Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes
•CO2 electrolysis in a new solid oxide electrolysis cell was conducted.•47.4% conversion rate of CO2 was achieved at 1.305 V and −400 mA/cm2.•Energy conversation efficiency reached 91.4% at −400 mA/cm2 and 1.305 V.•1910 h of CO2 electrolysis has been operated under −300 mA/cm2. Solid oxide electroly...
Saved in:
Published in | Applied energy Vol. 259; p. 114130 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •CO2 electrolysis in a new solid oxide electrolysis cell was conducted.•47.4% conversion rate of CO2 was achieved at 1.305 V and −400 mA/cm2.•Energy conversation efficiency reached 91.4% at −400 mA/cm2 and 1.305 V.•1910 h of CO2 electrolysis has been operated under −300 mA/cm2.
Solid oxide electrolysis cell is a highly promising technology for CO2 electrolysis and has attracted wide attention. But the durability is insufficient by known designed structure of solid oxide electrolysis cell due to structure damage. In this work, a new flat-tube solid oxide electrolysis cell (SOEC) based on double-sided air electrodes with mechanically-strong redox properties and larger active area was proposed and applied to electrolysis of CO2, and its electrochemical performance and long-term durability were investigated. The results showed that the charging current density reaches −600 mA/cm2 at 1.5 V and 750 °C under H2/CO2 atmosphere. The CO2 conversion rate achieves 47.4% with energy conversation efficiency of 91.4% at the electrolysis voltage of 1.305 V under the charging current density of −400 mA/cm2, corresponding to 210 mL/min of CO production rate. This new cell architecture for CO2 electrolysis was stable at the current density of −300 mA/cm2 for 1910 h at 750 °C with a degradation rate of 4.89%/kh. The new flat-tube solid oxide electrolysis cell is capable to conduct CO2 electrolysis with high efficiency and long-term stability. |
---|---|
AbstractList | Solid oxide electrolysis cell is a highly promising technology for CO₂ electrolysis and has attracted wide attention. But the durability is insufficient by known designed structure of solid oxide electrolysis cell due to structure damage. In this work, a new flat-tube solid oxide electrolysis cell (SOEC) based on double-sided air electrodes with mechanically-strong redox properties and larger active area was proposed and applied to electrolysis of CO₂, and its electrochemical performance and long-term durability were investigated. The results showed that the charging current density reaches −600 mA/cm² at 1.5 V and 750 °C under H₂/CO₂ atmosphere. The CO₂ conversion rate achieves 47.4% with energy conversation efficiency of 91.4% at the electrolysis voltage of 1.305 V under the charging current density of −400 mA/cm², corresponding to 210 mL/min of CO production rate. This new cell architecture for CO₂ electrolysis was stable at the current density of −300 mA/cm² for 1910 h at 750 °C with a degradation rate of 4.89%/kh. The new flat-tube solid oxide electrolysis cell is capable to conduct CO₂ electrolysis with high efficiency and long-term stability. •CO2 electrolysis in a new solid oxide electrolysis cell was conducted.•47.4% conversion rate of CO2 was achieved at 1.305 V and −400 mA/cm2.•Energy conversation efficiency reached 91.4% at −400 mA/cm2 and 1.305 V.•1910 h of CO2 electrolysis has been operated under −300 mA/cm2. Solid oxide electrolysis cell is a highly promising technology for CO2 electrolysis and has attracted wide attention. But the durability is insufficient by known designed structure of solid oxide electrolysis cell due to structure damage. In this work, a new flat-tube solid oxide electrolysis cell (SOEC) based on double-sided air electrodes with mechanically-strong redox properties and larger active area was proposed and applied to electrolysis of CO2, and its electrochemical performance and long-term durability were investigated. The results showed that the charging current density reaches −600 mA/cm2 at 1.5 V and 750 °C under H2/CO2 atmosphere. The CO2 conversion rate achieves 47.4% with energy conversation efficiency of 91.4% at the electrolysis voltage of 1.305 V under the charging current density of −400 mA/cm2, corresponding to 210 mL/min of CO production rate. This new cell architecture for CO2 electrolysis was stable at the current density of −300 mA/cm2 for 1910 h at 750 °C with a degradation rate of 4.89%/kh. The new flat-tube solid oxide electrolysis cell is capable to conduct CO2 electrolysis with high efficiency and long-term stability. |
ArticleNumber | 114130 |
Author | Liu, Wu Chen, Ming Guan, Wanbing Lu, Lianmei Zhou, Xiao-Dong Xia, Changrong Wang, Jianxin Wang, Yudong |
Author_xml | – sequence: 1 givenname: Lianmei surname: Lu fullname: Lu, Lianmei organization: Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, PR China – sequence: 2 givenname: Wu surname: Liu fullname: Liu, Wu organization: Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Ningbo, Zhejiang Province, 315201, PR China – sequence: 3 givenname: Jianxin surname: Wang fullname: Wang, Jianxin organization: Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Ningbo, Zhejiang Province, 315201, PR China – sequence: 4 givenname: Yudong surname: Wang fullname: Wang, Yudong organization: Institute for Materials Research and Innovation, Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA – sequence: 5 givenname: Changrong surname: Xia fullname: Xia, Changrong organization: Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, PR China – sequence: 6 givenname: Xiao-Dong surname: Zhou fullname: Zhou, Xiao-Dong organization: Institute for Materials Research and Innovation, Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA – sequence: 7 givenname: Ming orcidid: 0000-0001-6387-3739 surname: Chen fullname: Chen, Ming organization: Department of Energy Conversion and Storage, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde, Denmark – sequence: 8 givenname: Wanbing surname: Guan fullname: Guan, Wanbing email: wbguan@nimte.ac.cn organization: Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Ningbo, Zhejiang Province, 315201, PR China |
BookMark | eNqFkcFqGzEQhkVJoU7aVyg65rKuZncrryCHhJCkBUMv7VnMSrNmjCy5klzqt8gjd42bSynkNIf5v59hvktxEVMkIT6CWoIC_Wm7xD1FypvjslVglgA9dOqNWMCwahsDMFyIheqUbloN5p24LGWrlGqhVQvxvE5x01TKO1kqjhy4HmWapMM8pig9p9_sSVIgV3MKx8JFcpQoA-YNNcVhIDkFrE09jCRLCuzlfxhHIcgRC83buTYdxjDTc8xL5PyS9VTei7cThkIf_s4r8ePx4fv9l2b97enr_d26cT1AbQacYFQjdQMY780wtCtSq8-DacloMzrqiQD7CRAMaY_GeTeZya1MN3SgqbsS1-fefU4_D1Sq3XE5XYmR0qHYtleqN6bXeo7qc9TlVEqmye4z7zAfLSh7UmC39kWBPSmwZwUzePMP6Lhi5RRrRg6v47dnnOY__GLKtjim6Mhznt9lfeLXKv4Ax26szA |
CitedBy_id | crossref_primary_10_1016_j_seppur_2022_121411 crossref_primary_10_1016_j_ijhydene_2023_03_004 crossref_primary_10_1021_acs_chemrev_3c00760 crossref_primary_10_1016_j_jpowsour_2023_233372 crossref_primary_10_1016_j_jpowsour_2024_235113 crossref_primary_10_1016_j_electacta_2022_140852 crossref_primary_10_1080_15435075_2021_1986405 crossref_primary_10_1016_j_seppur_2023_125177 crossref_primary_10_1016_j_jpowsour_2022_231228 crossref_primary_10_1016_j_ijhydene_2022_01_105 crossref_primary_10_1016_j_ijhydene_2022_05_207 crossref_primary_10_1016_j_ijhydene_2025_01_028 crossref_primary_10_1016_j_cej_2023_143275 crossref_primary_10_20517_energymater_2024_144 crossref_primary_10_1016_j_apenergy_2022_118969 crossref_primary_10_1007_s11630_023_1772_4 crossref_primary_10_1007_s40242_024_4126_1 crossref_primary_10_1039_D2TA05827H crossref_primary_10_1016_j_apenergy_2021_117439 crossref_primary_10_1021_acsami_0c11194 crossref_primary_10_1016_j_enconman_2022_115657 crossref_primary_10_1002_cey2_262 crossref_primary_10_23919_IEN_2023_0007 crossref_primary_10_1016_j_cej_2021_129260 crossref_primary_10_1016_j_jpowsour_2024_234742 crossref_primary_10_1039_D0TA08088H crossref_primary_10_1016_j_ijhydene_2023_01_253 crossref_primary_10_1016_j_ijhydene_2020_05_114 crossref_primary_10_3390_cryst14040306 crossref_primary_10_1016_j_ijhydene_2022_04_061 crossref_primary_10_1016_j_apcatb_2022_122239 crossref_primary_10_1016_j_rser_2021_110918 crossref_primary_10_1080_21870764_2021_1920135 crossref_primary_10_1016_j_jpowsour_2024_234608 |
Cites_doi | 10.15541/jim20150652 10.1016/j.jpowsour.2018.08.017 10.1016/j.ssi.2008.04.024 10.1039/C5CP06742A 10.1016/j.jpowsour.2009.02.093 10.1016/j.jcou.2016.11.014 10.1016/j.jpowsour.2010.05.037 10.1039/C7TA06839E 10.1149/07801.1095ecst 10.1016/j.jpowsour.2014.01.110 10.1016/j.compositesb.2019.02.012 10.1016/j.ssi.2011.02.001 10.1016/j.jpowsour.2016.01.067 10.1016/j.jcat.2017.12.027 10.5796/electrochemistry.82.839 10.1016/S0378-7753(96)02359-2 10.1149/1.1391566 10.1038/s41560-019-0333-2 10.1016/j.jpowsour.2015.02.107 10.1016/j.apenergy.2012.12.062 10.1016/j.apenergy.2017.12.078 10.1016/j.apenergy.2018.02.144 10.1016/j.est.2017.07.029 10.1039/C8TA02858C 10.1016/j.ijhydene.2017.01.182 10.1016/j.scitotenv.2019.02.406 10.1016/j.apenergy.2019.03.145 10.1149/2.040208jes 10.1016/j.electacta.2016.03.133 10.1002/ente.201800743 10.1016/j.jpowsour.2017.07.070 10.1109/TEC.2003.822305 10.1002/fuce.201600222 10.1016/j.jpowsour.2010.09.054 10.1016/j.jpowsour.2008.03.011 10.1016/j.jeurceramsoc.2018.07.005 10.1039/C3CS60323G 10.1149/2.1281902jes 10.1149/2.098308jes 10.1016/j.jechem.2017.04.004 10.1149/05049.0139ecst 10.1149/2.0351802jes 10.1039/C7TA08249E 10.1016/j.jpowsour.2016.08.055 10.1016/j.ijthermalsci.2013.10.008 10.1016/j.ceramint.2015.09.006 10.1149/1.2943664 10.1016/j.apenergy.2018.03.176 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2019.114130 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2019_114130 S0306261919318173 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-8af1b0be3819dd98827e075892e969bce4ee1a4f1a19e6da9cdcf9fc7938316e3 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Thu Jul 10 20:45:34 EDT 2025 Thu Apr 24 23:01:01 EDT 2025 Tue Jul 01 02:53:45 EDT 2025 Fri Feb 23 02:41:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solid oxide electrolysis cells Double-sided air electrodes Long-term stability Carbon dioxide electrolysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-8af1b0be3819dd98827e075892e969bce4ee1a4f1a19e6da9cdcf9fc7938316e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6387-3739 |
PQID | 2400499466 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2400499466 crossref_primary_10_1016_j_apenergy_2019_114130 crossref_citationtrail_10_1016_j_apenergy_2019_114130 elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_114130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Virkar (b0120) 2014; 78 Laurencin, Kane, Delette, Deseure, Lefebvre-Joud (b0115) 2011; 196 Nechache, Cassir, Ringuedé (b0140) 2014; 258 Zhang, Su, Zhou, Yang (b0005) 2019; 668 Lu, Li, Tao, Teng, Xie (b0190) 2017; 42 Kaur, Kulkarni, Giddey, Badwal (b0215) 2018; 221 Wang, Wang, Yu, Ye, Hu, Marnellos (b0050) 2018; 38 Kulkarni, Giddey, Badwal (b0220) 2017; 17 Zhang, Hu, Zhu, Yang (b0025) 2017; 26 Gan, Ye, Tao, Xie (b0185) 2016; 18 Yue, Irvine (b0130) 2012; 159 Liu, Zou, Miao, Li, Wang, Yang (b0105) 2019; 7 Ebbesen, Mogensen (b0060) 2009; 193 Tao, Ebbesen, Mogensen (b0245) 2013; 50 Mehran, Yu, Lee, Hong, Lee, Park (b0015) 2018; 212 Zhang, Chen, Yan, Chen (b0155) 2015; 283 Zhan, Zhao (b0045) 2010; 195 Mertens, Granwehr (b0145) 2017; 13 Cassidy, Lindsay, Kendall (b0075) 1996; 61 Tian, Zheng, Zhang, Chi, Pu, Li (b0195) 2018; 165 Zhang, Chen, Li, Yan, Ni, Xia (b0150) 2016; 308 Green, Liu, Adler (b0020) 2008; 179 Singh, Muroyama, Matsui, Eguchi (b0135) 2014; 82 Duan, Kee, Zhu, Sullivan, Zhu, Bian (b0205) 2019; 4 Zhang, Song, Fang, Zhou, Lv, Wang (b0175) 2018; 359 Kim, Virkar, Fung, Mehta, Singhal (b0125) 1999; 146 Wang, Zhang, Yu, Chen (b0170) 2016; 31 Trini, Jørgensen, Hauch, Bentzen, Hendriksen, Chen (b0230) 2019; 166 Li, Wang, Liu, Wilson, Wang, Wang (b0110) 2019; 166 Khan, Lee, Song, Lee, Lim, Park (b0080) 2016; 42 Barton, Infield (b0035) 2004; 19 Dong, Xu, Shao, Hucker, Marin, Pham (b0065) 2017; 5 Tamošiūnas, Gimžauskaitė, Uscila, Aikas (b0210) 2019 Song, Zhou, Zhang, Zhou, Gong, Lv (b0070) 2018; 6 Mogensen, Hauch, Sun, Chen, Tao, Ebbesen (b0235) 2017; 17 Pihlatie, Kaiser, Mogensen, Chen (b0085) 2011; 189 Chen, Liu, Bentzen, Zhang, Sun, Hauch (b0240) 2013; 160 Razbani, Waernhus, Assadi (b0095) 2013; 105 Osinkin, Bogdanovich, Gavrilyuk (b0160) 2016; 199 Tao, Ebbesen, Mogensen (b0225) 2016; 328 Bidrawn, Kim, Corre, Irvine, Vohs, Gorte (b0030) 2008; 11 Fan, Li, Zeng, Zhang (b0100) 2014; 77 Zhu, Hou, Li, Gan, Xie (b0180) 2017; 363 Qiao, Liu, Hong, Zhang (b0040) 2014; 43 Xu, Maroto-Valer, Ni, Cao, Xuan (b0165) 2019; 242 Sarantaridis, Rudkin, Atkinson (b0090) 2008; 180 Zheng, Wang, Yang, Xia (b0055) 2018; 6 Zhang, Song, Guan, Zhou, Lv, Liu (b0200) 2018 Krekel, Samsun, Peters, Stolten (b0010) 2018; 218 Razbani (10.1016/j.apenergy.2019.114130_b0095) 2013; 105 Ebbesen (10.1016/j.apenergy.2019.114130_b0060) 2009; 193 Zhu (10.1016/j.apenergy.2019.114130_b0180) 2017; 363 Chen (10.1016/j.apenergy.2019.114130_b0240) 2013; 160 Zhang (10.1016/j.apenergy.2019.114130_b0200) 2018 Cassidy (10.1016/j.apenergy.2019.114130_b0075) 1996; 61 Zhang (10.1016/j.apenergy.2019.114130_b0175) 2018; 359 Tian (10.1016/j.apenergy.2019.114130_b0195) 2018; 165 Virkar (10.1016/j.apenergy.2019.114130_b0120) 2014; 78 Fan (10.1016/j.apenergy.2019.114130_b0100) 2014; 77 Singh (10.1016/j.apenergy.2019.114130_b0135) 2014; 82 Zhang (10.1016/j.apenergy.2019.114130_b0005) 2019; 668 Mogensen (10.1016/j.apenergy.2019.114130_b0235) 2017; 17 Zheng (10.1016/j.apenergy.2019.114130_b0055) 2018; 6 Zhang (10.1016/j.apenergy.2019.114130_b0155) 2015; 283 Khan (10.1016/j.apenergy.2019.114130_b0080) 2016; 42 Osinkin (10.1016/j.apenergy.2019.114130_b0160) 2016; 199 Tao (10.1016/j.apenergy.2019.114130_b0225) 2016; 328 Zhan (10.1016/j.apenergy.2019.114130_b0045) 2010; 195 Kaur (10.1016/j.apenergy.2019.114130_b0215) 2018; 221 Pihlatie (10.1016/j.apenergy.2019.114130_b0085) 2011; 189 Laurencin (10.1016/j.apenergy.2019.114130_b0115) 2011; 196 Trini (10.1016/j.apenergy.2019.114130_b0230) 2019; 166 Zhang (10.1016/j.apenergy.2019.114130_b0025) 2017; 26 Yue (10.1016/j.apenergy.2019.114130_b0130) 2012; 159 Li (10.1016/j.apenergy.2019.114130_b0110) 2019; 166 Kim (10.1016/j.apenergy.2019.114130_b0125) 1999; 146 Duan (10.1016/j.apenergy.2019.114130_b0205) 2019; 4 Krekel (10.1016/j.apenergy.2019.114130_b0010) 2018; 218 Qiao (10.1016/j.apenergy.2019.114130_b0040) 2014; 43 Barton (10.1016/j.apenergy.2019.114130_b0035) 2004; 19 Nechache (10.1016/j.apenergy.2019.114130_b0140) 2014; 258 Bidrawn (10.1016/j.apenergy.2019.114130_b0030) 2008; 11 Gan (10.1016/j.apenergy.2019.114130_b0185) 2016; 18 Xu (10.1016/j.apenergy.2019.114130_b0165) 2019; 242 Kulkarni (10.1016/j.apenergy.2019.114130_b0220) 2017; 17 Song (10.1016/j.apenergy.2019.114130_b0070) 2018; 6 Lu (10.1016/j.apenergy.2019.114130_b0190) 2017; 42 Dong (10.1016/j.apenergy.2019.114130_b0065) 2017; 5 Tamošiūnas (10.1016/j.apenergy.2019.114130_b0210) 2019 Liu (10.1016/j.apenergy.2019.114130_b0105) 2019; 7 Wang (10.1016/j.apenergy.2019.114130_b0050) 2018; 38 Wang (10.1016/j.apenergy.2019.114130_b0170) 2016; 31 Tao (10.1016/j.apenergy.2019.114130_b0245) 2013; 50 Sarantaridis (10.1016/j.apenergy.2019.114130_b0090) 2008; 180 Mehran (10.1016/j.apenergy.2019.114130_b0015) 2018; 212 Mertens (10.1016/j.apenergy.2019.114130_b0145) 2017; 13 Green (10.1016/j.apenergy.2019.114130_b0020) 2008; 179 Zhang (10.1016/j.apenergy.2019.114130_b0150) 2016; 308 |
References_xml | – volume: 7 start-page: 240 year: 2019 end-page: 244 ident: b0105 article-title: Anode-supported planar solid oxide fuel cells based on double-sided cathodes publication-title: Energy Technol – volume: 196 start-page: 2080 year: 2011 end-page: 2093 ident: b0115 article-title: Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production publication-title: J Power Sources – volume: 17 start-page: 180 year: 2017 end-page: 187 ident: b0220 article-title: Efficient conversion of CO publication-title: J CO – volume: 363 start-page: 177 year: 2017 end-page: 184 ident: b0180 article-title: Efficient carbon dioxide electrolysis with metal nanoparticles loaded La publication-title: J Power Sources – volume: 359 start-page: 8 year: 2018 end-page: 16 ident: b0175 article-title: Enhancing electrocatalytic CO publication-title: J Catal – volume: 189 start-page: 82 year: 2011 end-page: 90 ident: b0085 article-title: Electrical conductivity of Ni-YSZ composites degradation due to Ni particle growth publication-title: Solid State Ionics – volume: 38 start-page: 5051 year: 2018 end-page: 5057 ident: b0050 article-title: Effect of NiO/YSZ cathode support pore structure on CO publication-title: J Eur Ceram Soc – volume: 283 start-page: 464 year: 2015 end-page: 477 ident: b0155 article-title: Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy publication-title: J Power Sources – volume: 5 start-page: 24098 year: 2017 end-page: 24102 ident: b0065 article-title: Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO publication-title: J Mater Chem A – volume: 50 start-page: 139 year: 2013 end-page: 151 ident: b0245 article-title: Degradation of solid oxide cells during co-electrolysis of H publication-title: ECS Trans – volume: 18 start-page: 3137 year: 2016 end-page: 3143 ident: b0185 article-title: Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis publication-title: Phys Chem Chem Phys – volume: 179 start-page: 647 year: 2008 end-page: 660 ident: b0020 article-title: Carbon dioxide reduction on gadolinia-doped ceria cathodes publication-title: Solid State Ionics – volume: 78 start-page: 1095 year: 2014 end-page: 1105 ident: b0120 article-title: Anode concentration polarization in solid oxide cells as a dissipative process publication-title: ECS Trans – volume: 180 start-page: 704 year: 2008 end-page: 710 ident: b0090 article-title: Oxidation failure modes of anode-supported solid oxide fuel cells publication-title: J Power Sources – volume: 221 start-page: 131 year: 2018 end-page: 138 ident: b0215 article-title: Ceramic composite cathodes for CO publication-title: Appl Energy – volume: 199 start-page: 108 year: 2016 end-page: 115 ident: b0160 article-title: Rate determining steps of fuel oxidation over CeO publication-title: Electrochim Acta – volume: 328 start-page: 452 year: 2016 end-page: 462 ident: b0225 article-title: Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities publication-title: J Power Sources – volume: 193 start-page: 349 year: 2009 end-page: 358 ident: b0060 article-title: Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells publication-title: J Power Sources – volume: 6 start-page: 13661 year: 2018 end-page: 13667 ident: b0070 article-title: Pure CO publication-title: J Mater Chem A – volume: 242 start-page: 911 year: 2019 end-page: 918 ident: b0165 article-title: Low carbon fuel production from combined solid oxide CO publication-title: Appl Energy – volume: 61 start-page: 189 year: 1996 end-page: 192 ident: b0075 article-title: The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes publication-title: J Power Sources – volume: 218 start-page: 361 year: 2018 end-page: 381 ident: b0010 article-title: The separation of CO publication-title: Appl Energy – volume: 195 start-page: 7250 year: 2010 end-page: 7254 ident: b0045 article-title: Electrochemical reduction of CO publication-title: J Power Sources – volume: 166 start-page: F158 year: 2019 end-page: F167 ident: b0230 article-title: 3D microstructural characterization of Ni/YSZ electrodes exposed to 1 year of electrolysis testing publication-title: J Electrochem Soc – volume: 26 start-page: 593 year: 2017 end-page: 601 ident: b0025 article-title: Electrochemical reduction of CO publication-title: J Energy Chem – volume: 19 start-page: 441 year: 2004 end-page: 448 ident: b0035 article-title: Energy storage and its use with intermittent renewable energy publication-title: IEEE Trans Energy Convers – volume: 43 start-page: 631 year: 2014 end-page: 675 ident: b0040 article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels publication-title: Chem Soc Rev – volume: 77 start-page: 1 year: 2014 end-page: 10 ident: b0100 article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell publication-title: Int J Therm Sci – volume: 31 start-page: 1279 year: 2016 end-page: 1288 ident: b0170 article-title: SOC stack impedance characterization and identification based on DRT and ADIS methods publication-title: J Inorganic Mater – volume: 42 start-page: 8197 year: 2017 end-page: 8206 ident: b0190 article-title: Efficient CO publication-title: Int J Hydrogen Energy – volume: 165 start-page: F17 year: 2018 end-page: F23 ident: b0195 article-title: Direct electrolysis of CO publication-title: J Electrochem Soc – volume: 160 start-page: 883 year: 2013 end-page: 891 ident: b0240 article-title: Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current publication-title: J Electrochem Soc – volume: 82 start-page: 839 year: 2014 end-page: 844 ident: b0135 article-title: Performance and stability of solid oxide electrolysis cell for CO publication-title: Electrochemistry – start-page: 251 year: 2019 ident: b0210 article-title: Thermal arc plasma gasification of waste glycerol to syngas publication-title: Appl Energy – volume: 166 start-page: 549 year: 2019 end-page: 554 ident: b0110 article-title: Reliability of CO publication-title: Compos Part B-Eng – volume: 42 start-page: 35 year: 2016 end-page: 48 ident: b0080 article-title: Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: a review publication-title: Ceram Int – volume: 668 start-page: 432 year: 2019 end-page: 442 ident: b0005 article-title: Decomposition analysis of China's CO publication-title: Sci Total Environ – volume: 258 start-page: 164 year: 2014 end-page: 181 ident: b0140 article-title: Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review publication-title: J Power Sources – volume: 4 start-page: 230 year: 2019 end-page: 240 ident: b0205 article-title: Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production publication-title: Nat Energy – volume: 159 start-page: F442 year: 2012 end-page: F448 ident: b0130 article-title: Alternative cathode material for CO publication-title: J Electrochem Soc – start-page: 104 year: 2018 end-page: 113 ident: b0200 article-title: La publication-title: J Power Sources – volume: 11 start-page: B167 year: 2008 end-page: B170 ident: b0030 article-title: Efficient reduction of CO publication-title: Electrochem Solid-State Lett – volume: 146 start-page: 69 year: 1999 end-page: 78 ident: b0125 article-title: Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells publication-title: J Electrochem Soc – volume: 13 start-page: 401 year: 2017 end-page: 408 ident: b0145 article-title: Two-dimensional impedance data analysis by the distribution of relaxation times publication-title: J Energy Storage – volume: 6 start-page: 2721 year: 2018 end-page: 2729 ident: b0055 article-title: Barium carbonate as a synergistic catalyst for the H publication-title: J Mater Chem A – volume: 17 start-page: 434 year: 2017 end-page: 441 ident: b0235 article-title: Relation between Ni particle shape change and Ni migration in Ni-YSZ electrodes-a hypothesis publication-title: Fuel Cells – volume: 212 start-page: 759 year: 2018 end-page: 770 ident: b0015 article-title: Production of syngas from H publication-title: Appl Energy – volume: 308 start-page: 1 year: 2016 end-page: 6 ident: b0150 article-title: A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy publication-title: J Power Sources – volume: 105 start-page: 155 year: 2013 end-page: 160 ident: b0095 article-title: Experimental investigation of temperature distribution over a planar solid oxide fuel cell publication-title: Appl Energy – volume: 31 start-page: 1279 year: 2016 ident: 10.1016/j.apenergy.2019.114130_b0170 article-title: SOC stack impedance characterization and identification based on DRT and ADIS methods publication-title: J Inorganic Mater doi: 10.15541/jim20150652 – start-page: 104 issue: 400 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0200 article-title: La0.75Sr0.25)0.95(Cr0.5Mn0.5)O3-δ-Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.08.017 – volume: 179 start-page: 647 year: 2008 ident: 10.1016/j.apenergy.2019.114130_b0020 article-title: Carbon dioxide reduction on gadolinia-doped ceria cathodes publication-title: Solid State Ionics doi: 10.1016/j.ssi.2008.04.024 – volume: 18 start-page: 3137 year: 2016 ident: 10.1016/j.apenergy.2019.114130_b0185 article-title: Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP06742A – volume: 193 start-page: 349 year: 2009 ident: 10.1016/j.apenergy.2019.114130_b0060 article-title: Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.02.093 – volume: 17 start-page: 180 year: 2017 ident: 10.1016/j.apenergy.2019.114130_b0220 article-title: Efficient conversion of CO2 in solid oxide electrolytic cells with Pd doped perovskite cathode on ceria nanofilm interlayer publication-title: J CO2 Utilization doi: 10.1016/j.jcou.2016.11.014 – start-page: 251 year: 2019 ident: 10.1016/j.apenergy.2019.114130_b0210 article-title: Thermal arc plasma gasification of waste glycerol to syngas publication-title: Appl Energy – volume: 195 start-page: 7250 year: 2010 ident: 10.1016/j.apenergy.2019.114130_b0045 article-title: Electrochemical reduction of CO2 in solid oxide electrolysis cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.05.037 – volume: 5 start-page: 24098 year: 2017 ident: 10.1016/j.apenergy.2019.114130_b0065 article-title: Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2 electrolysis without safe gas publication-title: J Mater Chem A doi: 10.1039/C7TA06839E – volume: 78 start-page: 1095 year: 2014 ident: 10.1016/j.apenergy.2019.114130_b0120 article-title: Anode concentration polarization in solid oxide cells as a dissipative process publication-title: ECS Trans doi: 10.1149/07801.1095ecst – volume: 258 start-page: 164 year: 2014 ident: 10.1016/j.apenergy.2019.114130_b0140 article-title: Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.01.110 – volume: 166 start-page: 549 year: 2019 ident: 10.1016/j.apenergy.2019.114130_b0110 article-title: Reliability of CO2 electrolysis by solid oxide electrolysis cells with a flat tube based on a composite double-sided air electrode publication-title: Compos Part B-Eng doi: 10.1016/j.compositesb.2019.02.012 – volume: 189 start-page: 82 year: 2011 ident: 10.1016/j.apenergy.2019.114130_b0085 article-title: Electrical conductivity of Ni-YSZ composites degradation due to Ni particle growth publication-title: Solid State Ionics doi: 10.1016/j.ssi.2011.02.001 – volume: 308 start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2019.114130_b0150 article-title: A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.01.067 – volume: 359 start-page: 8 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0175 article-title: Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode publication-title: J Catal doi: 10.1016/j.jcat.2017.12.027 – volume: 82 start-page: 839 year: 2014 ident: 10.1016/j.apenergy.2019.114130_b0135 article-title: Performance and stability of solid oxide electrolysis cell for CO2 reduction under various operating conditions publication-title: Electrochemistry doi: 10.5796/electrochemistry.82.839 – volume: 61 start-page: 189 year: 1996 ident: 10.1016/j.apenergy.2019.114130_b0075 article-title: The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes publication-title: J Power Sources doi: 10.1016/S0378-7753(96)02359-2 – volume: 146 start-page: 69 year: 1999 ident: 10.1016/j.apenergy.2019.114130_b0125 article-title: Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.1391566 – volume: 4 start-page: 230 year: 2019 ident: 10.1016/j.apenergy.2019.114130_b0205 article-title: Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production publication-title: Nat Energy doi: 10.1038/s41560-019-0333-2 – volume: 283 start-page: 464 year: 2015 ident: 10.1016/j.apenergy.2019.114130_b0155 article-title: Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.02.107 – volume: 105 start-page: 155 year: 2013 ident: 10.1016/j.apenergy.2019.114130_b0095 article-title: Experimental investigation of temperature distribution over a planar solid oxide fuel cell publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.062 – volume: 212 start-page: 759 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0015 article-title: Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.078 – volume: 218 start-page: 361 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0010 article-title: The separation of CO2 from ambient air-a techno-economic assessment publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.144 – volume: 13 start-page: 401 year: 2017 ident: 10.1016/j.apenergy.2019.114130_b0145 article-title: Two-dimensional impedance data analysis by the distribution of relaxation times publication-title: J Energy Storage doi: 10.1016/j.est.2017.07.029 – volume: 6 start-page: 13661 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0070 article-title: Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell publication-title: J Mater Chem A doi: 10.1039/C8TA02858C – volume: 42 start-page: 8197 year: 2017 ident: 10.1016/j.apenergy.2019.114130_b0190 article-title: Efficient CO2 electrolysis with scandium doped titanate cathode publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.01.182 – volume: 668 start-page: 432 year: 2019 ident: 10.1016/j.apenergy.2019.114130_b0005 article-title: Decomposition analysis of China's CO2 emissions (2000–2016) and scenario analysis of its carbon intensity targets in 2020 and 2030 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.406 – volume: 242 start-page: 911 year: 2019 ident: 10.1016/j.apenergy.2019.114130_b0165 article-title: Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: a modelling study publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.145 – volume: 159 start-page: F442 year: 2012 ident: 10.1016/j.apenergy.2019.114130_b0130 article-title: Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells publication-title: J Electrochem Soc doi: 10.1149/2.040208jes – volume: 199 start-page: 108 year: 2016 ident: 10.1016/j.apenergy.2019.114130_b0160 article-title: Rate determining steps of fuel oxidation over CeO2 impregnated Ni-YSZ in H2+H2O+CO+CO2 ambient publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.03.133 – volume: 7 start-page: 240 year: 2019 ident: 10.1016/j.apenergy.2019.114130_b0105 article-title: Anode-supported planar solid oxide fuel cells based on double-sided cathodes publication-title: Energy Technol doi: 10.1002/ente.201800743 – volume: 363 start-page: 177 year: 2017 ident: 10.1016/j.apenergy.2019.114130_b0180 article-title: Efficient carbon dioxide electrolysis with metal nanoparticles loaded La0.75Sr0.25Cr0.5Mn0.5O3-δ cathodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.07.070 – volume: 19 start-page: 441 year: 2004 ident: 10.1016/j.apenergy.2019.114130_b0035 article-title: Energy storage and its use with intermittent renewable energy publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2003.822305 – volume: 17 start-page: 434 year: 2017 ident: 10.1016/j.apenergy.2019.114130_b0235 article-title: Relation between Ni particle shape change and Ni migration in Ni-YSZ electrodes-a hypothesis publication-title: Fuel Cells doi: 10.1002/fuce.201600222 – volume: 196 start-page: 2080 year: 2011 ident: 10.1016/j.apenergy.2019.114130_b0115 article-title: Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.09.054 – volume: 180 start-page: 704 year: 2008 ident: 10.1016/j.apenergy.2019.114130_b0090 article-title: Oxidation failure modes of anode-supported solid oxide fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.03.011 – volume: 38 start-page: 5051 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0050 article-title: Effect of NiO/YSZ cathode support pore structure on CO2 electrolysis via solid oxide electrolysis cells publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2018.07.005 – volume: 43 start-page: 631 year: 2014 ident: 10.1016/j.apenergy.2019.114130_b0040 article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels publication-title: Chem Soc Rev doi: 10.1039/C3CS60323G – volume: 166 start-page: F158 year: 2019 ident: 10.1016/j.apenergy.2019.114130_b0230 article-title: 3D microstructural characterization of Ni/YSZ electrodes exposed to 1 year of electrolysis testing publication-title: J Electrochem Soc doi: 10.1149/2.1281902jes – volume: 160 start-page: 883 year: 2013 ident: 10.1016/j.apenergy.2019.114130_b0240 article-title: Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current publication-title: J Electrochem Soc doi: 10.1149/2.098308jes – volume: 26 start-page: 593 year: 2017 ident: 10.1016/j.apenergy.2019.114130_b0025 article-title: Electrochemical reduction of CO2 in solid oxide electrolysis cells publication-title: J Energy Chem doi: 10.1016/j.jechem.2017.04.004 – volume: 50 start-page: 139 year: 2013 ident: 10.1016/j.apenergy.2019.114130_b0245 article-title: Degradation of solid oxide cells during co-electrolysis of H2O and CO2: carbon deposition under high current densities publication-title: ECS Trans doi: 10.1149/05049.0139ecst – volume: 165 start-page: F17 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0195 article-title: Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δ electrode publication-title: J Electrochem Soc doi: 10.1149/2.0351802jes – volume: 6 start-page: 2721 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0055 article-title: Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni-yttria stabilized zirconia cathodes for solid oxide electrolysis cells publication-title: J Mater Chem A doi: 10.1039/C7TA08249E – volume: 328 start-page: 452 year: 2016 ident: 10.1016/j.apenergy.2019.114130_b0225 article-title: Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.08.055 – volume: 77 start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2019.114130_b0100 article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2013.10.008 – volume: 42 start-page: 35 year: 2016 ident: 10.1016/j.apenergy.2019.114130_b0080 article-title: Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: a review publication-title: Ceram Int doi: 10.1016/j.ceramint.2015.09.006 – volume: 11 start-page: B167 year: 2008 ident: 10.1016/j.apenergy.2019.114130_b0030 article-title: Efficient reduction of CO2 in a solid oxide electrolyzer publication-title: Electrochem Solid-State Lett doi: 10.1149/1.2943664 – volume: 221 start-page: 131 year: 2018 ident: 10.1016/j.apenergy.2019.114130_b0215 article-title: Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.176 |
SSID | ssj0002120 |
Score | 2.4554107 |
Snippet | •CO2 electrolysis in a new solid oxide electrolysis cell was conducted.•47.4% conversion rate of CO2 was achieved at 1.305 V and −400 mA/cm2.•Energy... Solid oxide electrolysis cell is a highly promising technology for CO₂ electrolysis and has attracted wide attention. But the durability is insufficient by... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114130 |
SubjectTerms | air carbon dioxide Carbon dioxide electrolysis carbon monoxide Double-sided air electrodes durability electric potential difference electrochemistry electrodes electrolysis hydrogen Long-term stability Solid oxide electrolysis cells |
Title | Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes |
URI | https://dx.doi.org/10.1016/j.apenergy.2019.114130 https://www.proquest.com/docview/2400499466 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhubSH0qYNTdIGFXpVNvLKHzqGkLD9IJc2kJuQPKPisNjLrhfaS35Df3JnvHKSlkAOvdozwmhGM0_46UmIj3kovdcV_xoMmTIFFKrKbaWgLAncQs0S4My2uCxmV-bzdX69Jc7GszBMq0y1f1PTh2qdnkzSbE4WTTP5xmiX8T9BEGpTJSt-GlNylh_f3tM8siTNSMaKrR-cEr459gscTtgxxcuybK5mNvTjDeqfUj30n4uX4kUCjvJ0822vxBa2u-L5AznBXbF3fn9qjUzTsl29Fr-_du0PxUVYEhgc6LC_ZBdl7ZehayU03c8GUKYrcQaREtm00ss588TViuKIMs59r_p1QEnp2oB8xIf_Akjui_SWhu3WYU7eZAbSN8vRFnD1RlxdnH8_m6l0FYOqjda9qnzU4SQg7-8ALMHyEglsVDZDW9hQo0HU3kTttcUCvK2hjjbWtPqrqS5wuie2267Ft0J6yhqIhoqFBnMCofIWplRGsgxiHvNqX-Tj_Ls66ZTzdRlzNxLSbtwYN8dxc5u47YvJnd9io9TxpIcdw-v-yjlH7eRJ3w9jPjhakDy_vsVuvXJMyqVtpCmKg_8Y_1A8y3hnP_DD34ntfrnG9wR_-nA05PeR2Dn99GV2-Qd4UAjx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoPbQ9oEKLeBVcqVezOOs8fEQItLRbLgWJm2XH4ypolax2s1K58Bv4ycxkHaAVEodekxkr8oxnPivfzDD2LXW5tbKgX4MuESrzmShSXQif5whufUktwIltcZGNrtT36_R6hZ30tTBEq4yxfxnTu2gdnwzibg6mVTX4RWiX8D9CEExT-fANe6vw-NIYg8O7J55HEnszorQg8WdlwjeHdgpdiR1xvDT1zZVEh345Q_0Tq7sEdPaRrUXkyI-XH7fOVqDeYB-e9RPcYJunT2VrKBrP7fwTux839W9BUZgjGuz4sLe8Cby0M9fU3FfNn8oDjzNxui4lvKq55RMiios5GhJ4mNhWtAsHHP218vwFHfoNwCkx4ltctlm4CWqjmOe2mvWyHuaf2dXZ6eXJSMRZDKJUUraisEG6Iwd0wfNeIy7PAdFGoRPQmXYlKABpVZBWasi81aUvgw4lHv9iKDMYbrLVuqlhi3GLbuODwmghvTryrrDaDzGOJIkPaUiLbZb2-2_K2Kic5mVMTM9IuzG93QzZzSztts0Gj3rTZauOVzV0b17zl9MZzCev6n7t_cHgiaT9tTU0i7khVi7eI1WW7fzH-gfs3ejy59iMzy9-7LL3CV3zO7L4HlttZwv4gliodfudrz8AaLsKfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+stability+of+carbon+dioxide+electrolysis+in+a+large-scale+flat-tube+solid+oxide+electrolysis+cell+based+on+double-sided+air+electrodes&rft.jtitle=Applied+energy&rft.au=Lu%2C+Lianmei&rft.au=Liu%2C+Wu&rft.au=Wang%2C+Jianxin&rft.au=Wang%2C+Yudong&rft.date=2020-02-01&rft.issn=0306-2619&rft.volume=259+p.114130-&rft_id=info:doi/10.1016%2Fj.apenergy.2019.114130&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |