Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction
Abstract Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two l...
Saved in:
Published in | Briefings in bioinformatics Vol. 21; no. 3; pp. 996 - 1005 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
21.05.2020
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP. |
---|---|
AbstractList | Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP. Abstract Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP. Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP.Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer types and patients is still a challenge problem. Here we propose Meta-GDBP, a novel anticancer drug-response model, which involves two levels. At the first level of Meta-GDBP, we build four optimized base models (BMs) using genetic information, chemical properties and biological context with an ensemble optimization strategy, while at the second level, we construct a weighted model to integrate the four BMs. Notably, the weights of the models are learned upstream, thus the parameter cost is significantly reduced compared to previous methods. We evaluate the Meta-GDBP on Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) data sets. Benchmarking results demonstrate that compared to other methods, the Meta-GDBP achieves a much higher correlation between the predicted and the observed responses for almost all the drugs. Moreover, we apply the Meta-GDBP to predict the GDSC-missing drug response and use the CCLE-known data to validate the performance. The results show quite a similar tendency between these two response sets. Particularly, we here for the first time introduce a biological context-based frequency matrix (BCFM) to associate the biological context with the drug response. It is encouraging that the proposed BCFM is biologically meaningful and consistent with the reported biological mechanism, further demonstrating its efficacy for predicting drug response. The R implementation for the proposed Meta-GDBP is available at https://github.com/RanSuLab/Meta-GDBP. |
Author | Su, Ran Wei, Leyi Xiao, Guobao Liu, Xinyi |
Author_xml | – sequence: 1 givenname: Ran surname: Su fullname: Su, Ran organization: School of Computer Software, College of Intelligence and Computing, Tianjin University, China – sequence: 2 givenname: Xinyi surname: Liu fullname: Liu, Xinyi organization: School of Computer Software, College of Intelligence and Computing, Tianjin University, China – sequence: 3 givenname: Guobao surname: Xiao fullname: Xiao, Guobao email: gbx@mju.edu.cn organization: Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China – sequence: 4 givenname: Leyi surname: Wei fullname: Wei, Leyi email: weileyi@tju.edu.cn organization: School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30868164$$D View this record in MEDLINE/PubMed |
BookMark | eNp90ctq3TAQBmBREppLs-kDFEEJhIAT3WzL3eXeQkK7aNZCl_GJUttyJTmQPn11OMkmlK4k0PcPo5k9tDWFCRD6SMkJJR0_Nd6cGvOHMPYO7VLRtpUgtdha35u2qkXDd9BeSo-EMNJK-h7tcCIbSRuxi9QdZF3dXJ7_-II1fvCrh2qAJxhwytr-AocjrCKk5MOEx-DKQw7Yj3MMT4D1lL3Vk4WIXVxWxaY5TAnwHMF5m0voA9ru9ZDg4OXcR_fXVz8vvla332--XZzdVlZQmispatu0ljSMGMYl1EC5g052hkgOlDFHAaTsgTAnjah72RDdGVaLFrhzPd9HR5u6pbPfC6SsRp8sDIOeICxJMdpRXrcNqwv9_IY-hiVOpTvFBOtImSmVRX16UYsZwak5-lHHZ_U6ugLIBtgYUorQK-uzXv85R-0HRYlab0eV7ajNdkrk-E3kteo_8eEGh2X-n_sL-HGcyw |
CitedBy_id | crossref_primary_10_1016_j_chemolab_2022_104495 crossref_primary_10_1016_j_ymeth_2021_12_001 crossref_primary_10_1093_bfgp_elab025 crossref_primary_10_1360_SSI_2023_0070 crossref_primary_10_1080_15476286_2021_1898160 crossref_primary_10_2139_ssrn_4007580 crossref_primary_10_1016_j_saa_2022_121186 crossref_primary_10_1186_s12859_024_05835_1 crossref_primary_10_1093_bib_bbab172 crossref_primary_10_3389_fbioe_2020_00496 crossref_primary_10_1109_TCBB_2024_3385402 crossref_primary_10_1016_j_ijbiomac_2020_11_111 crossref_primary_10_1002_advs_202303711 crossref_primary_10_1002_pmic_202100017 crossref_primary_10_1155_2022_7518779 crossref_primary_10_1021_acs_jcim_3c01060 crossref_primary_10_1093_bib_bbab408 crossref_primary_10_1155_2021_5542224 crossref_primary_10_1016_j_chemolab_2022_104562 crossref_primary_10_1016_j_heliyon_2023_e15096 crossref_primary_10_1016_j_asoc_2020_106921 crossref_primary_10_1016_j_knosys_2021_107490 crossref_primary_10_1093_bib_bbab245 crossref_primary_10_1016_j_saa_2022_121231 crossref_primary_10_1371_journal_pone_0238757 crossref_primary_10_1109_ACCESS_2020_3023800 crossref_primary_10_3390_chemosensors10100410 crossref_primary_10_3934_mbe_2021297 crossref_primary_10_1093_bib_bbab356 crossref_primary_10_1109_TCBB_2021_3103966 crossref_primary_10_2174_1389450120666190923162203 crossref_primary_10_1016_j_future_2024_06_039 crossref_primary_10_1016_j_asoc_2022_108676 crossref_primary_10_1109_ACCESS_2020_3013409 crossref_primary_10_3390_ijms222313124 crossref_primary_10_1007_s11704_024_40072_y crossref_primary_10_1109_ACCESS_2023_3250556 crossref_primary_10_1186_s12916_022_02549_0 crossref_primary_10_3389_fbioe_2021_647113 crossref_primary_10_1016_j_compbiomed_2023_107145 crossref_primary_10_1016_j_compbiolchem_2023_107868 crossref_primary_10_1093_bib_bbz164 crossref_primary_10_1093_bfgp_elab017 crossref_primary_10_1016_j_neucom_2019_12_083 crossref_primary_10_1515_sagmb_2022_0002 crossref_primary_10_1016_j_ymeth_2022_01_004 crossref_primary_10_1016_j_ymeth_2022_02_009 crossref_primary_10_3389_fgene_2021_663572 crossref_primary_10_3389_fgene_2021_664860 crossref_primary_10_1186_s12859_020_03949_w crossref_primary_10_3389_fcell_2021_664669 crossref_primary_10_2174_0929867328666211005140625 crossref_primary_10_3390_app11156894 crossref_primary_10_1155_2022_9235358 crossref_primary_10_3390_biomedinformatics2030026 crossref_primary_10_1093_bib_bbaa049 crossref_primary_10_2174_0929867328666210920103140 crossref_primary_10_1007_s10822_021_00418_1 crossref_primary_10_1155_2022_5227955 crossref_primary_10_3390_app11167731 crossref_primary_10_3389_fgene_2023_1121694 |
Cites_doi | 10.1093/annonc/mdq680 10.1093/nar/28.1.27 10.1007/BF00117832 10.1038/nature11003 10.1093/bioinformatics/btu464 10.1038/nbt.2877 10.1038/75556 10.1371/journal.pone.0061318 10.2174/138945012803530143 10.1158/0008-5472.CAN-06-0191 10.1371/journal.pcbi.1004498 10.1038/s41598-018-21622-4 10.1200/JCO.2012.46.8934 10.1007/978-1-4419-8819-5 10.1007/BF00994018 10.1093/bioinformatics/bty943 10.1038/onc.2016.172 10.1093/bioinformatics/bty827 10.1093/nar/gks1111 10.1016/j.knosys.2018.10.007 10.1093/bioinformatics/btz015 |
ContentType | Journal Article |
Copyright | The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019 The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. |
Copyright_xml | – notice: The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019 – notice: The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz022 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 1005 |
ExternalDocumentID | 30868164 10_1093_bib_bbz022 10.1093/bib/bbz022 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c411t-845c67c0620b238e5e13de989b083e122d1ee88fe02d8b45f860a9b2547e3ddf3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 10:53:57 EDT 2025 Mon Jun 30 08:51:58 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Tue Jul 01 03:39:27 EDT 2025 Thu Apr 24 23:07:14 EDT 2025 Wed Apr 02 07:02:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | genetic Meta-GDBP biological context chemical anticancer drug response |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The authors 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-845c67c0620b238e5e13de989b083e122d1ee88fe02d8b45f860a9b2547e3ddf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30868164 |
PQID | 2429010918 |
PQPubID | 26846 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2191357625 proquest_journals_2429010918 pubmed_primary_30868164 crossref_citationtrail_10_1093_bib_bbz022 crossref_primary_10_1093_bib_bbz022 oup_primary_10_1093_bib_bbz022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-21 |
PublicationDateYYYYMMDD | 2020-05-21 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2020 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Zhang (2020051819181108100_ref12) 2015 Zou (2020051819181108100_ref14) 2005 Nickerson (2020051819181108100_ref4) 2016; 36 Creighton (2020051819181108100_ref3) 2012 Toropov (2020051819181108100_ref23) 2013 Feng (2020051819181108100_ref36) 2018 Tikhonov (2020051819181108100_ref15) 1977 Menden (2020051819181108100_ref24) 2013; 8 Yang (2020051819181108100_ref5) 2013 Barretina (2020051819181108100_ref8) 2012; 483 Ashburner (2020051819181108100_ref26) 2000; 25 Cortes (2020051819181108100_ref29) 1995; 20 Yap (2020051819181108100_ref21) 2011 Garassino (2020051819181108100_ref7) 2011; 22 Zhu (2020051819181108100_ref37) 2019; 163 Brubaker (2020051819181108100_ref10) 2014; 2014 Seashore-Ludlow (2020051819181108100_ref9) 2015 Kanehisa (2020051819181108100_ref27) 2000; 28 Dong (2020051819181108100_ref30) 2015 Yu (2020051819181108100_ref33) 2012 Ammad-ud-din (2020051819181108100_ref11) 2014 Horvath (2020051819181108100_ref28) 2011 Garnett (2020051819181108100_ref16) 2012 Low (2020051819181108100_ref22) 2011 Chen (2020051819181108100_ref34) 2019 Breiman (2020051819181108100_ref20) 1996; 24 Garraway (2020051819181108100_ref1) 2013; 31 Gönen (2020051819181108100_ref19) 2014; 30 Costello (2020051819181108100_ref18) 2014; 32 Dao (2020051819181108100_ref35) 2018 The Cancer Cell Line Encyclopedia Consortium, The Genomics of Drug Sensitivity in Cancer Consortium (2020051819181108100_ref31) 2015 Langfelder (2020051819181108100_ref32) 2008 Hwang (2020051819181108100_ref25) 2016 Lièvre (2020051819181108100_ref6) 2006 Iorio (2020051819181108100_ref2) 2016 Zhang (2020051819181108100_ref13) 2018; 8 Geeleher (2020051819181108100_ref17) 2014 |
References_xml | – volume: 22 start-page: 235 issue: 1 year: 2011 ident: 2020051819181108100_ref7 article-title: Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer publication-title: Ann Oncol doi: 10.1093/annonc/mdq680 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: 2020051819181108100_ref27 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – start-page: 301 volume-title: J R Stat Soc Series B year: 2005 ident: 2020051819181108100_ref14 article-title: Regularization and variable selection via the elastic net – volume: 24 start-page: 49 issue: 1 year: 1996 ident: 2020051819181108100_ref20 article-title: Stacked regressions publication-title: Mach Learn doi: 10.1007/BF00117832 – volume: 483 start-page: 603 issue: 7391 year: 2012 ident: 2020051819181108100_ref8 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume: 30 start-page: i556 issue: 17 year: 2014 ident: 2020051819181108100_ref19 article-title: Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu464 – volume: 32 start-page: 1202 issue: 12 year: 2014 ident: 2020051819181108100_ref18 article-title: A community effort to assess and improve drug sensitivity prediction algorithms publication-title: Nat Biotechnol doi: 10.1038/nbt.2877 – volume: 2014 start-page: 125 year: 2014 ident: 2020051819181108100_ref10 article-title: Drug intervention response predictions with PARADIGM (DIRPP) identifies drug resistant cancer cell lines and pathway mechanisms of resistance publication-title: Pac Symp Biocomput – volume: 25 start-page: 25 issue: 1 year: 2000 ident: 2020051819181108100_ref26 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat Genet doi: 10.1038/75556 – start-page: 31 volume-title: Chemosphere year: 2013 ident: 2020051819181108100_ref23 article-title: QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells – start-page: 1201 volume-title: Cancer Discov year: 2015 ident: 2020051819181108100_ref9 article-title: Harnessing connectivity in a large-scale small-molecule sensitivity dataset – start-page: 1251 volume-title: Chem Res Toxicol year: 2011 ident: 2020051819181108100_ref22 article-title: Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches – start-page: 489 volume-title: BMC Cancer year: 2015 ident: 2020051819181108100_ref30 article-title: Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection – volume: 8 start-page: e61318 issue: 4 year: 2013 ident: 2020051819181108100_ref24 article-title: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties publication-title: PLoS One doi: 10.1371/journal.pone.0061318 – start-page: 1488 volume-title: Curr Drug Targets year: 2012 ident: 2020051819181108100_ref3 article-title: Molecular classification and drug response prediction in cancer doi: 10.2174/138945012803530143 – start-page: 3992 volume-title: Cancer research year: 2006 ident: 2020051819181108100_ref6 article-title: KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer doi: 10.1158/0008-5472.CAN-06-0191 – year: 1977 ident: 2020051819181108100_ref15 publication-title: Solution of ill-posed problems – start-page: 1 volume-title: PLoS Comput Biol year: 2015 ident: 2020051819181108100_ref12 article-title: Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model doi: 10.1371/journal.pcbi.1004498 – volume: 8 start-page: 3355 issue: 1 year: 2018 ident: 2020051819181108100_ref13 article-title: A novel heterogeneous network-based method for drug response prediction in cancer cell lines publication-title: Sci Rep doi: 10.1038/s41598-018-21622-4 – volume: 31 start-page: 1806 issue: 15 year: 2013 ident: 2020051819181108100_ref1 article-title: Genomics-driven oncology: framework for an emerging paradigm publication-title: J Clin Oncol doi: 10.1200/JCO.2012.46.8934 – start-page: 559 volume-title: BMC Bioinformatics year: 2008 ident: 2020051819181108100_ref32 article-title: Wgcna: an R package for weighted correlation network analysis – start-page: R47 volume-title: Genome Biol year: 2014 ident: 2020051819181108100_ref17 article-title: Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines – start-page: 284 volume-title: OMICS year: 2012 ident: 2020051819181108100_ref33 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters – start-page: 570 volume-title: Nature year: 2012 ident: 2020051819181108100_ref16 article-title: Systematic identification of genomic markers of drug sensitivity in cancer cells – volume-title: Weighted Network Analysis: Application in Genomics and Systems Biology. year: 2011 ident: 2020051819181108100_ref28 doi: 10.1007/978-1-4419-8819-5 – start-page: 275 volume-title: BMC Bioinformatics year: 2016 ident: 2020051819181108100_ref25 article-title: Context-specific functional module based drug efficacy prediction – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 2020051819181108100_ref29 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – year: 2018 ident: 2020051819181108100_ref35 article-title: Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty943 – volume: 36 start-page: 35 issue: 1 year: 2016 ident: 2020051819181108100_ref4 article-title: Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response publication-title: Oncogene doi: 10.1038/onc.2016.172 – year: 2018 ident: 2020051819181108100_ref36 article-title: iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty827 – start-page: 740 volume-title: Cell year: 2016 ident: 2020051819181108100_ref2 article-title: A landscape of pharmacogenomic interactions in cancer – start-page: 2347 volume-title: J Chemi Inf Model year: 2014 ident: 2020051819181108100_ref11 article-title: Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization – start-page: 955 volume-title: Nucleic Acids Res year: 2013 ident: 2020051819181108100_ref5 article-title: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells doi: 10.1093/nar/gks1111 – volume: 163 start-page: 787 year: 2019 ident: 2020051819181108100_ref37 article-title: Predicting protein structural classes for low-similarity sequences by evaluating different features publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.10.007 – year: 2019 ident: 2020051819181108100_ref34 article-title: i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz015 – start-page: 84 volume-title: Nature year: 2015 ident: 2020051819181108100_ref31 article-title: Pharmacogenomic agreement between two cancer cell line data sets – start-page: 1466 volume-title: J Comput Chem year: 2011 ident: 2020051819181108100_ref21 article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints |
SSID | ssj0020781 |
Score | 2.507576 |
Snippet | Abstract
Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific... Anticancer drug response prediction plays an important role in personalized medicine. In particular, precisely predicting drug response in specific cancer... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 996 |
SubjectTerms | Biological properties Cancer Chemical properties Context Encyclopedias Optimization Precision medicine Predictions Regression models |
Title | Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30868164 https://www.proquest.com/docview/2429010918 https://www.proquest.com/docview/2191357625 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR30ZrWdGLh6XZPDfefNUiVD200FvYzU5KoaQlTQ_6651N0kCx6DkTFmayO9-Xmf2GkNuEKzfkSHI8RN_MkzxhkkvOODiRY95JwBDFwXvQH3lvY39cN9Est5TwI7erpqqr1DcmGzxpMfsahfzhx7ihVUauprpDFDIj7r4WId14dSPtbFxl-4Uoy8zSOyD7NSSkD1UMD8kOZEdktxoS-XVM4gEUkr0-P37eU0mNvDCbmU4firgOt6CmOUyqZtaMlnNtaDGn0_JfAVD0mznnEsipzlcTtC1bYoEuclOhMVE5IaPey_Cpz-qxCCzxOC-Y8PwkCBM7cGyFCRd84K6GSEQK4RSg3zUHECIF29FCeX4qAltGCplgCK7WqXtKWtk8g3NCIZLAIdCekKGXhrYyUzA0cBX6OhURt8jd2mtxUmuGm9EVs7iqXbsxejiuPGyRm8Z2USllbLXqoPP_NGiv4xLX22kZI44wbSQRFxa5bh7jRjDVDZnBfIU2yDxdZE-Ob5GzKp7NMi4SN4HE8OK_1S_JnmMIte0zh7dJq8hXcIWoo1Cd8qP7ATgt1Fk |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-GDBP%3A+a+high-level+stacked+regression+model+to+improve+anticancer+drug+response+prediction&rft.jtitle=Briefings+in+bioinformatics&rft.au=Su%2C+Ran&rft.au=Liu%2C+Xinyi&rft.au=Xiao%2C+Guobao&rft.au=Wei%2C+Leyi&rft.date=2020-05-21&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=21&rft.issue=3&rft.spage=996&rft.epage=1005&rft_id=info:doi/10.1093%2Fbib%2Fbbz022&rft.externalDocID=10.1093%2Fbib%2Fbbz022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |