Compression and fast retrieval of SNP data

Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleoti...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 30; no. 21; pp. 3078 - 3085
Main Authors Sambo, Francesco, Di Camillo, Barbara, Toffolo, Gianna, Cobelli, Claudio
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.11.2014
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/btu495

Cover

Loading…
Abstract Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html . Contact:  sambofra@dei.unipd.it or cobelli@dei.unipd.it .
AbstractList The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html.
Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html . Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it .
Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html . Contact:  sambofra@dei.unipd.it or cobelli@dei.unipd.it .
The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data.MOTIVATIONThe increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data.We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data.RESULTSWe present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data.Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html.AVAILABILITY AND IMPLEMENTATIONOur compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html.
Author Toffolo, Gianna
Sambo, Francesco
Di Camillo, Barbara
Cobelli, Claudio
Author_xml – sequence: 1
  givenname: Francesco
  surname: Sambo
  fullname: Sambo, Francesco
– sequence: 2
  givenname: Barbara
  surname: Di Camillo
  fullname: Di Camillo, Barbara
– sequence: 3
  givenname: Gianna
  surname: Toffolo
  fullname: Toffolo, Gianna
– sequence: 4
  givenname: Claudio
  surname: Cobelli
  fullname: Cobelli, Claudio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25064564$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtLAzEQhYNU7EV_grKPIqxNukm2QRCkeIOigvocsrloZDepSbbgv3dLa7G--DQD850zw5wh6DnvNADHCJ4jyIpxZb11xodGJCvjuEotZmQPDFBByxxPEepte1j0wTDGDwghgYQegP6EQIoJxQNwNvPNIugYrXeZcCozIqYs6BSsXoo68yZ7fnjKlEjiEOwbUUd9tKkj8Hpz_TK7y-ePt_ezq3kuMUIpn1JZiEoZUhkzYbg0rNCGIVwyoxTUkhBcUVYQppBGECpaSiMNU2oqJkwrXYzA5dp30VaNVlK7FETNF8E2InxxLyzfnTj7zt_8kmMKGUSkMzjdGAT_2eqYeGOj1HUtnPZt5IiigmFawkmHnvzetV3y86AOIGtABh9j0GaLIMhXQfDdIPg6iE538UcnbeoIvzrZ1v-ovwGXH5fZ
CitedBy_id crossref_primary_10_1534_genetics_120_303253
crossref_primary_10_3390_info7040056
crossref_primary_10_1186_s13742_015_0047_8
Cites_doi 10.1093/bioinformatics/btt460
10.1038/nature09410
10.1038/ng.2354
10.1038/nature11632
10.1038/nature08494
10.1038/nrg3118
10.1093/bioinformatics/btn582
10.1093/bioinformatics/btu014
10.1086/519795
10.1038/nrg3523
10.1093/bioinformatics/btr330
10.1038/nature05911
10.1093/nar/gkr009
10.1186/1471-2105-13-100
10.1038/nrg1123
10.1093/bioinformatics/btp319
ContentType Journal Article
Copyright The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014
Copyright_xml – notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btu495
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 3085
ExternalDocumentID PMC4609015
25064564
10_1093_bioinformatics_btu495
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c411t-86c3abdf5bff2947f93ef91479fdd0ec554b69359d1e100d67cfcf9dd8a29ede3
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 14:29:46 EDT 2025
Fri Jul 11 09:11:05 EDT 2025
Thu Apr 03 07:09:02 EDT 2025
Tue Jul 01 03:27:11 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-86c3abdf5bff2947f93ef91479fdd0ec554b69359d1e100d67cfcf9dd8a29ede3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Gunnar Ratsch
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/30/21/3078/48930760/bioinformatics_30_21_3078.pdf
PMID 25064564
PQID 1613946702
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4609015
proquest_miscellaneous_1613946702
pubmed_primary_25064564
crossref_primary_10_1093_bioinformatics_btu495
crossref_citationtrail_10_1093_bioinformatics_btu495
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Wall (2023012711572066300_btu495-B14) 2003; 4
Durbin (2023012711572066300_btu495-B6) 2014; 30
Lango Allen (2023012711572066300_btu495-B9) 2010; 467
Wellcome Trust Case Control Consortium (2023012711572066300_btu495-B16) 2007; 447
1000 Genomes Project Consortium (2023012711572066300_btu495-B1) 2012; 491
Danecek (2023012711572066300_btu495-B4) 2011; 27
Manolio (2023012711572066300_btu495-B11) 2009; 461
Purcell (2023012711572066300_btu495-B12) 2007; 81
Deorowicz (2023012711572066300_btu495-B5) 2013; 29
Manolio (2023012711572066300_btu495-B10) 2013; 14
Brandon (2023012711572066300_btu495-B2) 2009; 25
Wang (2023012711572066300_btu495-B15) 2011; 39
Howie (2023012711572066300_btu495-B8) 2012; 44
Christley (2023012711572066300_btu495-B3) 2009; 25
Qiao (2023012711572066300_btu495-B13) 2012; 13
Gibson (2023012711572066300_btu495-B7) 2012; 13
21653522 - Bioinformatics. 2011 Aug 1;27(15):2156-8
12897771 - Nat Rev Genet. 2003 Aug;4(8):587-97
19812666 - Nature. 2009 Oct 8;461(7265):747-53
20881960 - Nature. 2010 Oct 14;467(7317):832-8
17554300 - Nature. 2007 Jun 7;447(7145):661-78
17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
24413527 - Bioinformatics. 2014 May 1;30(9):1266-72
19447783 - Bioinformatics. 2009 Jul 15;25(14):1731-8
22591016 - BMC Bioinformatics. 2012;13:100
22251874 - Nat Rev Genet. 2011 Feb;13(2):135-45
22820512 - Nat Genet. 2012 Aug;44(8):955-9
18996942 - Bioinformatics. 2009 Jan 15;25(2):274-5
23128226 - Nature. 2012 Nov 1;491(7422):56-65
23835440 - Nat Rev Genet. 2013 Aug;14(8):549-58
21266471 - Nucleic Acids Res. 2011 Apr;39(7):e45
23969136 - Bioinformatics. 2013 Oct 15;29(20):2572-8
References_xml – volume: 29
  start-page: 2572
  year: 2013
  ident: 2023012711572066300_btu495-B5
  article-title: Genome compression: a novel approach for large collections
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt460
– volume: 467
  start-page: 832
  year: 2010
  ident: 2023012711572066300_btu495-B9
  article-title: Hundreds of variants clustered in genomic loci and biological pathways affect human height
  publication-title: Nature
  doi: 10.1038/nature09410
– volume: 44
  start-page: 955
  year: 2012
  ident: 2023012711572066300_btu495-B8
  article-title: Fast and accurate genotype imputation in genome-wide association studies through pre-phasing
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2354
– volume: 491
  start-page: 56
  year: 2012
  ident: 2023012711572066300_btu495-B1
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 461
  start-page: 747
  year: 2009
  ident: 2023012711572066300_btu495-B11
  article-title: Finding the missing heritability of complex diseases
  publication-title: Nature
  doi: 10.1038/nature08494
– volume: 13
  start-page: 135
  year: 2012
  ident: 2023012711572066300_btu495-B7
  article-title: Rare and common variants: twenty arguments
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3118
– volume: 25
  start-page: 274
  year: 2009
  ident: 2023012711572066300_btu495-B3
  article-title: Human genomes as email attachments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn582
– volume: 30
  start-page: 1266
  year: 2014
  ident: 2023012711572066300_btu495-B6
  article-title: Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT)
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu014
– volume: 81
  start-page: 559
  year: 2007
  ident: 2023012711572066300_btu495-B12
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519795
– volume: 14
  start-page: 549
  year: 2013
  ident: 2023012711572066300_btu495-B10
  article-title: Bringing genome-wide association findings into clinical use
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3523
– volume: 27
  start-page: 2156
  year: 2011
  ident: 2023012711572066300_btu495-B4
  article-title: The variant call format and VCFtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr330
– volume: 447
  start-page: 661
  year: 2007
  ident: 2023012711572066300_btu495-B16
  article-title: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
  publication-title: Nature
  doi: 10.1038/nature05911
– volume: 39
  start-page: e45
  year: 2011
  ident: 2023012711572066300_btu495-B15
  article-title: A novel compression tool for efficient storage of genome resequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr009
– volume: 13
  start-page: 100
  year: 2012
  ident: 2023012711572066300_btu495-B13
  article-title: Handling the data management needs of high-throughput sequencing data: Speedgene, a compression algorithm for the efficient storage of genetic data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-100
– volume: 4
  start-page: 587
  year: 2003
  ident: 2023012711572066300_btu495-B14
  article-title: Haplotype blocks and linkage disequilibrium in the human genome
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1123
– volume: 25
  start-page: 1731
  year: 2009
  ident: 2023012711572066300_btu495-B2
  article-title: Data structures and compression algorithms for genomic sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp319
– reference: 19447783 - Bioinformatics. 2009 Jul 15;25(14):1731-8
– reference: 17554300 - Nature. 2007 Jun 7;447(7145):661-78
– reference: 22591016 - BMC Bioinformatics. 2012;13:100
– reference: 23128226 - Nature. 2012 Nov 1;491(7422):56-65
– reference: 23969136 - Bioinformatics. 2013 Oct 15;29(20):2572-8
– reference: 19812666 - Nature. 2009 Oct 8;461(7265):747-53
– reference: 22820512 - Nat Genet. 2012 Aug;44(8):955-9
– reference: 21653522 - Bioinformatics. 2011 Aug 1;27(15):2156-8
– reference: 23835440 - Nat Rev Genet. 2013 Aug;14(8):549-58
– reference: 12897771 - Nat Rev Genet. 2003 Aug;4(8):587-97
– reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
– reference: 20881960 - Nature. 2010 Oct 14;467(7317):832-8
– reference: 21266471 - Nucleic Acids Res. 2011 Apr;39(7):e45
– reference: 22251874 - Nat Rev Genet. 2011 Feb;13(2):135-45
– reference: 18996942 - Bioinformatics. 2009 Jan 15;25(2):274-5
– reference: 24413527 - Bioinformatics. 2014 May 1;30(9):1266-72
SSID ssj0005056
Score 2.1616883
Snippet Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide...
The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study...
Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3078
SubjectTerms Algorithms
Data Compression - methods
Gene Frequency
Genome-Wide Association Study
Humans
Linkage Disequilibrium
Original Papers
Polymorphism, Single Nucleotide
Software
Title Compression and fast retrieval of SNP data
URI https://www.ncbi.nlm.nih.gov/pubmed/25064564
https://www.proquest.com/docview/1613946702
https://pubmed.ncbi.nlm.nih.gov/PMC4609015
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WiuCLeHfrhQg-uaSd7Ewu8yiLWgSr0C3sW8jccKFNpE2k-ugv90zO5NaKWl_CMtkckjknX76ZcyPkFXCCTFqdhFKlkUvJiUNpFQttKlVsM2rjdh_y42FycMw_bOLNbPZzFLXU1HJP_fhtXsn_aBXGQK8uS_Yamu2FwgD8Bv3CETQMx3_SsXuZMY4VQ4ptcV4vztoeWd-QZB4dfl749LPBd7utfLnUtkSzqzd60YW4-54eo_2Bo-JUVh3FBVBRVc99t4uV2x5B5413XAy71tZWeOY9WGA5BARVztXRxhCsTopGYxxYt_EQcZ-BN2AlcyXTM4r4ZMZjHj89wHrHCxoS5kN7uASAyUafXkaxfc8VWMeSV3IyPW6gbji26JwW0r70gevDDtHhzvKpoBzF3CA3l7DUcF0w1p82Q5gQbTsA9w_bZYEJtj8Vs49ipvzmyqLlcuztiMys75I7fhUSvEGTukdmprxPbmFf0u8PyOuRYQVgDoEzrKA3rKCyARhW4AzrITl-93a9Ogh9U41Q8SiqwyxRrJDaxtLapeCpFcxYEfFUWK2pUUAvZeLStXVkIkp1kiqrrNA6K5bCaMMekZ2yKs0TEhSpio0ExGdZDNCfAXlPaCFoIoVkvOBzwrupyJWvOO8an5zkf1TEnOz1l33Fkit_u-BlN885gKPzeBWlqZrzHJYzTAAVoMs5eYzz3otctqUaE7jLdKKR_g-u8Pr0TLn90hZg5wl1NHr3ujf6lNweXqRnZKc-a8xz4LS1fNEa3S-_s6ru
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compression+and+fast+retrieval+of+SNP+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sambo%2C+Francesco&rft.au=Di+Camillo%2C+Barbara&rft.au=Toffolo%2C+Gianna&rft.au=Cobelli%2C+Claudio&rft.date=2014-11-01&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=30&rft.issue=21&rft.spage=3078&rft.epage=3085&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtu495&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btu495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon