 crossref_primary_10_1007_s11664_014_3127_0 crossref_primary_10_1016_j_cej_2019_121996 crossref_primary_10_1039_c3ee41859f crossref_primary_10_1016_j_jallcom_2016_08_236 crossref_primary_10_1002_adfm_201902893 crossref_primary_10_1140_epjb_e2014_40989_3 crossref_primary_10_1088_0268_1242_29_6_064001 crossref_primary_10_1088_0268_1242_29_6_064002 crossref_primary_10_1039_C4TA02050B crossref_primary_10_1103_PhysRevB_92_041202 crossref_primary_10_1039_D2TA02180C crossref_primary_10_1134_S1063782619050221 crossref_primary_10_1016_j_mtphys_2019_01_003 crossref_primary_10_1038_srep03449 crossref_primary_10_1016_j_mtphys_2023_101104 crossref_primary_10_1088_1674_1056_abe9a9 crossref_primary_10_1039_c3ee40879e crossref_primary_10_1111_jace_13965 crossref_primary_10_1039_C5CE01764E crossref_primary_10_1016_j_ceramint_2017_09_143 crossref_primary_10_1016_j_matchemphys_2016_03_045 crossref_primary_10_1039_C7TC01623A crossref_primary_10_1002_adma_201301675 crossref_primary_10_1016_j_jallcom_2017_06_078 crossref_primary_10_1063_1_4890302 crossref_primary_10_1016_j_jallcom_2013_03_037 crossref_primary_10_1016_j_ceramint_2018_11_130 crossref_primary_10_1088_1361_6528_aac901 crossref_primary_10_1134_S2635167621030150 crossref_primary_10_1016_j_actamat_2018_02_063 crossref_primary_10_1134_S1063782619020180 crossref_primary_10_1039_C6CP02739C crossref_primary_10_1039_D0TA08839K crossref_primary_10_1021_acs_inorgchem_8b01126 crossref_primary_10_1103_PhysRevB_94_125209 crossref_primary_10_1002_aenm_202403174 crossref_primary_10_1016_j_mtphys_2022_100898 crossref_primary_10_1038_s41467_019_10476_7 crossref_primary_10_1039_c3ta12753b crossref_primary_10_1039_C5RA04037J crossref_primary_10_1016_j_ssc_2018_04_013 crossref_primary_10_1039_D0TA00240B crossref_primary_10_20517_microstructures_2024_81 crossref_primary_10_1007_s11664_016_4945_z crossref_primary_10_1007_s40145_022_0634_y crossref_primary_10_1016_j_ceramint_2017_10_141 crossref_primary_10_4028_www_scientific_net_KEM_602_603_906 crossref_primary_10_1016_j_jssc_2017_11_012 crossref_primary_10_1063_1_5066296 crossref_primary_10_1088_1367_2630_17_8_083012 crossref_primary_10_1007_s11431_017_9058_8 crossref_primary_10_1021_acs_chemrev_6b00255 crossref_primary_10_1007_s10854_020_03056_9 crossref_primary_10_1007_s11664_014_3495_5 crossref_primary_10_1016_j_solidstatesciences_2016_05_012 crossref_primary_10_1039_c4ra02595d crossref_primary_10_1007_s00339_023_07218_4 crossref_primary_10_1007_s10854_022_08531_z crossref_primary_10_1021_acs_jpcc_8b04996 crossref_primary_10_1039_C7RA01706E crossref_primary_10_1063_5_0227080 crossref_primary_10_1021_acsaem_2c01375 crossref_primary_10_1063_1_4953439 crossref_primary_10_1016_j_matt_2023_07_014 crossref_primary_10_1016_j_matlet_2019_127184 crossref_primary_10_1007_s10853_013_7220_1 crossref_primary_10_1007_s12598_018_1006_1 crossref_primary_10_1007_s11664_014_3024_6 crossref_primary_10_1016_j_jmat_2019_06_002 crossref_primary_10_1016_j_actamat_2013_10_072 crossref_primary_10_1016_j_jallcom_2019_03_296 crossref_primary_10_1039_c3ta14532h crossref_primary_10_1016_j_solidstatesciences_2024_107719 crossref_primary_10_1007_s10854_021_07011_0 crossref_primary_10_1039_C7EE02530K crossref_primary_10_1039_c3ta11264k crossref_primary_10_1007_s11664_019_07118_5 crossref_primary_10_1016_j_jmat_2016_04_002 crossref_primary_10_1002_app_46887 crossref_primary_10_3389_fchem_2022_865281 crossref_primary_10_1039_C7EE00464H crossref_primary_10_1016_j_rinp_2024_107865 crossref_primary_10_1016_j_jallcom_2017_02_283 crossref_primary_10_1039_c3ta11806a crossref_primary_10_1080_09506608_2016_1183075 crossref_primary_10_1007_s10853_021_06089_5 crossref_primary_10_1039_C5GC00029G crossref_primary_10_1039_C7TA03659K crossref_primary_10_1039_D3TA00609C crossref_primary_10_1088_1361_6463_acc9d0 crossref_primary_10_1063_1_4799643 crossref_primary_10_1039_D1CS00347J crossref_primary_10_1080_08957959_2016_1273352 crossref_primary_10_1021_acs_inorgchem_8b01396 crossref_primary_10_1021_acsami_9b05470 crossref_primary_10_1039_c3ta12094e crossref_primary_10_1016_j_mtphys_2018_02_005 crossref_primary_10_1002_admi_202201659 crossref_primary_10_1016_j_ceramint_2022_03_097 crossref_primary_10_1002_smll_202100525 crossref_primary_10_1039_C4EE00997E crossref_primary_10_1039_C4RA10073E crossref_primary_10_1007_s11664_015_4181_y crossref_primary_10_1021_acs_jpcc_9b04806 crossref_primary_10_1007_s11664_017_5579_5 crossref_primary_10_2478_awutp_2020_0008 crossref_primary_10_1016_j_cjsc_2024_100397 crossref_primary_10_1007_s11664_021_08862_3 crossref_primary_10_1080_00018732_2018_1551715 crossref_primary_10_1016_j_jallcom_2020_154161 crossref_primary_10_1038_srep21035 crossref_primary_10_1002_adfm_202101289 crossref_primary_10_1016_j_ceramint_2024_12_508 crossref_primary_10_1039_c2ee22622g crossref_primary_10_1016_j_mser_2021_100607 crossref_primary_10_1007_s40243_019_0163_y crossref_primary_10_1016_j_mtcomm_2023_106509 crossref_primary_10_1016_j_mattod_2019_07_003 crossref_primary_10_1007_s11664_014_3294_z crossref_primary_10_1557_opl_2015_273 crossref_primary_10_1039_D3QI00850A crossref_primary_10_1063_1_5102141 crossref_primary_10_1007_s12648_016_0928_4 crossref_primary_10_1007_s40843_018_9314_5 crossref_primary_10_1007_s10832_014_9969_2 crossref_primary_10_1016_j_jallcom_2016_06_058 crossref_primary_10_1016_j_jallcom_2021_159969 crossref_primary_10_1016_j_ensm_2016_01_009 crossref_primary_10_1063_5_0135207 crossref_primary_10_1016_j_jmrt_2020_11_022 crossref_primary_10_1016_j_nanoen_2020_105195 crossref_primary_10_1016_j_mattod_2021_01_007 crossref_primary_10_1021_acs_chemmater_7b04989 crossref_primary_10_1007_s11144_021_01975_0 crossref_primary_10_1016_j_mtener_2024_101598 crossref_primary_10_1039_C8TA03521K crossref_primary_10_1103_PhysRevB_105_184304 crossref_primary_10_1016_j_cej_2021_130668 crossref_primary_10_1007_s11664_015_3700_1 crossref_primary_10_1021_acs_chemmater_4c00188 crossref_primary_10_1039_C5RA13191J crossref_primary_10_1088_2053_1591_aaf710 crossref_primary_10_1039_C7QM00306D crossref_primary_10_1002_ange_202501667 crossref_primary_10_3390_ma13071755 crossref_primary_10_1007_s11434_014_0237_2 crossref_primary_10_1039_D1EE03802H crossref_primary_10_1002_pssa_201431347 crossref_primary_10_1063_1_4869220 crossref_primary_10_1021_acs_inorgchem_0c01111 crossref_primary_10_1007_s10854_024_12032_6 crossref_primary_10_1016_j_scriptamat_2020_06_043 crossref_primary_10_1016_j_solidstatesciences_2017_08_006 crossref_primary_10_1002_anie_202501667 crossref_primary_10_7567_JJAP_55_115801 crossref_primary_10_1088_1361_6528_ab5b2c crossref_primary_10_1007_s10854_023_10188_1 crossref_primary_10_1039_C3EE43099E crossref_primary_10_1063_5_0023046 crossref_primary_10_1016_j_ceramint_2019_04_231 crossref_primary_10_1039_C8TC02700E crossref_primary_10_1016_j_jallcom_2012_10_160 crossref_primary_10_1002_advs_201600196 crossref_primary_10_1021_acsaem_1c02720 crossref_primary_10_1021_acsami_1c19266 crossref_primary_10_1016_j_jallcom_2014_06_117 crossref_primary_10_1039_C6TC00461J crossref_primary_10_1016_j_mtchem_2022_101149 crossref_primary_10_1063_5_0059322 crossref_primary_10_1039_c3cc44578j |
Cites_doi | 10.1063/1.3291125 10.1007/s11664-009-0816-1 10.1063/1.3197064 10.1016/j.jallcom.2007.12.063 10.1021/cm000132r 10.1016/j.solidstatesciences.2010.05.005 10.1038/nmat2090 10.1126/science.285.5428.703 10.1039/C1EE02497C 10.1063/1.2009828 10.1039/c1ee01314a 10.1021/ic801267m 10.1111/j.1551-2916.2010.03904.x 10.1111/j.1551-2916.2005.00131.x 10.1063/1.1618932 10.1126/science.1156446 10.1016/j.jallcom.2008.10.162 10.1038/nmat1821 10.1103/PhysRevB.74.144109 10.1063/1.1378056 10.1103/PhysRevB.69.155305 10.1038/asiamat.2010.138 10.1021/cm802367f 10.1103/PhysRevLett.101.085901 10.1039/c1jm11069a 10.1063/1.3086875 10.1063/1.2035889 10.1063/1.2362922 10.1021/cm702303r 10.1021/ja7110652 10.1021/nl202439h 10.1126/science.1136494 10.1063/1.2822142 10.1063/1.3254219 10.1063/1.1489091 10.1021/jp1024872 10.1039/b822664b 10.1016/j.ssc.2007.12.033 10.1038/nmat1669 10.1063/1.3505756 10.1103/PhysRevB.56.R12685 10.1021/cm901766y 10.1126/science.1092963 10.1063/1.1646438 10.1016/j.jpcs.2010.06.006 10.1016/j.jeurceramsoc.2011.07.006 10.1063/1.3485050 10.1103/PhysRevB.84.075315 10.1063/1.1847723 10.1063/1.3125450 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7TB 8FD FR3 JG9 L7M |
DOI | 10.1039/c2ee21274a |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Environment Abstracts Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 7195 |
ExternalDocumentID | 10_1039_c2ee21274a c2ee21274a |
GeographicLocations | Germany, Niedersachsen, Seebeck |
GeographicLocations_xml | – name: Germany, Niedersachsen, Seebeck |
GroupedDBID | 0-7 0R~ 29G 4.4 53G 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF CS3 EBS ECGLT EE0 EF- EJD FEDTE GGIMP GNO H13 HVGLF HZ~ H~N J3G J3H J3I L-8 M4U N9A O-G O9- P2P R56 RAOCF RCNCU ROL RPMJG RRC RSCEA RVUXY SKA SLH TOV 7ST C1K SOI 7SP 7SR 7TB 8FD FR3 JG9 L7M |
ID | FETCH-LOGICAL-c411t-8f4d6c967d5a406216bb1aec773fbfc864acd11f3d226c70bcac1523d74b5e9e3 |
ISSN | 1754-5692 |
IngestDate | Fri Jul 11 04:08:28 EDT 2025 Fri Jul 11 03:40:17 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Tue Jul 01 01:45:25 EDT 2025 Thu May 19 04:19:41 EDT 2016 Thu May 30 17:49:32 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c411t-8f4d6c967d5a406216bb1aec773fbfc864acd11f3d226c70bcac1523d74b5e9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1560116387 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_c2ee21274a proquest_miscellaneous_1560116387 crossref_citationtrail_10_1039_c2ee21274a rsc_primary_c2ee21274a proquest_miscellaneous_1701051967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Energy & environmental science |
PublicationYear | 2012 |
References | Shang (c2ee21274a-(cit42)/*[position()=1]) 2010; 12 Matsubara (c2ee21274a-(cit39)/*[position()=1]) 2001; 90 Ohtaki (c2ee21274a-(cit12)/*[position()=1]) 2009; 38 Yin (c2ee21274a-(cit40)/*[position()=1]) 2010; 114 Liu (c2ee21274a-(cit41)/*[position()=1]) 2009; 95 Terasaki (c2ee21274a-(cit9)/*[position()=1]) 1997; 56 Minnich (c2ee21274a-(cit3)/*[position()=1]) 2009; 2 Ge (c2ee21274a-(cit28)/*[position()=1]) 2011; 21 Wan (c2ee21274a-(cit36)/*[position()=1]) 2006; 74 Flahaut (c2ee21274a-(cit46)/*[position()=1]) 2006; 100 Koumoto (c2ee21274a-(cit32)/*[position()=1]) 2007; 102 Nate (c2ee21274a-(cit29)/*[position()=1]) 2011; 84 Wang (c2ee21274a-(cit37)/*[position()=1]) 2010; 107 Li (c2ee21274a-(cit4)/*[position()=1]) 2010; 2 Katsuyama (c2ee21274a-(cit11)/*[position()=1]) 2002; 92 Colder (c2ee21274a-(cit50)/*[position()=1]) 2011; 31 Ma (c2ee21274a-(cit49)/*[position()=1]) 2010; 71 Zhao (c2ee21274a-(cit27)/*[position()=1]) 2009; 467 Hiramatsu (c2ee21274a-(cit20)/*[position()=1]) 2008; 20 Jood (c2ee21274a-(cit23)/*[position()=1]) 2011; 11 Wang (c2ee21274a-(cit13)/*[position()=1]) 2009; 477 Chiritescu (c2ee21274a-(cit34)/*[position()=1]) 2007; 315 Zhao (c2ee21274a-(cit18)/*[position()=1]) 2010; 97 Ueda (c2ee21274a-(cit19)/*[position()=1]) 2004; 69 LaLonde (c2ee21274a-(cit7)/*[position()=1]) 2011; 4 Ohta (c2ee21274a-(cit10)/*[position()=1]) 2007; 6 Stampler (c2ee21274a-(cit30)/*[position()=1]) 2008; 47 Zhou (c2ee21274a-(cit6)/*[position()=1]) 2008; 130 Berardan (c2ee21274a-(cit24)/*[position()=1]) 2008; 146 Kosuga (c2ee21274a-(cit48)/*[position()=1]) 2009; 105 Hsu (c2ee21274a-(cit5)/*[position()=1]) 2004; 303 Okuda (c2ee21274a-(cit47)/*[position()=1]) 2010; 108 Wan (c2ee21274a-(cit35)/*[position()=1]) 2008; 101 Wang (c2ee21274a-(cit45)/*[position()=1]) 2009; 21 Ohta (c2ee21274a-(cit14)/*[position()=1]) 2005; 87 Liu (c2ee21274a-(cit44)/*[position()=1]) 2010; 93 Snyder (c2ee21274a-(cit2)/*[position()=1]) 2008; 7 Yasukawa (c2ee21274a-(cit17)/*[position()=1]) 2004; 95 DiSalvo (c2ee21274a-(cit1)/*[position()=1]) 1999; 285 Li (c2ee21274a-(cit16)/*[position()=1]) 2000; 12 Guilmeau (c2ee21274a-(cit25)/*[position()=1]) 2009; 106 Kurosaki (c2ee21274a-(cit33)/*[position()=1]) 2005; 87 Kim (c2ee21274a-(cit31)/*[position()=1]) 2005; 88 Lee (c2ee21274a-(cit15)/*[position()=1]) 2006; 5 Zebarjadi (c2ee21274a-(cit22)/*[position()=1]) 2012; 5 Lin (c2ee21274a-(cit38)/*[position()=1]) 2009; 94 Hiramatsu (c2ee21274a-(cit21)/*[position()=1]) 2003; 94 Liu (c2ee21274a-(cit26)/*[position()=1]) 2008; 20 Ohta (c2ee21274a-(cit43)/*[position()=1]) 2005; 97 Poudel (c2ee21274a-(cit8)/*[position()=1]) 2008; 320 |
References_xml | – volume: 107 start-page: 033708 year: 2010 ident: c2ee21274a-(cit37)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3291125 – volume: 38 start-page: 1234 year: 2009 ident: c2ee21274a-(cit12)/*[position()=1] publication-title: J. Electron. Mater. doi: 10.1007/s11664-009-0816-1 – volume: 106 start-page: 053715 year: 2009 ident: c2ee21274a-(cit25)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3197064 – volume: 467 start-page: 91 year: 2009 ident: c2ee21274a-(cit27)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.12.063 – volume: 12 start-page: 2424 year: 2000 ident: c2ee21274a-(cit16)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm000132r – volume: 12 start-page: 1341 year: 2010 ident: c2ee21274a-(cit42)/*[position()=1] publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.05.005 – volume: 7 start-page: 105 year: 2008 ident: c2ee21274a-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 285 start-page: 703 year: 1999 ident: c2ee21274a-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.285.5428.703 – volume: 5 start-page: 5147 year: 2012 ident: c2ee21274a-(cit22)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02497C – volume: 87 start-page: 061919 year: 2005 ident: c2ee21274a-(cit33)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2009828 – volume: 4 start-page: 2090 year: 2011 ident: c2ee21274a-(cit7)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01314a – volume: 47 start-page: 10009 year: 2008 ident: c2ee21274a-(cit30)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic801267m – volume: 93 start-page: 2938 year: 2010 ident: c2ee21274a-(cit44)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.03904.x – volume: 88 start-page: 628 year: 2005 ident: c2ee21274a-(cit31)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2005.00131.x – volume: 94 start-page: 5805 year: 2003 ident: c2ee21274a-(cit21)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1618932 – volume: 320 start-page: 634 year: 2008 ident: c2ee21274a-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.1156446 – volume: 477 start-page: 817 year: 2009 ident: c2ee21274a-(cit13)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.10.162 – volume: 6 start-page: 129 year: 2007 ident: c2ee21274a-(cit10)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1821 – volume: 74 start-page: 144109 year: 2006 ident: c2ee21274a-(cit36)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.144109 – volume: 90 start-page: 462 year: 2001 ident: c2ee21274a-(cit39)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1378056 – volume: 69 start-page: 155305 year: 2004 ident: c2ee21274a-(cit19)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.69.155305 – volume: 2 start-page: 152 year: 2010 ident: c2ee21274a-(cit4)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/asiamat.2010.138 – volume: 20 start-page: 7526 year: 2008 ident: c2ee21274a-(cit26)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm802367f – volume: 101 start-page: 085901 year: 2008 ident: c2ee21274a-(cit35)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.085901 – volume: 21 start-page: 9194 year: 2011 ident: c2ee21274a-(cit28)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm11069a – volume: 94 start-page: 072107 year: 2009 ident: c2ee21274a-(cit38)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3086875 – volume: 87 start-page: 092108 year: 2005 ident: c2ee21274a-(cit14)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2035889 – volume: 100 start-page: 084911 year: 2006 ident: c2ee21274a-(cit46)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2362922 – volume: 20 start-page: 326 year: 2008 ident: c2ee21274a-(cit20)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm702303r – volume: 130 start-page: 4527 year: 2008 ident: c2ee21274a-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7110652 – volume: 11 start-page: 4337 year: 2011 ident: c2ee21274a-(cit23)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl202439h – volume: 315 start-page: 351 year: 2007 ident: c2ee21274a-(cit34)/*[position()=1] publication-title: Science doi: 10.1126/science.1136494 – volume: 102 start-page: 116107 year: 2007 ident: c2ee21274a-(cit32)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2822142 – volume: 95 start-page: 162110 year: 2009 ident: c2ee21274a-(cit41)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3254219 – volume: 92 start-page: 1391 year: 2002 ident: c2ee21274a-(cit11)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1489091 – volume: 114 start-page: 10061 year: 2010 ident: c2ee21274a-(cit40)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp1024872 – volume: 2 start-page: 466 year: 2009 ident: c2ee21274a-(cit3)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/b822664b – volume: 146 start-page: 97 year: 2008 ident: c2ee21274a-(cit24)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.12.033 – volume: 5 start-page: 537 year: 2006 ident: c2ee21274a-(cit15)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1669 – volume: 108 start-page: 103702 year: 2010 ident: c2ee21274a-(cit47)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3505756 – volume: 56 start-page: R12685 year: 1997 ident: c2ee21274a-(cit9)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.56.R12685 – volume: 21 start-page: 4653 year: 2009 ident: c2ee21274a-(cit45)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm901766y – volume: 303 start-page: 818 year: 2004 ident: c2ee21274a-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1092963 – volume: 95 start-page: 3594 year: 2004 ident: c2ee21274a-(cit17)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1646438 – volume: 71 start-page: 1344 year: 2010 ident: c2ee21274a-(cit49)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2010.06.006 – volume: 31 start-page: 2957 year: 2011 ident: c2ee21274a-(cit50)/*[position()=1] publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.07.006 – volume: 97 start-page: 092118 year: 2010 ident: c2ee21274a-(cit18)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3485050 – volume: 84 start-page: 075315 year: 2011 ident: c2ee21274a-(cit29)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.075315 – volume: 97 start-page: 034106 year: 2005 ident: c2ee21274a-(cit43)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1847723 – volume: 105 start-page: 093717 year: 2009 ident: c2ee21274a-(cit48)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3125450 |
SSID | ssj0062079 |
Score | 2.5162663 |
Snippet | This work revealed that BiCuSeO oxyselenide is a potential oxide-based thermoelectric material, whose dimensionless figure of merit (
ZT
) reaches ∼0.70 at 773... This work revealed that BiCuSeO oxyselenide is a potential oxide-based thermoelectric material, whose dimensionless figure of merit (ZT) reaches similar to... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7188 |
SubjectTerms | Ball milling Coefficients Figure of merit Phonons Resistivity Spark plasma sintering Thermal conductivity Thermoelectric materials |
Title | Polycrystalline BiCuSeO oxide as a potential thermoelectric material |
URI | https://www.proquest.com/docview/1560116387 https://www.proquest.com/docview/1701051967 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbY9gIPiNvExkBB8IKqjCaO7fpxtzJtZUOiFX2LfEWRSlN1qbTx6znO1YUKDV6ixLFsy-fTudjngtB7qbUgkaEhlwkPE0ZsKCzHocbCGm7pgJQ3up-v6PkkuZiSaVe_s4wuKeSh-rkxruR_qAptQFcXJfsPlG0HhQZ4B_rCEygMz3vR-Es-u1PLO1DwZqW2eJydrL6a615-m2njKsiI3iIvnD-QcykH6vzIq7I3meqBplouce1ovgoEdGjwAuCasMkOA6PSBWC4Wv--ACkYwv589w6j88ruD0_zrnma1WfUlyLzDx2c90bj4lfzSUaSkNCqjN2h8dpYn_rMlXgYIh6jBJE48IQui6pSm38w9D52-VBVbIxLRZ94Yqu5qr-6ToeT0Sgdn03HW2gnBnMB-N3O0eXxp2-NTKZxv8y62C67SVSL-cdu7HXVpLM3tpZNMZhS6Rg_QY9rayE4qkj_FD0w82fokZdD8jk6_Q0EQQ2CoARBIG4CEbQgCNZBEDQgeIEmw7PxyXlYl8YIVRJFRTiwiaaKU6aJAJUsjqiUkTCKMWylVQOaCKWjyGIN6rVifamEAk0Na5ZIYrjBu2h7ns_NSxQoLDDWJrbUkoSDuU8UxrIvOWeRwlbtoQ_NrqSqzhvvypfM0tJ_AfO028E99K7tu6iypWzs9bbZ3BSYmbuhEnOTr25SF9YfOQuB_aUPc0VdQXBAn12gTDuRP8H-5h_pQtv9e8z-Cj3sUH-AtovlyrwG5bOQb2pk_QLYaIa9 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycrystalline+BiCuSeO+oxide+as+a+potential+thermoelectric+material&rft.jtitle=Energy+%26+environmental+science&rft.au=Li%2C+Fu&rft.au=Li%2C+Jing-Feng&rft.au=Zhao%2C+Li-Dong&rft.au=Xiang%2C+Kai&rft.date=2012-05-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=5&rft.issue=5&rft.spage=7188&rft.epage=7195&rft_id=info:doi/10.1039%2Fc2ee21274a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |