Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes

•CO2 electrolysis in a new solid oxide electrolysis cell was conducted.•47.4% conversion rate of CO2 was achieved at 1.305 V and −400 mA/cm2.•Energy conversation efficiency reached 91.4% at −400 mA/cm2 and 1.305 V.•1910 h of CO2 electrolysis has been operated under −300 mA/cm2. Solid oxide electroly...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 259; p. 114130
Main Authors Lu, Lianmei, Liu, Wu, Wang, Jianxin, Wang, Yudong, Xia, Changrong, Zhou, Xiao-Dong, Chen, Ming, Guan, Wanbing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •CO2 electrolysis in a new solid oxide electrolysis cell was conducted.•47.4% conversion rate of CO2 was achieved at 1.305 V and −400 mA/cm2.•Energy conversation efficiency reached 91.4% at −400 mA/cm2 and 1.305 V.•1910 h of CO2 electrolysis has been operated under −300 mA/cm2. Solid oxide electrolysis cell is a highly promising technology for CO2 electrolysis and has attracted wide attention. But the durability is insufficient by known designed structure of solid oxide electrolysis cell due to structure damage. In this work, a new flat-tube solid oxide electrolysis cell (SOEC) based on double-sided air electrodes with mechanically-strong redox properties and larger active area was proposed and applied to electrolysis of CO2, and its electrochemical performance and long-term durability were investigated. The results showed that the charging current density reaches −600 mA/cm2 at 1.5 V and 750 °C under H2/CO2 atmosphere. The CO2 conversion rate achieves 47.4% with energy conversation efficiency of 91.4% at the electrolysis voltage of 1.305 V under the charging current density of −400 mA/cm2, corresponding to 210 mL/min of CO production rate. This new cell architecture for CO2 electrolysis was stable at the current density of −300 mA/cm2 for 1910 h at 750 °C with a degradation rate of 4.89%/kh. The new flat-tube solid oxide electrolysis cell is capable to conduct CO2 electrolysis with high efficiency and long-term stability.
AbstractList Solid oxide electrolysis cell is a highly promising technology for CO₂ electrolysis and has attracted wide attention. But the durability is insufficient by known designed structure of solid oxide electrolysis cell due to structure damage. In this work, a new flat-tube solid oxide electrolysis cell (SOEC) based on double-sided air electrodes with mechanically-strong redox properties and larger active area was proposed and applied to electrolysis of CO₂, and its electrochemical performance and long-term durability were investigated. The results showed that the charging current density reaches −600 mA/cm² at 1.5 V and 750 °C under H₂/CO₂ atmosphere. The CO₂ conversion rate achieves 47.4% with energy conversation efficiency of 91.4% at the electrolysis voltage of 1.305 V under the charging current density of −400 mA/cm², corresponding to 210 mL/min of CO production rate. This new cell architecture for CO₂ electrolysis was stable at the current density of −300 mA/cm² for 1910 h at 750 °C with a degradation rate of 4.89%/kh. The new flat-tube solid oxide electrolysis cell is capable to conduct CO₂ electrolysis with high efficiency and long-term stability.
•CO2 electrolysis in a new solid oxide electrolysis cell was conducted.•47.4% conversion rate of CO2 was achieved at 1.305 V and −400 mA/cm2.•Energy conversation efficiency reached 91.4% at −400 mA/cm2 and 1.305 V.•1910 h of CO2 electrolysis has been operated under −300 mA/cm2. Solid oxide electrolysis cell is a highly promising technology for CO2 electrolysis and has attracted wide attention. But the durability is insufficient by known designed structure of solid oxide electrolysis cell due to structure damage. In this work, a new flat-tube solid oxide electrolysis cell (SOEC) based on double-sided air electrodes with mechanically-strong redox properties and larger active area was proposed and applied to electrolysis of CO2, and its electrochemical performance and long-term durability were investigated. The results showed that the charging current density reaches −600 mA/cm2 at 1.5 V and 750 °C under H2/CO2 atmosphere. The CO2 conversion rate achieves 47.4% with energy conversation efficiency of 91.4% at the electrolysis voltage of 1.305 V under the charging current density of −400 mA/cm2, corresponding to 210 mL/min of CO production rate. This new cell architecture for CO2 electrolysis was stable at the current density of −300 mA/cm2 for 1910 h at 750 °C with a degradation rate of 4.89%/kh. The new flat-tube solid oxide electrolysis cell is capable to conduct CO2 electrolysis with high efficiency and long-term stability.
ArticleNumber 114130
Author Liu, Wu
Chen, Ming
Guan, Wanbing
Lu, Lianmei
Zhou, Xiao-Dong
Xia, Changrong
Wang, Jianxin
Wang, Yudong
Author_xml – sequence: 1
  givenname: Lianmei
  surname: Lu
  fullname: Lu, Lianmei
  organization: Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, PR China
– sequence: 2
  givenname: Wu
  surname: Liu
  fullname: Liu, Wu
  organization: Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Ningbo, Zhejiang Province, 315201, PR China
– sequence: 3
  givenname: Jianxin
  surname: Wang
  fullname: Wang, Jianxin
  organization: Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Ningbo, Zhejiang Province, 315201, PR China
– sequence: 4
  givenname: Yudong
  surname: Wang
  fullname: Wang, Yudong
  organization: Institute for Materials Research and Innovation, Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
– sequence: 5
  givenname: Changrong
  surname: Xia
  fullname: Xia, Changrong
  organization: Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, PR China
– sequence: 6
  givenname: Xiao-Dong
  surname: Zhou
  fullname: Zhou, Xiao-Dong
  organization: Institute for Materials Research and Innovation, Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
– sequence: 7
  givenname: Ming
  orcidid: 0000-0001-6387-3739
  surname: Chen
  fullname: Chen, Ming
  organization: Department of Energy Conversion and Storage, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde, Denmark
– sequence: 8
  givenname: Wanbing
  surname: Guan
  fullname: Guan, Wanbing
  email: wbguan@nimte.ac.cn
  organization: Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Ningbo, Zhejiang Province, 315201, PR China
BookMark eNqFkcFqGzEQhkVJoU7aVyg65rKuZncrryCHhJCkBUMv7VnMSrNmjCy5klzqt8gjd42bSynkNIf5v59hvktxEVMkIT6CWoIC_Wm7xD1FypvjslVglgA9dOqNWMCwahsDMFyIheqUbloN5p24LGWrlGqhVQvxvE5x01TKO1kqjhy4HmWapMM8pig9p9_sSVIgV3MKx8JFcpQoA-YNNcVhIDkFrE09jCRLCuzlfxhHIcgRC83buTYdxjDTc8xL5PyS9VTei7cThkIf_s4r8ePx4fv9l2b97enr_d26cT1AbQacYFQjdQMY780wtCtSq8-DacloMzrqiQD7CRAMaY_GeTeZya1MN3SgqbsS1-fefU4_D1Sq3XE5XYmR0qHYtleqN6bXeo7qc9TlVEqmye4z7zAfLSh7UmC39kWBPSmwZwUzePMP6Lhi5RRrRg6v47dnnOY__GLKtjim6Mhznt9lfeLXKv4Ax26szA
CitedBy_id crossref_primary_10_1016_j_seppur_2022_121411
crossref_primary_10_1016_j_ijhydene_2023_03_004
crossref_primary_10_1021_acs_chemrev_3c00760
crossref_primary_10_1016_j_jpowsour_2023_233372
crossref_primary_10_1016_j_jpowsour_2024_235113
crossref_primary_10_1016_j_electacta_2022_140852
crossref_primary_10_1080_15435075_2021_1986405
crossref_primary_10_1016_j_seppur_2023_125177
crossref_primary_10_1016_j_jpowsour_2022_231228
crossref_primary_10_1016_j_ijhydene_2022_01_105
crossref_primary_10_1016_j_ijhydene_2022_05_207
crossref_primary_10_1016_j_ijhydene_2025_01_028
crossref_primary_10_1016_j_cej_2023_143275
crossref_primary_10_20517_energymater_2024_144
crossref_primary_10_1016_j_apenergy_2022_118969
crossref_primary_10_1007_s11630_023_1772_4
crossref_primary_10_1007_s40242_024_4126_1
crossref_primary_10_1039_D2TA05827H
crossref_primary_10_1016_j_apenergy_2021_117439
crossref_primary_10_1021_acsami_0c11194
crossref_primary_10_1016_j_enconman_2022_115657
crossref_primary_10_1002_cey2_262
crossref_primary_10_23919_IEN_2023_0007
crossref_primary_10_1016_j_cej_2021_129260
crossref_primary_10_1016_j_jpowsour_2024_234742
crossref_primary_10_1039_D0TA08088H
crossref_primary_10_1016_j_ijhydene_2023_01_253
crossref_primary_10_1016_j_ijhydene_2020_05_114
crossref_primary_10_3390_cryst14040306
crossref_primary_10_1016_j_ijhydene_2022_04_061
crossref_primary_10_1016_j_apcatb_2022_122239
crossref_primary_10_1016_j_rser_2021_110918
crossref_primary_10_1080_21870764_2021_1920135
crossref_primary_10_1016_j_jpowsour_2024_234608
Cites_doi 10.15541/jim20150652
10.1016/j.jpowsour.2018.08.017
10.1016/j.ssi.2008.04.024
10.1039/C5CP06742A
10.1016/j.jpowsour.2009.02.093
10.1016/j.jcou.2016.11.014
10.1016/j.jpowsour.2010.05.037
10.1039/C7TA06839E
10.1149/07801.1095ecst
10.1016/j.jpowsour.2014.01.110
10.1016/j.compositesb.2019.02.012
10.1016/j.ssi.2011.02.001
10.1016/j.jpowsour.2016.01.067
10.1016/j.jcat.2017.12.027
10.5796/electrochemistry.82.839
10.1016/S0378-7753(96)02359-2
10.1149/1.1391566
10.1038/s41560-019-0333-2
10.1016/j.jpowsour.2015.02.107
10.1016/j.apenergy.2012.12.062
10.1016/j.apenergy.2017.12.078
10.1016/j.apenergy.2018.02.144
10.1016/j.est.2017.07.029
10.1039/C8TA02858C
10.1016/j.ijhydene.2017.01.182
10.1016/j.scitotenv.2019.02.406
10.1016/j.apenergy.2019.03.145
10.1149/2.040208jes
10.1016/j.electacta.2016.03.133
10.1002/ente.201800743
10.1016/j.jpowsour.2017.07.070
10.1109/TEC.2003.822305
10.1002/fuce.201600222
10.1016/j.jpowsour.2010.09.054
10.1016/j.jpowsour.2008.03.011
10.1016/j.jeurceramsoc.2018.07.005
10.1039/C3CS60323G
10.1149/2.1281902jes
10.1149/2.098308jes
10.1016/j.jechem.2017.04.004
10.1149/05049.0139ecst
10.1149/2.0351802jes
10.1039/C7TA08249E
10.1016/j.jpowsour.2016.08.055
10.1016/j.ijthermalsci.2013.10.008
10.1016/j.ceramint.2015.09.006
10.1149/1.2943664
10.1016/j.apenergy.2018.03.176
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.114130
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2019_114130
S0306261919318173
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c411t-8af1b0be3819dd98827e075892e969bce4ee1a4f1a19e6da9cdcf9fc7938316e3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Thu Jul 10 20:45:34 EDT 2025
Thu Apr 24 23:01:01 EDT 2025
Tue Jul 01 02:53:45 EDT 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solid oxide electrolysis cells
Double-sided air electrodes
Long-term stability
Carbon dioxide electrolysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-8af1b0be3819dd98827e075892e969bce4ee1a4f1a19e6da9cdcf9fc7938316e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6387-3739
PQID 2400499466
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400499466
crossref_primary_10_1016_j_apenergy_2019_114130
crossref_citationtrail_10_1016_j_apenergy_2019_114130
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_114130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Virkar (b0120) 2014; 78
Laurencin, Kane, Delette, Deseure, Lefebvre-Joud (b0115) 2011; 196
Nechache, Cassir, Ringuedé (b0140) 2014; 258
Zhang, Su, Zhou, Yang (b0005) 2019; 668
Lu, Li, Tao, Teng, Xie (b0190) 2017; 42
Kaur, Kulkarni, Giddey, Badwal (b0215) 2018; 221
Wang, Wang, Yu, Ye, Hu, Marnellos (b0050) 2018; 38
Kulkarni, Giddey, Badwal (b0220) 2017; 17
Zhang, Hu, Zhu, Yang (b0025) 2017; 26
Gan, Ye, Tao, Xie (b0185) 2016; 18
Yue, Irvine (b0130) 2012; 159
Liu, Zou, Miao, Li, Wang, Yang (b0105) 2019; 7
Ebbesen, Mogensen (b0060) 2009; 193
Tao, Ebbesen, Mogensen (b0245) 2013; 50
Mehran, Yu, Lee, Hong, Lee, Park (b0015) 2018; 212
Zhang, Chen, Yan, Chen (b0155) 2015; 283
Zhan, Zhao (b0045) 2010; 195
Mertens, Granwehr (b0145) 2017; 13
Cassidy, Lindsay, Kendall (b0075) 1996; 61
Tian, Zheng, Zhang, Chi, Pu, Li (b0195) 2018; 165
Zhang, Chen, Li, Yan, Ni, Xia (b0150) 2016; 308
Green, Liu, Adler (b0020) 2008; 179
Singh, Muroyama, Matsui, Eguchi (b0135) 2014; 82
Duan, Kee, Zhu, Sullivan, Zhu, Bian (b0205) 2019; 4
Zhang, Song, Fang, Zhou, Lv, Wang (b0175) 2018; 359
Kim, Virkar, Fung, Mehta, Singhal (b0125) 1999; 146
Wang, Zhang, Yu, Chen (b0170) 2016; 31
Trini, Jørgensen, Hauch, Bentzen, Hendriksen, Chen (b0230) 2019; 166
Li, Wang, Liu, Wilson, Wang, Wang (b0110) 2019; 166
Khan, Lee, Song, Lee, Lim, Park (b0080) 2016; 42
Barton, Infield (b0035) 2004; 19
Dong, Xu, Shao, Hucker, Marin, Pham (b0065) 2017; 5
Tamošiūnas, Gimžauskaitė, Uscila, Aikas (b0210) 2019
Song, Zhou, Zhang, Zhou, Gong, Lv (b0070) 2018; 6
Mogensen, Hauch, Sun, Chen, Tao, Ebbesen (b0235) 2017; 17
Pihlatie, Kaiser, Mogensen, Chen (b0085) 2011; 189
Chen, Liu, Bentzen, Zhang, Sun, Hauch (b0240) 2013; 160
Razbani, Waernhus, Assadi (b0095) 2013; 105
Osinkin, Bogdanovich, Gavrilyuk (b0160) 2016; 199
Tao, Ebbesen, Mogensen (b0225) 2016; 328
Bidrawn, Kim, Corre, Irvine, Vohs, Gorte (b0030) 2008; 11
Fan, Li, Zeng, Zhang (b0100) 2014; 77
Zhu, Hou, Li, Gan, Xie (b0180) 2017; 363
Qiao, Liu, Hong, Zhang (b0040) 2014; 43
Xu, Maroto-Valer, Ni, Cao, Xuan (b0165) 2019; 242
Sarantaridis, Rudkin, Atkinson (b0090) 2008; 180
Zheng, Wang, Yang, Xia (b0055) 2018; 6
Zhang, Song, Guan, Zhou, Lv, Liu (b0200) 2018
Krekel, Samsun, Peters, Stolten (b0010) 2018; 218
Razbani (10.1016/j.apenergy.2019.114130_b0095) 2013; 105
Ebbesen (10.1016/j.apenergy.2019.114130_b0060) 2009; 193
Zhu (10.1016/j.apenergy.2019.114130_b0180) 2017; 363
Chen (10.1016/j.apenergy.2019.114130_b0240) 2013; 160
Zhang (10.1016/j.apenergy.2019.114130_b0200) 2018
Cassidy (10.1016/j.apenergy.2019.114130_b0075) 1996; 61
Zhang (10.1016/j.apenergy.2019.114130_b0175) 2018; 359
Tian (10.1016/j.apenergy.2019.114130_b0195) 2018; 165
Virkar (10.1016/j.apenergy.2019.114130_b0120) 2014; 78
Fan (10.1016/j.apenergy.2019.114130_b0100) 2014; 77
Singh (10.1016/j.apenergy.2019.114130_b0135) 2014; 82
Zhang (10.1016/j.apenergy.2019.114130_b0005) 2019; 668
Mogensen (10.1016/j.apenergy.2019.114130_b0235) 2017; 17
Zheng (10.1016/j.apenergy.2019.114130_b0055) 2018; 6
Zhang (10.1016/j.apenergy.2019.114130_b0155) 2015; 283
Khan (10.1016/j.apenergy.2019.114130_b0080) 2016; 42
Osinkin (10.1016/j.apenergy.2019.114130_b0160) 2016; 199
Tao (10.1016/j.apenergy.2019.114130_b0225) 2016; 328
Zhan (10.1016/j.apenergy.2019.114130_b0045) 2010; 195
Kaur (10.1016/j.apenergy.2019.114130_b0215) 2018; 221
Pihlatie (10.1016/j.apenergy.2019.114130_b0085) 2011; 189
Laurencin (10.1016/j.apenergy.2019.114130_b0115) 2011; 196
Trini (10.1016/j.apenergy.2019.114130_b0230) 2019; 166
Zhang (10.1016/j.apenergy.2019.114130_b0025) 2017; 26
Yue (10.1016/j.apenergy.2019.114130_b0130) 2012; 159
Li (10.1016/j.apenergy.2019.114130_b0110) 2019; 166
Kim (10.1016/j.apenergy.2019.114130_b0125) 1999; 146
Duan (10.1016/j.apenergy.2019.114130_b0205) 2019; 4
Krekel (10.1016/j.apenergy.2019.114130_b0010) 2018; 218
Qiao (10.1016/j.apenergy.2019.114130_b0040) 2014; 43
Barton (10.1016/j.apenergy.2019.114130_b0035) 2004; 19
Nechache (10.1016/j.apenergy.2019.114130_b0140) 2014; 258
Bidrawn (10.1016/j.apenergy.2019.114130_b0030) 2008; 11
Gan (10.1016/j.apenergy.2019.114130_b0185) 2016; 18
Xu (10.1016/j.apenergy.2019.114130_b0165) 2019; 242
Kulkarni (10.1016/j.apenergy.2019.114130_b0220) 2017; 17
Song (10.1016/j.apenergy.2019.114130_b0070) 2018; 6
Lu (10.1016/j.apenergy.2019.114130_b0190) 2017; 42
Dong (10.1016/j.apenergy.2019.114130_b0065) 2017; 5
Tamošiūnas (10.1016/j.apenergy.2019.114130_b0210) 2019
Liu (10.1016/j.apenergy.2019.114130_b0105) 2019; 7
Wang (10.1016/j.apenergy.2019.114130_b0050) 2018; 38
Wang (10.1016/j.apenergy.2019.114130_b0170) 2016; 31
Tao (10.1016/j.apenergy.2019.114130_b0245) 2013; 50
Sarantaridis (10.1016/j.apenergy.2019.114130_b0090) 2008; 180
Mehran (10.1016/j.apenergy.2019.114130_b0015) 2018; 212
Mertens (10.1016/j.apenergy.2019.114130_b0145) 2017; 13
Green (10.1016/j.apenergy.2019.114130_b0020) 2008; 179
Zhang (10.1016/j.apenergy.2019.114130_b0150) 2016; 308
References_xml – volume: 7
  start-page: 240
  year: 2019
  end-page: 244
  ident: b0105
  article-title: Anode-supported planar solid oxide fuel cells based on double-sided cathodes
  publication-title: Energy Technol
– volume: 196
  start-page: 2080
  year: 2011
  end-page: 2093
  ident: b0115
  article-title: Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production
  publication-title: J Power Sources
– volume: 17
  start-page: 180
  year: 2017
  end-page: 187
  ident: b0220
  article-title: Efficient conversion of CO
  publication-title: J CO
– volume: 363
  start-page: 177
  year: 2017
  end-page: 184
  ident: b0180
  article-title: Efficient carbon dioxide electrolysis with metal nanoparticles loaded La
  publication-title: J Power Sources
– volume: 359
  start-page: 8
  year: 2018
  end-page: 16
  ident: b0175
  article-title: Enhancing electrocatalytic CO
  publication-title: J Catal
– volume: 189
  start-page: 82
  year: 2011
  end-page: 90
  ident: b0085
  article-title: Electrical conductivity of Ni-YSZ composites degradation due to Ni particle growth
  publication-title: Solid State Ionics
– volume: 38
  start-page: 5051
  year: 2018
  end-page: 5057
  ident: b0050
  article-title: Effect of NiO/YSZ cathode support pore structure on CO
  publication-title: J Eur Ceram Soc
– volume: 283
  start-page: 464
  year: 2015
  end-page: 477
  ident: b0155
  article-title: Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy
  publication-title: J Power Sources
– volume: 5
  start-page: 24098
  year: 2017
  end-page: 24102
  ident: b0065
  article-title: Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO
  publication-title: J Mater Chem A
– volume: 50
  start-page: 139
  year: 2013
  end-page: 151
  ident: b0245
  article-title: Degradation of solid oxide cells during co-electrolysis of H
  publication-title: ECS Trans
– volume: 18
  start-page: 3137
  year: 2016
  end-page: 3143
  ident: b0185
  article-title: Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis
  publication-title: Phys Chem Chem Phys
– volume: 179
  start-page: 647
  year: 2008
  end-page: 660
  ident: b0020
  article-title: Carbon dioxide reduction on gadolinia-doped ceria cathodes
  publication-title: Solid State Ionics
– volume: 78
  start-page: 1095
  year: 2014
  end-page: 1105
  ident: b0120
  article-title: Anode concentration polarization in solid oxide cells as a dissipative process
  publication-title: ECS Trans
– volume: 180
  start-page: 704
  year: 2008
  end-page: 710
  ident: b0090
  article-title: Oxidation failure modes of anode-supported solid oxide fuel cells
  publication-title: J Power Sources
– volume: 221
  start-page: 131
  year: 2018
  end-page: 138
  ident: b0215
  article-title: Ceramic composite cathodes for CO
  publication-title: Appl Energy
– volume: 199
  start-page: 108
  year: 2016
  end-page: 115
  ident: b0160
  article-title: Rate determining steps of fuel oxidation over CeO
  publication-title: Electrochim Acta
– volume: 328
  start-page: 452
  year: 2016
  end-page: 462
  ident: b0225
  article-title: Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities
  publication-title: J Power Sources
– volume: 193
  start-page: 349
  year: 2009
  end-page: 358
  ident: b0060
  article-title: Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells
  publication-title: J Power Sources
– volume: 6
  start-page: 13661
  year: 2018
  end-page: 13667
  ident: b0070
  article-title: Pure CO
  publication-title: J Mater Chem A
– volume: 242
  start-page: 911
  year: 2019
  end-page: 918
  ident: b0165
  article-title: Low carbon fuel production from combined solid oxide CO
  publication-title: Appl Energy
– volume: 61
  start-page: 189
  year: 1996
  end-page: 192
  ident: b0075
  article-title: The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes
  publication-title: J Power Sources
– volume: 218
  start-page: 361
  year: 2018
  end-page: 381
  ident: b0010
  article-title: The separation of CO
  publication-title: Appl Energy
– volume: 195
  start-page: 7250
  year: 2010
  end-page: 7254
  ident: b0045
  article-title: Electrochemical reduction of CO
  publication-title: J Power Sources
– volume: 166
  start-page: F158
  year: 2019
  end-page: F167
  ident: b0230
  article-title: 3D microstructural characterization of Ni/YSZ electrodes exposed to 1 year of electrolysis testing
  publication-title: J Electrochem Soc
– volume: 26
  start-page: 593
  year: 2017
  end-page: 601
  ident: b0025
  article-title: Electrochemical reduction of CO
  publication-title: J Energy Chem
– volume: 19
  start-page: 441
  year: 2004
  end-page: 448
  ident: b0035
  article-title: Energy storage and its use with intermittent renewable energy
  publication-title: IEEE Trans Energy Convers
– volume: 43
  start-page: 631
  year: 2014
  end-page: 675
  ident: b0040
  article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
  publication-title: Chem Soc Rev
– volume: 77
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0100
  article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell
  publication-title: Int J Therm Sci
– volume: 31
  start-page: 1279
  year: 2016
  end-page: 1288
  ident: b0170
  article-title: SOC stack impedance characterization and identification based on DRT and ADIS methods
  publication-title: J Inorganic Mater
– volume: 42
  start-page: 8197
  year: 2017
  end-page: 8206
  ident: b0190
  article-title: Efficient CO
  publication-title: Int J Hydrogen Energy
– volume: 165
  start-page: F17
  year: 2018
  end-page: F23
  ident: b0195
  article-title: Direct electrolysis of CO
  publication-title: J Electrochem Soc
– volume: 160
  start-page: 883
  year: 2013
  end-page: 891
  ident: b0240
  article-title: Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current
  publication-title: J Electrochem Soc
– volume: 82
  start-page: 839
  year: 2014
  end-page: 844
  ident: b0135
  article-title: Performance and stability of solid oxide electrolysis cell for CO
  publication-title: Electrochemistry
– start-page: 251
  year: 2019
  ident: b0210
  article-title: Thermal arc plasma gasification of waste glycerol to syngas
  publication-title: Appl Energy
– volume: 166
  start-page: 549
  year: 2019
  end-page: 554
  ident: b0110
  article-title: Reliability of CO
  publication-title: Compos Part B-Eng
– volume: 42
  start-page: 35
  year: 2016
  end-page: 48
  ident: b0080
  article-title: Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: a review
  publication-title: Ceram Int
– volume: 668
  start-page: 432
  year: 2019
  end-page: 442
  ident: b0005
  article-title: Decomposition analysis of China's CO
  publication-title: Sci Total Environ
– volume: 258
  start-page: 164
  year: 2014
  end-page: 181
  ident: b0140
  article-title: Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review
  publication-title: J Power Sources
– volume: 4
  start-page: 230
  year: 2019
  end-page: 240
  ident: b0205
  article-title: Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production
  publication-title: Nat Energy
– volume: 159
  start-page: F442
  year: 2012
  end-page: F448
  ident: b0130
  article-title: Alternative cathode material for CO
  publication-title: J Electrochem Soc
– start-page: 104
  year: 2018
  end-page: 113
  ident: b0200
  article-title: La
  publication-title: J Power Sources
– volume: 11
  start-page: B167
  year: 2008
  end-page: B170
  ident: b0030
  article-title: Efficient reduction of CO
  publication-title: Electrochem Solid-State Lett
– volume: 146
  start-page: 69
  year: 1999
  end-page: 78
  ident: b0125
  article-title: Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells
  publication-title: J Electrochem Soc
– volume: 13
  start-page: 401
  year: 2017
  end-page: 408
  ident: b0145
  article-title: Two-dimensional impedance data analysis by the distribution of relaxation times
  publication-title: J Energy Storage
– volume: 6
  start-page: 2721
  year: 2018
  end-page: 2729
  ident: b0055
  article-title: Barium carbonate as a synergistic catalyst for the H
  publication-title: J Mater Chem A
– volume: 17
  start-page: 434
  year: 2017
  end-page: 441
  ident: b0235
  article-title: Relation between Ni particle shape change and Ni migration in Ni-YSZ electrodes-a hypothesis
  publication-title: Fuel Cells
– volume: 212
  start-page: 759
  year: 2018
  end-page: 770
  ident: b0015
  article-title: Production of syngas from H
  publication-title: Appl Energy
– volume: 308
  start-page: 1
  year: 2016
  end-page: 6
  ident: b0150
  article-title: A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy
  publication-title: J Power Sources
– volume: 105
  start-page: 155
  year: 2013
  end-page: 160
  ident: b0095
  article-title: Experimental investigation of temperature distribution over a planar solid oxide fuel cell
  publication-title: Appl Energy
– volume: 31
  start-page: 1279
  year: 2016
  ident: 10.1016/j.apenergy.2019.114130_b0170
  article-title: SOC stack impedance characterization and identification based on DRT and ADIS methods
  publication-title: J Inorganic Mater
  doi: 10.15541/jim20150652
– start-page: 104
  issue: 400
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0200
  article-title: La0.75Sr0.25)0.95(Cr0.5Mn0.5)O3-δ-Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.08.017
– volume: 179
  start-page: 647
  year: 2008
  ident: 10.1016/j.apenergy.2019.114130_b0020
  article-title: Carbon dioxide reduction on gadolinia-doped ceria cathodes
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2008.04.024
– volume: 18
  start-page: 3137
  year: 2016
  ident: 10.1016/j.apenergy.2019.114130_b0185
  article-title: Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C5CP06742A
– volume: 193
  start-page: 349
  year: 2009
  ident: 10.1016/j.apenergy.2019.114130_b0060
  article-title: Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.02.093
– volume: 17
  start-page: 180
  year: 2017
  ident: 10.1016/j.apenergy.2019.114130_b0220
  article-title: Efficient conversion of CO2 in solid oxide electrolytic cells with Pd doped perovskite cathode on ceria nanofilm interlayer
  publication-title: J CO2 Utilization
  doi: 10.1016/j.jcou.2016.11.014
– start-page: 251
  year: 2019
  ident: 10.1016/j.apenergy.2019.114130_b0210
  article-title: Thermal arc plasma gasification of waste glycerol to syngas
  publication-title: Appl Energy
– volume: 195
  start-page: 7250
  year: 2010
  ident: 10.1016/j.apenergy.2019.114130_b0045
  article-title: Electrochemical reduction of CO2 in solid oxide electrolysis cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.05.037
– volume: 5
  start-page: 24098
  year: 2017
  ident: 10.1016/j.apenergy.2019.114130_b0065
  article-title: Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2 electrolysis without safe gas
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA06839E
– volume: 78
  start-page: 1095
  year: 2014
  ident: 10.1016/j.apenergy.2019.114130_b0120
  article-title: Anode concentration polarization in solid oxide cells as a dissipative process
  publication-title: ECS Trans
  doi: 10.1149/07801.1095ecst
– volume: 258
  start-page: 164
  year: 2014
  ident: 10.1016/j.apenergy.2019.114130_b0140
  article-title: Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.01.110
– volume: 166
  start-page: 549
  year: 2019
  ident: 10.1016/j.apenergy.2019.114130_b0110
  article-title: Reliability of CO2 electrolysis by solid oxide electrolysis cells with a flat tube based on a composite double-sided air electrode
  publication-title: Compos Part B-Eng
  doi: 10.1016/j.compositesb.2019.02.012
– volume: 189
  start-page: 82
  year: 2011
  ident: 10.1016/j.apenergy.2019.114130_b0085
  article-title: Electrical conductivity of Ni-YSZ composites degradation due to Ni particle growth
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2011.02.001
– volume: 308
  start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2019.114130_b0150
  article-title: A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.01.067
– volume: 359
  start-page: 8
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0175
  article-title: Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode
  publication-title: J Catal
  doi: 10.1016/j.jcat.2017.12.027
– volume: 82
  start-page: 839
  year: 2014
  ident: 10.1016/j.apenergy.2019.114130_b0135
  article-title: Performance and stability of solid oxide electrolysis cell for CO2 reduction under various operating conditions
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.82.839
– volume: 61
  start-page: 189
  year: 1996
  ident: 10.1016/j.apenergy.2019.114130_b0075
  article-title: The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(96)02359-2
– volume: 146
  start-page: 69
  year: 1999
  ident: 10.1016/j.apenergy.2019.114130_b0125
  article-title: Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1391566
– volume: 4
  start-page: 230
  year: 2019
  ident: 10.1016/j.apenergy.2019.114130_b0205
  article-title: Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0333-2
– volume: 283
  start-page: 464
  year: 2015
  ident: 10.1016/j.apenergy.2019.114130_b0155
  article-title: Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.02.107
– volume: 105
  start-page: 155
  year: 2013
  ident: 10.1016/j.apenergy.2019.114130_b0095
  article-title: Experimental investigation of temperature distribution over a planar solid oxide fuel cell
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.062
– volume: 212
  start-page: 759
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0015
  article-title: Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.078
– volume: 218
  start-page: 361
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0010
  article-title: The separation of CO2 from ambient air-a techno-economic assessment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.144
– volume: 13
  start-page: 401
  year: 2017
  ident: 10.1016/j.apenergy.2019.114130_b0145
  article-title: Two-dimensional impedance data analysis by the distribution of relaxation times
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2017.07.029
– volume: 6
  start-page: 13661
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0070
  article-title: Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA02858C
– volume: 42
  start-page: 8197
  year: 2017
  ident: 10.1016/j.apenergy.2019.114130_b0190
  article-title: Efficient CO2 electrolysis with scandium doped titanate cathode
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.01.182
– volume: 668
  start-page: 432
  year: 2019
  ident: 10.1016/j.apenergy.2019.114130_b0005
  article-title: Decomposition analysis of China's CO2 emissions (2000–2016) and scenario analysis of its carbon intensity targets in 2020 and 2030
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.406
– volume: 242
  start-page: 911
  year: 2019
  ident: 10.1016/j.apenergy.2019.114130_b0165
  article-title: Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: a modelling study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.145
– volume: 159
  start-page: F442
  year: 2012
  ident: 10.1016/j.apenergy.2019.114130_b0130
  article-title: Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells
  publication-title: J Electrochem Soc
  doi: 10.1149/2.040208jes
– volume: 199
  start-page: 108
  year: 2016
  ident: 10.1016/j.apenergy.2019.114130_b0160
  article-title: Rate determining steps of fuel oxidation over CeO2 impregnated Ni-YSZ in H2+H2O+CO+CO2 ambient
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.03.133
– volume: 7
  start-page: 240
  year: 2019
  ident: 10.1016/j.apenergy.2019.114130_b0105
  article-title: Anode-supported planar solid oxide fuel cells based on double-sided cathodes
  publication-title: Energy Technol
  doi: 10.1002/ente.201800743
– volume: 363
  start-page: 177
  year: 2017
  ident: 10.1016/j.apenergy.2019.114130_b0180
  article-title: Efficient carbon dioxide electrolysis with metal nanoparticles loaded La0.75Sr0.25Cr0.5Mn0.5O3-δ cathodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.07.070
– volume: 19
  start-page: 441
  year: 2004
  ident: 10.1016/j.apenergy.2019.114130_b0035
  article-title: Energy storage and its use with intermittent renewable energy
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2003.822305
– volume: 17
  start-page: 434
  year: 2017
  ident: 10.1016/j.apenergy.2019.114130_b0235
  article-title: Relation between Ni particle shape change and Ni migration in Ni-YSZ electrodes-a hypothesis
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201600222
– volume: 196
  start-page: 2080
  year: 2011
  ident: 10.1016/j.apenergy.2019.114130_b0115
  article-title: Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.09.054
– volume: 180
  start-page: 704
  year: 2008
  ident: 10.1016/j.apenergy.2019.114130_b0090
  article-title: Oxidation failure modes of anode-supported solid oxide fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.03.011
– volume: 38
  start-page: 5051
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0050
  article-title: Effect of NiO/YSZ cathode support pore structure on CO2 electrolysis via solid oxide electrolysis cells
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2018.07.005
– volume: 43
  start-page: 631
  year: 2014
  ident: 10.1016/j.apenergy.2019.114130_b0040
  article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
  publication-title: Chem Soc Rev
  doi: 10.1039/C3CS60323G
– volume: 166
  start-page: F158
  year: 2019
  ident: 10.1016/j.apenergy.2019.114130_b0230
  article-title: 3D microstructural characterization of Ni/YSZ electrodes exposed to 1 year of electrolysis testing
  publication-title: J Electrochem Soc
  doi: 10.1149/2.1281902jes
– volume: 160
  start-page: 883
  year: 2013
  ident: 10.1016/j.apenergy.2019.114130_b0240
  article-title: Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current
  publication-title: J Electrochem Soc
  doi: 10.1149/2.098308jes
– volume: 26
  start-page: 593
  year: 2017
  ident: 10.1016/j.apenergy.2019.114130_b0025
  article-title: Electrochemical reduction of CO2 in solid oxide electrolysis cells
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2017.04.004
– volume: 50
  start-page: 139
  year: 2013
  ident: 10.1016/j.apenergy.2019.114130_b0245
  article-title: Degradation of solid oxide cells during co-electrolysis of H2O and CO2: carbon deposition under high current densities
  publication-title: ECS Trans
  doi: 10.1149/05049.0139ecst
– volume: 165
  start-page: F17
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0195
  article-title: Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δ electrode
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0351802jes
– volume: 6
  start-page: 2721
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0055
  article-title: Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni-yttria stabilized zirconia cathodes for solid oxide electrolysis cells
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA08249E
– volume: 328
  start-page: 452
  year: 2016
  ident: 10.1016/j.apenergy.2019.114130_b0225
  article-title: Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.08.055
– volume: 77
  start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2019.114130_b0100
  article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2013.10.008
– volume: 42
  start-page: 35
  year: 2016
  ident: 10.1016/j.apenergy.2019.114130_b0080
  article-title: Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: a review
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2015.09.006
– volume: 11
  start-page: B167
  year: 2008
  ident: 10.1016/j.apenergy.2019.114130_b0030
  article-title: Efficient reduction of CO2 in a solid oxide electrolyzer
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.2943664
– volume: 221
  start-page: 131
  year: 2018
  ident: 10.1016/j.apenergy.2019.114130_b0215
  article-title: Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.176
SSID ssj0002120
Score 2.4554107
Snippet •CO2 electrolysis in a new solid oxide electrolysis cell was conducted.•47.4% conversion rate of CO2 was achieved at 1.305 V and −400 mA/cm2.•Energy...
Solid oxide electrolysis cell is a highly promising technology for CO₂ electrolysis and has attracted wide attention. But the durability is insufficient by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114130
SubjectTerms air
carbon dioxide
Carbon dioxide electrolysis
carbon monoxide
Double-sided air electrodes
durability
electric potential difference
electrochemistry
electrodes
electrolysis
hydrogen
Long-term stability
Solid oxide electrolysis cells
Title Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes
URI https://dx.doi.org/10.1016/j.apenergy.2019.114130
https://www.proquest.com/docview/2400499466
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhubSH0qYNTdIGFXpVNvLKHzqGkLD9IJc2kJuQPKPisNjLrhfaS35Df3JnvHKSlkAOvdozwmhGM0_46UmIj3kovdcV_xoMmTIFFKrKbaWgLAncQs0S4My2uCxmV-bzdX69Jc7GszBMq0y1f1PTh2qdnkzSbE4WTTP5xmiX8T9BEGpTJSt-GlNylh_f3tM8siTNSMaKrR-cEr459gscTtgxxcuybK5mNvTjDeqfUj30n4uX4kUCjvJ0822vxBa2u-L5AznBXbF3fn9qjUzTsl29Fr-_du0PxUVYEhgc6LC_ZBdl7ZehayU03c8GUKYrcQaREtm00ss588TViuKIMs59r_p1QEnp2oB8xIf_Akjui_SWhu3WYU7eZAbSN8vRFnD1RlxdnH8_m6l0FYOqjda9qnzU4SQg7-8ALMHyEglsVDZDW9hQo0HU3kTttcUCvK2hjjbWtPqrqS5wuie2267Ft0J6yhqIhoqFBnMCofIWplRGsgxiHvNqX-Tj_Ls66ZTzdRlzNxLSbtwYN8dxc5u47YvJnd9io9TxpIcdw-v-yjlH7eRJ3w9jPjhakDy_vsVuvXJMyqVtpCmKg_8Y_1A8y3hnP_DD34ntfrnG9wR_-nA05PeR2Dn99GV2-Qd4UAjx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoPbQ9oEKLeBVcqVezOOs8fEQItLRbLgWJm2XH4ypolax2s1K58Bv4ycxkHaAVEodekxkr8oxnPivfzDD2LXW5tbKgX4MuESrzmShSXQif5whufUktwIltcZGNrtT36_R6hZ30tTBEq4yxfxnTu2gdnwzibg6mVTX4RWiX8D9CEExT-fANe6vw-NIYg8O7J55HEnszorQg8WdlwjeHdgpdiR1xvDT1zZVEh345Q_0Tq7sEdPaRrUXkyI-XH7fOVqDeYB-e9RPcYJunT2VrKBrP7fwTux839W9BUZgjGuz4sLe8Cby0M9fU3FfNn8oDjzNxui4lvKq55RMiios5GhJ4mNhWtAsHHP218vwFHfoNwCkx4ltctlm4CWqjmOe2mvWyHuaf2dXZ6eXJSMRZDKJUUraisEG6Iwd0wfNeIy7PAdFGoRPQmXYlKABpVZBWasi81aUvgw4lHv9iKDMYbrLVuqlhi3GLbuODwmghvTryrrDaDzGOJIkPaUiLbZb2-2_K2Kic5mVMTM9IuzG93QzZzSztts0Gj3rTZauOVzV0b17zl9MZzCev6n7t_cHgiaT9tTU0i7khVi7eI1WW7fzH-gfs3ejy59iMzy9-7LL3CV3zO7L4HlttZwv4gliodfudrz8AaLsKfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+stability+of+carbon+dioxide+electrolysis+in+a+large-scale+flat-tube+solid+oxide+electrolysis+cell+based+on+double-sided+air+electrodes&rft.jtitle=Applied+energy&rft.au=Lu%2C+Lianmei&rft.au=Liu%2C+Wu&rft.au=Wang%2C+Jianxin&rft.au=Wang%2C+Yudong&rft.date=2020-02-01&rft.issn=0306-2619&rft.volume=259+p.114130-&rft_id=info:doi/10.1016%2Fj.apenergy.2019.114130&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon