Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction

Abstract Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two l...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 21; no. 3; pp. 996 - 1005
Main Authors Su, Ran, Liu, Xinyi, Xiao, Guobao, Wei, Leyi
Format Journal Article
LanguageEnglish
Published England Oxford University Press 21.05.2020
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP.
AbstractList Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP.
Abstract Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP.
Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP.Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP.
Author Su, Ran
Wei, Leyi
Xiao, Guobao
Liu, Xinyi
Author_xml – sequence: 1
  givenname: Ran
  surname: Su
  fullname: Su, Ran
  organization: School of Computer Software, College of Intelligence and Computing, Tianjin University, China
– sequence: 2
  givenname: Xinyi
  surname: Liu
  fullname: Liu, Xinyi
  organization: School of Computer Software, College of Intelligence and Computing, Tianjin University, China
– sequence: 3
  givenname: Guobao
  surname: Xiao
  fullname: Xiao, Guobao
  email: gbx@mju.edu.cn
  organization: Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
– sequence: 4
  givenname: Leyi
  surname: Wei
  fullname: Wei, Leyi
  email: weileyi@tju.edu.cn
  organization: School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30868164$$D View this record in MEDLINE/PubMed
BookMark eNp90ctq3TAQBmBREppLs-kDFEEJhIAT3WzL3eXeQkK7aNZCl_GJUttyJTmQPn11OMkmlK4k0PcPo5k9tDWFCRD6SMkJJR0_Nd6cGvOHMPYO7VLRtpUgtdha35u2qkXDd9BeSo-EMNJK-h7tcCIbSRuxi9QdZF3dXJ7_-II1fvCrh2qAJxhwytr-AocjrCKk5MOEx-DKQw7Yj3MMT4D1lL3Vk4WIXVxWxaY5TAnwHMF5m0voA9ru9ZDg4OXcR_fXVz8vvla332--XZzdVlZQmispatu0ljSMGMYl1EC5g052hkgOlDFHAaTsgTAnjah72RDdGVaLFrhzPd9HR5u6pbPfC6SsRp8sDIOeICxJMdpRXrcNqwv9_IY-hiVOpTvFBOtImSmVRX16UYsZwak5-lHHZ_U6ugLIBtgYUorQK-uzXv85R-0HRYlab0eV7ajNdkrk-E3kteo_8eEGh2X-n_sL-HGcyw
CitedBy_id crossref_primary_10_1016_j_chemolab_2022_104495
crossref_primary_10_1016_j_ymeth_2021_12_001
crossref_primary_10_1093_bfgp_elab025
crossref_primary_10_1360_SSI_2023_0070
crossref_primary_10_1080_15476286_2021_1898160
crossref_primary_10_2139_ssrn_4007580
crossref_primary_10_1016_j_saa_2022_121186
crossref_primary_10_1186_s12859_024_05835_1
crossref_primary_10_1093_bib_bbab172
crossref_primary_10_3389_fbioe_2020_00496
crossref_primary_10_1109_TCBB_2024_3385402
crossref_primary_10_1016_j_ijbiomac_2020_11_111
crossref_primary_10_1002_advs_202303711
crossref_primary_10_1002_pmic_202100017
crossref_primary_10_1155_2022_7518779
crossref_primary_10_1021_acs_jcim_3c01060
crossref_primary_10_1093_bib_bbab408
crossref_primary_10_1155_2021_5542224
crossref_primary_10_1016_j_chemolab_2022_104562
crossref_primary_10_1016_j_heliyon_2023_e15096
crossref_primary_10_1016_j_asoc_2020_106921
crossref_primary_10_1016_j_knosys_2021_107490
crossref_primary_10_1093_bib_bbab245
crossref_primary_10_1016_j_saa_2022_121231
crossref_primary_10_1371_journal_pone_0238757
crossref_primary_10_1109_ACCESS_2020_3023800
crossref_primary_10_3390_chemosensors10100410
crossref_primary_10_3934_mbe_2021297
crossref_primary_10_1093_bib_bbab356
crossref_primary_10_1109_TCBB_2021_3103966
crossref_primary_10_2174_1389450120666190923162203
crossref_primary_10_1016_j_future_2024_06_039
crossref_primary_10_1016_j_asoc_2022_108676
crossref_primary_10_1109_ACCESS_2020_3013409
crossref_primary_10_3390_ijms222313124
crossref_primary_10_1007_s11704_024_40072_y
crossref_primary_10_1109_ACCESS_2023_3250556
crossref_primary_10_1186_s12916_022_02549_0
crossref_primary_10_3389_fbioe_2021_647113
crossref_primary_10_1016_j_compbiomed_2023_107145
crossref_primary_10_1016_j_compbiolchem_2023_107868
crossref_primary_10_1093_bib_bbz164
crossref_primary_10_1093_bfgp_elab017
crossref_primary_10_1016_j_neucom_2019_12_083
crossref_primary_10_1515_sagmb_2022_0002
crossref_primary_10_1016_j_ymeth_2022_01_004
crossref_primary_10_1016_j_ymeth_2022_02_009
crossref_primary_10_3389_fgene_2021_663572
crossref_primary_10_3389_fgene_2021_664860
crossref_primary_10_1186_s12859_020_03949_w
crossref_primary_10_3389_fcell_2021_664669
crossref_primary_10_2174_0929867328666211005140625
crossref_primary_10_3390_app11156894
crossref_primary_10_1155_2022_9235358
crossref_primary_10_3390_biomedinformatics2030026
crossref_primary_10_1093_bib_bbaa049
crossref_primary_10_2174_0929867328666210920103140
crossref_primary_10_1007_s10822_021_00418_1
crossref_primary_10_1155_2022_5227955
crossref_primary_10_3390_app11167731
crossref_primary_10_3389_fgene_2023_1121694
Cites_doi 10.1093/annonc/mdq680
10.1093/nar/28.1.27
10.1007/BF00117832
10.1038/nature11003
10.1093/bioinformatics/btu464
10.1038/nbt.2877
10.1038/75556
10.1371/journal.pone.0061318
10.2174/138945012803530143
10.1158/0008-5472.CAN-06-0191
10.1371/journal.pcbi.1004498
10.1038/s41598-018-21622-4
10.1200/JCO.2012.46.8934
10.1007/978-1-4419-8819-5
10.1007/BF00994018
10.1093/bioinformatics/bty943
10.1038/onc.2016.172
10.1093/bioinformatics/bty827
10.1093/nar/gks1111
10.1016/j.knosys.2018.10.007
10.1093/bioinformatics/btz015
ContentType Journal Article
Copyright The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019
The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Copyright_xml – notice: The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019
– notice: The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz022
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Genetics Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 1005
ExternalDocumentID 30868164
10_1093_bib_bbz022
10.1093/bib/bbz022
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c411t-845c67c0620b238e5e13de989b083e122d1ee88fe02d8b45f860a9b2547e3ddf3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 10:53:57 EDT 2025
Mon Jun 30 08:51:58 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Tue Jul 01 03:39:27 EDT 2025
Thu Apr 24 23:07:14 EDT 2025
Wed Apr 02 07:02:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords genetic
Meta-GDBP
biological context
chemical
anticancer drug response
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-845c67c0620b238e5e13de989b083e122d1ee88fe02d8b45f860a9b2547e3ddf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30868164
PQID 2429010918
PQPubID 26846
PageCount 10
ParticipantIDs proquest_miscellaneous_2191357625
proquest_journals_2429010918
pubmed_primary_30868164
crossref_citationtrail_10_1093_bib_bbz022
crossref_primary_10_1093_bib_bbz022
oup_primary_10_1093_bib_bbz022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-21
PublicationDateYYYYMMDD 2020-05-21
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2020
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Zhang (2020051819181108100_ref12) 2015
Zou (2020051819181108100_ref14) 2005
Nickerson (2020051819181108100_ref4) 2016; 36
Creighton (2020051819181108100_ref3) 2012
Toropov (2020051819181108100_ref23) 2013
Feng (2020051819181108100_ref36) 2018
Tikhonov (2020051819181108100_ref15) 1977
Menden (2020051819181108100_ref24) 2013; 8
Yang (2020051819181108100_ref5) 2013
Barretina (2020051819181108100_ref8) 2012; 483
Ashburner (2020051819181108100_ref26) 2000; 25
Cortes (2020051819181108100_ref29) 1995; 20
Yap (2020051819181108100_ref21) 2011
Garassino (2020051819181108100_ref7) 2011; 22
Zhu (2020051819181108100_ref37) 2019; 163
Brubaker (2020051819181108100_ref10) 2014; 2014
Seashore-Ludlow (2020051819181108100_ref9) 2015
Kanehisa (2020051819181108100_ref27) 2000; 28
Dong (2020051819181108100_ref30) 2015
Yu (2020051819181108100_ref33) 2012
Ammad-ud-din (2020051819181108100_ref11) 2014
Horvath (2020051819181108100_ref28) 2011
Garnett (2020051819181108100_ref16) 2012
Low (2020051819181108100_ref22) 2011
Chen (2020051819181108100_ref34) 2019
Breiman (2020051819181108100_ref20) 1996; 24
Garraway (2020051819181108100_ref1) 2013; 31
Gönen (2020051819181108100_ref19) 2014; 30
Costello (2020051819181108100_ref18) 2014; 32
Dao (2020051819181108100_ref35) 2018
The Cancer Cell Line Encyclopedia Consortium, The Genomics of Drug Sensitivity in Cancer Consortium (2020051819181108100_ref31) 2015
Langfelder (2020051819181108100_ref32) 2008
Hwang (2020051819181108100_ref25) 2016
Lièvre (2020051819181108100_ref6) 2006
Iorio (2020051819181108100_ref2) 2016
Zhang (2020051819181108100_ref13) 2018; 8
Geeleher (2020051819181108100_ref17) 2014
References_xml – volume: 22
  start-page: 235
  issue: 1
  year: 2011
  ident: 2020051819181108100_ref7
  article-title: Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdq680
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 2020051819181108100_ref27
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– start-page: 301
  volume-title: J R Stat Soc Series B
  year: 2005
  ident: 2020051819181108100_ref14
  article-title: Regularization and variable selection via the elastic net
– volume: 24
  start-page: 49
  issue: 1
  year: 1996
  ident: 2020051819181108100_ref20
  article-title: Stacked regressions
  publication-title: Mach Learn
  doi: 10.1007/BF00117832
– volume: 483
  start-page: 603
  issue: 7391
  year: 2012
  ident: 2020051819181108100_ref8
  article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
– volume: 30
  start-page: i556
  issue: 17
  year: 2014
  ident: 2020051819181108100_ref19
  article-title: Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu464
– volume: 32
  start-page: 1202
  issue: 12
  year: 2014
  ident: 2020051819181108100_ref18
  article-title: A community effort to assess and improve drug sensitivity prediction algorithms
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2877
– volume: 2014
  start-page: 125
  year: 2014
  ident: 2020051819181108100_ref10
  article-title: Drug intervention response predictions with PARADIGM (DIRPP) identifies drug resistant cancer cell lines and pathway mechanisms of resistance
  publication-title: Pac Symp Biocomput
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 2020051819181108100_ref26
  article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
  publication-title: Nat Genet
  doi: 10.1038/75556
– start-page: 31
  volume-title: Chemosphere
  year: 2013
  ident: 2020051819181108100_ref23
  article-title: QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells
– start-page: 1201
  volume-title: Cancer Discov
  year: 2015
  ident: 2020051819181108100_ref9
  article-title: Harnessing connectivity in a large-scale small-molecule sensitivity dataset
– start-page: 1251
  volume-title: Chem Res Toxicol
  year: 2011
  ident: 2020051819181108100_ref22
  article-title: Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches
– start-page: 489
  volume-title: BMC Cancer
  year: 2015
  ident: 2020051819181108100_ref30
  article-title: Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection
– volume: 8
  start-page: e61318
  issue: 4
  year: 2013
  ident: 2020051819181108100_ref24
  article-title: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061318
– start-page: 1488
  volume-title: Curr Drug Targets
  year: 2012
  ident: 2020051819181108100_ref3
  article-title: Molecular classification and drug response prediction in cancer
  doi: 10.2174/138945012803530143
– start-page: 3992
  volume-title: Cancer research
  year: 2006
  ident: 2020051819181108100_ref6
  article-title: KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer
  doi: 10.1158/0008-5472.CAN-06-0191
– year: 1977
  ident: 2020051819181108100_ref15
  publication-title: Solution of ill-posed problems
– start-page: 1
  volume-title: PLoS Comput Biol
  year: 2015
  ident: 2020051819181108100_ref12
  article-title: Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model
  doi: 10.1371/journal.pcbi.1004498
– volume: 8
  start-page: 3355
  issue: 1
  year: 2018
  ident: 2020051819181108100_ref13
  article-title: A novel heterogeneous network-based method for drug response prediction in cancer cell lines
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-21622-4
– volume: 31
  start-page: 1806
  issue: 15
  year: 2013
  ident: 2020051819181108100_ref1
  article-title: Genomics-driven oncology: framework for an emerging paradigm
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.46.8934
– start-page: 559
  volume-title: BMC Bioinformatics
  year: 2008
  ident: 2020051819181108100_ref32
  article-title: Wgcna: an R package for weighted correlation network analysis
– start-page: R47
  volume-title: Genome Biol
  year: 2014
  ident: 2020051819181108100_ref17
  article-title: Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines
– start-page: 284
  volume-title: OMICS
  year: 2012
  ident: 2020051819181108100_ref33
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
– start-page: 570
  volume-title: Nature
  year: 2012
  ident: 2020051819181108100_ref16
  article-title: Systematic identification of genomic markers of drug sensitivity in cancer cells
– volume-title: Weighted Network Analysis: Application in Genomics and Systems Biology.
  year: 2011
  ident: 2020051819181108100_ref28
  doi: 10.1007/978-1-4419-8819-5
– start-page: 275
  volume-title: BMC Bioinformatics
  year: 2016
  ident: 2020051819181108100_ref25
  article-title: Context-specific functional module based drug efficacy prediction
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 2020051819181108100_ref29
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– year: 2018
  ident: 2020051819181108100_ref35
  article-title: Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty943
– volume: 36
  start-page: 35
  issue: 1
  year: 2016
  ident: 2020051819181108100_ref4
  article-title: Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response
  publication-title: Oncogene
  doi: 10.1038/onc.2016.172
– year: 2018
  ident: 2020051819181108100_ref36
  article-title: iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty827
– start-page: 740
  volume-title: Cell
  year: 2016
  ident: 2020051819181108100_ref2
  article-title: A landscape of pharmacogenomic interactions in cancer
– start-page: 2347
  volume-title: J Chemi Inf Model
  year: 2014
  ident: 2020051819181108100_ref11
  article-title: Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization
– start-page: 955
  volume-title: Nucleic Acids Res
  year: 2013
  ident: 2020051819181108100_ref5
  article-title: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells
  doi: 10.1093/nar/gks1111
– volume: 163
  start-page: 787
  year: 2019
  ident: 2020051819181108100_ref37
  article-title: Predicting protein structural classes for low-similarity sequences by evaluating different features
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.10.007
– year: 2019
  ident: 2020051819181108100_ref34
  article-title: i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz015
– start-page: 84
  volume-title: Nature
  year: 2015
  ident: 2020051819181108100_ref31
  article-title: Pharmacogenomic agreement between two cancer cell line data sets
– start-page: 1466
  volume-title: J Comput Chem
  year: 2011
  ident: 2020051819181108100_ref21
  article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints
SSID ssj0020781
Score 2.507576
Snippet Abstract Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific...
Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 996
SubjectTerms Biological properties
Cancer
Chemical properties
Context
Encyclopedias
Optimization
Precision medicine
Predictions
Regression models
Title Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/30868164
https://www.proquest.com/docview/2429010918
https://www.proquest.com/docview/2191357625
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR30ZrWdGLh6XZPDfefNUiVD200FvYzU5KoaQlTQ_6651N0kCx6DkTFmayO9-Xmf2GkNuEKzfkSHI8RN_MkzxhkkvOODiRY95JwBDFwXvQH3lvY39cN9Est5TwI7erpqqr1DcmGzxpMfsahfzhx7ihVUauprpDFDIj7r4WId14dSPtbFxl-4Uoy8zSOyD7NSSkD1UMD8kOZEdktxoS-XVM4gEUkr0-P37eU0mNvDCbmU4firgOt6CmOUyqZtaMlnNtaDGn0_JfAVD0mznnEsipzlcTtC1bYoEuclOhMVE5IaPey_Cpz-qxCCzxOC-Y8PwkCBM7cGyFCRd84K6GSEQK4RSg3zUHECIF29FCeX4qAltGCplgCK7WqXtKWtk8g3NCIZLAIdCekKGXhrYyUzA0cBX6OhURt8jd2mtxUmuGm9EVs7iqXbsxejiuPGyRm8Z2USllbLXqoPP_NGiv4xLX22kZI44wbSQRFxa5bh7jRjDVDZnBfIU2yDxdZE-Ob5GzKp7NMi4SN4HE8OK_1S_JnmMIte0zh7dJq8hXcIWoo1Cd8qP7ATgt1Fk
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-GDBP%3A+a+high-level+stacked+regression+model+to+improve+anticancer+drug+response+prediction&rft.jtitle=Briefings+in+bioinformatics&rft.au=Su%2C+Ran&rft.au=Liu%2C+Xinyi&rft.au=Xiao%2C+Guobao&rft.au=Wei%2C+Leyi&rft.date=2020-05-21&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=21&rft.issue=3&rft.spage=996&rft.epage=1005&rft_id=info:doi/10.1093%2Fbib%2Fbbz022&rft.externalDocID=10.1093%2Fbib%2Fbbz022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon