The state-of-the-art review on energy harvesting from flow-induced vibrations

•The concepts of energy harvesting from flow-induced vibrations are classified.•The methods and principles of flow-induced vibrations energy harvesting are summarized.•The application of energy capture devices and commercially available devices are discussed.•The prospects of the research and applic...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 267; p. 114902
Main Authors Wang, Junlei, Geng, Linfeng, Ding, Lin, Zhu, Hongjun, Yurchenko, Daniil
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The concepts of energy harvesting from flow-induced vibrations are classified.•The methods and principles of flow-induced vibrations energy harvesting are summarized.•The application of energy capture devices and commercially available devices are discussed.•The prospects of the research and application of flow-induced vibrations energy harvesting are presented. In this paper, the currently popular flow-induced vibrations energy harvesting technologies are reviewed, including numerical and experimental endeavors, and some existing or proposed energy capture concepts and devices are discussed. The energy harvesting mechanism and current research progress of four types of flow-induced vibrations, such as vortex-induced vibrations, galloping, flutter and buffeting, are introduced. To enhance the performance of the harvesters and broaden the operating range, the researchers have proposed various mechanical designs, methods of the structures’ surfaces optimization and concepts with incorporated magnets for multistability. The paper summarizes the works led to the current wind energy and hydro energy harvesters based on the principle of flow-induced vibrations, including bladeless generator Vortex Bladeless, University of Michigan vortex-induced vibrations aquatic clean energy, Australian BPS company's airfoil tidal energy capture device bioSTREAM, and others. This shows the gradual progress and maturity of the flow-induced vibrations energy harvesters. The article concludes with a discussion on the current problems in the area of the flow-induced vibration energy capture and the challenges faced.
AbstractList In this paper, the currently popular flow-induced vibrations energy harvesting technologies are reviewed, including numerical and experimental endeavors, and some existing or proposed energy capture concepts and devices are discussed. The energy harvesting mechanism and current research progress of four types of flow-induced vibrations, such as vortex-induced vibrations, galloping, flutter and buffeting, are introduced. To enhance the performance of the harvesters and broaden the operating range, the researchers have proposed various mechanical designs, methods of the structures’ surfaces optimization and concepts with incorporated magnets for multistability. The paper summarizes the works led to the current wind energy and hydro energy harvesters based on the principle of flow-induced vibrations, including bladeless generator Vortex Bladeless, University of Michigan vortex-induced vibrations aquatic clean energy, Australian BPS company's airfoil tidal energy capture device bioSTREAM, and others. This shows the gradual progress and maturity of the flow-induced vibrations energy harvesters. The article concludes with a discussion on the current problems in the area of the flow-induced vibration energy capture and the challenges faced.
•The concepts of energy harvesting from flow-induced vibrations are classified.•The methods and principles of flow-induced vibrations energy harvesting are summarized.•The application of energy capture devices and commercially available devices are discussed.•The prospects of the research and application of flow-induced vibrations energy harvesting are presented. In this paper, the currently popular flow-induced vibrations energy harvesting technologies are reviewed, including numerical and experimental endeavors, and some existing or proposed energy capture concepts and devices are discussed. The energy harvesting mechanism and current research progress of four types of flow-induced vibrations, such as vortex-induced vibrations, galloping, flutter and buffeting, are introduced. To enhance the performance of the harvesters and broaden the operating range, the researchers have proposed various mechanical designs, methods of the structures’ surfaces optimization and concepts with incorporated magnets for multistability. The paper summarizes the works led to the current wind energy and hydro energy harvesters based on the principle of flow-induced vibrations, including bladeless generator Vortex Bladeless, University of Michigan vortex-induced vibrations aquatic clean energy, Australian BPS company's airfoil tidal energy capture device bioSTREAM, and others. This shows the gradual progress and maturity of the flow-induced vibrations energy harvesters. The article concludes with a discussion on the current problems in the area of the flow-induced vibration energy capture and the challenges faced.
ArticleNumber 114902
Author Wang, Junlei
Yurchenko, Daniil
Ding, Lin
Geng, Linfeng
Zhu, Hongjun
Author_xml – sequence: 1
  givenname: Junlei
  orcidid: 0000-0003-4453-0946
  surname: Wang
  fullname: Wang, Junlei
  email: jlwang@zzu.edu.cn
  organization: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China
– sequence: 2
  givenname: Linfeng
  surname: Geng
  fullname: Geng, Linfeng
  organization: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China
– sequence: 3
  givenname: Lin
  orcidid: 0000-0002-0944-0948
  surname: Ding
  fullname: Ding, Lin
  email: linding@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
– sequence: 4
  givenname: Hongjun
  orcidid: 0000-0001-5977-5028
  surname: Zhu
  fullname: Zhu, Hongjun
  email: zhuhj@swpu.edu.cn
  organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
– sequence: 5
  givenname: Daniil
  orcidid: 0000-0002-4989-3634
  surname: Yurchenko
  fullname: Yurchenko, Daniil
  organization: Institute of Mechanical, Process & Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
BookMark eNqFkEtLAzEUhYMoWB9_QWbpJjWvZjLgQhFfoLjRdUgzNzZlmtQkrfjvjY5u3Li6D845HL4DtBtiAIROKJlSQuXZcmrWECC9fkwZYfVJRUfYDppQ1TLcUap20YRwIjGTtNtHBzkvCSGMMjJBj88LaHIxBXB0uCwAm1SaBFsP700MzRjcLEzaQi4-vDYuxVXjhviOfeg3Fvpm6-fJFB9DPkJ7zgwZjn_mIXq5uX6-usMPT7f3V5cP2ApKC26JJcL0wjGrhBJyZntmBOfSdVy09ZB1U4zOFHfKyHkrXauoUmpGe8PFnB-i0zF3neLbphbTK58tDIMJEDdZM8E7wVvViio9H6U2xZwTOG19-W5bkvGDpkR_UdRL_UtRf1HUI8Vql3_s6-RXJn38b7wYjVA5VJpJZ-shVF4-gS26j_6_iE93YpJO
CitedBy_id crossref_primary_10_3390_electronics9040681
crossref_primary_10_1063_5_0128728
crossref_primary_10_1016_j_oceaneng_2021_108806
crossref_primary_10_1016_j_jfluidstructs_2022_103708
crossref_primary_10_1016_j_renene_2024_120913
crossref_primary_10_1016_j_oceaneng_2024_118587
crossref_primary_10_1002_adem_202200408
crossref_primary_10_1016_j_oceaneng_2023_114928
crossref_primary_10_1016_j_ymssp_2024_111137
crossref_primary_10_1063_5_0123160
crossref_primary_10_1016_j_renene_2021_06_072
crossref_primary_10_1088_1361_6463_aca4de
crossref_primary_10_1016_j_enconman_2020_112835
crossref_primary_10_3233_JAE_209314
crossref_primary_10_1016_j_enconman_2022_116405
crossref_primary_10_1016_j_nanoen_2020_105279
crossref_primary_10_1016_j_apenergy_2023_121583
crossref_primary_10_1016_j_applthermaleng_2024_123897
crossref_primary_10_3390_mi13030396
crossref_primary_10_1016_j_enconman_2024_119471
crossref_primary_10_1007_s11664_024_11575_y
crossref_primary_10_1016_j_jfluidstructs_2024_104255
crossref_primary_10_1016_j_apenergy_2021_117522
crossref_primary_10_1088_1361_6463_ac928e
crossref_primary_10_1007_s10483_021_2741_8
crossref_primary_10_1016_j_enconman_2022_115759
crossref_primary_10_1016_j_oceaneng_2023_116097
crossref_primary_10_1088_1361_665X_ad1c53
crossref_primary_10_5219_1951
crossref_primary_10_1007_s00202_023_01740_7
crossref_primary_10_1088_1361_665X_abf41f
crossref_primary_10_1016_j_jfluidstructs_2022_103809
crossref_primary_10_1016_j_nanoen_2024_109508
crossref_primary_10_1002_smll_202307119
crossref_primary_10_1063_5_0135032
crossref_primary_10_1016_j_jsv_2023_118054
crossref_primary_10_1016_j_measurement_2024_114796
crossref_primary_10_1016_j_ymssp_2020_106912
crossref_primary_10_3390_en15166097
crossref_primary_10_1016_j_energy_2023_128584
crossref_primary_10_20965_jrm_2022_p0131
crossref_primary_10_1016_j_sna_2023_114190
crossref_primary_10_1016_j_ijmecsci_2022_107979
crossref_primary_10_1002_adfm_202413760
crossref_primary_10_1016_j_renene_2021_12_127
crossref_primary_10_1016_j_ymssp_2021_108044
crossref_primary_10_1016_j_oceaneng_2020_107455
crossref_primary_10_1016_j_optlastec_2021_107099
crossref_primary_10_1016_j_euromechflu_2023_11_009
crossref_primary_10_3390_en17225666
crossref_primary_10_1016_j_oceaneng_2020_107766
crossref_primary_10_1016_j_mechmat_2023_104892
crossref_primary_10_1002_admt_202201296
crossref_primary_10_1016_j_enconman_2021_114250
crossref_primary_10_1016_j_ymssp_2024_112268
crossref_primary_10_1007_s10483_022_2867_7
crossref_primary_10_1063_5_0189915
crossref_primary_10_1063_5_0239312
crossref_primary_10_3389_fmars_2023_1270286
crossref_primary_10_1016_j_ijmecsci_2024_109561
crossref_primary_10_1016_j_nanoen_2023_108478
crossref_primary_10_1063_5_0127682
crossref_primary_10_1063_5_0184582
crossref_primary_10_1016_j_jweia_2022_105235
crossref_primary_10_1016_j_ast_2022_108057
crossref_primary_10_1016_j_oceaneng_2022_112388
crossref_primary_10_1016_j_oceaneng_2023_113652
crossref_primary_10_3390_mi14050968
crossref_primary_10_3390_s20102772
crossref_primary_10_1016_j_procs_2023_09_038
crossref_primary_10_1016_j_nanoen_2021_106503
crossref_primary_10_1088_1361_665X_ac06b1
crossref_primary_10_1016_j_energy_2022_125982
crossref_primary_10_1016_j_oceaneng_2023_115709
crossref_primary_10_1016_j_ymssp_2024_112257
crossref_primary_10_1002_ente_202401660
crossref_primary_10_3390_app142311452
crossref_primary_10_1016_j_jsv_2021_116334
crossref_primary_10_1557_s43577_023_00492_w
crossref_primary_10_1016_j_energy_2024_134155
crossref_primary_10_3390_en17010214
crossref_primary_10_21625_resourceedings_v4i2_1058
crossref_primary_10_1002_ente_202300579
crossref_primary_10_1016_j_oceaneng_2022_113461
crossref_primary_10_1115_1_4065101
crossref_primary_10_1016_j_renene_2024_121824
crossref_primary_10_1093_ce_zkae042
crossref_primary_10_1007_s00542_022_05267_y
crossref_primary_10_3389_fmats_2022_904056
crossref_primary_10_1016_j_jfluidstructs_2024_104201
crossref_primary_10_70322_mer_2025_10002
crossref_primary_10_1016_j_oceaneng_2025_120989
crossref_primary_10_1016_j_finel_2022_103761
crossref_primary_10_1016_j_oceaneng_2022_112361
crossref_primary_10_1016_j_oceaneng_2025_120748
crossref_primary_10_1016_j_ast_2020_105898
crossref_primary_10_1007_s13344_021_0078_0
crossref_primary_10_1016_j_jweia_2025_106085
crossref_primary_10_1016_j_ymssp_2022_109506
crossref_primary_10_1016_j_icheatmasstransfer_2022_106493
crossref_primary_10_1016_j_ijmecsci_2021_106781
crossref_primary_10_1016_j_ymssp_2024_112034
crossref_primary_10_1016_j_rser_2021_111170
crossref_primary_10_3390_app132312724
crossref_primary_10_1088_1361_6463_abb101
crossref_primary_10_1016_j_oceaneng_2023_114896
crossref_primary_10_1063_5_0027634
crossref_primary_10_1088_2631_8695_ad88db
crossref_primary_10_1016_j_oceaneng_2025_120414
crossref_primary_10_1016_j_rser_2024_114843
crossref_primary_10_1016_j_nanoen_2024_110471
crossref_primary_10_1002_adfm_202414324
crossref_primary_10_1108_HFF_04_2020_0215
crossref_primary_10_3390_sym14030631
crossref_primary_10_1016_j_apenergy_2020_116092
crossref_primary_10_1016_j_ijmecsci_2022_107443
crossref_primary_10_1016_j_ijnonlinmec_2023_104518
crossref_primary_10_1007_s40430_021_02858_0
crossref_primary_10_1016_j_seta_2024_104056
crossref_primary_10_1016_j_apenergy_2021_117577
crossref_primary_10_1016_j_jfluidstructs_2024_104187
crossref_primary_10_1007_s13369_022_07181_x
crossref_primary_10_1115_1_4064721
crossref_primary_10_1080_15567036_2021_2006830
crossref_primary_10_1016_j_oceaneng_2021_109514
crossref_primary_10_1016_j_chaos_2020_110612
crossref_primary_10_1016_j_energy_2022_123921
crossref_primary_10_3390_en15228719
crossref_primary_10_1016_j_egyr_2021_04_003
crossref_primary_10_3390_sym14122601
crossref_primary_10_1016_j_oceaneng_2023_114630
crossref_primary_10_1016_j_rser_2024_114624
crossref_primary_10_1038_s41598_024_82385_9
crossref_primary_10_1063_5_0256432
crossref_primary_10_1017_jfm_2022_797
crossref_primary_10_1016_j_oceaneng_2025_120445
crossref_primary_10_1063_5_0073783
crossref_primary_10_1063_5_0107651
crossref_primary_10_1016_j_energy_2021_122203
crossref_primary_10_1016_j_oceaneng_2023_114869
crossref_primary_10_3390_polym13244404
crossref_primary_10_16984_saufenbilder_690571
crossref_primary_10_1109_JSEN_2023_3275974
crossref_primary_10_1016_j_jmmm_2024_172557
crossref_primary_10_1371_journal_pone_0304489
crossref_primary_10_1155_2020_8858529
crossref_primary_10_1016_j_jfluidstructs_2025_104266
crossref_primary_10_1016_j_enconman_2022_116585
crossref_primary_10_1016_j_ijthermalsci_2022_107519
crossref_primary_10_1016_j_egyr_2022_07_049
crossref_primary_10_1016_j_ymssp_2022_109787
crossref_primary_10_1063_5_0171294
crossref_primary_10_1088_1361_665X_ad8d94
crossref_primary_10_1016_j_cnsns_2024_108354
crossref_primary_10_1017_jfm_2022_442
crossref_primary_10_1016_j_apenergy_2022_118983
crossref_primary_10_1016_j_enconman_2022_115371
crossref_primary_10_1016_j_energy_2021_122677
crossref_primary_10_1016_j_oceaneng_2023_113669
crossref_primary_10_1016_j_sna_2021_113345
crossref_primary_10_1002_aesr_202500087
crossref_primary_10_1063_5_0185041
crossref_primary_10_1016_j_egyr_2022_12_027
crossref_primary_10_1016_j_nanoen_2025_110679
crossref_primary_10_3390_en15155725
crossref_primary_10_1016_j_seta_2022_102882
crossref_primary_10_1016_j_nanoen_2024_110274
crossref_primary_10_1016_j_enconman_2022_116559
crossref_primary_10_1080_23311916_2024_2386095
crossref_primary_10_1155_2020_3789809
crossref_primary_10_1016_j_oceaneng_2020_108219
crossref_primary_10_1016_j_energy_2021_121139
crossref_primary_10_1016_j_jlp_2021_104508
crossref_primary_10_3390_s25061657
crossref_primary_10_3390_en16186431
crossref_primary_10_1016_j_renene_2024_122070
crossref_primary_10_3390_en14227601
crossref_primary_10_1016_j_jfluidstructs_2023_103910
crossref_primary_10_1016_j_mtsust_2022_100158
crossref_primary_10_1016_j_ymssp_2022_109496
crossref_primary_10_1016_j_ymssp_2021_108065
crossref_primary_10_1177_10775463211054259
crossref_primary_10_3389_fmats_2022_956182
crossref_primary_10_1016_j_nanoen_2021_106466
crossref_primary_10_1016_j_enbuild_2024_115063
crossref_primary_10_1155_2024_1386237
crossref_primary_10_1016_j_nanoen_2023_109062
crossref_primary_10_1088_1361_665X_abf753
crossref_primary_10_1109_JSEN_2024_3500589
crossref_primary_10_1016_j_enconman_2023_116971
crossref_primary_10_1016_j_energy_2024_130995
crossref_primary_10_1016_j_apor_2022_103109
crossref_primary_10_1016_j_ijmecsci_2022_107429
crossref_primary_10_3390_cryst11060640
crossref_primary_10_1016_j_jsv_2023_117952
crossref_primary_10_1016_j_ijmecsci_2022_107785
crossref_primary_10_1016_j_apenergy_2021_118135
crossref_primary_10_1016_j_oceaneng_2023_115517
crossref_primary_10_3390_cryst11060643
crossref_primary_10_1016_j_nanoen_2024_110126
crossref_primary_10_1016_j_nanoen_2024_110489
crossref_primary_10_1088_1361_665X_ad287e
crossref_primary_10_1088_2631_8695_ac372f
crossref_primary_10_1177_1045389X241273065
crossref_primary_10_1016_j_nanoen_2023_109071
crossref_primary_10_1016_j_energy_2023_128264
crossref_primary_10_1016_j_enconman_2023_116846
crossref_primary_10_1088_1742_6596_2647_11_112004
crossref_primary_10_1016_j_enconman_2023_116718
crossref_primary_10_1063_5_0068279
crossref_primary_10_1080_15376494_2024_2407518
crossref_primary_10_1016_j_compstruc_2021_106680
crossref_primary_10_1088_1361_665X_abd42b
crossref_primary_10_1016_j_nanoen_2021_106441
crossref_primary_10_1017_jfm_2022_406
crossref_primary_10_1016_j_renene_2022_02_010
crossref_primary_10_1016_j_renene_2023_119742
crossref_primary_10_1088_1361_6463_abf809
crossref_primary_10_1016_j_nanoen_2021_106684
crossref_primary_10_1016_j_ijnonlinmec_2024_104804
crossref_primary_10_1002_admi_202002133
crossref_primary_10_1016_j_jsv_2021_116084
crossref_primary_10_3390_app15031366
crossref_primary_10_1016_j_ymssp_2022_109186
crossref_primary_10_1016_j_apm_2025_116109
crossref_primary_10_1016_j_renene_2022_11_008
crossref_primary_10_1177_1045389X241253172
crossref_primary_10_1140_epjp_s13360_021_02235_9
crossref_primary_10_1631_jzus_A2400260
crossref_primary_10_1016_j_ijmecsci_2022_108016
crossref_primary_10_3390_machines11020174
crossref_primary_10_1016_j_energy_2021_121734
crossref_primary_10_1016_j_ymssp_2021_107608
crossref_primary_10_1016_j_ymssp_2021_107609
crossref_primary_10_1007_s11071_022_07228_6
crossref_primary_10_1016_j_energy_2024_131377
crossref_primary_10_1016_j_tsf_2023_139761
crossref_primary_10_1063_5_0222003
crossref_primary_10_1007_s10999_023_09663_8
crossref_primary_10_1016_j_engstruct_2024_118999
crossref_primary_10_3390_s24217024
crossref_primary_10_1088_1361_665X_abb648
crossref_primary_10_1016_j_ymssp_2020_107301
crossref_primary_10_1080_15376494_2023_2209078
crossref_primary_10_1016_j_applthermaleng_2024_125397
crossref_primary_10_1016_j_ijmecsci_2023_108428
crossref_primary_10_1016_j_apenergy_2021_118380
crossref_primary_10_1016_j_enconman_2021_113991
crossref_primary_10_1016_j_ijmecsci_2023_108543
crossref_primary_10_1016_j_ijmecsci_2023_108785
crossref_primary_10_1177_1045389X211023581
crossref_primary_10_1002_ente_202200589
crossref_primary_10_1016_j_ymssp_2023_110696
crossref_primary_10_1017_jfm_2024_1079
crossref_primary_10_1063_5_0246789
crossref_primary_10_1016_j_oceaneng_2023_115443
crossref_primary_10_1063_5_0223422
crossref_primary_10_1016_j_apor_2024_103906
crossref_primary_10_1016_j_seta_2023_103312
crossref_primary_10_1016_j_ymssp_2020_107212
crossref_primary_10_1088_1361_665X_ad7d54
crossref_primary_10_1016_j_jsv_2020_115811
crossref_primary_10_1063_5_0210479
crossref_primary_10_1016_j_jweia_2022_104948
crossref_primary_10_1016_j_enconman_2021_113980
crossref_primary_10_1016_j_energy_2021_120420
crossref_primary_10_1016_j_nanoen_2021_106199
crossref_primary_10_1002_msd2_12035
crossref_primary_10_1088_1361_665X_ab870e
crossref_primary_10_3390_en14206548
crossref_primary_10_1016_j_chaos_2022_113060
crossref_primary_10_1109_JSEN_2022_3161833
crossref_primary_10_1016_j_enconman_2021_114820
crossref_primary_10_1016_j_energy_2023_126714
crossref_primary_10_1002_ente_202301194
crossref_primary_10_1016_j_oceaneng_2021_109378
crossref_primary_10_1177_10775463231164201
crossref_primary_10_1063_5_0191964
crossref_primary_10_1016_j_oceaneng_2024_116999
crossref_primary_10_1016_j_oceaneng_2023_115389
crossref_primary_10_1007_s40430_023_04338_z
crossref_primary_10_1007_s42417_021_00423_6
crossref_primary_10_1016_j_cnsns_2022_107076
crossref_primary_10_3390_en14164867
crossref_primary_10_1140_epjs_s11734_021_00377_6
crossref_primary_10_1016_j_rser_2024_115183
crossref_primary_10_1063_5_0109454
crossref_primary_10_1016_j_oceaneng_2022_110768
crossref_primary_10_1016_j_jfluidstructs_2025_104282
crossref_primary_10_1016_j_oceaneng_2022_111858
crossref_primary_10_1016_j_jfluidstructs_2021_103291
crossref_primary_10_3934_energy_2024027
crossref_primary_10_1007_s42417_024_01533_7
crossref_primary_10_1007_s42417_024_01280_9
crossref_primary_10_1016_j_ymssp_2022_109092
crossref_primary_10_1016_j_engstruct_2024_118799
crossref_primary_10_1016_j_oceaneng_2023_116121
crossref_primary_10_1016_j_oceaneng_2023_115397
crossref_primary_10_1016_j_oceaneng_2024_116980
crossref_primary_10_1177_09544062241272433
crossref_primary_10_1007_s11431_023_2535_0
crossref_primary_10_1142_S0218127424500962
crossref_primary_10_1016_j_ijheatfluidflow_2021_108893
crossref_primary_10_1088_1742_6596_2909_1_012003
crossref_primary_10_3390_molecules29153576
crossref_primary_10_3390_s21082668
crossref_primary_10_1016_j_oceaneng_2020_108168
crossref_primary_10_1016_j_energy_2023_126814
crossref_primary_10_1016_j_energy_2020_119195
crossref_primary_10_1142_S1758825122500211
crossref_primary_10_3390_nano12193261
crossref_primary_10_3390_nano12203595
crossref_primary_10_3390_en15239191
crossref_primary_10_1016_j_jfluidstructs_2023_103961
crossref_primary_10_1016_j_energy_2024_133504
crossref_primary_10_1016_j_renene_2023_05_110
crossref_primary_10_1088_1402_4896_abcdc7
crossref_primary_10_1177_1045389X211072520
crossref_primary_10_1002_er_5878
crossref_primary_10_3390_fluids10030056
crossref_primary_10_1016_j_probengmech_2023_103464
crossref_primary_10_1016_j_mtener_2024_101529
crossref_primary_10_1063_5_0179890
crossref_primary_10_1177_16878132231224577
crossref_primary_10_1063_5_0233537
crossref_primary_10_1016_j_enconman_2023_116687
crossref_primary_10_3390_math9243179
crossref_primary_10_1088_1361_665X_ab874c
crossref_primary_10_1016_j_energy_2021_121662
crossref_primary_10_1016_j_apor_2022_103296
crossref_primary_10_1016_j_energy_2021_121781
crossref_primary_10_3390_mi12101269
crossref_primary_10_1016_j_apenergy_2024_124618
crossref_primary_10_1002_adfm_202106527
crossref_primary_10_1007_s11012_020_01216_z
crossref_primary_10_1007_s10483_022_2869_9
crossref_primary_10_1039_D2SE00870J
crossref_primary_10_1063_5_0171512
crossref_primary_10_3390_s23042185
crossref_primary_10_1080_00150193_2022_2113637
crossref_primary_10_1109_JSEN_2023_3258501
crossref_primary_10_1063_5_0124772
crossref_primary_10_1016_j_nanoen_2020_105567
crossref_primary_10_3390_inventions8060136
crossref_primary_10_1016_j_ecmx_2021_100174
crossref_primary_10_1016_j_mtnano_2023_100385
crossref_primary_10_7849_ksnre_2023_0006
crossref_primary_10_1016_j_renene_2023_119133
crossref_primary_10_1177_10775463241279993
crossref_primary_10_1177_10775463231201888
crossref_primary_10_1016_j_jfluidstructs_2023_104001
crossref_primary_10_1063_5_0077323
crossref_primary_10_3390_app11115191
crossref_primary_10_1016_j_jfluidstructs_2023_104004
crossref_primary_10_1016_j_renene_2021_11_113
crossref_primary_10_1016_j_ymssp_2021_108775
crossref_primary_10_1016_j_ymssp_2021_108410
crossref_primary_10_1177_10775463211041875
crossref_primary_10_3390_en16217339
crossref_primary_10_1063_5_0065462
crossref_primary_10_1016_j_oceaneng_2022_112857
crossref_primary_10_1016_j_mechrescom_2024_104351
crossref_primary_10_3390_mi16020122
crossref_primary_10_1088_1361_665X_ab83ce
crossref_primary_10_1103_PhysRevFluids_7_023905
crossref_primary_10_3390_s22041341
crossref_primary_10_3389_fenrg_2022_938768
crossref_primary_10_1080_00150193_2023_2300615
crossref_primary_10_3390_en14248496
crossref_primary_10_1016_j_seta_2024_103637
crossref_primary_10_1088_1361_665X_abefb5
crossref_primary_10_1016_j_ymssp_2021_108672
crossref_primary_10_3390_jmse11040795
crossref_primary_10_1063_5_0159729
crossref_primary_10_1177_1045389X20966057
crossref_primary_10_1088_1361_6439_ac2a52
crossref_primary_10_1140_epjp_s13360_022_02864_8
crossref_primary_10_3390_jmse12030515
crossref_primary_10_1109_JSEN_2021_3114033
crossref_primary_10_1063_5_0233856
crossref_primary_10_1016_j_apenergy_2021_116947
crossref_primary_10_1016_j_egyr_2024_12_033
crossref_primary_10_1016_j_ymssp_2020_107167
crossref_primary_10_1016_j_ast_2023_108815
crossref_primary_10_1016_j_enconman_2021_114414
crossref_primary_10_1016_j_jsv_2020_115643
crossref_primary_10_1016_j_ijmecsci_2021_106983
crossref_primary_10_3390_mi13050720
crossref_primary_10_1016_j_energy_2024_133020
crossref_primary_10_3390_act10120312
crossref_primary_10_1016_j_energy_2021_120811
crossref_primary_10_1016_j_mtener_2021_100786
crossref_primary_10_1016_j_oceaneng_2022_111340
crossref_primary_10_1088_1361_665X_acc1b8
crossref_primary_10_1007_s10853_023_08321_w
crossref_primary_10_1063_5_0063488
crossref_primary_10_1016_j_ymssp_2021_107876
crossref_primary_10_1002_er_8089
crossref_primary_10_1088_1361_665X_ac0cbc
crossref_primary_10_1016_j_apenergy_2023_121530
crossref_primary_10_1016_j_seta_2021_101826
crossref_primary_10_1007_s10854_021_07489_8
crossref_primary_10_1061__ASCE_AS_1943_5525_0001350
crossref_primary_10_1088_1742_6596_2527_1_012076
crossref_primary_10_1016_j_nanoen_2022_107029
crossref_primary_10_1016_j_device_2024_100548
crossref_primary_10_1088_1361_6463_acaab8
crossref_primary_10_3233_JAE_220052
crossref_primary_10_1016_j_oceaneng_2020_107906
crossref_primary_10_3390_app12083965
crossref_primary_10_3390_s23084058
crossref_primary_10_1177_1045389X211011681
crossref_primary_10_1177_1475090220949334
crossref_primary_10_1109_MIM_2023_10121409
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119766
crossref_primary_10_1063_5_0126867
crossref_primary_10_1016_j_oceaneng_2024_118557
crossref_primary_10_1016_j_marstruc_2022_103223
crossref_primary_10_1063_5_0185704
crossref_primary_10_1063_5_0221505
crossref_primary_10_1088_1742_6596_1950_1_012058
crossref_primary_10_1016_j_cnsns_2022_107018
crossref_primary_10_1016_j_enconman_2021_114504
crossref_primary_10_1007_s11012_022_01599_1
crossref_primary_10_1088_1361_665X_ad49ed
crossref_primary_10_1007_s11600_022_01001_4
crossref_primary_10_1007_s11071_020_05748_7
crossref_primary_10_1063_5_0054425
crossref_primary_10_5802_crmeca_74
crossref_primary_10_1088_2632_959X_abd290
crossref_primary_10_1007_s00419_022_02137_x
crossref_primary_10_1063_5_0146352
crossref_primary_10_1080_00150193_2022_2061232
Cites_doi 10.1016/j.energy.2017.11.153
10.1088/1361-665X/aac0b6
10.1063/1.5134948
10.1016/j.jfluidstructs.2019.102780
10.1109/AIM.2018.8452411
10.1016/j.enconman.2018.02.026
10.1016/j.jweia.2017.10.022
10.1155/2017/4350437
10.1016/j.apenergy.2018.06.056
10.1016/j.egypro.2017.12.051
10.3390/app9102049
10.1063/1.4906463
10.1063/1.5126476
10.1016/j.jsv.2017.04.013
10.1016/j.egypro.2017.12.006
10.1063/1.5016102
10.1115/ISPS2017-5456
10.1016/j.enbuild.2017.09.099
10.2514/6.2018-0463
10.1007/s11012-018-0875-6
10.1016/j.jweia.2020.104099
10.1016/j.enconman.2018.12.034
10.1007/s40430-018-1509-6
10.3390/en13010071
10.1088/1361-665X/aa5e41
10.1016/j.jsv.2017.01.037
10.2514/6.2017-1120
10.1088/1361-665X/ab4216
10.1016/j.jfluidstructs.2017.09.007
10.1016/j.energy.2018.10.109
10.1016/j.jweia.2019.104051
10.1016/j.jsv.2017.11.019
10.1088/1361-665X/ab5249
10.1115/1.2957913
10.1016/j.ijengsci.2018.02.003
10.3390/en13010091
10.1109/TMECH.2016.2630732
10.1007/s11071-017-3597-8
10.1016/j.jweia.2017.10.031
10.1080/15567036.2018.1513100
10.1063/1.4999765
10.1016/j.renene.2018.01.038
10.1016/j.oceaneng.2018.02.030
10.1063/1.5029415
10.1016/j.jsv.2017.05.024
10.1088/1361-665X/aa8b1e
10.1016/j.jfluidstructs.2003.12.004
10.1016/j.rser.2016.11.202
10.1016/j.ijome.2016.02.005
10.1016/j.energy.2018.09.138
10.1063/1.5042774
10.1063/1.5008918
10.1016/j.sna.2018.06.059
10.1063/1.4959181
10.1016/j.jsv.2010.01.028
10.2514/6.2018-1959
10.2514/6.2018-3717
10.1016/j.sna.2017.04.035
10.1016/j.rser.2014.07.051
10.1016/j.proeng.2017.09.456
10.1016/j.oceaneng.2018.07.042
10.1109/TMECH.2014.2308182
10.1016/j.rser.2015.12.027
10.1016/j.ijmecsci.2019.105135
10.1016/j.jfluidstructs.2017.02.006
10.1177/1045389X17711784
10.1016/j.ymssp.2018.05.016
10.1016/j.ijmecsci.2017.07.028
10.1016/j.nanoen.2017.02.005
10.1063/1.5038884
10.1016/j.enconman.2019.111993
10.1016/j.jsv.2017.07.029
10.1063/1.5035383
10.1016/j.ast.2016.11.011
10.1063/1.5043586
10.1063/1.4944555
10.1016/j.apenergy.2017.12.059
10.1177/1077546317707877
10.1007/s11071-012-0538-4
10.1016/j.rser.2017.09.094
10.1049/iet-rpg.2016.0612
10.1016/j.apenergy.2017.03.016
10.1016/j.apenergy.2018.05.029
10.1016/j.cnsns.2017.12.009
10.1016/j.jfluidstructs.2017.12.007
10.1016/j.apenergy.2019.113871
10.1016/j.apenergy.2017.06.041
10.1109/EESMS.2017.8052693
10.1007/s40799-016-0084-y
10.1016/j.apenergy.2017.12.042
10.1080/15567036.2018.1486916
10.1088/1361-665X/aa74f5
10.1016/j.jsv.2015.09.043
10.1016/j.jfluidstructs.2018.03.008
10.1142/9789813232808_0015
10.1016/j.rser.2013.12.041
10.1063/1.4982967
10.1016/j.proeng.2017.09.496
10.2514/6.2017-0730
10.1016/j.ijmecsci.2019.04.019
10.1016/j.proeng.2017.09.489
10.1063/1.4979508
10.1007/s10409-020-00928-5
10.1016/j.cnsns.2018.02.015
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.114902
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_114902
S0306261920304141
GeographicLocations Michigan
GeographicLocations_xml – name: Michigan
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c411t-70c04ad4f2c848465cd2a4336f9347cd266f9821583f8a6b76f78188851da34b3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Tue Aug 05 09:38:59 EDT 2025
Tue Jul 01 02:53:49 EDT 2025
Thu Apr 24 22:55:26 EDT 2025
Fri Feb 23 02:47:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrokinetic energy
Wind energy
Flow-induced vibrations
Energy harvester
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-70c04ad4f2c848465cd2a4336f9347cd266f9821583f8a6b76f78188851da34b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0944-0948
0000-0002-4989-3634
0000-0003-4453-0946
0000-0001-5977-5028
PQID 2439437874
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2439437874
crossref_citationtrail_10_1016_j_apenergy_2020_114902
crossref_primary_10_1016_j_apenergy_2020_114902
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Gao (b0580) 2018; 165
Zhang, Meng, Xia (b0035) 2020
Zhou, Wang (b0450) 2018; 8
Orrego, Shoele, Ruas (b0530) 2017; 194
Tan, Yan (b0245) 2017; 7
Olivieri, Boccalero, Mazzino (b0395) 2017; 199
Liu, Li, Yang (b0535) 2018; 53
Zhang, Wang, Song (b0130) 2018; 165
Ding, Yang, Yang (b0315) 2020; 196
He X, Shang Z, Rao Y et al. Experimental investigation of a micromachined piezoelectric energy harvester with low critical wind speed. In Micro-nano technology Xvii-xviii-proceedings of the 17th-18th annual conference and 6th-7th international conference of the Chinese society of micro/nano technology. World Scientific; 2017.
Song, Hu, Tse (b0110) 2017; 111
Barbarelli, Florio, Amelio (b0625) 2018; 224
Zhang, Mao, Song (b0125) 2018; 144
Franzini, Bunzel (b0200) 2018; 77
Javed U, Abdelkefi A. Nonlinear analysis of hybrid galloping energy harvesting system integrated with a nonlinear torsional spring. In: 2018 Fluid dynamics conference; 2018.
Bunzel LO, Franzini GR. Numerical studies on piezoelectric energy harvesting from vortex-induced vibrations considering cross-wise and in-line oscillations. In: Proceedings of the 9th European nonlinear dynamics conference-ENOC2017; 2017.
Rostami, Armandei (b0610) 2017; 70
Wu, Sun, Lv (b0605) 2018; 155
Phan, Shin, Heon Jeon (b0560) 2017; 33
Zhang, Klumpner, Lin (b0570) 2018
Dai, Yang, Abdelkefi (b0285) 2018; 59
Sun, Jo, Seok (b0340) 2019; 156
Barbarelli, Amelio, Florio (b0620) 2017; 142
Zhao, Yang (b0360) 2018; 212
Li, Laima, Li (b0140) 2018; 172
Lai, Wang, Zhang (b0040) 2019; 199
.
Boccalero, Boragno, Olivieri (b0540) 2017; 199
Maruai, Mat Ali, Ismail (b0120) 2017; 24
Tang, Zhao, Yang (b0220) 2014; 20
Hu, Tse, Kwok (b0320) 2016; 108
Gkoumas, Petrini, Bontempi (b0505) 2017; 199
Aquino, Calautit, Hughes (b0550) 2017; 142
Tang, Kraatz, Qu (b0590) 2014; 32
Villarreal DJY, SL VB. VIV resonant wind generators; 2018.
Chizfahm, Yazdi, Eghtesad (b0485) 2018; 121
Zhang, Dai, Abdelkefi (b0350) 2018
Armandei, Fernandes (b0425) 2016; 14
Perez, Boisseau, Geisler (b0555) 2017; 27
Rezaei, Talebitooti (b0440) 2019; 163
Bernitsas, Raghavan, Ben-Simon (b0020) 2008; 130
Alhadidi, Daqaq (b0435) 2016; 109
Modir, Goudarzi (b0095) 2018
Tang, Qu, Chen (b0585) 2014; 39
Wang, Li, Zhang (b0100) 2018; 40
Kabir, Kumar, Kumar (b0005) 2018; 82
Hu, Kwok (b0145) 2020; 198
Yazdi (b0490) 2018; 27
Hémon, Amandolese, Andrianne (b0525) 2017; 70
Nishi, Fukuda, Shinohara (b0185) 2017; 394
Tabesh, Fréchette (b0210) 2009; 2009
Tan, Yan, Huang (b0335) 2017; 131
Hafezi, Mirdamadi (b0415) 2019; 41
Wang, Geng, Zhang (b0455) 2018; 2018
Naseer R, Abdelkefi A, Dai H et al. Characteristics and comparative analysis of monostable and bistable piezomagnetoelastic energy harvesters under vortex-induced vibrations. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2018.
Zhao, Tang, Liang (b0260) 2017; 22
Wang, Geng, Zhou (b0280) 2020
Facchinetti M, De Langre E, Fontaine E et al. VIV of two cylinders in tandem arrangement: analytical and numerical modeling. In: The twelfth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers; 2002.
Wang, Tang, Zhao (b0515) 2019
Petrini, Gkoumas (b0510) 2018; 158
Trade DO, Industry U. Energy white paper; our energy future: creating a low carbon economy. London: TheStationeryOffice; 2003.
Huang, Li, Hua (b0150) 2019; 9
Tang, Dowell (b0385) 2018; 76
Andrianne, Aryoputro, Laurent (b0115) 2018; 172
Kong, Roussinova, Stoilov (b0600) 2018
Javed, Abdelkefi (b0225) 2017; 400
Tran, Ghayesh, Arjomandi (b0045) 2018; 127
Bashir, Rajendran, Khan (b0075) 2018
Lin, Zhao, Zhao (b0575) 2017; 11
Jo, Sun, Son (b0230) 2018; 8
Pigolotti, Mannini, Bartoli (b0390) 2017; 404
Zhang, Abdelkefi, Dai (b0165) 2017; 408
Naseer, Dai, Abdelkefi (b0065) 2020; 13
Noel, Yadav, Li (b0275) 2018; 112
Wang, Zhou, Zhang (b0310) 2019; 181
Zhang, Zhang, Shu (b0500) 2017; 110
Hu, Tse, Wei (b0305) 2018; 226
Chawdhury, Morgenthal (b0420) 2017; 29
Santos CR, Marques FD. Energy harvesting from stall-induced oscillations of pitching airfoils at high-subsonic regime. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2018.
Yang, Wang, Yurchenko (b0295) 2019; 115
Zhang, Dai, Abdelkefi (b0105) 2017; 111
Yang, He, Li (b0345) 2019
Armandei, Fernandes, Rostami (b0070) 2016; 40
Barrero-Gil, Vicente-Ludlam, Gutierrez (b0270) 2020; 13
Hu, Yang, Chen (b0445) 2018; 162
Aquino, Calautit, Hughes (b0545) 2017; 207
Liu, Zou, Zhang (b0300) 2018; 112
Zhao L. Performance enhancement of an aeroelastic energy harvester for efficient power harvesting from concurrent wind flows and base vibrations. In: 2018 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE; 2018.
Pasquato L, Bonotto N, Tosato P et al. An optimized wind energy harvester for remote pollution monitoring. In: Environmental, energy, and structural monitoring systems (EESMS), 2017 IEEE workshop on. IEEE; 2017.
Wang, He, Wang (b0495) 2018; 279
Javed U, Abdelmoula H, Abdelkefi A. On the nonlinear dynamics and performance of hybrid piezoelectric-inductive energy harvesters subjected to vortex-induced vibrations. In: 25th AIAA/AHS adaptive structures conference; 2017.
Lan, Tang, Harne (b0265) 2018; 421
Zhang, Zhao, Wang (b0135) 2017; 2017
Cajas JC, Houzeaux G, Yáñez DJ et al. SHAPE project Vortex Bladeless: Parallel multi-code coupling for fluid-structure interaction in wind energy generation; 2016.
Wang, Hu, Su (b0050) 2019; 28
Abdelmoula, Abdelkefi (b0330) 2017; 89
Wang, Zhao, Zhang (b0010) 2018; 40
Pantazopoulos MS. Vortex-induced vibration parameters: critical review. New York, NY (United States): American Society of Mechanical Engineers; 1994.
Bibo, Alhadidi, Daqaq (b0290) 2015; 117
Yan, Sun, Tan (b0235) 2018; 62
Zou, Zhao, Gao (b0060) 2019; 255
Zhao, Yang (b0255) 2017; 261
Facchinetti, De Langre, Biolley (b0085) 2004; 19
Azadeh-Ranjbar, Elvin, Andreopoulos (b0090) 2018; 30
Hu, Liu, Li (b0325) 2019; 91
Zhao J, Zhang H, Su F et al. A novel model of piezoelectric-electromagnetic hybrid energy harvester based on vortex-induced vibration. In: Green energy and applications (ICGEA), international conference on. IEEE; 2017.
Yun G, Oh D, Kim Y et al. Mechanical feasibility of airfoil shaped energy harvesting device based on aerodynamic instability phenomena. In: ASME 2017 conference on information storage and processing systems 2017. American Society of Mechanical Engineers.
Abdelkefi, Hajj, Nayfeh (b0030) 2012; 70
Ravi, Zilian (b0370) 2019; 114
Zhao, Yang (b0205) 2017; 2017
Zhu, Zhao, Zhou (b0170) 2018; 212
Tan, Yan, Lei (b0250) 2017; 26
Grainger L, Rezgui D, Barton D. Optimisation of an aeroelastic flutter energy harvester. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2017.
Barrero-Gil, Alonso, Sanz-Andres (b0215) 2010; 329
Tummala, Velamati, Sinha (b0470) 2016; 56
Zhang, Mao, Song (b0460) 2018; 165
McCarthy, Watkins, Deivasigamani (b0365) 2016; 361
Zhao (b0055) 2020; 116
Leclercq, de Langre (b0190) 2018; 80
Blevins RD. Flow-induced vibration; 1990.
Tan, Yan (b0240) 2017; 26
Sun, Tan, Yan (b0565) 2018; 8
Rong, Cao, Hu (b0380) 2017; 60
Modir (10.1016/j.apenergy.2020.114902_b0095) 2018
10.1016/j.apenergy.2020.114902_b0465
Gkoumas (10.1016/j.apenergy.2020.114902_b0505) 2017; 199
Bibo (10.1016/j.apenergy.2020.114902_b0290) 2015; 117
Zhou (10.1016/j.apenergy.2020.114902_b0450) 2018; 8
Zhang (10.1016/j.apenergy.2020.114902_b0130) 2018; 165
Yang (10.1016/j.apenergy.2020.114902_b0295) 2019; 115
Yazdi (10.1016/j.apenergy.2020.114902_b0490) 2018; 27
Zhang (10.1016/j.apenergy.2020.114902_b0165) 2017; 408
Hafezi (10.1016/j.apenergy.2020.114902_b0415) 2019; 41
Lin (10.1016/j.apenergy.2020.114902_b0575) 2017; 11
Hémon (10.1016/j.apenergy.2020.114902_b0525) 2017; 70
Andrianne (10.1016/j.apenergy.2020.114902_b0115) 2018; 172
Barrero-Gil (10.1016/j.apenergy.2020.114902_b0270) 2020; 13
Tang (10.1016/j.apenergy.2020.114902_b0585) 2014; 39
Zhang (10.1016/j.apenergy.2020.114902_b0125) 2018; 144
10.1016/j.apenergy.2020.114902_b0615
Lai (10.1016/j.apenergy.2020.114902_b0040) 2019; 199
Zou (10.1016/j.apenergy.2020.114902_b0060) 2019; 255
Aquino (10.1016/j.apenergy.2020.114902_b0550) 2017; 142
10.1016/j.apenergy.2020.114902_b0175
Huang (10.1016/j.apenergy.2020.114902_b0150) 2019; 9
Leclercq (10.1016/j.apenergy.2020.114902_b0190) 2018; 80
10.1016/j.apenergy.2020.114902_b0180
Ravi (10.1016/j.apenergy.2020.114902_b0370) 2019; 114
Zhao (10.1016/j.apenergy.2020.114902_b0205) 2017; 2017
Zhang (10.1016/j.apenergy.2020.114902_b0460) 2018; 165
Bashir (10.1016/j.apenergy.2020.114902_b0075) 2018
Zhao (10.1016/j.apenergy.2020.114902_b0260) 2017; 22
Wang (10.1016/j.apenergy.2020.114902_b0100) 2018; 40
Abdelmoula (10.1016/j.apenergy.2020.114902_b0330) 2017; 89
Barbarelli (10.1016/j.apenergy.2020.114902_b0625) 2018; 224
Zhang (10.1016/j.apenergy.2020.114902_b0570) 2018
10.1016/j.apenergy.2020.114902_b0160
Wang (10.1016/j.apenergy.2020.114902_b0280) 2020
Chawdhury (10.1016/j.apenergy.2020.114902_b0420) 2017; 29
Petrini (10.1016/j.apenergy.2020.114902_b0510) 2018; 158
Wang (10.1016/j.apenergy.2020.114902_b0515) 2019
Sun (10.1016/j.apenergy.2020.114902_b0340) 2019; 156
Facchinetti (10.1016/j.apenergy.2020.114902_b0085) 2004; 19
Franzini (10.1016/j.apenergy.2020.114902_b0200) 2018; 77
Tan (10.1016/j.apenergy.2020.114902_b0240) 2017; 26
Noel (10.1016/j.apenergy.2020.114902_b0275) 2018; 112
Orrego (10.1016/j.apenergy.2020.114902_b0530) 2017; 194
Zhang (10.1016/j.apenergy.2020.114902_b0350) 2018
Bernitsas (10.1016/j.apenergy.2020.114902_b0020) 2008; 130
Li (10.1016/j.apenergy.2020.114902_b0140) 2018; 172
Rong (10.1016/j.apenergy.2020.114902_b0380) 2017; 60
Zhu (10.1016/j.apenergy.2020.114902_b0580) 2018; 165
Jo (10.1016/j.apenergy.2020.114902_b0230) 2018; 8
Javed (10.1016/j.apenergy.2020.114902_b0225) 2017; 400
10.1016/j.apenergy.2020.114902_b0155
10.1016/j.apenergy.2020.114902_b0430
Dai (10.1016/j.apenergy.2020.114902_b0285) 2018; 59
Armandei (10.1016/j.apenergy.2020.114902_b0425) 2016; 14
Wu (10.1016/j.apenergy.2020.114902_b0605) 2018; 155
Rezaei (10.1016/j.apenergy.2020.114902_b0440) 2019; 163
Wang (10.1016/j.apenergy.2020.114902_b0495) 2018; 279
Barbarelli (10.1016/j.apenergy.2020.114902_b0620) 2017; 142
Kabir (10.1016/j.apenergy.2020.114902_b0005) 2018; 82
Maruai (10.1016/j.apenergy.2020.114902_b0120) 2017; 24
Naseer (10.1016/j.apenergy.2020.114902_b0065) 2020; 13
10.1016/j.apenergy.2020.114902_b0025
Lan (10.1016/j.apenergy.2020.114902_b0265) 2018; 421
Wang (10.1016/j.apenergy.2020.114902_b0455) 2018; 2018
Wang (10.1016/j.apenergy.2020.114902_b0050) 2019; 28
Azadeh-Ranjbar (10.1016/j.apenergy.2020.114902_b0090) 2018; 30
Perez (10.1016/j.apenergy.2020.114902_b0555) 2017; 27
Zhang (10.1016/j.apenergy.2020.114902_b0500) 2017; 110
Nishi (10.1016/j.apenergy.2020.114902_b0185) 2017; 394
Zhao (10.1016/j.apenergy.2020.114902_b0255) 2017; 261
Rostami (10.1016/j.apenergy.2020.114902_b0610) 2017; 70
Wang (10.1016/j.apenergy.2020.114902_b0010) 2018; 40
Liu (10.1016/j.apenergy.2020.114902_b0300) 2018; 112
Zhao (10.1016/j.apenergy.2020.114902_b0055) 2020; 116
Alhadidi (10.1016/j.apenergy.2020.114902_b0435) 2016; 109
Zhang (10.1016/j.apenergy.2020.114902_b0035) 2020
Tabesh (10.1016/j.apenergy.2020.114902_b0210) 2009; 2009
Tan (10.1016/j.apenergy.2020.114902_b0250) 2017; 26
Liu (10.1016/j.apenergy.2020.114902_b0535) 2018; 53
Tang (10.1016/j.apenergy.2020.114902_b0590) 2014; 32
Tan (10.1016/j.apenergy.2020.114902_b0245) 2017; 7
Abdelkefi (10.1016/j.apenergy.2020.114902_b0030) 2012; 70
Barrero-Gil (10.1016/j.apenergy.2020.114902_b0215) 2010; 329
Hu (10.1016/j.apenergy.2020.114902_b0325) 2019; 91
Zhang (10.1016/j.apenergy.2020.114902_b0135) 2017; 2017
Ding (10.1016/j.apenergy.2020.114902_b0315) 2020; 196
Kong (10.1016/j.apenergy.2020.114902_b0600) 2018
10.1016/j.apenergy.2020.114902_b0410
10.1016/j.apenergy.2020.114902_b0015
Boccalero (10.1016/j.apenergy.2020.114902_b0540) 2017; 199
Yang (10.1016/j.apenergy.2020.114902_b0345) 2019
Yan (10.1016/j.apenergy.2020.114902_b0235) 2018; 62
Tang (10.1016/j.apenergy.2020.114902_b0385) 2018; 76
10.1016/j.apenergy.2020.114902_b0375
Sun (10.1016/j.apenergy.2020.114902_b0565) 2018; 8
Tan (10.1016/j.apenergy.2020.114902_b0335) 2017; 131
Phan (10.1016/j.apenergy.2020.114902_b0560) 2017; 33
Hu (10.1016/j.apenergy.2020.114902_b0445) 2018; 162
Hu (10.1016/j.apenergy.2020.114902_b0145) 2020; 198
Tang (10.1016/j.apenergy.2020.114902_b0220) 2014; 20
Chizfahm (10.1016/j.apenergy.2020.114902_b0485) 2018; 121
10.1016/j.apenergy.2020.114902_b0520
10.1016/j.apenergy.2020.114902_b0400
Zhu (10.1016/j.apenergy.2020.114902_b0170) 2018; 212
10.1016/j.apenergy.2020.114902_b0405
10.1016/j.apenergy.2020.114902_b0480
Tran (10.1016/j.apenergy.2020.114902_b0045) 2018; 127
Song (10.1016/j.apenergy.2020.114902_b0110) 2017; 111
Wang (10.1016/j.apenergy.2020.114902_b0310) 2019; 181
McCarthy (10.1016/j.apenergy.2020.114902_b0365) 2016; 361
Olivieri (10.1016/j.apenergy.2020.114902_b0395) 2017; 199
Tummala (10.1016/j.apenergy.2020.114902_b0470) 2016; 56
10.1016/j.apenergy.2020.114902_b0355
Hu (10.1016/j.apenergy.2020.114902_b0320) 2016; 108
Hu (10.1016/j.apenergy.2020.114902_b0305) 2018; 226
Zhao (10.1016/j.apenergy.2020.114902_b0360) 2018; 212
10.1016/j.apenergy.2020.114902_b0195
Pigolotti (10.1016/j.apenergy.2020.114902_b0390) 2017; 404
Zhang (10.1016/j.apenergy.2020.114902_b0105) 2017; 111
Aquino (10.1016/j.apenergy.2020.114902_b0545) 2017; 207
10.1016/j.apenergy.2020.114902_b0595
10.1016/j.apenergy.2020.114902_b0475
Armandei (10.1016/j.apenergy.2020.114902_b0070) 2016; 40
10.1016/j.apenergy.2020.114902_b0080
References_xml – volume: 111
  year: 2017
  ident: b0110
  article-title: Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate
  publication-title: Appl Phys Lett
– volume: 116
  year: 2020
  ident: b0055
  article-title: Synchronization extension using a bistable galloping oscillator for enhanced power generation from concurrent wind and base vibration
  publication-title: Appl Phys Lett
– year: 2019
  ident: b0515
  article-title: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies
  publication-title: Energy
– volume: 112
  year: 2018
  ident: b0275
  article-title: Improving the performance of galloping micro-power generators by passively manipulating the trailing edge
  publication-title: Appl Phys Lett
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0455
  article-title: Broadening band of wind speed for aeroelastic energy scavenging of a cylinder through buffeting in the wakes of a squared prism
  publication-title: Shock Vib
– reference: Javed U, Abdelmoula H, Abdelkefi A. On the nonlinear dynamics and performance of hybrid piezoelectric-inductive energy harvesters subjected to vortex-induced vibrations. In: 25th AIAA/AHS adaptive structures conference; 2017.
– volume: 59
  start-page: 580
  year: 2018
  end-page: 591
  ident: b0285
  article-title: Nonlinear analysis and characteristics of inductive galloping energy harvesters
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 70
  start-page: 390
  year: 2017
  end-page: 402
  ident: b0525
  article-title: Energy harvesting from galloping of prisms: A wind tunnel experiment
  publication-title: J Fluids Struct
– reference: Pasquato L, Bonotto N, Tosato P et al. An optimized wind energy harvester for remote pollution monitoring. In: Environmental, energy, and structural monitoring systems (EESMS), 2017 IEEE workshop on. IEEE; 2017.
– volume: 158
  start-page: 371
  year: 2018
  end-page: 383
  ident: b0510
  article-title: Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts
  publication-title: Energy Build
– volume: 131
  start-page: 516
  year: 2017
  end-page: 526
  ident: b0335
  article-title: Broadband design of hybrid piezoelectric energy harvester
  publication-title: Int J Mech Sci
– volume: 11
  start-page: 1503
  year: 2017
  end-page: 1508
  ident: b0575
  article-title: Asymmetric arc-shaped vortex-induced electromagnetic generator for harvesting energy from low-velocity flowing water
  publication-title: IET Renew Power Gener
– volume: 109
  year: 2016
  ident: b0435
  article-title: A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon
  publication-title: Appl Phys Lett
– volume: 117
  year: 2015
  ident: b0290
  article-title: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters
  publication-title: J Appl Phys
– volume: 199
  start-page: 3428
  year: 2017
  end-page: 3433
  ident: b0540
  article-title: FLuttering energy harvester for autonomous powering (FLEHAP): a synergy between EMc and dielectric elastomers generators
  publication-title: Proc Eng
– volume: 53
  start-page: 2807
  year: 2018
  end-page: 2831
  ident: b0535
  article-title: On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter
  publication-title: Meccanica
– volume: 40
  start-page: 1788
  year: 2018
  end-page: 1797
  ident: b0010
  article-title: Efficient study of a coarse structure number on the bluff body during the harvesting of wind energy
  publication-title: Energy Sources Part A
– reference: Javed U, Abdelkefi A. Nonlinear analysis of hybrid galloping energy harvesting system integrated with a nonlinear torsional spring. In: 2018 Fluid dynamics conference; 2018.
– year: 2018
  ident: b0075
  article-title: Energy harvesting from aerodynamic instabilities: current prospect and future trends
  publication-title: IOP conference series: materials science and engineering
– year: 2018
  ident: b0095
  article-title: Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder
  publication-title: Europ J Mech – B/Fluids
– volume: 261
  start-page: 117
  year: 2017
  end-page: 129
  ident: b0255
  article-title: Comparison of four electrical interfacing circuits in wind energy harvesting
  publication-title: Sens Actuators, A
– volume: 13
  start-page: 91
  year: 2020
  ident: b0270
  article-title: Enhance of energy harvesting from transverse galloping by actively rotating the galloping body
  publication-title: Energies
– volume: 13
  start-page: 71
  year: 2020
  ident: b0065
  article-title: Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics
  publication-title: Energies
– volume: 33
  start-page: 476
  year: 2017
  end-page: 484
  ident: b0560
  article-title: Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy
  publication-title: Nano Energy
– volume: 394
  start-page: 321
  year: 2017
  end-page: 332
  ident: b0185
  article-title: Experimental energy harvesting from fluid flow by using two vibrating masses
  publication-title: J Sound Vib
– reference: Yun G, Oh D, Kim Y et al. Mechanical feasibility of airfoil shaped energy harvesting device based on aerodynamic instability phenomena. In: ASME 2017 conference on information storage and processing systems 2017. American Society of Mechanical Engineers.
– volume: 14
  start-page: 52
  year: 2016
  end-page: 67
  ident: b0425
  article-title: Marine current energy extraction through buffeting
  publication-title: Int J Mar Energy
– volume: 199
  start-page: 3474
  year: 2017
  end-page: 3479
  ident: b0395
  article-title: FLuttering Energy Harvester for Autonomous Powering (FLEHAP): aeroelastic characterisation and preliminary performance evaluation
  publication-title: Proc Eng
– volume: 207
  start-page: 61
  year: 2017
  end-page: 77
  ident: b0545
  article-title: Evaluation of the integration of the Wind-Induced Flutter Energy Harvester (WIFEH) into the built environment: experimental and numerical analysis
  publication-title: Appl Energy
– volume: 165
  start-page: 1259
  year: 2018
  end-page: 1281
  ident: b0580
  article-title: Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips
  publication-title: Energy
– volume: 80
  start-page: 77
  year: 2018
  end-page: 93
  ident: b0190
  article-title: Vortex-induced vibrations of cylinders bent by the flow
  publication-title: J Fluids Struct
– year: 2019
  ident: b0345
  article-title: Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping
  publication-title: Smart Mater Struct
– volume: 111
  year: 2017
  ident: b0105
  article-title: Improving the performance of aeroelastic energy harvesters by an interference cylinder
  publication-title: Appl Phys Lett
– volume: 56
  start-page: 1351
  year: 2016
  end-page: 1371
  ident: b0470
  article-title: A review on small scale wind turbines
  publication-title: Renew Sustain Energy Rev
– volume: 155
  start-page: 392
  year: 2018
  end-page: 410
  ident: b0605
  article-title: Modelling of a hydrokinetic energy converter for flow-induced vibration based on experimental data
  publication-title: Ocean Eng
– volume: 8
  year: 2018
  ident: b0230
  article-title: Galloping-based energy harvester considering enclosure effect
  publication-title: AIP Adv
– volume: 112
  year: 2018
  ident: b0300
  article-title: Y-type three-blade bluff body for wind energy harvesting
  publication-title: Appl Phys Lett
– volume: 198
  year: 2020
  ident: b0145
  article-title: Predicting wind pressures around circular cylinders using machine learning techniques
  publication-title: J Wind Eng Ind Aerodyn
– volume: 172
  start-page: 196
  year: 2018
  end-page: 211
  ident: b0140
  article-title: Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression
  publication-title: J Wind Eng Ind Aerodyn
– volume: 404
  start-page: 116
  year: 2017
  end-page: 140
  ident: b0390
  article-title: Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators
  publication-title: J Sound Vib
– year: 2020
  ident: b0035
  article-title: Galloping triboelectric nanogenerator for energy harvesting under low wind speed
  publication-title: Nano Energy
– volume: 26
  year: 2017
  ident: b0240
  article-title: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode
  publication-title: Smart Mater Struct
– volume: 60
  start-page: 203
  year: 2017
  end-page: 209
  ident: b0380
  article-title: Stability analysis on an aeroelastic system for design of a flutter energy harvester
  publication-title: Aerosp Sci Technol
– volume: 82
  start-page: 894
  year: 2018
  end-page: 900
  ident: b0005
  article-title: Solar energy: potential and future prospects
  publication-title: Renew Sustain Energy Rev
– volume: 130
  year: 2008
  ident: b0020
  article-title: VIVACE (Vortex Induced Vibration Aquatic Clean Energy): a new concept in generation of clean and renewable energy from fluid flow
  publication-title: J Offshore Mech Arct Eng
– reference: Bunzel LO, Franzini GR. Numerical studies on piezoelectric energy harvesting from vortex-induced vibrations considering cross-wise and in-line oscillations. In: Proceedings of the 9th European nonlinear dynamics conference-ENOC2017; 2017.
– reference: Santos CR, Marques FD. Energy harvesting from stall-induced oscillations of pitching airfoils at high-subsonic regime. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2018.
– reference: Pantazopoulos MS. Vortex-induced vibration parameters: critical review. New York, NY (United States): American Society of Mechanical Engineers; 1994.
– reference: Villarreal DJY, SL VB. VIV resonant wind generators; 2018.
– volume: 22
  start-page: 1093
  year: 2017
  end-page: 1103
  ident: b0260
  article-title: Synergy of wind energy harvesting and synchronized switch harvesting interface circuit
  publication-title: IEEE/ASME Trans Mechatron
– volume: 108
  year: 2016
  ident: b0320
  article-title: Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism
  publication-title: Appl Phys Lett
– volume: 89
  start-page: 2461
  year: 2017
  end-page: 2479
  ident: b0330
  article-title: Investigations on the presence of electrical frequency on the characteristics of energy harvesters under base and galloping excitations
  publication-title: Nonlinear Dyn
– reference: Naseer R, Abdelkefi A, Dai H et al. Characteristics and comparative analysis of monostable and bistable piezomagnetoelastic energy harvesters under vortex-induced vibrations. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2018.
– reference: Grainger L, Rezgui D, Barton D. Optimisation of an aeroelastic flutter energy harvester. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2017.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 18
  ident: b0135
  article-title: Study on fluid-induced vibration power harvesting of square columns under different attack angles
  publication-title: Geofluids
– volume: 115
  year: 2019
  ident: b0295
  article-title: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting
  publication-title: Appl Phys Lett
– reference: Zhao L. Performance enhancement of an aeroelastic energy harvester for efficient power harvesting from concurrent wind flows and base vibrations. In: 2018 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE; 2018.
– volume: 163
  year: 2019
  ident: b0440
  article-title: Wideband PZT energy harvesting from the wake of a bluff body in varying flow speeds
  publication-title: Int J Mech Sci
– volume: 127
  start-page: 162
  year: 2018
  end-page: 185
  ident: b0045
  article-title: Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement
  publication-title: Int J Eng Sci
– volume: 27
  year: 2017
  ident: b0555
  article-title: Aeroelastic flutter energy harvesters self-polarized by triboelectric effects
  publication-title: Smart Mater Struct
– volume: 70
  start-page: 193
  year: 2017
  end-page: 214
  ident: b0610
  article-title: Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies
  publication-title: Renew Sustain Energy Rev
– volume: 77
  start-page: 196
  year: 2018
  end-page: 212
  ident: b0200
  article-title: A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom
  publication-title: J Fluids Struct
– volume: 110
  year: 2017
  ident: b0500
  article-title: Enhanced piezoelectric wind energy harvesting based on a buckled beam
  publication-title: Appl Phys Lett
– volume: 70
  start-page: 1355
  year: 2012
  end-page: 1363
  ident: b0030
  article-title: Power harvesting from transverse galloping of square cylinder
  publication-title: Nonlinear Dyn
– volume: 172
  start-page: 164
  year: 2018
  end-page: 169
  ident: b0115
  article-title: Energy harvesting from different aeroelastic instabilities of a square cylinder
  publication-title: J Wind Eng Ind Aerodyn
– volume: 421
  start-page: 61
  year: 2018
  end-page: 78
  ident: b0265
  article-title: Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits
  publication-title: J Sound Vib
– volume: 165
  start-page: 949
  year: 2018
  end-page: 964
  ident: b0130
  article-title: Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion
  publication-title: Energy
– volume: 329
  start-page: 2873
  year: 2010
  end-page: 2883
  ident: b0215
  article-title: Energy harvesting from transverse galloping
  publication-title: J Sound Vib
– volume: 76
  start-page: 14
  year: 2018
  end-page: 36
  ident: b0385
  article-title: Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate
  publication-title: J Fluids Struct
– volume: 199
  year: 2019
  ident: b0040
  article-title: Harvest wind energy from a vibro-impact DEG embedded into a bluff body
  publication-title: Energy Convers Manage
– volume: 32
  start-page: 960
  year: 2014
  end-page: 982
  ident: b0590
  article-title: High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: a case study at coast of New Jersey, USA
  publication-title: Renew Sustain Energy Rev
– volume: 39
  start-page: 412
  year: 2014
  end-page: 425
  ident: b0585
  article-title: Potential sites for tidal power generation: a thorough search at coast of New Jersey, USA
  publication-title: Renew Sustain Energy Rev
– volume: 19
  start-page: 123
  year: 2004
  end-page: 140
  ident: b0085
  article-title: Coupling of structure and wake oscillators in vortex-induced vibrations
  publication-title: J Fluids Struct
– volume: 62
  start-page: 90
  year: 2018
  end-page: 116
  ident: b0235
  article-title: Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 181
  start-page: 645
  year: 2019
  end-page: 652
  ident: b0310
  article-title: High-performance piezoelectric wind energy harvester with Y-shaped attachments
  publication-title: Energy Convers Manage
– reference: Trade DO, Industry U. Energy white paper; our energy future: creating a low carbon economy. London: TheStationeryOffice; 2003.
– volume: 194
  start-page: 212
  year: 2017
  end-page: 222
  ident: b0530
  article-title: Harvesting ambient wind energy with an inverted piezoelectric flag
  publication-title: Appl Energy
– volume: 408
  start-page: 210
  year: 2017
  end-page: 219
  ident: b0165
  article-title: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations
  publication-title: J Sound Vib
– volume: 226
  start-page: 682
  year: 2018
  end-page: 689
  ident: b0305
  article-title: Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments
  publication-title: Appl Energy
– volume: 26
  year: 2017
  ident: b0250
  article-title: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits
  publication-title: Smart Mater Struct
– volume: 212
  start-page: 233
  year: 2018
  end-page: 243
  ident: b0360
  article-title: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting
  publication-title: Appl Energy
– volume: 20
  start-page: 834
  year: 2014
  end-page: 844
  ident: b0220
  article-title: Equivalent circuit representation and analysis of galloping-based wind energy harvesting
  publication-title: IEEE/ASME Trans Mechatron
– volume: 196
  year: 2020
  ident: b0315
  article-title: Performance improvement of aeroelastic energy harvesters with two symmetrical fin-shaped rods
  publication-title: J Wind Eng Ind Aerodyn
– volume: 142
  start-page: 321
  year: 2017
  end-page: 327
  ident: b0550
  article-title: A study on the wind-induced flutter energy harvester (WIFEH) integration into buildings
  publication-title: Energy Proc
– volume: 144
  start-page: 218
  year: 2018
  end-page: 231
  ident: b0125
  article-title: Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM
  publication-title: Energy
– volume: 212
  start-page: 304
  year: 2018
  end-page: 321
  ident: b0170
  article-title: CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller
  publication-title: Appl Energy
– volume: 40
  start-page: 2903
  year: 2018
  end-page: 2913
  ident: b0100
  article-title: Energy harvesting from flow-induced vibration: a lumped parameter model
  publication-title: Energy Sources Part A
– volume: 400
  start-page: 213
  year: 2017
  end-page: 226
  ident: b0225
  article-title: Impacts of the aerodynamic force representation on the stability and performance of a galloping-based energy harvester
  publication-title: J Sound Vib
– reference: Zhao J, Zhang H, Su F et al. A novel model of piezoelectric-electromagnetic hybrid energy harvester based on vortex-induced vibration. In: Green energy and applications (ICGEA), international conference on. IEEE; 2017.
– volume: 121
  start-page: 632
  year: 2018
  end-page: 643
  ident: b0485
  article-title: Dynamic modeling of vortex induced vibration wind turbines
  publication-title: Renew Energy
– volume: 165
  start-page: 55
  year: 2018
  end-page: 68
  ident: b0460
  article-title: Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation
  publication-title: Ocean Eng
– volume: 162
  start-page: 145
  year: 2018
  end-page: 158
  ident: b0445
  article-title: Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration
  publication-title: Energy Convers Manage
– reference: Cajas JC, Houzeaux G, Yáñez DJ et al. SHAPE project Vortex Bladeless: Parallel multi-code coupling for fluid-structure interaction in wind energy generation; 2016.
– year: 2018
  ident: b0570
  article-title: Energy harvesting utilizing reciprocating flow-induced torsional vibration on a T-shaped cantilever beam
  publication-title: Smart Mater Struct
– volume: 40
  start-page: 833
  year: 2016
  end-page: 839
  ident: b0070
  article-title: Hydroelastic buffeting assessment over a vertically hinged flat plate
  publication-title: Exp Tech
– volume: 361
  start-page: 355
  year: 2016
  end-page: 377
  ident: b0365
  article-title: Fluttering energy harvesters in the wind: a review
  publication-title: J Sound Vib
– volume: 24
  start-page: 3555
  year: 2017
  end-page: 3568
  ident: b0120
  article-title: Downstream flat plate as the flow-induced vibration enhancer for energy harvesting
  publication-title: J Vib Control
– volume: 2009
  start-page: 368
  year: 2009
  end-page: 371
  ident: b0210
  article-title: On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester
  publication-title: Proc Power MEMS
– volume: 255
  year: 2019
  ident: b0060
  article-title: Mechanical modulations for enhancing energy harvesting: Principles, methods and applications
  publication-title: Appl Energy
– year: 2020
  ident: b0280
  article-title: Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
  publication-title: Acta Mech Sinica
– reference: He X, Shang Z, Rao Y et al. Experimental investigation of a micromachined piezoelectric energy harvester with low critical wind speed. In Micro-nano technology Xvii-xviii-proceedings of the 17th-18th annual conference and 6th-7th international conference of the Chinese society of micro/nano technology. World Scientific; 2017.
– volume: 142
  start-page: 29
  year: 2017
  end-page: 36
  ident: b0620
  article-title: Innovative on-shore system recovering energy from tidal currents
  publication-title: Energy Proc
– volume: 8
  year: 2018
  ident: b0450
  article-title: Dual serial vortex-induced energy harvesting system for enhanced energy harvesting
  publication-title: AIP Adv
– volume: 28
  start-page: 12LT02
  year: 2019
  ident: b0050
  article-title: A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations
  publication-title: Smart Mater Struct
– volume: 91
  year: 2019
  ident: b0325
  article-title: Wind energy harvesting performance of tandem circular cylinders with triangular protrusions
  publication-title: J Fluids Struct
– start-page: 1
  year: 2018
  end-page: 18
  ident: b0600
  article-title: Renewable energy harvesting from water flow
  publication-title: Int J Environ Stud
– reference: .
– volume: 114
  start-page: 259
  year: 2019
  end-page: 274
  ident: b0370
  article-title: Simultaneous finite element analysis of circuit-integrated piezoelectric energy harvesting from fluid-structure interaction
  publication-title: Mech Syst Sig Process
– volume: 30
  year: 2018
  ident: b0090
  article-title: Vortex-induced vibration of finite-length circular cylinders with spanwise free-ends: broadening the lock-in envelope
  publication-title: Phys Fluids
– volume: 41
  start-page: 9
  year: 2019
  ident: b0415
  article-title: A novel design for an adaptive aeroelastic energy harvesting system: flutter and power analysis
  publication-title: J Braz Soc Mech Sci Eng
– volume: 29
  start-page: 479
  year: 2017
  end-page: 495
  ident: b0420
  article-title: Numerical simulations of aeroelastic instabilities to optimize the performance of flutter-based electromagnetic energy harvesters
  publication-title: J Intell Mater Syst Struct
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 31
  ident: b0205
  article-title: Toward small-scale wind energy harvesting: design, enhancement, performance comparison, and applicability
  publication-title: Shock Vib
– volume: 9
  start-page: 2049
  year: 2019
  ident: b0150
  article-title: Automatic identification of bridge vortex-induced vibration using random decrement method
  publication-title: Appl Sci
– volume: 7
  year: 2017
  ident: b0245
  article-title: Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters
  publication-title: AIP Adv
– volume: 8
  year: 2018
  ident: b0565
  article-title: Energy harvesting from water flow in open channel with macro fiber composite
  publication-title: AIP Adv
– volume: 224
  start-page: 717
  year: 2018
  end-page: 730
  ident: b0625
  article-title: Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents
  publication-title: Appl Energy
– volume: 199
  start-page: 3444
  year: 2017
  end-page: 3449
  ident: b0505
  article-title: Piezoelectric vibration energy harvesting from airflow in HVAC (Heating Ventilation and Air Conditioning) systems
  publication-title: Proc Eng
– volume: 279
  start-page: 467
  year: 2018
  end-page: 473
  ident: b0495
  article-title: A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins
  publication-title: Sens Actuators, A
– year: 2018
  ident: b0350
  article-title: Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections
  publication-title: Energy
– reference: Facchinetti M, De Langre E, Fontaine E et al. VIV of two cylinders in tandem arrangement: analytical and numerical modeling. In: The twelfth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers; 2002.
– volume: 27
  year: 2018
  ident: b0490
  article-title: Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine
  publication-title: Smart Mater Struct
– reference: Blevins RD. Flow-induced vibration; 1990.
– volume: 156
  start-page: 435
  year: 2019
  end-page: 445
  ident: b0340
  article-title: Development of the optimal bluff body for wind energy harvesting using the synergetic effect of coupled vortex induced vibration and galloping phenomena
  publication-title: Int J Mech Sci
– volume: 144
  start-page: 218
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0125
  article-title: Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.153
– volume: 27
  issue: 7
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0490
  article-title: Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aac0b6
– volume: 116
  issue: 5
  year: 2020
  ident: 10.1016/j.apenergy.2020.114902_b0055
  article-title: Synchronization extension using a bistable galloping oscillator for enhanced power generation from concurrent wind and base vibration
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5134948
– volume: 91
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0325
  article-title: Wind energy harvesting performance of tandem circular cylinders with triangular protrusions
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2019.102780
– ident: 10.1016/j.apenergy.2020.114902_b0355
  doi: 10.1109/AIM.2018.8452411
– volume: 162
  start-page: 145
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0445
  article-title: Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.02.026
– volume: 172
  start-page: 196
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0140
  article-title: Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2017.10.022
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0205
  article-title: Toward small-scale wind energy harvesting: design, enhancement, performance comparison, and applicability
  publication-title: Shock Vib
  doi: 10.1155/2017/4350437
– ident: 10.1016/j.apenergy.2020.114902_b0595
– volume: 226
  start-page: 682
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0305
  article-title: Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.056
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0455
  article-title: Broadening band of wind speed for aeroelastic energy scavenging of a cylinder through buffeting in the wakes of a squared prism
  publication-title: Shock Vib
– volume: 142
  start-page: 321
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0550
  article-title: A study on the wind-induced flutter energy harvester (WIFEH) integration into buildings
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.12.051
– volume: 9
  start-page: 2049
  issue: 10
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0150
  article-title: Automatic identification of bridge vortex-induced vibration using random decrement method
  publication-title: Appl Sci
  doi: 10.3390/app9102049
– volume: 117
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2020.114902_b0290
  article-title: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters
  publication-title: J Appl Phys
  doi: 10.1063/1.4906463
– volume: 115
  issue: 19
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0295
  article-title: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5126476
– volume: 400
  start-page: 213
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0225
  article-title: Impacts of the aerodynamic force representation on the stability and performance of a galloping-based energy harvester
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.04.013
– ident: 10.1016/j.apenergy.2020.114902_b0180
– volume: 142
  start-page: 29
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0620
  article-title: Innovative on-shore system recovering energy from tidal currents
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.12.006
– volume: 112
  issue: 8
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0275
  article-title: Improving the performance of galloping micro-power generators by passively manipulating the trailing edge
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5016102
– ident: 10.1016/j.apenergy.2020.114902_b0400
  doi: 10.1115/ISPS2017-5456
– ident: 10.1016/j.apenergy.2020.114902_b0080
– volume: 158
  start-page: 371
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0510
  article-title: Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.09.099
– ident: 10.1016/j.apenergy.2020.114902_b0375
  doi: 10.2514/6.2018-0463
– volume: 53
  start-page: 2807
  issue: 11–12
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0535
  article-title: On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter
  publication-title: Meccanica
  doi: 10.1007/s11012-018-0875-6
– volume: 198
  year: 2020
  ident: 10.1016/j.apenergy.2020.114902_b0145
  article-title: Predicting wind pressures around circular cylinders using machine learning techniques
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2020.104099
– volume: 181
  start-page: 645
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0310
  article-title: High-performance piezoelectric wind energy harvester with Y-shaped attachments
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.12.034
– volume: 41
  start-page: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0415
  article-title: A novel design for an adaptive aeroelastic energy harvesting system: flutter and power analysis
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-018-1509-6
– volume: 13
  start-page: 71
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2020.114902_b0065
  article-title: Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics
  publication-title: Energies
  doi: 10.3390/en13010071
– volume: 26
  issue: 3
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0240
  article-title: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa5e41
– ident: 10.1016/j.apenergy.2020.114902_b0015
– volume: 394
  start-page: 321
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0185
  article-title: Experimental energy harvesting from fluid flow by using two vibrating masses
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.01.037
– ident: 10.1016/j.apenergy.2020.114902_b0405
  doi: 10.2514/6.2017-1120
– year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0345
  article-title: Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ab4216
– volume: 76
  start-page: 14
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0385
  article-title: Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2017.09.007
– volume: 165
  start-page: 1259
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0580
  article-title: Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.109
– volume: 196
  year: 2020
  ident: 10.1016/j.apenergy.2020.114902_b0315
  article-title: Performance improvement of aeroelastic energy harvesters with two symmetrical fin-shaped rods
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2019.104051
– volume: 421
  start-page: 61
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0265
  article-title: Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.11.019
– ident: 10.1016/j.apenergy.2020.114902_b0615
– volume: 28
  start-page: 12LT02
  issue: 12
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0050
  article-title: A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ab5249
– ident: 10.1016/j.apenergy.2020.114902_b0195
– volume: 130
  issue: 4
  year: 2008
  ident: 10.1016/j.apenergy.2020.114902_b0020
  article-title: VIVACE (Vortex Induced Vibration Aquatic Clean Energy): a new concept in generation of clean and renewable energy from fluid flow
  publication-title: J Offshore Mech Arct Eng
  doi: 10.1115/1.2957913
– volume: 127
  start-page: 162
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0045
  article-title: Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement
  publication-title: Int J Eng Sci
  doi: 10.1016/j.ijengsci.2018.02.003
– ident: 10.1016/j.apenergy.2020.114902_b0025
– volume: 13
  start-page: 91
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2020.114902_b0270
  article-title: Enhance of energy harvesting from transverse galloping by actively rotating the galloping body
  publication-title: Energies
  doi: 10.3390/en13010091
– volume: 22
  start-page: 1093
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0260
  article-title: Synergy of wind energy harvesting and synchronized switch harvesting interface circuit
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2016.2630732
– volume: 89
  start-page: 2461
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0330
  article-title: Investigations on the presence of electrical frequency on the characteristics of energy harvesters under base and galloping excitations
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-017-3597-8
– volume: 172
  start-page: 164
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0115
  article-title: Energy harvesting from different aeroelastic instabilities of a square cylinder
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2017.10.031
– volume: 40
  start-page: 2903
  issue: 24
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0100
  article-title: Energy harvesting from flow-induced vibration: a lumped parameter model
  publication-title: Energy Sources Part A
  doi: 10.1080/15567036.2018.1513100
– volume: 111
  issue: 7
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0105
  article-title: Improving the performance of aeroelastic energy harvesters by an interference cylinder
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4999765
– volume: 121
  start-page: 632
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0485
  article-title: Dynamic modeling of vortex induced vibration wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.01.038
– volume: 155
  start-page: 392
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0605
  article-title: Modelling of a hydrokinetic energy converter for flow-induced vibration based on experimental data
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.02.030
– volume: 112
  issue: 23
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0300
  article-title: Y-type three-blade bluff body for wind energy harvesting
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5029415
– volume: 404
  start-page: 116
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0390
  article-title: Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.05.024
– volume: 27
  issue: 1
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0555
  article-title: Aeroelastic flutter energy harvesters self-polarized by triboelectric effects
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa8b1e
– ident: 10.1016/j.apenergy.2020.114902_b0475
– year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0075
  article-title: Energy harvesting from aerodynamic instabilities: current prospect and future trends
– volume: 19
  start-page: 123
  issue: 2
  year: 2004
  ident: 10.1016/j.apenergy.2020.114902_b0085
  article-title: Coupling of structure and wake oscillators in vortex-induced vibrations
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2003.12.004
– volume: 70
  start-page: 193
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0610
  article-title: Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.11.202
– volume: 14
  start-page: 52
  year: 2016
  ident: 10.1016/j.apenergy.2020.114902_b0425
  article-title: Marine current energy extraction through buffeting
  publication-title: Int J Mar Energy
  doi: 10.1016/j.ijome.2016.02.005
– volume: 2009
  start-page: 368
  year: 2009
  ident: 10.1016/j.apenergy.2020.114902_b0210
  article-title: On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester
  publication-title: Proc Power MEMS
– start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0600
  article-title: Renewable energy harvesting from water flow
  publication-title: Int J Environ Stud
– volume: 165
  start-page: 949
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0130
  article-title: Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.138
– year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0095
  article-title: Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder
  publication-title: Europ J Mech – B/Fluids
– volume: 30
  issue: 10
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0090
  article-title: Vortex-induced vibration of finite-length circular cylinders with spanwise free-ends: broadening the lock-in envelope
  publication-title: Phys Fluids
  doi: 10.1063/1.5042774
– volume: 111
  issue: 22
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0110
  article-title: Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5008918
– volume: 279
  start-page: 467
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0495
  article-title: A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins
  publication-title: Sens Actuators, A
  doi: 10.1016/j.sna.2018.06.059
– volume: 109
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2020.114902_b0435
  article-title: A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4959181
– volume: 329
  start-page: 2873
  issue: 14
  year: 2010
  ident: 10.1016/j.apenergy.2020.114902_b0215
  article-title: Energy harvesting from transverse galloping
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2010.01.028
– ident: 10.1016/j.apenergy.2020.114902_b0155
  doi: 10.2514/6.2018-1959
– ident: 10.1016/j.apenergy.2020.114902_b0175
  doi: 10.2514/6.2018-3717
– volume: 261
  start-page: 117
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0255
  article-title: Comparison of four electrical interfacing circuits in wind energy harvesting
  publication-title: Sens Actuators, A
  doi: 10.1016/j.sna.2017.04.035
– volume: 39
  start-page: 412
  year: 2014
  ident: 10.1016/j.apenergy.2020.114902_b0585
  article-title: Potential sites for tidal power generation: a thorough search at coast of New Jersey, USA
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.051
– volume: 199
  start-page: 3474
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0395
  article-title: FLuttering Energy Harvester for Autonomous Powering (FLEHAP): aeroelastic characterisation and preliminary performance evaluation
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2017.09.456
– ident: 10.1016/j.apenergy.2020.114902_b0430
– volume: 165
  start-page: 55
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0460
  article-title: Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.07.042
– volume: 20
  start-page: 834
  issue: 2
  year: 2014
  ident: 10.1016/j.apenergy.2020.114902_b0220
  article-title: Equivalent circuit representation and analysis of galloping-based wind energy harvesting
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2014.2308182
– volume: 56
  start-page: 1351
  year: 2016
  ident: 10.1016/j.apenergy.2020.114902_b0470
  article-title: A review on small scale wind turbines
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.027
– volume: 163
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0440
  article-title: Wideband PZT energy harvesting from the wake of a bluff body in varying flow speeds
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.105135
– volume: 70
  start-page: 390
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0525
  article-title: Energy harvesting from galloping of prisms: A wind tunnel experiment
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2017.02.006
– volume: 29
  start-page: 479
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0420
  article-title: Numerical simulations of aeroelastic instabilities to optimize the performance of flutter-based electromagnetic energy harvesters
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X17711784
– volume: 114
  start-page: 259
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0370
  article-title: Simultaneous finite element analysis of circuit-integrated piezoelectric energy harvesting from fluid-structure interaction
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2018.05.016
– volume: 131
  start-page: 516
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0335
  article-title: Broadband design of hybrid piezoelectric energy harvester
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2017.07.028
– volume: 33
  start-page: 476
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0560
  article-title: Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.005
– volume: 8
  issue: 7
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0450
  article-title: Dual serial vortex-induced energy harvesting system for enhanced energy harvesting
  publication-title: AIP Adv
  doi: 10.1063/1.5038884
– volume: 199
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0040
  article-title: Harvest wind energy from a vibro-impact DEG embedded into a bluff body
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.111993
– volume: 408
  start-page: 210
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0165
  article-title: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.07.029
– volume: 8
  issue: 9
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0565
  article-title: Energy harvesting from water flow in open channel with macro fiber composite
  publication-title: AIP Adv
  doi: 10.1063/1.5035383
– volume: 60
  start-page: 203
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0380
  article-title: Stability analysis on an aeroelastic system for design of a flutter energy harvester
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2016.11.011
– volume: 8
  issue: 9
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0230
  article-title: Galloping-based energy harvester considering enclosure effect
  publication-title: AIP Adv
  doi: 10.1063/1.5043586
– year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0350
  article-title: Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections
  publication-title: Energy
– volume: 108
  issue: 12
  year: 2016
  ident: 10.1016/j.apenergy.2020.114902_b0320
  article-title: Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4944555
– volume: 212
  start-page: 304
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0170
  article-title: CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.059
– volume: 24
  start-page: 3555
  issue: 16
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0120
  article-title: Downstream flat plate as the flow-induced vibration enhancer for energy harvesting
  publication-title: J Vib Control
  doi: 10.1177/1077546317707877
– year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0570
  article-title: Energy harvesting utilizing reciprocating flow-induced torsional vibration on a T-shaped cantilever beam
  publication-title: Smart Mater Struct
– volume: 70
  start-page: 1355
  issue: 2
  year: 2012
  ident: 10.1016/j.apenergy.2020.114902_b0030
  article-title: Power harvesting from transverse galloping of square cylinder
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-012-0538-4
– volume: 82
  start-page: 894
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0005
  article-title: Solar energy: potential and future prospects
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.09.094
– volume: 11
  start-page: 1503
  issue: 12
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0575
  article-title: Asymmetric arc-shaped vortex-induced electromagnetic generator for harvesting energy from low-velocity flowing water
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2016.0612
– volume: 194
  start-page: 212
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0530
  article-title: Harvesting ambient wind energy with an inverted piezoelectric flag
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.016
– volume: 224
  start-page: 717
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0625
  article-title: Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.029
– volume: 59
  start-page: 580
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0285
  article-title: Nonlinear analysis and characteristics of inductive galloping energy harvesters
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2017.12.009
– volume: 77
  start-page: 196
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0200
  article-title: A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2017.12.007
– year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0515
  article-title: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies
  publication-title: Energy
– volume: 255
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0060
  article-title: Mechanical modulations for enhancing energy harvesting: Principles, methods and applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113871
– volume: 207
  start-page: 61
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0545
  article-title: Evaluation of the integration of the Wind-Induced Flutter Energy Harvester (WIFEH) into the built environment: experimental and numerical analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.041
– ident: 10.1016/j.apenergy.2020.114902_b0410
  doi: 10.1109/EESMS.2017.8052693
– year: 2020
  ident: 10.1016/j.apenergy.2020.114902_b0035
  article-title: Galloping triboelectric nanogenerator for energy harvesting under low wind speed
  publication-title: Nano Energy
– volume: 40
  start-page: 833
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2020.114902_b0070
  article-title: Hydroelastic buffeting assessment over a vertically hinged flat plate
  publication-title: Exp Tech
  doi: 10.1007/s40799-016-0084-y
– ident: 10.1016/j.apenergy.2020.114902_b0465
– volume: 212
  start-page: 233
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0360
  article-title: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.042
– volume: 40
  start-page: 1788
  issue: 15
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0010
  article-title: Efficient study of a coarse structure number on the bluff body during the harvesting of wind energy
  publication-title: Energy Sources Part A
  doi: 10.1080/15567036.2018.1486916
– volume: 26
  issue: 7
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0250
  article-title: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa74f5
– volume: 361
  start-page: 355
  year: 2016
  ident: 10.1016/j.apenergy.2020.114902_b0365
  article-title: Fluttering energy harvesters in the wind: a review
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2015.09.043
– ident: 10.1016/j.apenergy.2020.114902_b0480
– volume: 80
  start-page: 77
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0190
  article-title: Vortex-induced vibrations of cylinders bent by the flow
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2018.03.008
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0135
  article-title: Study on fluid-induced vibration power harvesting of square columns under different attack angles
  publication-title: Geofluids
– ident: 10.1016/j.apenergy.2020.114902_b0520
  doi: 10.1142/9789813232808_0015
– volume: 32
  start-page: 960
  year: 2014
  ident: 10.1016/j.apenergy.2020.114902_b0590
  article-title: High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: a case study at coast of New Jersey, USA
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.12.041
– volume: 110
  issue: 18
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0500
  article-title: Enhanced piezoelectric wind energy harvesting based on a buckled beam
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4982967
– volume: 199
  start-page: 3444
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0505
  article-title: Piezoelectric vibration energy harvesting from airflow in HVAC (Heating Ventilation and Air Conditioning) systems
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2017.09.496
– ident: 10.1016/j.apenergy.2020.114902_b0160
  doi: 10.2514/6.2017-0730
– volume: 156
  start-page: 435
  year: 2019
  ident: 10.1016/j.apenergy.2020.114902_b0340
  article-title: Development of the optimal bluff body for wind energy harvesting using the synergetic effect of coupled vortex induced vibration and galloping phenomena
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.04.019
– volume: 199
  start-page: 3428
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0540
  article-title: FLuttering energy harvester for autonomous powering (FLEHAP): a synergy between EMc and dielectric elastomers generators
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2017.09.489
– volume: 7
  issue: 3
  year: 2017
  ident: 10.1016/j.apenergy.2020.114902_b0245
  article-title: Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters
  publication-title: AIP Adv
  doi: 10.1063/1.4979508
– year: 2020
  ident: 10.1016/j.apenergy.2020.114902_b0280
  article-title: Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
  publication-title: Acta Mech Sinica
  doi: 10.1007/s10409-020-00928-5
– volume: 62
  start-page: 90
  year: 2018
  ident: 10.1016/j.apenergy.2020.114902_b0235
  article-title: Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2018.02.015
SSID ssj0002120
Score 2.6962898
SecondaryResourceType review_article
Snippet •The concepts of energy harvesting from flow-induced vibrations are classified.•The methods and principles of flow-induced vibrations energy harvesting are...
In this paper, the currently popular flow-induced vibrations energy harvesting technologies are reviewed, including numerical and experimental endeavors, and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114902
SubjectTerms clean energy
energy
Energy harvester
Flow-induced vibrations
harvesters
Hydrokinetic energy
magnetic materials
Michigan
vibration
water power
Wind energy
wind power
Title The state-of-the-art review on energy harvesting from flow-induced vibrations
URI https://dx.doi.org/10.1016/j.apenergy.2020.114902
https://www.proquest.com/docview/2439437874
Volume 267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IXvRgFCXig9TEa4HddrvbIyEQ1MhFSbg13ZdCyC7hoTd_u9NuV9CYcPC23bSbZjqd-WY73xShO315g0gpJ8INOhCgxB0iEkVJ7ESChxAguIlJkB3x4Zg9TLxJBfVKLoxOq7S2v7DpxlrbN20rzfZiOm0_a7Rr8L8-3XMMeZ0xX2t563Ob5uHa0ozQmejeOyzhWUstEsOwgzjRNWVzhf298oeD-mWqjf8ZnKBjCxxxt5jbKaokWQ0d7ZQTrKF6f8tag652267O0BMoAzbUIZKnBCCfzofDBWsF5xkupoff1NIU3chesWad4HSefxCI2WH1Y_yu42qjpOdoPOi_9IbE3qNAIuY4a-J3og5TMUvdKGCAN7wodhWjlKeCMh8aHJ4C8P0BTQPFQ5-nPvjxAMBYrCgLaR1VszxLLhD2VCB8ESYhY7qwnBOomKuQg5GCOJDGbgN5pfBkZIuM67su5rLMJpvJUuhSC10WQm-g9ve4RVFmY-8IUa6N_KEwEnzB3rG35WJK2E36iERlSb5ZSVcThSkYMXb5j-9foUPdKjLKrlF1vdwkN4Bd1mHTKGcTHXTvH4ejL3Em7WQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYABQQHxxkisJontOvGIqlYF2i6AxGY5iQNFKKmgwMZv5-w4FBASA1sedmTdne8R33eH0Ilt3iALJoikSQgBSh4SaTQjeZRJkUKAQI1LkB2LwQ2_uO3cLqBug4WxaZVe99c63Wlr_yTw1Aymk0lwZb1d5__b073IgtcXOWxf28bg9H2e50F9bUYYTezwLzDhh1M9NQ5iB4EidXVzpf-_8ouF-qGrnQHqr6FV7znis3px62jBlG208qWeYBtt9eawNRjq9-3zBhqBNGCHHSJVQcDnswlxuIat4KrE9fLwvX5yVTfKO2xhJ7h4rN4IBO3A_hy_2sDaSekmuun3rrsD4hspkIxH0YzEYRZynfOCZgkHh6OT5VRzxkQhGY_hRsBVAsY_YUWiRRqLIgZDnoA3lmvGU7aFWmVVmm2EOzqRsUxNyrmtLBclOhc6FaClIBBkOd1BnYZ4KvNVxm2zi0fVpJM9qIboyhJd1UTfQcHnvGldZ-PPGbLhjfomMQqMwZ9zjxtmKthO9oxEl6Z6eVbUIoUZaDG--4_vH6GlwfVoqIbn48s9tGzf1Oll-6g1e3oxB-DIzNJDJ6gf5iTu8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+state-of-the-art+review+on+energy+harvesting+from+flow-induced+vibrations&rft.jtitle=Applied+energy&rft.au=Wang%2C+Junlei&rft.au=Geng%2C+Linfeng&rft.au=Ding%2C+Lin&rft.au=Zhu%2C+Hongjun&rft.date=2020-06-01&rft.issn=0306-2619&rft.volume=267&rft.spage=114902&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_114902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon