Enzymatic stoichiometry reveals phosphorus limitation-induced changes in the soil bacterial communities and element cycling: Evidence from a long-term field experiment
[Display omitted] •Nitrogen (N) fertilizer increased microbial phosphorus (P) limitation.•Long-term application of organic fertilizers resulted in microbial N limitation.•Microbial P limitation drove shifts in bacterial community structure.•Microbial P limitation promoted the decomposition of labile...
Saved in:
Published in | Geoderma Vol. 426; p. 116124 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Nitrogen (N) fertilizer increased microbial phosphorus (P) limitation.•Long-term application of organic fertilizers resulted in microbial N limitation.•Microbial P limitation drove shifts in bacterial community structure.•Microbial P limitation promoted the decomposition of labile organic matter.•Microbial P limitation directly affected soil N and P cycling.
Soil microbial growth and activity are generally limited by availability of resources such carbon (C), nitrogen (N), or phosphorus (P) in terrestrial ecosystems. However, how soil microbial response to resource limitation in intensive agricultural ecosystems is unclear. Four treatments, namely no fertiliser (CK), chemical fertiliser (NPK), only N fertiliser (N), and organic fertiliser with chemical fertiliser (MNPK), were selected to investigate the effects of different fertiliser practices on the pattern and degree of the limitation of soil microorganisms by elemental availability. The enzyme stoichiometry results indicated that under CK, NPK, and N fertiliser treatments, the soil microbial community as a whole was limited by the availability of C and P. N fertiliser application alone (N) considerably increased the limitation degree of P availability by soil microorganisms, which was caused by the increase in soil N/P. The increased microbial P limitation significantly increased the relative abundance of copiotrophic taxa (Actinobacteria and Sphingomonas) that use labile carbonaceous compounds (such as starch), whereas it significantly decreased the relative abundance of oligotrophic taxa (Acidobacteria and RB41) that use recalcitrant carbonaceous compounds (such as lignin, pectin, and hemicellulose) and important ratios of the microbial community structure (the ratio of fungi/bacteria and the ratio of gram-positive/negative bacteria). Changes in the microbial community structure may be unfavourable for the increase in soil organic matter originating from microorganisms (such as fungi). As per the partial least squares path modelling, N and P cycling was directly affected by microbial P limitation. Linear regression analysis further indicated that with an increase in P limitation, the abundance of functional genes related to N cycling (N fixation, nitrification, and denitrification), P capture (phosphatase and 3-phytase), and P retention (polyphosphate kinase) increased significantly. These results revealed that microorganisms in a P-limited environment adjust their abundance of functional genes to absorb and retain insufficient element (P) while accelerating the turnover of the excess element (N). This study revealed the status and extent of the resource limitation for soil microbial utilization under different long-term fertilisation regimes and indicated that soil bacterial communities respond to resource limitation by adjusting their community structure and element cycling. |
---|---|
AbstractList | Soil microbial growth and activity are generally limited by availability of resources such carbon (C), nitrogen (N), or phosphorus (P) in terrestrial ecosystems. However, how soil microbial response to resource limitation in intensive agricultural ecosystems is unclear. Four treatments, namely no fertiliser (CK), chemical fertiliser (NPK), only N fertiliser (N), and organic fertiliser with chemical fertiliser (MNPK), were selected to investigate the effects of different fertiliser practices on the pattern and degree of the limitation of soil microorganisms by elemental availability. The enzyme stoichiometry results indicated that under CK, NPK, and N fertiliser treatments, the soil microbial community as a whole was limited by the availability of C and P. N fertiliser application alone (N) considerably increased the limitation degree of P availability by soil microorganisms, which was caused by the increase in soil N/P. The increased microbial P limitation significantly increased the relative abundance of copiotrophic taxa (Actinobacteria and Sphingomonas) that use labile carbonaceous compounds (such as starch), whereas it significantly decreased the relative abundance of oligotrophic taxa (Acidobacteria and RB41) that use recalcitrant carbonaceous compounds (such as lignin, pectin, and hemicellulose) and important ratios of the microbial community structure (the ratio of fungi/bacteria and the ratio of gram-positive/negative bacteria). Changes in the microbial community structure may be unfavourable for the increase in soil organic matter originating from microorganisms (such as fungi). As per the partial least squares path modelling, N and P cycling was directly affected by microbial P limitation. Linear regression analysis further indicated that with an increase in P limitation, the abundance of functional genes related to N cycling (N fixation, nitrification, and denitrification), P capture (phosphatase and 3-phytase), and P retention (polyphosphate kinase) increased significantly. These results revealed that microorganisms in a P-limited environment adjust their abundance of functional genes to absorb and retain insufficient element (P) while accelerating the turnover of the excess element (N). This study revealed the status and extent of the resource limitation for soil microbial utilization under different long-term fertilisation regimes and indicated that soil bacterial communities respond to resource limitation by adjusting their community structure and element cycling. [Display omitted] •Nitrogen (N) fertilizer increased microbial phosphorus (P) limitation.•Long-term application of organic fertilizers resulted in microbial N limitation.•Microbial P limitation drove shifts in bacterial community structure.•Microbial P limitation promoted the decomposition of labile organic matter.•Microbial P limitation directly affected soil N and P cycling. Soil microbial growth and activity are generally limited by availability of resources such carbon (C), nitrogen (N), or phosphorus (P) in terrestrial ecosystems. However, how soil microbial response to resource limitation in intensive agricultural ecosystems is unclear. Four treatments, namely no fertiliser (CK), chemical fertiliser (NPK), only N fertiliser (N), and organic fertiliser with chemical fertiliser (MNPK), were selected to investigate the effects of different fertiliser practices on the pattern and degree of the limitation of soil microorganisms by elemental availability. The enzyme stoichiometry results indicated that under CK, NPK, and N fertiliser treatments, the soil microbial community as a whole was limited by the availability of C and P. N fertiliser application alone (N) considerably increased the limitation degree of P availability by soil microorganisms, which was caused by the increase in soil N/P. The increased microbial P limitation significantly increased the relative abundance of copiotrophic taxa (Actinobacteria and Sphingomonas) that use labile carbonaceous compounds (such as starch), whereas it significantly decreased the relative abundance of oligotrophic taxa (Acidobacteria and RB41) that use recalcitrant carbonaceous compounds (such as lignin, pectin, and hemicellulose) and important ratios of the microbial community structure (the ratio of fungi/bacteria and the ratio of gram-positive/negative bacteria). Changes in the microbial community structure may be unfavourable for the increase in soil organic matter originating from microorganisms (such as fungi). As per the partial least squares path modelling, N and P cycling was directly affected by microbial P limitation. Linear regression analysis further indicated that with an increase in P limitation, the abundance of functional genes related to N cycling (N fixation, nitrification, and denitrification), P capture (phosphatase and 3-phytase), and P retention (polyphosphate kinase) increased significantly. These results revealed that microorganisms in a P-limited environment adjust their abundance of functional genes to absorb and retain insufficient element (P) while accelerating the turnover of the excess element (N). This study revealed the status and extent of the resource limitation for soil microbial utilization under different long-term fertilisation regimes and indicated that soil bacterial communities respond to resource limitation by adjusting their community structure and element cycling. |
ArticleNumber | 116124 |
Author | Xu, Xinpeng Liang, Guoqing Wang, Xiya Zhang, Shuai Cui, Jiwen Zhou, Wei Ai, Chao Zhu, Ping |
Author_xml | – sequence: 1 givenname: Jiwen surname: Cui fullname: Cui, Jiwen organization: Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China – sequence: 2 givenname: Shuai surname: Zhang fullname: Zhang, Shuai organization: Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China – sequence: 3 givenname: Xiya surname: Wang fullname: Wang, Xiya organization: Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China – sequence: 4 givenname: Xinpeng surname: Xu fullname: Xu, Xinpeng organization: Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China – sequence: 5 givenname: Chao surname: Ai fullname: Ai, Chao organization: Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China – sequence: 6 givenname: Guoqing surname: Liang fullname: Liang, Guoqing organization: Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China – sequence: 7 givenname: Ping surname: Zhu fullname: Zhu, Ping organization: Jilin Academy of Agricultural Sciences, Gongzhuling 130124, PR China – sequence: 8 givenname: Wei surname: Zhou fullname: Zhou, Wei email: zhouwei02@caas.cn organization: Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China |
BookMark | eNqFkc2OEzEQhEdokcguvALykcsE2zPjmUEcQKvwI63EBc6Wp91OHPkn2E5EeCFeE0dZLlz2YLUs1VfqrrptbkIM2DSvGV0zysTb_XqLUWPyas0p52vGBOP9s2bFppG3gg_zTbOiVdmOVLAXzW3O-_odKaer5s8m_D57VSyQXKKFnY0eSzqThCdULpPDLub60jETZ70tVRpDa4M-AmoCOxW2mIkNpOyQ5GgdWRQUTFY5AtH7Y7DFVoUKmqBDj6EQOIOzYfuObE5WYwAkJkVPFHExbNsKe2Isugr8OlSnC_OyeW7qOvjqcd41Pz5tvt9_aR--ff56__GhhZ6x0o4C-cQY9grVvAy674wB7GYYNBtAmUXMMA5qMLSjdDbTqPt5mboOlgEM0LG7a95cfQ8p_jxiLtLbDOicChiPWfKRTR0XYhZV-v4qhRRzTmgkPMZTkrJOMiov_ci9_NePvPQjr_1UXPyHH-qpKp2fBj9cQaw5nCwmmcFeUtQ2IRSpo33K4i8ZU7Zh |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_173226 crossref_primary_10_1016_j_chemosphere_2023_138293 crossref_primary_10_3389_fmicb_2023_1150505 crossref_primary_10_1016_j_still_2024_106241 crossref_primary_10_1016_j_apsoil_2023_105169 crossref_primary_10_1016_j_scitotenv_2024_172530 crossref_primary_10_1016_j_scitotenv_2024_171361 crossref_primary_10_1016_j_apsoil_2025_105921 crossref_primary_10_1016_j_agee_2024_109310 crossref_primary_10_1016_j_still_2023_105951 crossref_primary_10_1002_sae2_12040 crossref_primary_10_1016_j_jia_2023_10_021 crossref_primary_10_1016_j_ecolind_2022_109729 crossref_primary_10_1016_j_pedsph_2024_10_003 crossref_primary_10_1016_j_ecoleng_2024_107347 crossref_primary_10_3390_f14040853 crossref_primary_10_1007_s11104_024_06965_4 crossref_primary_10_1002_elan_202300394 crossref_primary_10_1007_s11104_023_06251_9 crossref_primary_10_1016_j_apsoil_2025_106001 crossref_primary_10_1038_s41598_023_37438_w crossref_primary_10_1016_j_catena_2023_107740 crossref_primary_10_1007_s13762_024_06061_1 crossref_primary_10_1007_s11104_024_06838_w crossref_primary_10_1016_j_eja_2025_127564 crossref_primary_10_1016_j_ecolind_2024_112706 crossref_primary_10_3390_land14030584 crossref_primary_10_1016_j_scitotenv_2024_175728 crossref_primary_10_3390_agronomy14050936 crossref_primary_10_1016_j_scitotenv_2024_174933 crossref_primary_10_1016_j_agee_2025_109497 crossref_primary_10_1111_1365_2745_14458 crossref_primary_10_3390_su16083285 crossref_primary_10_1002_ldr_4883 crossref_primary_10_1016_j_pedsph_2023_06_002 crossref_primary_10_1093_jpe_rtae100 crossref_primary_10_1021_acs_est_3c06864 crossref_primary_10_1002_ldr_5092 crossref_primary_10_1016_j_jhazmat_2023_133239 crossref_primary_10_1016_j_envres_2024_118936 crossref_primary_10_1016_j_agee_2025_109587 crossref_primary_10_1016_j_ibiod_2025_106074 crossref_primary_10_1016_j_agee_2024_109284 crossref_primary_10_1016_j_ecoinf_2024_102520 crossref_primary_10_1016_j_scitotenv_2023_163238 crossref_primary_10_1007_s11104_023_06134_z crossref_primary_10_1186_s40538_023_00430_7 crossref_primary_10_3390_f15101815 crossref_primary_10_1016_j_jare_2025_01_018 crossref_primary_10_1080_00380768_2024_2341669 |
Cites_doi | 10.1016/j.soilbio.2017.10.036 10.1128/AEM.00335-09 10.1111/ele.12269 10.1128/mSystems.00162-20 10.1016/j.measurement.2015.06.017 10.1007/s00253-017-8170-3 10.1046/j.1469-8137.2003.00910.x 10.1002/gbc.20069 10.1016/j.chemosphere.2015.12.119 10.1016/j.soilbio.2004.06.007 10.1111/ele.12125 10.1007/s10584-006-9178-3 10.1016/j.still.2018.11.016 10.1016/j.geoderma.2020.114752 10.1038/s41587-019-0209-9 10.1007/BF00329709 10.1016/S0038-0717(02)00251-1 10.1016/j.soilbio.2020.107928 10.1016/j.soilbio.2017.08.014 10.1016/j.ecolind.2021.107932 10.2307/1941759 10.1007/s10021-002-0202-9 10.1007/s10533-018-0511-5 10.1007/s10533-013-9852-2 10.1073/pnas.0903507106 10.1016/0016-7061(81)90024-0 10.1111/j.1461-0248.2009.01360.x 10.1101/672295 10.1016/j.geoderma.2017.12.005 10.3389/fmicb.2012.00348 10.1007/s10533-016-0276-7 10.1007/s10533-013-9849-x 10.1016/j.soilbio.2019.03.005 10.5194/bg-8-1901-2011 10.1016/j.soilbio.2013.04.003 10.1016/j.soilbio.2005.08.012 10.1016/j.still.2019.104463 10.1016/0038-0717(87)90052-6 10.1016/j.scitotenv.2021.146505 10.1016/j.geoderma.2020.114567 10.1126/science.1159792 10.1016/j.soilbio.2010.08.014 10.1080/07388551.2019.1709793 10.1016/j.jenvman.2021.114155 10.1038/ismej.2014.235 10.1007/s002489900082 10.1016/j.ejsobi.2015.02.002 10.1111/j.1469-8137.2011.03967.x 10.1890/05-1839 10.1016/j.apsoil.2018.10.016 10.1016/j.scitotenv.2019.135413 10.1016/j.agee.2017.05.013 10.1890/09-0654.1 10.1016/j.soilbio.2020.107953 10.1016/j.soilbio.2007.09.016 10.1016/j.ecolind.2012.01.007 10.1093/nar/gks1219 10.1371/journal.pone.0053590 10.3389/fmicb.2013.00223 10.1016/j.scitotenv.2018.12.289 10.1016/j.soilbio.2008.05.021 10.1007/s10533-009-9364-2 10.1016/j.soilbio.2009.02.029 10.1038/nature08632 10.1007/s10533-011-9619-6 10.1016/S0038-0717(99)00086-3 10.1016/j.scitotenv.2018.09.036 10.1371/journal.pone.0061141 10.1016/j.soilbio.2015.10.019 10.1038/ismej.2012.11 10.1111/mec.14070 10.1016/j.scitotenv.2020.141409 10.1038/ncomms4694 10.1016/j.geoderma.2018.11.023 10.1016/j.soilbio.2015.04.007 10.1016/j.jenvman.2021.112379 10.1016/j.soilbio.2020.108041 10.1128/AEM.02775-08 10.1016/j.foreco.2018.06.011 10.1016/j.scitotenv.2021.148934 10.1016/j.geoderma.2019.06.037 10.1016/j.soilbio.2016.04.008 10.1016/j.geoderma.2019.113894 10.1007/s00374-018-1299-0 10.1016/j.soilbio.2013.09.009 10.1111/jam.12902 10.1016/j.soilbio.2010.02.009 10.1016/j.geoderma.2011.07.020 10.1016/j.soilbio.2016.03.017 10.1016/j.foreco.2016.06.004 10.1016/j.soilbio.2004.09.014 10.1007/BF00382522 10.1038/nature08985 10.1016/j.soilbio.2020.107716 10.1016/j.scitotenv.2018.08.173 10.1016/j.soilbio.2013.07.010 10.1086/284467 10.1111/geb.12576 10.1038/s41467-020-14492-w 10.1016/0038-0717(82)90001-3 10.1016/S0065-2164(00)47004-8 10.1016/j.still.2019.104474 10.1007/s00374-016-1123-7 10.1016/0038-0717(85)90144-0 10.1890/14-0777.1 10.1007/s10533-016-0217-5 10.1007/s10533-014-9991-0 10.1146/annurev.biochem.68.1.89 10.1146/annurev.micro.55.1.485 10.1007/s11104-011-0950-4 10.1038/ismej.2011.159 10.1097/00010694-195408000-00008 10.1038/s41559-018-0519-1 10.1111/j.1365-2486.2006.01132.x 10.1046/j.1461-0248.2003.00518.x 10.1007/s00374-014-0964-1 10.1016/j.soilbio.2020.107816 10.1016/j.still.2020.104753 10.1016/j.scitotenv.2005.02.003 10.1111/j.1461-0248.2008.01245.x 10.1016/j.soilbio.2020.107967 10.1126/science.1245279 10.1016/j.soilbio.2020.107814 10.1890/08-0296.1 10.1038/nmicrobiol.2017.105 10.3389/fmicb.2014.00022 10.1111/nph.12235 10.2136/sssaj2004.0347 10.1016/j.soilbio.2018.08.022 10.1016/j.soilbio.2013.07.013 10.1111/j.1461-0248.2007.01113.x 10.1016/S0038-0717(03)00015-4 10.1126/science.1094875 10.1038/nbt.2676 10.1016/j.soilbio.2013.05.028 10.1016/j.scitotenv.2020.139709 10.1016/j.soilbio.2021.108363 10.1016/j.soilbio.2018.09.010 10.1038/35012241 10.1016/j.still.2015.04.008 10.1016/j.geoderma.2019.06.026 10.1038/nmeth.3869 10.1007/s10533-009-9286-z |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2022.116124 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2022_116124 S0016706122004311 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-76e2811e4aea9b5d43ffce39c5d15cafb69c75a5f03009f87d49b833cb5cfc073 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 22:11:00 EDT 2025 Tue Jul 01 04:04:58 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Fri Feb 23 02:40:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Enzymatic stoichiometry Microbial phosphorus limitation Bacterial community structure Carbon cycling Phosphorus cycling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-76e2811e4aea9b5d43ffce39c5d15cafb69c75a5f03009f87d49b833cb5cfc073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2718326696 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718326696 crossref_citationtrail_10_1016_j_geoderma_2022_116124 crossref_primary_10_1016_j_geoderma_2022_116124 elsevier_sciencedirect_doi_10_1016_j_geoderma_2022_116124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-15 |
PublicationDateYYYYMMDD | 2022-11-15 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jones, Willett (b0285) 2006; 38 Moorhead, Sinsabaugh, Hill, Weintraub (b0430) 2016; 93 Cheng, Y., Wang, J., Sun, N., Xu, M., Zhang, J., Cai, Z., Wang, S., 2018. Correction to: Phosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experiments. Biol. Fertil. Soils 54, 791–791. https://doi.org/10.1007/s00374-018-1299-0. Fierer, Bradford, Jackson, Biology, Sciences (b0220) 2007; 88 Li, Liu, Gu, Guo, Huang, Zhang, Xu, Tan, Zhang, Chen, Xiao, Zhu (b0360) 2020; 704 Widdig, Heintz-Buschart, Schleuss, Guhr, Borer, Seabloom, Spohn (b0635) 2020; 151 Kuzyakov, Xu (b0325) 2013; 198 Li, Wang, Gan, Jiang, Tian, Zhang, Balcazar (b0370) 2013; 8 Rousk, Brookes, Bååth (b0515) 2010; 42 Mori (b0445) 2020; 146 Kivlin, Treseder (b0300) 2014; 117 Liptzin, Fierer, Strickland, Liptzin, Bradford, Cleveland (b0385) 2009; 12 Chen, Li, Mao, Xiao, Wang (b0105) 2019; 650 Strickland, Lauber, Fierer, Bradford (b0575) 2009; 90 Aber, Melillo, Nadelhoffer, Pastor, Boone (b0005) 1991; 1 Bienhold, Pop Ristova, Wenzhöfer, Dittmar, Boetius, Kirchman (b0065) 2013; 8 Mooshammer, Wanek, Zechmeister-Boltenstern, Richter (b0440) 2014; 5 Brookes, Landman, Pruden, Jenkinson (b0085) 1985; 17 Waring, Averill, Hawkes, Holyoak (b0620) 2013; 16 Wang, Cui, Zhang, Ju, Duan, Wang, Fang (b0600) 2020; 738 Samaddar, Chatterjee, Truu, Anandham, Kim, Sa (b0520) 2019; 134 Aschenbrenner, Cernava, Erlacher, Berg, Grube (b0035) 2017; 26 Fanin, Moorhead, Bertrand (b0210) 2016; 129 Cui, Zhu, Wang, Xu, Ai, He, Liang, Zhou, Zhu (b0145) 2022; 303 Jastrow, Amonette, Bailey (b0275) 2007; 80 Yang, Chen, Yang (b0655) 2019; 187 Zhang, Zhang, Zhang, Zeng, Liu, Wang, He, Li, Liang, Zhou, Ai (b0695) 2021; 382 Reiners (b0490) 1986; 127 Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (b0480) 2013; 41 Shen, Zhang, Zhu, Duan, Zhang, Wu, Xiong (b0545) 2021; 288 Zheng, Chen, Wang, Mao, Zheng, Su, Xiao, Wang, Li (b0710) 2020; 196 Hill, Elonen, Seifert, May, Tarquinio (b0250) 2012; 18 Dempsey, Fisk, Yavitt, Fahey, Balser (b0175) 2013; 67 Yang, Liang, Wang, Cheng, An, Chang (b0660) 2020; 149 Six, Frey, Thiet, Batten (b0560) 2006; 70 Manzoni, Jackson, Trofymow, Porporato (b0405) 2008; 321 Cleveland, Townsend, Schmidt (b0120) 2002; 5 Ste-Marie, Paré (b0570) 1999; 31 Peng, Wang (b0470) 2016; 98 Phoenix, Booth, Leake, Read, Grime, Lee (b0475) 2003; 161 Mooshammer, Wanek, Hämmerle, Fuchslueger, Hofhansl, Knoltsch, Schnecker, Takriti, Watzka, Wild, Keiblinger, Zechmeister-Boltenstern, Richter (b0435) 2014; 5 Zechmeister-Boltenstern, Keiblinger, Mooshammer, Peñuelas, Richter, Sardans, Wanek (b0670) 2015; 85 Heuck, Smolka, Whalen, Frey, Gundersen, Moldan, Fernandez, Spohn (b0240) 2018; 141 Orwin, Dickie, Holdaway, Wood (b0465) 2018; 117 Kaiser, Franklin, Dieckmann, Richter, Johnson (b0290) 2014; 17 Zhang, Wei, Li, Wang, Jia, Han, Ren (b0680) 2015; 153 Zhao, Ren, Han, Yang, Wang, Doughty (b0705) 2018; 427 Richardson, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Ryan, Veneklaas, Lambers, Oberson, Culvenor, Simpson (b0500) 2011; 349 Lauber, Hamady, Knight, Fierer (b0340) 2009; 75 McGuire, Bent, Borneman, Majumder, Allison, Treseder (b0420) 2010; 91 Chen, Wu, Li, Ge, Liang, Qin, Xu, Fuhrmann (b0110) 2019; 354 Jonasson, Michelsen, Schmidt, Nielsen, Callaghan (b0280) 1996; 106 Callahan, McMurdie, Rosen, Han, Johnson, Holmes (b0090) 2016; 13 DeForest (b0160) 2009; 41 Wang, Liu, Zhang, Mao, Li, You, Wang, Zheng, Zhang, Lu, Mo (b0605) 2018; 127 DeForest, Otuya (b0165) 2020; 142 Li, N., Xu, Y.-Z.Z., Han, X.-Z.Z., He, H.-B.B., Zhang, X. dong, Zhang, B., 2015. Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol. Eur. J. Soil Biol. 67, 51–58. https://doi.org/10.1016/j.ejsobi.2015.02.002. Weand, Arthur, Lovett, Sikora, Weathers (b0630) 2010; 97 Chapin, Zavaleta, Eviner, Naylor, Vitousek, Reynolds, Hooper, Lavorel, Sala, Hobbie, Mack, Díaz (b0095) 2000; 405 Kornberg, Rao, Ault-Riché (b0310) 1999; 68 Schneider, Keiblinger, Schmid, Sterflinger-Gleixner, Ellersdorfer, Roschitzki, Richter, Eberl, Zechmeister-Boltenstern, Riedel (b0540) 2012; 6 Hill, Elonen, Jicha, Kolka, Lehto, Sebestyen, Seifert-Monson (b0255) 2014; 120 Lauro, McDougald, Thomas, Williams, Egan, Rice, DeMaere, Ting, Ertan, Johnson, Ferriera, Lapidus, Anderson, Kyrpides, Munk, Detter, Han, Brown, Robb, Kjelleberg, Cavicchioli (b0345) 2009; 106 Ai, Liang, Sun, Wang, Zhou (b0010) 2012; 173–174 Li, Zhang, Luo, Lindsey, Zhou, Xie, Li, Zhu, Wang, Shi, He, Zhang (b0375) 2020; 149 Sauvadet, Trap, Damour, Plassard, Van den Meersche, Achard, Allinne, Autfray, Bertrand, Blanchart, Deberdt, Enock, Essobo, Freschet, Hedde, de Melo Virginio Filho, Rabary, Rakotoarivelo, Randriamanantsoa, Rhino, Ripoche, Rosalie, Saj, Becquer, Tixier, Harmand (b0525) 2021; 795 Cui, Wang, Zhang, Ju, Duan, Guo, Wang, Fang (b0135) 2020; 147 Lauber, Strickland, Bradford, Fierer (b0335) 2008; 40 Mori, Aoyagi, Kitayama, Mo (b0450) 2021; 160 Xu, Yu, Cheng (b0650) 2021; 129 Heuck, Spohn (b0245) 2016; 131 Rousk, Brookes, Bååth (b0510) 2009; 75 Liang, Schimel, Jastrow (b0380) 2017; 2 Cui, Fang, Guo, Han, Ju, Ye, Wang, Tan, Zhang (b0130) 2019; 648 Bernhardt (b0060) 2013; 342 Hou, Luo, Kuang, Chen, Lu, Jiang, Luo, Wen (b0260) 2020; 11 Luo, Xue, Jiang, Xiao, Zhang, Guo, Shen, Ling, Stegen (b0400) 2020; 5 Cui, Zhang, Duan, Wang, Zhang, Ju, Chen, Yue, Wang, Li, Fang (b0140) 2020; 197 Li, Li, Wang, Zou, Chen, Zhao, Mo, Li, Li, Xia (b0355) 2015; 51 Brookes, Powlson, Jenkinson (b0080) 1982; 14 Waring, Weintraub, Sinsabaugh (b0625) 2014; 117 Deng, Hui, Dennis, Reddy, Xu (b0180) 2017; 26 Zhou, Wang, Jiang, Luo (b0720) 2017; 115 Deng, Peng, Huang, Wang, Liu, Liu, Hai, Shangguan (b0185) 2019; 353 Yu, Liu, Han, Guan, Zhou (b0665) 2017; 245 Wang, Wu, Zhou, Bing, Sun (b0610) 2016; 52 Fierer, Schimel, Holden (b0215) 2003; 35 Sinsabaugh, Lauber, Weintraub, Ahmed, Allison, Crenshaw, Contosta, Cusack, Frey, Gallo, Gartner, Hobbie, Holland, Keeler, Powers, Stursova, Takacs-Vesbach, Waldrop, Wallenstein, Zak, Zeglin (b0550) 2008; 11 Taylor, Townsend (b0585) 2010; 464 Vance, Brookes, Jenkinson (b0595) 1987; 19 Augusto, Delerue, Gallet-Budynek, Achat (b0040) 2013; 27 Zhong, Li, Lu, Gu, Wu, Shen, Han, Yang, Ren (b0715) 2020; 151 Finzi (b0230) 2009; 92 Moorhead, Rinkes, Sinsabaugh, Weintraub (b0425) 2013; 4 Schimel, Schaeffer (b0530) 2012; 3 Spohn, Ermak, Kuzyakov (b0565) 2013; 65 Bach, Baer, Meyer, Six (b0045) 2010; 42 Elser, Bracken, Cleland, Gruner, Harpole, Hillebrand, Ngai, Seabloom, Shurin, Smith (b0200) 2007; 10 Li, Ning, Jeon, Ryu, Santo Domingo, Kang, Kadudula, Seo (b0365) 2021; 751 Xia, Rufty, Shi (b0645) 2020; 149 Douglas, G., Maffei, V., Zaneveld, J., Yurgel, S., Brown, J., Taylor, C., Huttenhower, C., Langille, M., 2019. PICRUSt2: An improved and customizable approach for metagenome inference. PICRUSt2 An Improv. extensible approach metagenome inference 672295. https://doi.org/10.1101/672295. Tapia-Torres, Elser, Souza, García-Oliva (b0580) 2015; 87 Kramer, Gleixner (b0320) 2008; 40 Marklein, Houlton (b0410) 2012; 193 Allison, Vitousek (b0020) 2005; 37 Che, Deng, Wang, Rui, Zhang, Tahmasbian, Tang, Wang, Wang, Xu, Cui (b0100) 2018; 316 Schimel, Weintraub (b0535) 2003; 35 Kapoor, Elk, Li, Impellitteri, Santo Domingo (b0295) 2016; 147 Zhao, Ni, Xun, Huang, Huang, Ran, Shen, Zhang, Shen (b0700) 2017; 101 DeForest, Smemo, Burke, Elliott, Becker (b0170) 2012; 109 Asaf, Numan, Khan, Al-Harrasi (b0030) 2020; 40 Banerjee, Kirkby, Schmutter, Bissett, Kirkegaard, Richardson (b0050) 2016; 97 Dai, Zhou, Liu, Liang, He, Liu (b0150) 2019; 337 Louca, Polz, Mazel, Albright, Huber, O’Connor, Ackermann, Hahn, Srivastava, Crowe, Doebeli, Parfrey (b0390) 2018; 2 Zhang, Zhang, You, Ma, Zhao, Chen (b0690) 2021; 780 Ali, Poll, Kandeler (b0015) 2018; 127 Cui, Fang, Deng, Guo, Han, Ju, Wang, Chen, Tan, Zhang (b0125) 2019; 658 Zhang, Wu, Peng, Li (b0685) 2015; 75 Dai, Song, Zhou, Liu, Liang, He, Sun, Yuan, Liu, Yao, Cui (b0155) 2021; 205 Olsen, Watanabe, Cosper, Larson, Nelson (b0460) 1954; 78 Freedman, Eisenlord, Zak, Xue, He, Zhou (b0235) 2013; 66 Roller, Schmidt (b0505) 2015; 9 Ren, Zhao, Kang, Yang, Han, Tong, Feng, Ren (b0495) 2016; 376 Kowalchuk, Stephen (b0315) 2001; 55 Bardgett, Hobbs, Frostegård (b0055) 1996; 22 Mullaney, E.J., Daly, C.B., Ullah, A.H.J.J.B.T.-A. in A.M., 2000. Advances in phytase research. Academic Press, pp. 157–199. https://doi.org/10.1016/S0065-2164(00)47004-8. Willers, Jansen van Rensburg, Claassens (b0640) 2015; 119 Langille, Zaneveld, Caporaso, McDonald, Knights, Reyes, Clemente, Burkepile, Vega Thurber, Knight, Beiko, Huttenhower (b0330) 2013; 31 Bossio, Scow (b0075) 1998; 35 Zhang, Sun, Chen, Zhang, Chen, Wu (b0675) 2019; 353 Bolyen, Rideout, Dillon, Bokulich, Abnet, Al-Ghalith, Alexander, Alm, Arumugam, Asnicar, Bai, Bisanz, Bittinger, Brejnrod, Brislawn, Brown, Callahan, Caraballo-Rodríguez, Chase, Cope, Da Silva, Diener, Dorrestein, Douglas, Durall, Duvallet, Edwardson, Ernst, Estaki, Fouquier, Gauglitz, Gibbons, Gibson, Gonzalez, Gorlick, Guo, Hillmann, Holmes, Holste, Huttenhower, Huttley, Janssen, Jarmusch, Jiang, Kaehler, Kang, Keefe, Keim, Kelley, Knights, Koester, Kosciolek, Kreps, Langille, Lee, Ley, Liu, Loftfield, Lozupone, Maher, Marotz, Martin, McDonald, McIver, Melnik, Metcalf, Morgan, Morton, Naimey, Navas-Molina, Nothias, Orchanian, Pearson, Peoples, Petras, Preuss, Pruesse, Rasmussen, Rivers, Robeson, Rosenthal, Segata, Shaffer, Shiffer, Sinha, Song, Spear, Swafford, Thompson, Torres, Trinh, Tripathi, Turnbaugh, Ul-Hasan, van der Hooft, Vargas, Vázquez-Baeza, Vogtmann, von Hippel, Walters, Wan, Wang, Warren, Weber, Williamson, Willis, Xu, Zaneveld, Zhang, Zhu, Knight, Caporaso (b0070) 2019; 37 Elser, Acharya, Kyle, Cotner, Makino, Markow, Watts, Hobbie, Fagan, Schade, Hood, Sterner (b0195) 2003; 6 McGill, Cole (b0415) 1981; 26 Araújo, Cesarz, Leite, Borges, Tsai, Eisenhauer (b0025) 2013; 66 Rasmussen, Southard, Horwath (b0485) 2006; 12 Hu, Zhang, Yuan, He (b0265) 2013; 64 Lu, Bian, Xia, Cheng, Liu, Liu, Wang, Cui (10.1016/j.geoderma.2022.116124_b0135) 2020; 147 Luo (10.1016/j.geoderma.2022.116124_b0400) 2020; 5 Hill (10.1016/j.geoderma.2022.116124_b0255) 2014; 120 Ren (10.1016/j.geoderma.2022.116124_b0495) 2016; 376 Tapia-Torres (10.1016/j.geoderma.2022.116124_b0580) 2015; 87 Yu (10.1016/j.geoderma.2022.116124_b0665) 2017; 245 Wang (10.1016/j.geoderma.2022.116124_b0600) 2020; 738 Li (10.1016/j.geoderma.2022.116124_b0355) 2015; 51 Liang (10.1016/j.geoderma.2022.116124_b0380) 2017; 2 Jastrow (10.1016/j.geoderma.2022.116124_b0275) 2007; 80 Peng (10.1016/j.geoderma.2022.116124_b0470) 2016; 98 Spohn (10.1016/j.geoderma.2022.116124_b0565) 2013; 65 Jonasson (10.1016/j.geoderma.2022.116124_b0280) 1996; 106 Yang (10.1016/j.geoderma.2022.116124_b0655) 2019; 187 Zechmeister-Boltenstern (10.1016/j.geoderma.2022.116124_b0670) 2015; 85 Ali (10.1016/j.geoderma.2022.116124_b0015) 2018; 127 Lu (10.1016/j.geoderma.2022.116124_b0395) 2020; 376 Bossio (10.1016/j.geoderma.2022.116124_b0075) 1998; 35 10.1016/j.geoderma.2022.116124_b0115 Ste-Marie (10.1016/j.geoderma.2022.116124_b0570) 1999; 31 Banerjee (10.1016/j.geoderma.2022.116124_b0050) 2016; 97 Fang (10.1016/j.geoderma.2022.116124_b0205) 2019; 133 Quast (10.1016/j.geoderma.2022.116124_b0480) 2013; 41 Yang (10.1016/j.geoderma.2022.116124_b0660) 2020; 149 Dai (10.1016/j.geoderma.2022.116124_b0150) 2019; 337 10.1016/j.geoderma.2022.116124_b0350 Wardle (10.1016/j.geoderma.2022.116124_b0615) 2004; 304 Six (10.1016/j.geoderma.2022.116124_b0560) 2006; 70 Cui (10.1016/j.geoderma.2022.116124_b0145) 2022; 303 10.1016/j.geoderma.2022.116124_b0190 Araújo (10.1016/j.geoderma.2022.116124_b0025) 2013; 66 Che (10.1016/j.geoderma.2022.116124_b0100) 2018; 316 Heuck (10.1016/j.geoderma.2022.116124_b0245) 2016; 131 Fierer (10.1016/j.geoderma.2022.116124_b0215) 2003; 35 Phoenix (10.1016/j.geoderma.2022.116124_b0475) 2003; 161 Li (10.1016/j.geoderma.2022.116124_b0365) 2021; 751 Sinsabaugh (10.1016/j.geoderma.2022.116124_b0555) 2009; 462 Zheng (10.1016/j.geoderma.2022.116124_b0710) 2020; 196 DeForest (10.1016/j.geoderma.2022.116124_b0160) 2009; 41 DeForest (10.1016/j.geoderma.2022.116124_b0165) 2020; 142 Zhong (10.1016/j.geoderma.2022.116124_b0715) 2020; 151 Reiners (10.1016/j.geoderma.2022.116124_b0490) 1986; 127 Waring (10.1016/j.geoderma.2022.116124_b0620) 2013; 16 Cui (10.1016/j.geoderma.2022.116124_b0130) 2019; 648 Fanin (10.1016/j.geoderma.2022.116124_b0210) 2016; 129 Cui (10.1016/j.geoderma.2022.116124_b0125) 2019; 658 Elser (10.1016/j.geoderma.2022.116124_b0195) 2003; 6 Cui (10.1016/j.geoderma.2022.116124_b0140) 2020; 197 Dempsey (10.1016/j.geoderma.2022.116124_b0175) 2013; 67 Huang (10.1016/j.geoderma.2022.116124_b0270) 2011; 8 Jones (10.1016/j.geoderma.2022.116124_b0285) 2006; 38 Weand (10.1016/j.geoderma.2022.116124_b0630) 2010; 97 Zhang (10.1016/j.geoderma.2022.116124_b0695) 2021; 382 Orwin (10.1016/j.geoderma.2022.116124_b0465) 2018; 117 Wang (10.1016/j.geoderma.2022.116124_b0605) 2018; 127 Kuzyakov (10.1016/j.geoderma.2022.116124_b0325) 2013; 198 Callahan (10.1016/j.geoderma.2022.116124_b0090) 2016; 13 Kaiser (10.1016/j.geoderma.2022.116124_b0290) 2014; 17 Kowalchuk (10.1016/j.geoderma.2022.116124_b0315) 2001; 55 Li (10.1016/j.geoderma.2022.116124_b0375) 2020; 149 Ai (10.1016/j.geoderma.2022.116124_b0010) 2012; 173–174 Mori (10.1016/j.geoderma.2022.116124_b0445) 2020; 146 Shen (10.1016/j.geoderma.2022.116124_b0545) 2021; 288 Louca (10.1016/j.geoderma.2022.116124_b0390) 2018; 2 Chen (10.1016/j.geoderma.2022.116124_b0110) 2019; 354 Augusto (10.1016/j.geoderma.2022.116124_b0040) 2013; 27 Hill (10.1016/j.geoderma.2022.116124_b0250) 2012; 18 Kivlin (10.1016/j.geoderma.2022.116124_b0300) 2014; 117 Cleveland (10.1016/j.geoderma.2022.116124_b0120) 2002; 5 Samaddar (10.1016/j.geoderma.2022.116124_b0520) 2019; 134 Deng (10.1016/j.geoderma.2022.116124_b0180) 2017; 26 Bolyen (10.1016/j.geoderma.2022.116124_b0070) 2019; 37 Marklein (10.1016/j.geoderma.2022.116124_b0410) 2012; 193 McGill (10.1016/j.geoderma.2022.116124_b0415) 1981; 26 DeForest (10.1016/j.geoderma.2022.116124_b0170) 2012; 109 Xu (10.1016/j.geoderma.2022.116124_b0650) 2021; 129 Zhang (10.1016/j.geoderma.2022.116124_b0680) 2015; 153 Asaf (10.1016/j.geoderma.2022.116124_b0030) 2020; 40 Freedman (10.1016/j.geoderma.2022.116124_b0235) 2013; 66 Schimel (10.1016/j.geoderma.2022.116124_b0530) 2012; 3 Chen (10.1016/j.geoderma.2022.116124_b0105) 2019; 650 Dai (10.1016/j.geoderma.2022.116124_b0155) 2021; 205 Langille (10.1016/j.geoderma.2022.116124_b0330) 2013; 31 Fierer (10.1016/j.geoderma.2022.116124_b0220) 2007; 88 Knight (10.1016/j.geoderma.2022.116124_b0305) 2004; 36 Sinsabaugh (10.1016/j.geoderma.2022.116124_b0550) 2008; 11 Lauro (10.1016/j.geoderma.2022.116124_b0345) 2009; 106 Widdig (10.1016/j.geoderma.2022.116124_b0635) 2020; 151 Hou (10.1016/j.geoderma.2022.116124_b0260) 2020; 11 Aber (10.1016/j.geoderma.2022.116124_b0005) 1991; 1 Deng (10.1016/j.geoderma.2022.116124_b0185) 2019; 353 Mori (10.1016/j.geoderma.2022.116124_b0450) 2021; 160 Zhang (10.1016/j.geoderma.2022.116124_b0675) 2019; 353 Richardson (10.1016/j.geoderma.2022.116124_b0500) 2011; 349 Kramer (10.1016/j.geoderma.2022.116124_b0320) 2008; 40 Elser (10.1016/j.geoderma.2022.116124_b0200) 2007; 10 Rousk (10.1016/j.geoderma.2022.116124_b0510) 2009; 75 Zhang (10.1016/j.geoderma.2022.116124_b0690) 2021; 780 Xia (10.1016/j.geoderma.2022.116124_b0645) 2020; 149 Chapin (10.1016/j.geoderma.2022.116124_b0095) 2000; 405 Finzi (10.1016/j.geoderma.2022.116124_b0230) 2009; 92 Bernhardt (10.1016/j.geoderma.2022.116124_b0060) 2013; 342 Mooshammer (10.1016/j.geoderma.2022.116124_b0440) 2014; 5 Fierer (10.1016/j.geoderma.2022.116124_b0225) 2012; 6 Allison (10.1016/j.geoderma.2022.116124_b0020) 2005; 37 Lauber (10.1016/j.geoderma.2022.116124_b0340) 2009; 75 Heuck (10.1016/j.geoderma.2022.116124_b0240) 2018; 141 Olsen (10.1016/j.geoderma.2022.116124_b0460) 1954; 78 Kornberg (10.1016/j.geoderma.2022.116124_b0310) 1999; 68 Rasmussen (10.1016/j.geoderma.2022.116124_b0485) 2006; 12 Roller (10.1016/j.geoderma.2022.116124_b0505) 2015; 9 Moorhead (10.1016/j.geoderma.2022.116124_b0425) 2013; 4 Mooshammer (10.1016/j.geoderma.2022.116124_b0435) 2014; 5 Sauvadet (10.1016/j.geoderma.2022.116124_b0525) 2021; 795 Taylor (10.1016/j.geoderma.2022.116124_b0585) 2010; 464 Kapoor (10.1016/j.geoderma.2022.116124_b0295) 2016; 147 Zhao (10.1016/j.geoderma.2022.116124_b0705) 2018; 427 Hu (10.1016/j.geoderma.2022.116124_b0265) 2013; 64 Wang (10.1016/j.geoderma.2022.116124_b0610) 2016; 52 Rousk (10.1016/j.geoderma.2022.116124_b0515) 2010; 42 Schimel (10.1016/j.geoderma.2022.116124_b0535) 2003; 35 Brookes (10.1016/j.geoderma.2022.116124_b0085) 1985; 17 Waring (10.1016/j.geoderma.2022.116124_b0625) 2014; 117 Aschenbrenner (10.1016/j.geoderma.2022.116124_b0035) 2017; 26 Liptzin (10.1016/j.geoderma.2022.116124_b0385) 2009; 12 Schneider (10.1016/j.geoderma.2022.116124_b0540) 2012; 6 Zhang (10.1016/j.geoderma.2022.116124_b0685) 2015; 75 10.1016/j.geoderma.2022.116124_b0455 Bienhold (10.1016/j.geoderma.2022.116124_b0065) 2013; 8 Li (10.1016/j.geoderma.2022.116124_b0370) 2013; 8 Turner (10.1016/j.geoderma.2022.116124_b0590) 2005; 344 Vance (10.1016/j.geoderma.2022.116124_b0595) 1987; 19 Bardgett (10.1016/j.geoderma.2022.116124_b0055) 1996; 22 Moorhead (10.1016/j.geoderma.2022.116124_b0430) 2016; 93 Strickland (10.1016/j.geoderma.2022.116124_b0575) 2009; 90 Manzoni (10.1016/j.geoderma.2022.116124_b0405) 2008; 321 Brookes (10.1016/j.geoderma.2022.116124_b0080) 1982; 14 McGuire (10.1016/j.geoderma.2022.116124_b0420) 2010; 91 Li (10.1016/j.geoderma.2022.116124_b0360) 2020; 704 Bach (10.1016/j.geoderma.2022.116124_b0045) 2010; 42 Willers (10.1016/j.geoderma.2022.116124_b0640) 2015; 119 Zhou (10.1016/j.geoderma.2022.116124_b0720) 2017; 115 Lauber (10.1016/j.geoderma.2022.116124_b0335) 2008; 40 Zhao (10.1016/j.geoderma.2022.116124_b0700) 2017; 101 |
References_xml | – volume: 93 start-page: 1 year: 2016 end-page: 7 ident: b0430 article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics publication-title: Soil Biol. Biochem. – volume: 8 start-page: e53590 year: 2013 ident: b0065 article-title: How deep-sea wood falls sustain chemosynthetic life publication-title: PLoS ONE – volume: 11 start-page: 1252 year: 2008 end-page: 1264 ident: b0550 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecol. Lett. – volume: 147 start-page: 361 year: 2016 end-page: 367 ident: b0295 article-title: Effects of Cr(III) and Cr(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments publication-title: Chemosphere – volume: 142 year: 2020 ident: b0165 article-title: Soil nitrification increases with elevated phosphorus or soil pH in an acidic mixed mesophytic deciduous forest publication-title: Soil Biol. Biochem. – volume: 658 start-page: 1440 year: 2019 end-page: 1451 ident: b0125 article-title: Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region publication-title: Sci. Total Environ. – volume: 196 year: 2020 ident: b0710 article-title: Responses of soil microbial resource limitation to multiple fertilization strategies publication-title: Soil Tillage Res. – volume: 26 start-page: 713 year: 2017 end-page: 728 ident: b0180 article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis publication-title: Glob. Ecol. Biogeogr. – volume: 42 start-page: 2182 year: 2010 end-page: 2191 ident: b0045 article-title: Soil texture affects soil microbial and structural recovery during grassland restoration publication-title: Soil Biol. Biochem. – volume: 97 start-page: 188 year: 2016 end-page: 198 ident: b0050 article-title: Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil publication-title: Soil Biol. Biochem. – volume: 349 start-page: 121 year: 2011 end-page: 156 ident: b0500 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil – volume: 147 year: 2020 ident: b0135 article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region publication-title: Soil Biol. Biochem. – volume: 35 start-page: 167 year: 2003 end-page: 176 ident: b0215 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biol. Biochem. – volume: 161 start-page: 279 year: 2003 end-page: 290 ident: b0475 article-title: Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland publication-title: New Phytol. – volume: 80 start-page: 5 year: 2007 end-page: 23 ident: b0275 article-title: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration publication-title: Clim. Change – volume: 134 start-page: 111 year: 2019 end-page: 115 ident: b0520 article-title: Long-term phosphorus limitation changes the bacterial community structure and functioning in paddy soils publication-title: Appl. Soil Ecol. – volume: 151 year: 2020 ident: b0715 article-title: Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau publication-title: China. Soil Biol. Biochem. – volume: 37 start-page: 937 year: 2005 end-page: 944 ident: b0020 article-title: Responses of extracellular enzymes to simple and complex nutrient inputs publication-title: Soil Biol. Biochem. – volume: 115 start-page: 92 year: 2017 end-page: 99 ident: b0720 article-title: Trends in soil microbial communities during secondary succession publication-title: Soil Biol. Biochem. – volume: 68 start-page: 89 year: 1999 end-page: 125 ident: b0310 article-title: Inorganic polyphosphate: a molecule of many functions publication-title: Annu. Rev. Biochem. – volume: 127 start-page: 22 year: 2018 end-page: 30 ident: b0605 article-title: Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China publication-title: Soil Biol. Biochem. – volume: 704 year: 2020 ident: b0360 article-title: Ecoenzymatic stoichiometry and microbial nutrient limitations in rhizosphere soil along the Hailuogou Glacier forefield chronosequence publication-title: Sci. Total Environ. – volume: 1 start-page: 303 year: 1991 end-page: 315 ident: b0005 article-title: Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems publication-title: Ecol. Appl. – volume: 376 year: 2020 ident: b0395 article-title: Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil – A rice farm trial publication-title: Geoderma – volume: 75 start-page: 1589 year: 2009 end-page: 1596 ident: b0510 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl. Environ. Microbiol. – volume: 5 start-page: 3694 year: 2014 ident: b0435 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat. Commun. – volume: 119 start-page: 1207 year: 2015 end-page: 1218 ident: b0640 article-title: Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications publication-title: J. Appl. Microbiol. – volume: 37 start-page: 852 year: 2019 end-page: 857 ident: b0070 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nat. Biotechnol. – volume: 197 year: 2020 ident: b0140 article-title: Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems publication-title: Soil Tillage Res. – volume: 2 start-page: 17105 year: 2017 ident: b0380 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. – volume: 38 start-page: 991 year: 2006 end-page: 999 ident: b0285 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biol. Biochem. – volume: 127 start-page: 59 year: 1986 end-page: 73 ident: b0490 article-title: Complementary models for ecosystems publication-title: Am. Nat. – volume: 31 start-page: 814 year: 2013 end-page: 821 ident: b0330 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nat. Biotechnol. – volume: 6 start-page: 936 year: 2003 end-page: 943 ident: b0195 article-title: Growth rate-stoichiometry couplings in diverse biota publication-title: Ecol. Lett. – volume: 40 start-page: 2407 year: 2008 end-page: 2415 ident: b0335 article-title: The influence of soil properties on the structure of bacterial and fungal communities across land-use types publication-title: Soil Biol. Biochem. – volume: 127 start-page: 60 year: 2018 end-page: 70 ident: b0015 article-title: Dynamics of soil respiration and microbial communities: interactive controls of temperature and substrate quality publication-title: Soil Biol. Biochem. – volume: 2 start-page: 936 year: 2018 end-page: 943 ident: b0390 article-title: Function and functional redundancy in microbial systems publication-title: Nat. Ecol. Evol. – volume: 42 start-page: 926 year: 2010 end-page: 934 ident: b0515 article-title: Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil publication-title: Soil Biol. Biochem. – volume: 97 start-page: 159 year: 2010 end-page: 181 ident: b0630 article-title: The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization publication-title: Biogeochemistry – volume: 464 start-page: 1178 year: 2010 end-page: 1181 ident: b0585 article-title: Stoichiometric control of organic carbon–nitrate relationships from soils to the sea publication-title: Nature – volume: 87 start-page: 34 year: 2015 end-page: 42 ident: b0580 article-title: Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil publication-title: Soil Biol. Biochem. – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: b0595 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. – volume: 337 start-page: 1116 year: 2019 end-page: 1125 ident: b0150 article-title: Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments publication-title: Geoderma – volume: 149 year: 2020 ident: b0645 article-title: Soil microbial diversity and composition: Links to soil texture and associated properties publication-title: Soil Biol. Biochem. – volume: 780 year: 2021 ident: b0690 article-title: Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process publication-title: Sci. Total Environ. – volume: 66 start-page: 130 year: 2013 end-page: 138 ident: b0235 article-title: Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition publication-title: Soil Biol. Biochem. – volume: 245 start-page: 83 year: 2017 end-page: 91 ident: b0665 article-title: Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China publication-title: Agric. Ecosyst. Environ. – volume: 173–174 start-page: 330 year: 2012 end-page: 338 ident: b0010 article-title: Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil publication-title: Geoderma – volume: 88 start-page: 1354 year: 2007 end-page: 1364 ident: b0220 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology – volume: 17 start-page: 680 year: 2014 end-page: 690 ident: b0290 article-title: Microbial community dynamics alleviate stoichiometric constraints during litter decay publication-title: Ecol. Lett. – volume: 321 start-page: 684 year: 2008 end-page: 686 ident: b0405 article-title: The global stoichiometry of litter nitrogen mineralization publication-title: Science (80-) – volume: 11 start-page: 1 year: 2020 end-page: 9 ident: b0260 article-title: Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems publication-title: Nat. Commun. – volume: 354 year: 2019 ident: b0110 article-title: Diversity and function of soil bacterial communities in response to long-term intensive management in a subtropical bamboo forest publication-title: Geoderma – volume: 151 year: 2020 ident: b0635 article-title: Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil publication-title: Soil Biol. Biochem. – volume: 303 start-page: 114155 year: 2022 ident: b0145 article-title: Effect of high soil C / N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition publication-title: J. Environ. Manage. – volume: 738 year: 2020 ident: b0600 article-title: A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: Evidence derived from microbial metabolic limitation publication-title: Sci. Total Environ. – volume: 98 start-page: 74 year: 2016 end-page: 84 ident: b0470 article-title: Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China publication-title: Soil Biol. Biochem. – volume: 149 year: 2020 ident: b0375 article-title: Differential accumulation of microbial necromass and plant lignin in synthetic versus organic fertilizer-amended soil publication-title: Soil Biol. Biochem. – volume: 353 start-page: 382 year: 2019 end-page: 390 ident: b0675 article-title: Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years publication-title: Geoderma – volume: 12 start-page: 834 year: 2006 end-page: 847 ident: b0485 article-title: Mineral control of organic carbon mineralization in a range of temperate conifer forest soils publication-title: Glob. Chang. Biol. – volume: 35 start-page: 265 year: 1998 end-page: 278 ident: b0075 article-title: Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns publication-title: Microb. Ecol. – volume: 382 year: 2021 ident: b0695 article-title: The stronger impact of inorganic nitrogen fertilization on soil bacterial community than organic fertilization in short-term condition publication-title: Geoderma – volume: 160 year: 2021 ident: b0450 article-title: Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? publication-title: Soil Biol. Biochem. – volume: 6 start-page: 1007 year: 2012 end-page: 1017 ident: b0225 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients publication-title: ISME J. – volume: 5 start-page: 22 year: 2014 ident: b0440 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. – volume: 120 start-page: 203 year: 2014 end-page: 224 ident: b0255 article-title: Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types publication-title: Biogeochemistry – volume: 27 start-page: 804 year: 2013 end-page: 815 ident: b0040 article-title: Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach publication-title: Global Biogeochem. Cycles – volume: 78 start-page: 141 year: 1954 end-page: 152 ident: b0460 article-title: Residual phosphorus availability in long-time rotations on calcareous soils publication-title: Soil Sci. – volume: 67 start-page: 263 year: 2013 end-page: 270 ident: b0175 article-title: Exotic earthworms alter soil microbial community composition and function publication-title: Soil Biol. Biochem. – volume: 26 start-page: 2826 year: 2017 end-page: 2838 ident: b0035 article-title: Differential sharing and distinct co-occurrence networks among spatially close bacterial microbiota of bark, mosses and lichens publication-title: Mol. Ecol. – volume: 31 start-page: 1579 year: 1999 end-page: 1589 ident: b0570 article-title: Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands publication-title: Soil Biol. Biochem. – volume: 10 start-page: 1135 year: 2007 end-page: 1142 ident: b0200 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecol. Lett. – volume: 149 year: 2020 ident: b0660 article-title: Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration publication-title: Soil Biol. Biochem. – volume: 198 start-page: 656 year: 2013 end-page: 669 ident: b0325 article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance publication-title: New Phytol. – volume: 648 start-page: 388 year: 2019 end-page: 397 ident: b0130 article-title: Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: evidence from nutrient limitation of soil microbes publication-title: Sci. Total Environ. – volume: 129 start-page: 21 year: 2016 end-page: 36 ident: b0210 article-title: Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient publication-title: Biogeochemistry – volume: 193 start-page: 696 year: 2012 end-page: 704 ident: b0410 article-title: Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems publication-title: New Phytol. – volume: 117 start-page: 27 year: 2018 end-page: 35 ident: b0465 article-title: A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions publication-title: Soil Biol. Biochem. – volume: 795 start-page: 148934 year: 2021 ident: b0525 article-title: Agroecosystem diversification with legumes or non-legumes improves differently soil fertility according to soil type publication-title: Sci. Total Environ. – volume: 17 start-page: 837 year: 1985 end-page: 842 ident: b0085 article-title: Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biol. Biochem. – volume: 106 start-page: 15527 year: 2009 end-page: 15533 ident: b0345 article-title: The genomic basis of trophic strategy in marine bacteria publication-title: Proc. Natl. Acad. Sci. – volume: 66 start-page: 175 year: 2013 end-page: 181 ident: b0025 article-title: Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil publication-title: Soil Biol. Biochem. – volume: 4 start-page: 1 year: 2013 end-page: 12 ident: b0425 article-title: Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models publication-title: Front. Microbiol. – volume: 16 start-page: 887 year: 2013 end-page: 894 ident: b0620 article-title: Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models publication-title: Ecol. Lett. – volume: 8 start-page: e61141 year: 2013 ident: b0370 article-title: Eco-stoichiometric alterations in paddy soil ecosystem driven by phosphorus application publication-title: PLoS ONE – volume: 14 start-page: 319 year: 1982 end-page: 329 ident: b0080 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol. Biochem. – volume: 90 start-page: 441 year: 2009 end-page: 451 ident: b0575 article-title: Testing the functional significance of microbial community composition publication-title: Ecology – volume: 133 start-page: 119 year: 2019 end-page: 128 ident: b0205 article-title: Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest publication-title: Soil Biol. Biochem. – volume: 141 start-page: 167 year: 2018 end-page: 181 ident: b0240 article-title: Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests publication-title: Biogeochemistry – volume: 316 start-page: 1 year: 2018 end-page: 10 ident: b0100 article-title: Long-term warming rather than grazing significantly changed total and active soil procaryotic community structures publication-title: Geoderma – volume: 344 start-page: 27 year: 2005 end-page: 36 ident: b0590 article-title: Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity publication-title: Sci. Total Environ. – reference: Cheng, Y., Wang, J., Sun, N., Xu, M., Zhang, J., Cai, Z., Wang, S., 2018. Correction to: Phosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experiments. Biol. Fertil. Soils 54, 791–791. https://doi.org/10.1007/s00374-018-1299-0. – volume: 8 start-page: 1901 year: 2011 end-page: 1910 ident: b0270 article-title: Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China publication-title: Biogeosciences – volume: 3 start-page: 1 year: 2012 end-page: 11 ident: b0530 article-title: Microbial control over carbon cycling in soil publication-title: Front. Microbiol. – volume: 91 start-page: 2324 year: 2010 end-page: 2332 ident: b0420 article-title: Functional diversity in resource use by fungi publication-title: Ecology – volume: 153 start-page: 28 year: 2015 end-page: 35 ident: b0680 article-title: Effects of straw incorporation on the stratification of the soil organic C, total N and C: N ratio in a semiarid region of China publication-title: Soil Tillage Res. – volume: 342 start-page: 205 year: 2013 end-page: 206 ident: b0060 article-title: Cleaner lakes are dirtier lakes publication-title: Science (80-) – volume: 36 start-page: 2089 year: 2004 end-page: 2096 ident: b0305 article-title: Differentiating microbial and stabilized β-glucosidase activity relative to soil quality publication-title: Soil Biol. Biochem. – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: b0090 article-title: DADA2: High-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods – volume: 304 start-page: 1629 year: 2004 end-page: 1633 ident: b0615 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science (80-) – volume: 64 start-page: 18 year: 2013 end-page: 27 ident: b0265 article-title: Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns publication-title: Soil Biol. Biochem. – volume: 51 start-page: 207 year: 2015 end-page: 215 ident: b0355 article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China publication-title: Biol. Fertil. Soils – volume: 18 start-page: 540 year: 2012 end-page: 551 ident: b0250 article-title: Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers publication-title: Ecol. Indic. – volume: 41 start-page: 590 year: 2013 end-page: 596 ident: b0480 article-title: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools publication-title: Nucleic Acids Res. – volume: 75 start-page: 23 year: 2015 end-page: 28 ident: b0685 article-title: Electromagnetically controlled microfluidic chip for DNA extraction publication-title: Measurement – volume: 405 start-page: 234 year: 2000 end-page: 242 ident: b0095 article-title: Consequences of changing biodiversity publication-title: Nature – volume: 187 start-page: 85 year: 2019 end-page: 91 ident: b0655 article-title: Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China publication-title: Soil Tillage Res. – volume: 462 start-page: 795 year: 2009 end-page: 798 ident: b0555 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature – reference: Douglas, G., Maffei, V., Zaneveld, J., Yurgel, S., Brown, J., Taylor, C., Huttenhower, C., Langille, M., 2019. PICRUSt2: An improved and customizable approach for metagenome inference. PICRUSt2 An Improv. extensible approach metagenome inference 672295. https://doi.org/10.1101/672295. – volume: 65 start-page: 254 year: 2013 end-page: 263 ident: b0565 article-title: Microbial gross organic phosphorus mineralization can be stimulated by root exudates - A 33P isotopic dilution study publication-title: Soil Biol. Biochem. – volume: 5 year: 2020 ident: b0400 article-title: Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry publication-title: mSystems – volume: 70 start-page: 555 year: 2006 end-page: 569 ident: b0560 article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems publication-title: Soil Sci. Soc. Am. J. – volume: 26 start-page: 267 year: 1981 end-page: 286 ident: b0415 article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic matter publication-title: Geoderma – volume: 55 start-page: 485 year: 2001 end-page: 529 ident: b0315 article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology publication-title: Annu. Rev. Microbiol. – volume: 117 start-page: 101 year: 2014 end-page: 113 ident: b0625 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry – volume: 751 year: 2021 ident: b0365 article-title: Ecological insights into assembly processes and network structures of bacterial biofilms in full-scale biologically active carbon filters under ozone implementation publication-title: Sci. Total Environ. – volume: 129 year: 2021 ident: b0650 article-title: Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations publication-title: Ecol. Indic. – volume: 427 start-page: 289 year: 2018 end-page: 295 ident: b0705 article-title: Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems publication-title: For. Ecol. Manage. – volume: 205 year: 2021 ident: b0155 article-title: Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China publication-title: Soil Tillage Res. – reference: Li, N., Xu, Y.-Z.Z., Han, X.-Z.Z., He, H.-B.B., Zhang, X. dong, Zhang, B., 2015. Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol. Eur. J. Soil Biol. 67, 51–58. https://doi.org/10.1016/j.ejsobi.2015.02.002. – volume: 40 start-page: 138 year: 2020 end-page: 152 ident: b0030 article-title: Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth publication-title: Crit. Rev. Biotechnol. – volume: 92 start-page: 217 year: 2009 end-page: 229 ident: b0230 article-title: Decades of atmospheric deposition have not resulted in widespread phosphorus limitation or saturation of tree demand for nitrogen in southern New England publication-title: Biogeochemistry – volume: 40 start-page: 425 year: 2008 end-page: 433 ident: b0320 article-title: Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation publication-title: Soil Biol. Biochem. – volume: 106 start-page: 507 year: 1996 end-page: 515 ident: b0280 article-title: Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: Implications for plant nutrient uptake publication-title: Oecologia – volume: 85 start-page: 133 year: 2015 end-page: 155 ident: b0670 article-title: The application of ecological stoichiometry to plant–microbial–soil organic matter transformations publication-title: Ecol. Monogr. – volume: 52 start-page: 825 year: 2016 end-page: 839 ident: b0610 article-title: Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development publication-title: Biol. Fertil. Soils – volume: 146 year: 2020 ident: b0445 article-title: Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? publication-title: Soil Biol. Biochem. – volume: 12 start-page: 1238 year: 2009 end-page: 1249 ident: b0385 article-title: Global patterns in belowground communities publication-title: Ecol. Lett. – volume: 41 start-page: 1180 year: 2009 end-page: 1186 ident: b0160 article-title: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA publication-title: Soil Biol. Biochem. – volume: 35 start-page: 549 year: 2003 end-page: 563 ident: b0535 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model publication-title: Soil Biol. Biochem. – volume: 22 start-page: 261 year: 1996 end-page: 264 ident: b0055 article-title: Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland publication-title: Biol. Fertil. Soils – volume: 650 start-page: 241 year: 2019 end-page: 248 ident: b0105 article-title: Resource limitation of soil microbes in karst ecosystems publication-title: Sci. Total Environ. – volume: 5 start-page: 0680 year: 2002 end-page: 0691 ident: b0120 article-title: Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies publication-title: Ecosystems – volume: 376 start-page: 59 year: 2016 end-page: 66 ident: b0495 article-title: Linkages of C:N: P stoichiometry and bacterial community in soil following afforestation of former farmland publication-title: For. Ecol. Manage. – volume: 9 start-page: 1481 year: 2015 end-page: 1487 ident: b0505 article-title: The physiology and ecological implications of efficient growth publication-title: ISME J. – reference: Mullaney, E.J., Daly, C.B., Ullah, A.H.J.J.B.T.-A. in A.M., 2000. Advances in phytase research. Academic Press, pp. 157–199. https://doi.org/10.1016/S0065-2164(00)47004-8. – volume: 288 year: 2021 ident: b0545 article-title: Organic substitutions aggravated microbial nitrogen limitation and decreased nitrogen-cycling gene abundances in a three-year greenhouse vegetable field publication-title: J. Environ. Manage. – volume: 6 start-page: 1749 year: 2012 end-page: 1762 ident: b0540 article-title: Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions publication-title: ISME J. – volume: 101 start-page: 4761 year: 2017 end-page: 4773 ident: b0700 article-title: Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system publication-title: Appl. Microbiol. Biotechnol. – volume: 109 start-page: 189 year: 2012 end-page: 202 ident: b0170 article-title: Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests publication-title: Biogeochemistry – volume: 353 start-page: 188 year: 2019 end-page: 200 ident: b0185 article-title: Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China publication-title: Geoderma – volume: 117 start-page: 23 year: 2014 end-page: 37 ident: b0300 article-title: Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition publication-title: Biogeochemistry – volume: 131 start-page: 229 year: 2016 end-page: 242 ident: b0245 article-title: Carbon, nitrogen and phosphorus net mineralization in organic horizons of temperate forests: stoichiometry and relations to organic matter quality publication-title: Biogeochemistry – volume: 75 start-page: 5111 year: 2009 end-page: 5120 ident: b0340 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Appl. Environ. Microbiol. – volume: 117 start-page: 27 year: 2018 ident: 10.1016/j.geoderma.2022.116124_b0465 article-title: A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.10.036 – volume: 75 start-page: 5111 year: 2009 ident: 10.1016/j.geoderma.2022.116124_b0340 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00335-09 – volume: 17 start-page: 680 issue: 6 year: 2014 ident: 10.1016/j.geoderma.2022.116124_b0290 article-title: Microbial community dynamics alleviate stoichiometric constraints during litter decay publication-title: Ecol. Lett. doi: 10.1111/ele.12269 – volume: 5 issue: 3 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0400 article-title: Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry publication-title: mSystems doi: 10.1128/mSystems.00162-20 – volume: 75 start-page: 23 year: 2015 ident: 10.1016/j.geoderma.2022.116124_b0685 article-title: Electromagnetically controlled microfluidic chip for DNA extraction publication-title: Measurement doi: 10.1016/j.measurement.2015.06.017 – volume: 101 start-page: 4761 year: 2017 ident: 10.1016/j.geoderma.2022.116124_b0700 article-title: Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-017-8170-3 – volume: 161 start-page: 279 year: 2003 ident: 10.1016/j.geoderma.2022.116124_b0475 article-title: Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00910.x – volume: 27 start-page: 804 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0040 article-title: Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach publication-title: Global Biogeochem. Cycles doi: 10.1002/gbc.20069 – volume: 147 start-page: 361 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0295 article-title: Effects of Cr(III) and Cr(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.119 – volume: 36 start-page: 2089 year: 2004 ident: 10.1016/j.geoderma.2022.116124_b0305 article-title: Differentiating microbial and stabilized β-glucosidase activity relative to soil quality publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.06.007 – volume: 16 start-page: 887 issue: 7 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0620 article-title: Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models publication-title: Ecol. Lett. doi: 10.1111/ele.12125 – volume: 80 start-page: 5 year: 2007 ident: 10.1016/j.geoderma.2022.116124_b0275 article-title: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration publication-title: Clim. Change doi: 10.1007/s10584-006-9178-3 – volume: 187 start-page: 85 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0655 article-title: Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.11.016 – volume: 382 year: 2021 ident: 10.1016/j.geoderma.2022.116124_b0695 article-title: The stronger impact of inorganic nitrogen fertilization on soil bacterial community than organic fertilization in short-term condition publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114752 – volume: 37 start-page: 852 issue: 8 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0070 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0209-9 – volume: 106 start-page: 507 year: 1996 ident: 10.1016/j.geoderma.2022.116124_b0280 article-title: Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: Implications for plant nutrient uptake publication-title: Oecologia doi: 10.1007/BF00329709 – volume: 35 start-page: 167 year: 2003 ident: 10.1016/j.geoderma.2022.116124_b0215 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00251-1 – volume: 149 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0660 article-title: Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107928 – volume: 151 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0715 article-title: Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau publication-title: China. Soil Biol. Biochem. – volume: 115 start-page: 92 year: 2017 ident: 10.1016/j.geoderma.2022.116124_b0720 article-title: Trends in soil microbial communities during secondary succession publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.08.014 – volume: 129 year: 2021 ident: 10.1016/j.geoderma.2022.116124_b0650 article-title: Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107932 – volume: 1 start-page: 303 year: 1991 ident: 10.1016/j.geoderma.2022.116124_b0005 article-title: Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems publication-title: Ecol. Appl. doi: 10.2307/1941759 – volume: 5 start-page: 0680 year: 2002 ident: 10.1016/j.geoderma.2022.116124_b0120 article-title: Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies publication-title: Ecosystems doi: 10.1007/s10021-002-0202-9 – volume: 141 start-page: 167 year: 2018 ident: 10.1016/j.geoderma.2022.116124_b0240 article-title: Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests publication-title: Biogeochemistry doi: 10.1007/s10533-018-0511-5 – volume: 117 start-page: 23 year: 2014 ident: 10.1016/j.geoderma.2022.116124_b0300 article-title: Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition publication-title: Biogeochemistry doi: 10.1007/s10533-013-9852-2 – volume: 106 start-page: 15527 year: 2009 ident: 10.1016/j.geoderma.2022.116124_b0345 article-title: The genomic basis of trophic strategy in marine bacteria publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0903507106 – volume: 26 start-page: 267 year: 1981 ident: 10.1016/j.geoderma.2022.116124_b0415 article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic matter publication-title: Geoderma doi: 10.1016/0016-7061(81)90024-0 – volume: 12 start-page: 1238 year: 2009 ident: 10.1016/j.geoderma.2022.116124_b0385 article-title: Global patterns in belowground communities publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01360.x – ident: 10.1016/j.geoderma.2022.116124_b0190 doi: 10.1101/672295 – volume: 316 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2022.116124_b0100 article-title: Long-term warming rather than grazing significantly changed total and active soil procaryotic community structures publication-title: Geoderma doi: 10.1016/j.geoderma.2017.12.005 – volume: 3 start-page: 1 year: 2012 ident: 10.1016/j.geoderma.2022.116124_b0530 article-title: Microbial control over carbon cycling in soil publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00348 – volume: 131 start-page: 229 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0245 article-title: Carbon, nitrogen and phosphorus net mineralization in organic horizons of temperate forests: stoichiometry and relations to organic matter quality publication-title: Biogeochemistry doi: 10.1007/s10533-016-0276-7 – volume: 117 start-page: 101 year: 2014 ident: 10.1016/j.geoderma.2022.116124_b0625 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry doi: 10.1007/s10533-013-9849-x – volume: 133 start-page: 119 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0205 article-title: Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.03.005 – volume: 8 start-page: 1901 year: 2011 ident: 10.1016/j.geoderma.2022.116124_b0270 article-title: Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China publication-title: Biogeosciences doi: 10.5194/bg-8-1901-2011 – volume: 64 start-page: 18 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0265 article-title: Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.04.003 – volume: 38 start-page: 991 year: 2006 ident: 10.1016/j.geoderma.2022.116124_b0285 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.08.012 – volume: 197 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0140 article-title: Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104463 – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.geoderma.2022.116124_b0595 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 780 year: 2021 ident: 10.1016/j.geoderma.2022.116124_b0690 article-title: Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146505 – volume: 376 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0395 article-title: Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil – A rice farm trial publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114567 – volume: 321 start-page: 684 year: 2008 ident: 10.1016/j.geoderma.2022.116124_b0405 article-title: The global stoichiometry of litter nitrogen mineralization publication-title: Science (80-) doi: 10.1126/science.1159792 – volume: 42 start-page: 2182 year: 2010 ident: 10.1016/j.geoderma.2022.116124_b0045 article-title: Soil texture affects soil microbial and structural recovery during grassland restoration publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.08.014 – volume: 40 start-page: 138 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0030 article-title: Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2019.1709793 – volume: 303 start-page: 114155 year: 2022 ident: 10.1016/j.geoderma.2022.116124_b0145 article-title: Effect of high soil C / N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.114155 – volume: 9 start-page: 1481 year: 2015 ident: 10.1016/j.geoderma.2022.116124_b0505 article-title: The physiology and ecological implications of efficient growth publication-title: ISME J. doi: 10.1038/ismej.2014.235 – volume: 35 start-page: 265 year: 1998 ident: 10.1016/j.geoderma.2022.116124_b0075 article-title: Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns publication-title: Microb. Ecol. doi: 10.1007/s002489900082 – ident: 10.1016/j.geoderma.2022.116124_b0350 doi: 10.1016/j.ejsobi.2015.02.002 – volume: 193 start-page: 696 year: 2012 ident: 10.1016/j.geoderma.2022.116124_b0410 article-title: Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03967.x – volume: 88 start-page: 1354 year: 2007 ident: 10.1016/j.geoderma.2022.116124_b0220 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology doi: 10.1890/05-1839 – volume: 134 start-page: 111 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0520 article-title: Long-term phosphorus limitation changes the bacterial community structure and functioning in paddy soils publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2018.10.016 – volume: 704 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0360 article-title: Ecoenzymatic stoichiometry and microbial nutrient limitations in rhizosphere soil along the Hailuogou Glacier forefield chronosequence publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135413 – volume: 245 start-page: 83 year: 2017 ident: 10.1016/j.geoderma.2022.116124_b0665 article-title: Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.05.013 – volume: 91 start-page: 2324 year: 2010 ident: 10.1016/j.geoderma.2022.116124_b0420 article-title: Functional diversity in resource use by fungi publication-title: Ecology doi: 10.1890/09-0654.1 – volume: 149 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0645 article-title: Soil microbial diversity and composition: Links to soil texture and associated properties publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107953 – volume: 40 start-page: 425 year: 2008 ident: 10.1016/j.geoderma.2022.116124_b0320 article-title: Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.09.016 – volume: 18 start-page: 540 year: 2012 ident: 10.1016/j.geoderma.2022.116124_b0250 article-title: Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2012.01.007 – volume: 41 start-page: 590 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0480 article-title: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 8 start-page: e53590 issue: 1 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0065 article-title: How deep-sea wood falls sustain chemosynthetic life publication-title: PLoS ONE doi: 10.1371/journal.pone.0053590 – volume: 4 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0425 article-title: Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models publication-title: Front. Microbiol. doi: 10.3389/fmicb.2013.00223 – volume: 658 start-page: 1440 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0125 article-title: Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.289 – volume: 40 start-page: 2407 year: 2008 ident: 10.1016/j.geoderma.2022.116124_b0335 article-title: The influence of soil properties on the structure of bacterial and fungal communities across land-use types publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.05.021 – volume: 97 start-page: 159 year: 2010 ident: 10.1016/j.geoderma.2022.116124_b0630 article-title: The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization publication-title: Biogeochemistry doi: 10.1007/s10533-009-9364-2 – volume: 41 start-page: 1180 year: 2009 ident: 10.1016/j.geoderma.2022.116124_b0160 article-title: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.02.029 – volume: 462 start-page: 795 year: 2009 ident: 10.1016/j.geoderma.2022.116124_b0555 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature doi: 10.1038/nature08632 – volume: 109 start-page: 189 year: 2012 ident: 10.1016/j.geoderma.2022.116124_b0170 article-title: Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests publication-title: Biogeochemistry doi: 10.1007/s10533-011-9619-6 – volume: 31 start-page: 1579 year: 1999 ident: 10.1016/j.geoderma.2022.116124_b0570 article-title: Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00086-3 – volume: 650 start-page: 241 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0105 article-title: Resource limitation of soil microbes in karst ecosystems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.036 – volume: 8 start-page: e61141 issue: 5 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0370 article-title: Eco-stoichiometric alterations in paddy soil ecosystem driven by phosphorus application publication-title: PLoS ONE doi: 10.1371/journal.pone.0061141 – volume: 93 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0430 article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.10.019 – volume: 6 start-page: 1749 year: 2012 ident: 10.1016/j.geoderma.2022.116124_b0540 article-title: Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions publication-title: ISME J. doi: 10.1038/ismej.2012.11 – volume: 26 start-page: 2826 year: 2017 ident: 10.1016/j.geoderma.2022.116124_b0035 article-title: Differential sharing and distinct co-occurrence networks among spatially close bacterial microbiota of bark, mosses and lichens publication-title: Mol. Ecol. doi: 10.1111/mec.14070 – volume: 751 year: 2021 ident: 10.1016/j.geoderma.2022.116124_b0365 article-title: Ecological insights into assembly processes and network structures of bacterial biofilms in full-scale biologically active carbon filters under ozone implementation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141409 – volume: 5 start-page: 3694 year: 2014 ident: 10.1016/j.geoderma.2022.116124_b0435 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat. Commun. doi: 10.1038/ncomms4694 – volume: 337 start-page: 1116 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0150 article-title: Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.023 – volume: 87 start-page: 34 year: 2015 ident: 10.1016/j.geoderma.2022.116124_b0580 article-title: Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.04.007 – volume: 288 year: 2021 ident: 10.1016/j.geoderma.2022.116124_b0545 article-title: Organic substitutions aggravated microbial nitrogen limitation and decreased nitrogen-cycling gene abundances in a three-year greenhouse vegetable field publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.112379 – volume: 151 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0635 article-title: Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108041 – volume: 75 start-page: 1589 year: 2009 ident: 10.1016/j.geoderma.2022.116124_b0510 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02775-08 – volume: 427 start-page: 289 year: 2018 ident: 10.1016/j.geoderma.2022.116124_b0705 article-title: Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2018.06.011 – volume: 795 start-page: 148934 year: 2021 ident: 10.1016/j.geoderma.2022.116124_b0525 article-title: Agroecosystem diversification with legumes or non-legumes improves differently soil fertility according to soil type publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148934 – volume: 353 start-page: 188 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0185 article-title: Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.037 – volume: 98 start-page: 74 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0470 article-title: Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.04.008 – volume: 354 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0110 article-title: Diversity and function of soil bacterial communities in response to long-term intensive management in a subtropical bamboo forest publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113894 – ident: 10.1016/j.geoderma.2022.116124_b0115 doi: 10.1007/s00374-018-1299-0 – volume: 67 start-page: 263 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0175 article-title: Exotic earthworms alter soil microbial community composition and function publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.09.009 – volume: 119 start-page: 1207 year: 2015 ident: 10.1016/j.geoderma.2022.116124_b0640 article-title: Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications publication-title: J. Appl. Microbiol. doi: 10.1111/jam.12902 – volume: 42 start-page: 926 year: 2010 ident: 10.1016/j.geoderma.2022.116124_b0515 article-title: Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.02.009 – volume: 173–174 start-page: 330 year: 2012 ident: 10.1016/j.geoderma.2022.116124_b0010 article-title: Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil publication-title: Geoderma doi: 10.1016/j.geoderma.2011.07.020 – volume: 97 start-page: 188 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0050 article-title: Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.017 – volume: 376 start-page: 59 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0495 article-title: Linkages of C:N: P stoichiometry and bacterial community in soil following afforestation of former farmland publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2016.06.004 – volume: 37 start-page: 937 year: 2005 ident: 10.1016/j.geoderma.2022.116124_b0020 article-title: Responses of extracellular enzymes to simple and complex nutrient inputs publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.09.014 – volume: 22 start-page: 261 year: 1996 ident: 10.1016/j.geoderma.2022.116124_b0055 article-title: Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland publication-title: Biol. Fertil. Soils doi: 10.1007/BF00382522 – volume: 464 start-page: 1178 year: 2010 ident: 10.1016/j.geoderma.2022.116124_b0585 article-title: Stoichiometric control of organic carbon–nitrate relationships from soils to the sea publication-title: Nature doi: 10.1038/nature08985 – volume: 142 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0165 article-title: Soil nitrification increases with elevated phosphorus or soil pH in an acidic mixed mesophytic deciduous forest publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107716 – volume: 648 start-page: 388 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0130 article-title: Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: evidence from nutrient limitation of soil microbes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.173 – volume: 66 start-page: 130 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0235 article-title: Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.07.010 – volume: 127 start-page: 59 year: 1986 ident: 10.1016/j.geoderma.2022.116124_b0490 article-title: Complementary models for ecosystems publication-title: Am. Nat. doi: 10.1086/284467 – volume: 26 start-page: 713 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2022.116124_b0180 article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12576 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0260 article-title: Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems publication-title: Nat. Commun. doi: 10.1038/s41467-020-14492-w – volume: 14 start-page: 319 year: 1982 ident: 10.1016/j.geoderma.2022.116124_b0080 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(82)90001-3 – ident: 10.1016/j.geoderma.2022.116124_b0455 doi: 10.1016/S0065-2164(00)47004-8 – volume: 196 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0710 article-title: Responses of soil microbial resource limitation to multiple fertilization strategies publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104474 – volume: 52 start-page: 825 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0610 article-title: Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-016-1123-7 – volume: 17 start-page: 837 year: 1985 ident: 10.1016/j.geoderma.2022.116124_b0085 article-title: Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(85)90144-0 – volume: 85 start-page: 133 year: 2015 ident: 10.1016/j.geoderma.2022.116124_b0670 article-title: The application of ecological stoichiometry to plant–microbial–soil organic matter transformations publication-title: Ecol. Monogr. doi: 10.1890/14-0777.1 – volume: 129 start-page: 21 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0210 article-title: Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient publication-title: Biogeochemistry doi: 10.1007/s10533-016-0217-5 – volume: 120 start-page: 203 year: 2014 ident: 10.1016/j.geoderma.2022.116124_b0255 article-title: Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types publication-title: Biogeochemistry doi: 10.1007/s10533-014-9991-0 – volume: 68 start-page: 89 year: 1999 ident: 10.1016/j.geoderma.2022.116124_b0310 article-title: Inorganic polyphosphate: a molecule of many functions publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.68.1.89 – volume: 55 start-page: 485 year: 2001 ident: 10.1016/j.geoderma.2022.116124_b0315 article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.55.1.485 – volume: 349 start-page: 121 year: 2011 ident: 10.1016/j.geoderma.2022.116124_b0500 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil doi: 10.1007/s11104-011-0950-4 – volume: 6 start-page: 1007 year: 2012 ident: 10.1016/j.geoderma.2022.116124_b0225 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients publication-title: ISME J. doi: 10.1038/ismej.2011.159 – volume: 78 start-page: 141 issue: 2 year: 1954 ident: 10.1016/j.geoderma.2022.116124_b0460 article-title: Residual phosphorus availability in long-time rotations on calcareous soils publication-title: Soil Sci. doi: 10.1097/00010694-195408000-00008 – volume: 2 start-page: 936 year: 2018 ident: 10.1016/j.geoderma.2022.116124_b0390 article-title: Function and functional redundancy in microbial systems publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0519-1 – volume: 12 start-page: 834 year: 2006 ident: 10.1016/j.geoderma.2022.116124_b0485 article-title: Mineral control of organic carbon mineralization in a range of temperate conifer forest soils publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2006.01132.x – volume: 6 start-page: 936 year: 2003 ident: 10.1016/j.geoderma.2022.116124_b0195 article-title: Growth rate-stoichiometry couplings in diverse biota publication-title: Ecol. Lett. doi: 10.1046/j.1461-0248.2003.00518.x – volume: 51 start-page: 207 year: 2015 ident: 10.1016/j.geoderma.2022.116124_b0355 article-title: Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-014-0964-1 – volume: 146 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0445 article-title: Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107816 – volume: 205 year: 2021 ident: 10.1016/j.geoderma.2022.116124_b0155 article-title: Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104753 – volume: 344 start-page: 27 year: 2005 ident: 10.1016/j.geoderma.2022.116124_b0590 article-title: Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.02.003 – volume: 11 start-page: 1252 year: 2008 ident: 10.1016/j.geoderma.2022.116124_b0550 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01245.x – volume: 149 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0375 article-title: Differential accumulation of microbial necromass and plant lignin in synthetic versus organic fertilizer-amended soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107967 – volume: 342 start-page: 205 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0060 article-title: Cleaner lakes are dirtier lakes publication-title: Science (80-) doi: 10.1126/science.1245279 – volume: 147 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0135 article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107814 – volume: 90 start-page: 441 year: 2009 ident: 10.1016/j.geoderma.2022.116124_b0575 article-title: Testing the functional significance of microbial community composition publication-title: Ecology doi: 10.1890/08-0296.1 – volume: 2 start-page: 17105 year: 2017 ident: 10.1016/j.geoderma.2022.116124_b0380 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.105 – volume: 5 start-page: 22 year: 2014 ident: 10.1016/j.geoderma.2022.116124_b0440 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00022 – volume: 198 start-page: 656 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0325 article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance publication-title: New Phytol. doi: 10.1111/nph.12235 – volume: 70 start-page: 555 year: 2006 ident: 10.1016/j.geoderma.2022.116124_b0560 article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.0347 – volume: 127 start-page: 22 year: 2018 ident: 10.1016/j.geoderma.2022.116124_b0605 article-title: Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.08.022 – volume: 66 start-page: 175 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0025 article-title: Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.07.013 – volume: 10 start-page: 1135 year: 2007 ident: 10.1016/j.geoderma.2022.116124_b0200 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01113.x – volume: 35 start-page: 549 year: 2003 ident: 10.1016/j.geoderma.2022.116124_b0535 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00015-4 – volume: 304 start-page: 1629 year: 2004 ident: 10.1016/j.geoderma.2022.116124_b0615 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science (80-) doi: 10.1126/science.1094875 – volume: 31 start-page: 814 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0330 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2676 – volume: 65 start-page: 254 year: 2013 ident: 10.1016/j.geoderma.2022.116124_b0565 article-title: Microbial gross organic phosphorus mineralization can be stimulated by root exudates - A 33P isotopic dilution study publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.05.028 – volume: 738 year: 2020 ident: 10.1016/j.geoderma.2022.116124_b0600 article-title: A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: Evidence derived from microbial metabolic limitation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139709 – volume: 160 year: 2021 ident: 10.1016/j.geoderma.2022.116124_b0450 article-title: Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108363 – volume: 127 start-page: 60 year: 2018 ident: 10.1016/j.geoderma.2022.116124_b0015 article-title: Dynamics of soil respiration and microbial communities: interactive controls of temperature and substrate quality publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.09.010 – volume: 405 start-page: 234 year: 2000 ident: 10.1016/j.geoderma.2022.116124_b0095 article-title: Consequences of changing biodiversity publication-title: Nature doi: 10.1038/35012241 – volume: 153 start-page: 28 year: 2015 ident: 10.1016/j.geoderma.2022.116124_b0680 article-title: Effects of straw incorporation on the stratification of the soil organic C, total N and C: N ratio in a semiarid region of China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.04.008 – volume: 353 start-page: 382 year: 2019 ident: 10.1016/j.geoderma.2022.116124_b0675 article-title: Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.026 – volume: 13 start-page: 581 year: 2016 ident: 10.1016/j.geoderma.2022.116124_b0090 article-title: DADA2: High-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 92 start-page: 217 year: 2009 ident: 10.1016/j.geoderma.2022.116124_b0230 article-title: Decades of atmospheric deposition have not resulted in widespread phosphorus limitation or saturation of tree demand for nitrogen in southern New England publication-title: Biogeochemistry doi: 10.1007/s10533-009-9286-z |
SSID | ssj0017020 |
Score | 2.5757644 |
Snippet | [Display omitted]
•Nitrogen (N) fertilizer increased microbial phosphorus (P) limitation.•Long-term application of organic fertilizers resulted in microbial N... Soil microbial growth and activity are generally limited by availability of resources such carbon (C), nitrogen (N), or phosphorus (P) in terrestrial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116124 |
SubjectTerms | 3-phytase Acidobacteria Actinobacteria Bacterial community structure carbon Carbon cycling community structure denitrification Enzymatic stoichiometry eutrophication fertilizer application field experimentation hemicellulose lignin microbial communities microbial growth Microbial phosphorus limitation nitrification nitrogen nitrogen fertilizers nitrogen fixation organic fertilizers pectins phosphorus Phosphorus cycling polyphosphate kinase regression analysis soil soil bacteria soil organic matter Sphingomonas starch stoichiometry |
Title | Enzymatic stoichiometry reveals phosphorus limitation-induced changes in the soil bacterial communities and element cycling: Evidence from a long-term field experiment |
URI | https://dx.doi.org/10.1016/j.geoderma.2022.116124 https://www.proquest.com/docview/2718326696 |
Volume | 426 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSH0idNm4Qp9KqutdbLvS0hYdvSnBrIzViytHFY7GW9e9ge8nfyNzvjR5IWSg49GGxj2Ubf-JsRnm-GsU-mRKcY04IrWZYcI2LJXRod7mkcIax1Xbb7j3M9v5DfLtXlHjsZtTCUVjlwf8_pHVsPZybDbE5WVUUaX6ENeWgCOu30vVIasvLPN3dpHsIkQ2lGoTld_UAlfI0YUcOxrv7QdIrsgTeT_3JQf1F153_OXrDnQ-AIs_7dXrK9UL9iz2aL9VA8I7xmt6f1r11XghUwpKv8FUnrN-sdUJkmNDNYXTUtbuttC0sSNnWocFyVI74l9BrgFqoaMCqEtqmW4Ppizvhg3ytJqP4qFHUJoc87B78jceXiC4z9SYEUK1DAsqkXnIgfuiw5uO8l8IZdnJ3-PJnzoRED91KIDTc6TK0QQRahyJwqZRqjD2nmVSmUL6LTmTeqUBEZI8miNaXMnE1T75SPHknkLduvmzq8Y5CGYEuHi6QYE2l8ZqO2UtnERCtiEvwBU-Ps536YB2qWsczHdLTrfEQtJ9TyHrUDNrkbt-rrdDw6IhvBzf-wuBydyaNjP47WkOPnSP9Yijo02zafGuJIrTP9_j_u_4E9pSPSPAp1yPY36204wuBn44476z5mT2Zfv8_PfwPfNgoZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFUJayHB0cy03d1uI3GIINGELKdEys24t4mjkT0azwgNB36HD-AHqfISFgnlgHKwZNmqdqv2lutVMfY6dRgUQ1JEUjgXYUYsIpMEg3cKKbjWpq12PzpWk1Px6UyebbAfAxaGyip739_59NZb909GPTdH87IkjC9XKUVoEnTCeV9ZeeDXX_Dc1rzf_4hCfhPHe7snHyZRP1ogsoLzZZQqH2vOvSh8kRnpRBKC9UlmpePSFsGozKaykAFtYJwFnTqRGZ0k1kgbLJoFrnuD3RToLmhswttvl3UlPB33vSC5imh7v8GSL1ApaMJZ2_AojtFd4e7FvyLiX7GhDXh799jdPlOFnY4Z99mGrx6wOzvTRd-twz9k33err-u25ytgDlnac8LyLxdroL5QqNcwP68bvBarBmaEpGrVICorhwrloAMdN1BWgGkoNHU5A9N1j8YP2w66Qg1foagc-K7QHeya0JzTdzAMRAWCyEABs7qaRhRpoC3Lg1_DCx6x02sRz2O2WdWV32KQeK-dwVNZCGOR2kwHpYXU4zRoHsbebjM5cD-3PR9oOscsH-rfLvJBajlJLe-kts1Gl3TzrjHIlRTZINz8DxXPMXpdSftq0IYc7Z9-6hSVr1dNHqfklJXK1JP_WP8luzU5OTrMD_ePD56y2_SGAJdcPmOby8XKP8fMa2letJoO7PN1m9ZPoqNHCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+stoichiometry+reveals+phosphorus+limitation-induced+changes+in+the+soil+bacterial+communities+and+element+cycling%3A+Evidence+from+a+long-term+field+experiment&rft.jtitle=Geoderma&rft.au=Cui%2C+Jiwen&rft.au=Zhang%2C+Shuai&rft.au=Wang%2C+Xiya&rft.au=Xu%2C+Xinpeng&rft.date=2022-11-15&rft.issn=0016-7061&rft.volume=426&rft.spage=116124&rft_id=info:doi/10.1016%2Fj.geoderma.2022.116124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2022_116124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |