The state-of-the-art review on energy harvesting from flow-induced vibrations
•The concepts of energy harvesting from flow-induced vibrations are classified.•The methods and principles of flow-induced vibrations energy harvesting are summarized.•The application of energy capture devices and commercially available devices are discussed.•The prospects of the research and applic...
Saved in:
Published in | Applied energy Vol. 267; p. 114902 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The concepts of energy harvesting from flow-induced vibrations are classified.•The methods and principles of flow-induced vibrations energy harvesting are summarized.•The application of energy capture devices and commercially available devices are discussed.•The prospects of the research and application of flow-induced vibrations energy harvesting are presented.
In this paper, the currently popular flow-induced vibrations energy harvesting technologies are reviewed, including numerical and experimental endeavors, and some existing or proposed energy capture concepts and devices are discussed. The energy harvesting mechanism and current research progress of four types of flow-induced vibrations, such as vortex-induced vibrations, galloping, flutter and buffeting, are introduced. To enhance the performance of the harvesters and broaden the operating range, the researchers have proposed various mechanical designs, methods of the structures’ surfaces optimization and concepts with incorporated magnets for multistability. The paper summarizes the works led to the current wind energy and hydro energy harvesters based on the principle of flow-induced vibrations, including bladeless generator Vortex Bladeless, University of Michigan vortex-induced vibrations aquatic clean energy, Australian BPS company's airfoil tidal energy capture device bioSTREAM, and others. This shows the gradual progress and maturity of the flow-induced vibrations energy harvesters. The article concludes with a discussion on the current problems in the area of the flow-induced vibration energy capture and the challenges faced. |
---|---|
AbstractList | In this paper, the currently popular flow-induced vibrations energy harvesting technologies are reviewed, including numerical and experimental endeavors, and some existing or proposed energy capture concepts and devices are discussed. The energy harvesting mechanism and current research progress of four types of flow-induced vibrations, such as vortex-induced vibrations, galloping, flutter and buffeting, are introduced. To enhance the performance of the harvesters and broaden the operating range, the researchers have proposed various mechanical designs, methods of the structures’ surfaces optimization and concepts with incorporated magnets for multistability. The paper summarizes the works led to the current wind energy and hydro energy harvesters based on the principle of flow-induced vibrations, including bladeless generator Vortex Bladeless, University of Michigan vortex-induced vibrations aquatic clean energy, Australian BPS company's airfoil tidal energy capture device bioSTREAM, and others. This shows the gradual progress and maturity of the flow-induced vibrations energy harvesters. The article concludes with a discussion on the current problems in the area of the flow-induced vibration energy capture and the challenges faced. •The concepts of energy harvesting from flow-induced vibrations are classified.•The methods and principles of flow-induced vibrations energy harvesting are summarized.•The application of energy capture devices and commercially available devices are discussed.•The prospects of the research and application of flow-induced vibrations energy harvesting are presented. In this paper, the currently popular flow-induced vibrations energy harvesting technologies are reviewed, including numerical and experimental endeavors, and some existing or proposed energy capture concepts and devices are discussed. The energy harvesting mechanism and current research progress of four types of flow-induced vibrations, such as vortex-induced vibrations, galloping, flutter and buffeting, are introduced. To enhance the performance of the harvesters and broaden the operating range, the researchers have proposed various mechanical designs, methods of the structures’ surfaces optimization and concepts with incorporated magnets for multistability. The paper summarizes the works led to the current wind energy and hydro energy harvesters based on the principle of flow-induced vibrations, including bladeless generator Vortex Bladeless, University of Michigan vortex-induced vibrations aquatic clean energy, Australian BPS company's airfoil tidal energy capture device bioSTREAM, and others. This shows the gradual progress and maturity of the flow-induced vibrations energy harvesters. The article concludes with a discussion on the current problems in the area of the flow-induced vibration energy capture and the challenges faced. |
ArticleNumber | 114902 |
Author | Wang, Junlei Yurchenko, Daniil Ding, Lin Geng, Linfeng Zhu, Hongjun |
Author_xml | – sequence: 1 givenname: Junlei orcidid: 0000-0003-4453-0946 surname: Wang fullname: Wang, Junlei email: jlwang@zzu.edu.cn organization: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China – sequence: 2 givenname: Linfeng surname: Geng fullname: Geng, Linfeng organization: School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China – sequence: 3 givenname: Lin orcidid: 0000-0002-0944-0948 surname: Ding fullname: Ding, Lin email: linding@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China – sequence: 4 givenname: Hongjun orcidid: 0000-0001-5977-5028 surname: Zhu fullname: Zhu, Hongjun email: zhuhj@swpu.edu.cn organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China – sequence: 5 givenname: Daniil orcidid: 0000-0002-4989-3634 surname: Yurchenko fullname: Yurchenko, Daniil organization: Institute of Mechanical, Process & Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK |
BookMark | eNqFkEtLAzEUhYMoWB9_QWbpJjWvZjLgQhFfoLjRdUgzNzZlmtQkrfjvjY5u3Li6D845HL4DtBtiAIROKJlSQuXZcmrWECC9fkwZYfVJRUfYDppQ1TLcUap20YRwIjGTtNtHBzkvCSGMMjJBj88LaHIxBXB0uCwAm1SaBFsP700MzRjcLEzaQi4-vDYuxVXjhviOfeg3Fvpm6-fJFB9DPkJ7zgwZjn_mIXq5uX6-usMPT7f3V5cP2ApKC26JJcL0wjGrhBJyZntmBOfSdVy09ZB1U4zOFHfKyHkrXauoUmpGe8PFnB-i0zF3neLbphbTK58tDIMJEDdZM8E7wVvViio9H6U2xZwTOG19-W5bkvGDpkR_UdRL_UtRf1HUI8Vql3_s6-RXJn38b7wYjVA5VJpJZ-shVF4-gS26j_6_iE93YpJO |
CitedBy_id | crossref_primary_10_3390_electronics9040681 crossref_primary_10_1063_5_0128728 crossref_primary_10_1016_j_oceaneng_2021_108806 crossref_primary_10_1016_j_jfluidstructs_2022_103708 crossref_primary_10_1016_j_renene_2024_120913 crossref_primary_10_1016_j_oceaneng_2024_118587 crossref_primary_10_1002_adem_202200408 crossref_primary_10_1016_j_oceaneng_2023_114928 crossref_primary_10_1016_j_ymssp_2024_111137 crossref_primary_10_1063_5_0123160 crossref_primary_10_1016_j_renene_2021_06_072 crossref_primary_10_1088_1361_6463_aca4de crossref_primary_10_1016_j_enconman_2020_112835 crossref_primary_10_3233_JAE_209314 crossref_primary_10_1016_j_enconman_2022_116405 crossref_primary_10_1016_j_nanoen_2020_105279 crossref_primary_10_1016_j_apenergy_2023_121583 crossref_primary_10_1016_j_applthermaleng_2024_123897 crossref_primary_10_3390_mi13030396 crossref_primary_10_1016_j_enconman_2024_119471 crossref_primary_10_1007_s11664_024_11575_y crossref_primary_10_1016_j_jfluidstructs_2024_104255 crossref_primary_10_1016_j_apenergy_2021_117522 crossref_primary_10_1088_1361_6463_ac928e crossref_primary_10_1007_s10483_021_2741_8 crossref_primary_10_1016_j_enconman_2022_115759 crossref_primary_10_1016_j_oceaneng_2023_116097 crossref_primary_10_1088_1361_665X_ad1c53 crossref_primary_10_5219_1951 crossref_primary_10_1007_s00202_023_01740_7 crossref_primary_10_1088_1361_665X_abf41f crossref_primary_10_1016_j_jfluidstructs_2022_103809 crossref_primary_10_1016_j_nanoen_2024_109508 crossref_primary_10_1002_smll_202307119 crossref_primary_10_1063_5_0135032 crossref_primary_10_1016_j_jsv_2023_118054 crossref_primary_10_1016_j_measurement_2024_114796 crossref_primary_10_1016_j_ymssp_2020_106912 crossref_primary_10_3390_en15166097 crossref_primary_10_1016_j_energy_2023_128584 crossref_primary_10_20965_jrm_2022_p0131 crossref_primary_10_1016_j_sna_2023_114190 crossref_primary_10_1016_j_ijmecsci_2022_107979 crossref_primary_10_1002_adfm_202413760 crossref_primary_10_1016_j_renene_2021_12_127 crossref_primary_10_1016_j_ymssp_2021_108044 crossref_primary_10_1016_j_oceaneng_2020_107455 crossref_primary_10_1016_j_optlastec_2021_107099 crossref_primary_10_1016_j_euromechflu_2023_11_009 crossref_primary_10_3390_en17225666 crossref_primary_10_1016_j_oceaneng_2020_107766 crossref_primary_10_1016_j_mechmat_2023_104892 crossref_primary_10_1002_admt_202201296 crossref_primary_10_1016_j_enconman_2021_114250 crossref_primary_10_1016_j_ymssp_2024_112268 crossref_primary_10_1007_s10483_022_2867_7 crossref_primary_10_1063_5_0189915 crossref_primary_10_1063_5_0239312 crossref_primary_10_3389_fmars_2023_1270286 crossref_primary_10_1016_j_ijmecsci_2024_109561 crossref_primary_10_1016_j_nanoen_2023_108478 crossref_primary_10_1063_5_0127682 crossref_primary_10_1063_5_0184582 crossref_primary_10_1016_j_jweia_2022_105235 crossref_primary_10_1016_j_ast_2022_108057 crossref_primary_10_1016_j_oceaneng_2022_112388 crossref_primary_10_1016_j_oceaneng_2023_113652 crossref_primary_10_3390_mi14050968 crossref_primary_10_3390_s20102772 crossref_primary_10_1016_j_procs_2023_09_038 crossref_primary_10_1016_j_nanoen_2021_106503 crossref_primary_10_1088_1361_665X_ac06b1 crossref_primary_10_1016_j_energy_2022_125982 crossref_primary_10_1016_j_oceaneng_2023_115709 crossref_primary_10_1016_j_ymssp_2024_112257 crossref_primary_10_1002_ente_202401660 crossref_primary_10_3390_app142311452 crossref_primary_10_1016_j_jsv_2021_116334 crossref_primary_10_1557_s43577_023_00492_w crossref_primary_10_1016_j_energy_2024_134155 crossref_primary_10_3390_en17010214 crossref_primary_10_21625_resourceedings_v4i2_1058 crossref_primary_10_1002_ente_202300579 crossref_primary_10_1016_j_oceaneng_2022_113461 crossref_primary_10_1115_1_4065101 crossref_primary_10_1016_j_renene_2024_121824 crossref_primary_10_1093_ce_zkae042 crossref_primary_10_1007_s00542_022_05267_y crossref_primary_10_3389_fmats_2022_904056 crossref_primary_10_1016_j_jfluidstructs_2024_104201 crossref_primary_10_70322_mer_2025_10002 crossref_primary_10_1016_j_oceaneng_2025_120989 crossref_primary_10_1016_j_finel_2022_103761 crossref_primary_10_1016_j_oceaneng_2022_112361 crossref_primary_10_1016_j_oceaneng_2025_120748 crossref_primary_10_1016_j_ast_2020_105898 crossref_primary_10_1007_s13344_021_0078_0 crossref_primary_10_1016_j_jweia_2025_106085 crossref_primary_10_1016_j_ymssp_2022_109506 crossref_primary_10_1016_j_icheatmasstransfer_2022_106493 crossref_primary_10_1016_j_ijmecsci_2021_106781 crossref_primary_10_1016_j_ymssp_2024_112034 crossref_primary_10_1016_j_rser_2021_111170 crossref_primary_10_3390_app132312724 crossref_primary_10_1088_1361_6463_abb101 crossref_primary_10_1016_j_oceaneng_2023_114896 crossref_primary_10_1063_5_0027634 crossref_primary_10_1088_2631_8695_ad88db crossref_primary_10_1016_j_oceaneng_2025_120414 crossref_primary_10_1016_j_rser_2024_114843 crossref_primary_10_1016_j_nanoen_2024_110471 crossref_primary_10_1002_adfm_202414324 crossref_primary_10_1108_HFF_04_2020_0215 crossref_primary_10_3390_sym14030631 crossref_primary_10_1016_j_apenergy_2020_116092 crossref_primary_10_1016_j_ijmecsci_2022_107443 crossref_primary_10_1016_j_ijnonlinmec_2023_104518 crossref_primary_10_1007_s40430_021_02858_0 crossref_primary_10_1016_j_seta_2024_104056 crossref_primary_10_1016_j_apenergy_2021_117577 crossref_primary_10_1016_j_jfluidstructs_2024_104187 crossref_primary_10_1007_s13369_022_07181_x crossref_primary_10_1115_1_4064721 crossref_primary_10_1080_15567036_2021_2006830 crossref_primary_10_1016_j_oceaneng_2021_109514 crossref_primary_10_1016_j_chaos_2020_110612 crossref_primary_10_1016_j_energy_2022_123921 crossref_primary_10_3390_en15228719 crossref_primary_10_1016_j_egyr_2021_04_003 crossref_primary_10_3390_sym14122601 crossref_primary_10_1016_j_oceaneng_2023_114630 crossref_primary_10_1016_j_rser_2024_114624 crossref_primary_10_1038_s41598_024_82385_9 crossref_primary_10_1063_5_0256432 crossref_primary_10_1017_jfm_2022_797 crossref_primary_10_1016_j_oceaneng_2025_120445 crossref_primary_10_1063_5_0073783 crossref_primary_10_1063_5_0107651 crossref_primary_10_1016_j_energy_2021_122203 crossref_primary_10_1016_j_oceaneng_2023_114869 crossref_primary_10_3390_polym13244404 crossref_primary_10_16984_saufenbilder_690571 crossref_primary_10_1109_JSEN_2023_3275974 crossref_primary_10_1016_j_jmmm_2024_172557 crossref_primary_10_1371_journal_pone_0304489 crossref_primary_10_1155_2020_8858529 crossref_primary_10_1016_j_jfluidstructs_2025_104266 crossref_primary_10_1016_j_enconman_2022_116585 crossref_primary_10_1016_j_ijthermalsci_2022_107519 crossref_primary_10_1016_j_egyr_2022_07_049 crossref_primary_10_1016_j_ymssp_2022_109787 crossref_primary_10_1063_5_0171294 crossref_primary_10_1088_1361_665X_ad8d94 crossref_primary_10_1016_j_cnsns_2024_108354 crossref_primary_10_1017_jfm_2022_442 crossref_primary_10_1016_j_apenergy_2022_118983 crossref_primary_10_1016_j_enconman_2022_115371 crossref_primary_10_1016_j_energy_2021_122677 crossref_primary_10_1016_j_oceaneng_2023_113669 crossref_primary_10_1016_j_sna_2021_113345 crossref_primary_10_1002_aesr_202500087 crossref_primary_10_1063_5_0185041 crossref_primary_10_1016_j_egyr_2022_12_027 crossref_primary_10_1016_j_nanoen_2025_110679 crossref_primary_10_3390_en15155725 crossref_primary_10_1016_j_seta_2022_102882 crossref_primary_10_1016_j_nanoen_2024_110274 crossref_primary_10_1016_j_enconman_2022_116559 crossref_primary_10_1080_23311916_2024_2386095 crossref_primary_10_1155_2020_3789809 crossref_primary_10_1016_j_oceaneng_2020_108219 crossref_primary_10_1016_j_energy_2021_121139 crossref_primary_10_1016_j_jlp_2021_104508 crossref_primary_10_3390_s25061657 crossref_primary_10_3390_en16186431 crossref_primary_10_1016_j_renene_2024_122070 crossref_primary_10_3390_en14227601 crossref_primary_10_1016_j_jfluidstructs_2023_103910 crossref_primary_10_1016_j_mtsust_2022_100158 crossref_primary_10_1016_j_ymssp_2022_109496 crossref_primary_10_1016_j_ymssp_2021_108065 crossref_primary_10_1177_10775463211054259 crossref_primary_10_3389_fmats_2022_956182 crossref_primary_10_1016_j_nanoen_2021_106466 crossref_primary_10_1016_j_enbuild_2024_115063 crossref_primary_10_1155_2024_1386237 crossref_primary_10_1016_j_nanoen_2023_109062 crossref_primary_10_1088_1361_665X_abf753 crossref_primary_10_1109_JSEN_2024_3500589 crossref_primary_10_1016_j_enconman_2023_116971 crossref_primary_10_1016_j_energy_2024_130995 crossref_primary_10_1016_j_apor_2022_103109 crossref_primary_10_1016_j_ijmecsci_2022_107429 crossref_primary_10_3390_cryst11060640 crossref_primary_10_1016_j_jsv_2023_117952 crossref_primary_10_1016_j_ijmecsci_2022_107785 crossref_primary_10_1016_j_apenergy_2021_118135 crossref_primary_10_1016_j_oceaneng_2023_115517 crossref_primary_10_3390_cryst11060643 crossref_primary_10_1016_j_nanoen_2024_110126 crossref_primary_10_1016_j_nanoen_2024_110489 crossref_primary_10_1088_1361_665X_ad287e crossref_primary_10_1088_2631_8695_ac372f crossref_primary_10_1177_1045389X241273065 crossref_primary_10_1016_j_nanoen_2023_109071 crossref_primary_10_1016_j_energy_2023_128264 crossref_primary_10_1016_j_enconman_2023_116846 crossref_primary_10_1088_1742_6596_2647_11_112004 crossref_primary_10_1016_j_enconman_2023_116718 crossref_primary_10_1063_5_0068279 crossref_primary_10_1080_15376494_2024_2407518 crossref_primary_10_1016_j_compstruc_2021_106680 crossref_primary_10_1088_1361_665X_abd42b crossref_primary_10_1016_j_nanoen_2021_106441 crossref_primary_10_1017_jfm_2022_406 crossref_primary_10_1016_j_renene_2022_02_010 crossref_primary_10_1016_j_renene_2023_119742 crossref_primary_10_1088_1361_6463_abf809 crossref_primary_10_1016_j_nanoen_2021_106684 crossref_primary_10_1016_j_ijnonlinmec_2024_104804 crossref_primary_10_1002_admi_202002133 crossref_primary_10_1016_j_jsv_2021_116084 crossref_primary_10_3390_app15031366 crossref_primary_10_1016_j_ymssp_2022_109186 crossref_primary_10_1016_j_apm_2025_116109 crossref_primary_10_1016_j_renene_2022_11_008 crossref_primary_10_1177_1045389X241253172 crossref_primary_10_1140_epjp_s13360_021_02235_9 crossref_primary_10_1631_jzus_A2400260 crossref_primary_10_1016_j_ijmecsci_2022_108016 crossref_primary_10_3390_machines11020174 crossref_primary_10_1016_j_energy_2021_121734 crossref_primary_10_1016_j_ymssp_2021_107608 crossref_primary_10_1016_j_ymssp_2021_107609 crossref_primary_10_1007_s11071_022_07228_6 crossref_primary_10_1016_j_energy_2024_131377 crossref_primary_10_1016_j_tsf_2023_139761 crossref_primary_10_1063_5_0222003 crossref_primary_10_1007_s10999_023_09663_8 crossref_primary_10_1016_j_engstruct_2024_118999 crossref_primary_10_3390_s24217024 crossref_primary_10_1088_1361_665X_abb648 crossref_primary_10_1016_j_ymssp_2020_107301 crossref_primary_10_1080_15376494_2023_2209078 crossref_primary_10_1016_j_applthermaleng_2024_125397 crossref_primary_10_1016_j_ijmecsci_2023_108428 crossref_primary_10_1016_j_apenergy_2021_118380 crossref_primary_10_1016_j_enconman_2021_113991 crossref_primary_10_1016_j_ijmecsci_2023_108543 crossref_primary_10_1016_j_ijmecsci_2023_108785 crossref_primary_10_1177_1045389X211023581 crossref_primary_10_1002_ente_202200589 crossref_primary_10_1016_j_ymssp_2023_110696 crossref_primary_10_1017_jfm_2024_1079 crossref_primary_10_1063_5_0246789 crossref_primary_10_1016_j_oceaneng_2023_115443 crossref_primary_10_1063_5_0223422 crossref_primary_10_1016_j_apor_2024_103906 crossref_primary_10_1016_j_seta_2023_103312 crossref_primary_10_1016_j_ymssp_2020_107212 crossref_primary_10_1088_1361_665X_ad7d54 crossref_primary_10_1016_j_jsv_2020_115811 crossref_primary_10_1063_5_0210479 crossref_primary_10_1016_j_jweia_2022_104948 crossref_primary_10_1016_j_enconman_2021_113980 crossref_primary_10_1016_j_energy_2021_120420 crossref_primary_10_1016_j_nanoen_2021_106199 crossref_primary_10_1002_msd2_12035 crossref_primary_10_1088_1361_665X_ab870e crossref_primary_10_3390_en14206548 crossref_primary_10_1016_j_chaos_2022_113060 crossref_primary_10_1109_JSEN_2022_3161833 crossref_primary_10_1016_j_enconman_2021_114820 crossref_primary_10_1016_j_energy_2023_126714 crossref_primary_10_1002_ente_202301194 crossref_primary_10_1016_j_oceaneng_2021_109378 crossref_primary_10_1177_10775463231164201 crossref_primary_10_1063_5_0191964 crossref_primary_10_1016_j_oceaneng_2024_116999 crossref_primary_10_1016_j_oceaneng_2023_115389 crossref_primary_10_1007_s40430_023_04338_z crossref_primary_10_1007_s42417_021_00423_6 crossref_primary_10_1016_j_cnsns_2022_107076 crossref_primary_10_3390_en14164867 crossref_primary_10_1140_epjs_s11734_021_00377_6 crossref_primary_10_1016_j_rser_2024_115183 crossref_primary_10_1063_5_0109454 crossref_primary_10_1016_j_oceaneng_2022_110768 crossref_primary_10_1016_j_jfluidstructs_2025_104282 crossref_primary_10_1016_j_oceaneng_2022_111858 crossref_primary_10_1016_j_jfluidstructs_2021_103291 crossref_primary_10_3934_energy_2024027 crossref_primary_10_1007_s42417_024_01533_7 crossref_primary_10_1007_s42417_024_01280_9 crossref_primary_10_1016_j_ymssp_2022_109092 crossref_primary_10_1016_j_engstruct_2024_118799 crossref_primary_10_1016_j_oceaneng_2023_116121 crossref_primary_10_1016_j_oceaneng_2023_115397 crossref_primary_10_1016_j_oceaneng_2024_116980 crossref_primary_10_1177_09544062241272433 crossref_primary_10_1007_s11431_023_2535_0 crossref_primary_10_1142_S0218127424500962 crossref_primary_10_1016_j_ijheatfluidflow_2021_108893 crossref_primary_10_1088_1742_6596_2909_1_012003 crossref_primary_10_3390_molecules29153576 crossref_primary_10_3390_s21082668 crossref_primary_10_1016_j_oceaneng_2020_108168 crossref_primary_10_1016_j_energy_2023_126814 crossref_primary_10_1016_j_energy_2020_119195 crossref_primary_10_1142_S1758825122500211 crossref_primary_10_3390_nano12193261 crossref_primary_10_3390_nano12203595 crossref_primary_10_3390_en15239191 crossref_primary_10_1016_j_jfluidstructs_2023_103961 crossref_primary_10_1016_j_energy_2024_133504 crossref_primary_10_1016_j_renene_2023_05_110 crossref_primary_10_1088_1402_4896_abcdc7 crossref_primary_10_1177_1045389X211072520 crossref_primary_10_1002_er_5878 crossref_primary_10_3390_fluids10030056 crossref_primary_10_1016_j_probengmech_2023_103464 crossref_primary_10_1016_j_mtener_2024_101529 crossref_primary_10_1063_5_0179890 crossref_primary_10_1177_16878132231224577 crossref_primary_10_1063_5_0233537 crossref_primary_10_1016_j_enconman_2023_116687 crossref_primary_10_3390_math9243179 crossref_primary_10_1088_1361_665X_ab874c crossref_primary_10_1016_j_energy_2021_121662 crossref_primary_10_1016_j_apor_2022_103296 crossref_primary_10_1016_j_energy_2021_121781 crossref_primary_10_3390_mi12101269 crossref_primary_10_1016_j_apenergy_2024_124618 crossref_primary_10_1002_adfm_202106527 crossref_primary_10_1007_s11012_020_01216_z crossref_primary_10_1007_s10483_022_2869_9 crossref_primary_10_1039_D2SE00870J crossref_primary_10_1063_5_0171512 crossref_primary_10_3390_s23042185 crossref_primary_10_1080_00150193_2022_2113637 crossref_primary_10_1109_JSEN_2023_3258501 crossref_primary_10_1063_5_0124772 crossref_primary_10_1016_j_nanoen_2020_105567 crossref_primary_10_3390_inventions8060136 crossref_primary_10_1016_j_ecmx_2021_100174 crossref_primary_10_1016_j_mtnano_2023_100385 crossref_primary_10_7849_ksnre_2023_0006 crossref_primary_10_1016_j_renene_2023_119133 crossref_primary_10_1177_10775463241279993 crossref_primary_10_1177_10775463231201888 crossref_primary_10_1016_j_jfluidstructs_2023_104001 crossref_primary_10_1063_5_0077323 crossref_primary_10_3390_app11115191 crossref_primary_10_1016_j_jfluidstructs_2023_104004 crossref_primary_10_1016_j_renene_2021_11_113 crossref_primary_10_1016_j_ymssp_2021_108775 crossref_primary_10_1016_j_ymssp_2021_108410 crossref_primary_10_1177_10775463211041875 crossref_primary_10_3390_en16217339 crossref_primary_10_1063_5_0065462 crossref_primary_10_1016_j_oceaneng_2022_112857 crossref_primary_10_1016_j_mechrescom_2024_104351 crossref_primary_10_3390_mi16020122 crossref_primary_10_1088_1361_665X_ab83ce crossref_primary_10_1103_PhysRevFluids_7_023905 crossref_primary_10_3390_s22041341 crossref_primary_10_3389_fenrg_2022_938768 crossref_primary_10_1080_00150193_2023_2300615 crossref_primary_10_3390_en14248496 crossref_primary_10_1016_j_seta_2024_103637 crossref_primary_10_1088_1361_665X_abefb5 crossref_primary_10_1016_j_ymssp_2021_108672 crossref_primary_10_3390_jmse11040795 crossref_primary_10_1063_5_0159729 crossref_primary_10_1177_1045389X20966057 crossref_primary_10_1088_1361_6439_ac2a52 crossref_primary_10_1140_epjp_s13360_022_02864_8 crossref_primary_10_3390_jmse12030515 crossref_primary_10_1109_JSEN_2021_3114033 crossref_primary_10_1063_5_0233856 crossref_primary_10_1016_j_apenergy_2021_116947 crossref_primary_10_1016_j_egyr_2024_12_033 crossref_primary_10_1016_j_ymssp_2020_107167 crossref_primary_10_1016_j_ast_2023_108815 crossref_primary_10_1016_j_enconman_2021_114414 crossref_primary_10_1016_j_jsv_2020_115643 crossref_primary_10_1016_j_ijmecsci_2021_106983 crossref_primary_10_3390_mi13050720 crossref_primary_10_1016_j_energy_2024_133020 crossref_primary_10_3390_act10120312 crossref_primary_10_1016_j_energy_2021_120811 crossref_primary_10_1016_j_mtener_2021_100786 crossref_primary_10_1016_j_oceaneng_2022_111340 crossref_primary_10_1088_1361_665X_acc1b8 crossref_primary_10_1007_s10853_023_08321_w crossref_primary_10_1063_5_0063488 crossref_primary_10_1016_j_ymssp_2021_107876 crossref_primary_10_1002_er_8089 crossref_primary_10_1088_1361_665X_ac0cbc crossref_primary_10_1016_j_apenergy_2023_121530 crossref_primary_10_1016_j_seta_2021_101826 crossref_primary_10_1007_s10854_021_07489_8 crossref_primary_10_1061__ASCE_AS_1943_5525_0001350 crossref_primary_10_1088_1742_6596_2527_1_012076 crossref_primary_10_1016_j_nanoen_2022_107029 crossref_primary_10_1016_j_device_2024_100548 crossref_primary_10_1088_1361_6463_acaab8 crossref_primary_10_3233_JAE_220052 crossref_primary_10_1016_j_oceaneng_2020_107906 crossref_primary_10_3390_app12083965 crossref_primary_10_3390_s23084058 crossref_primary_10_1177_1045389X211011681 crossref_primary_10_1177_1475090220949334 crossref_primary_10_1109_MIM_2023_10121409 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119766 crossref_primary_10_1063_5_0126867 crossref_primary_10_1016_j_oceaneng_2024_118557 crossref_primary_10_1016_j_marstruc_2022_103223 crossref_primary_10_1063_5_0185704 crossref_primary_10_1063_5_0221505 crossref_primary_10_1088_1742_6596_1950_1_012058 crossref_primary_10_1016_j_cnsns_2022_107018 crossref_primary_10_1016_j_enconman_2021_114504 crossref_primary_10_1007_s11012_022_01599_1 crossref_primary_10_1088_1361_665X_ad49ed crossref_primary_10_1007_s11600_022_01001_4 crossref_primary_10_1007_s11071_020_05748_7 crossref_primary_10_1063_5_0054425 crossref_primary_10_5802_crmeca_74 crossref_primary_10_1088_2632_959X_abd290 crossref_primary_10_1007_s00419_022_02137_x crossref_primary_10_1063_5_0146352 crossref_primary_10_1080_00150193_2022_2061232 |
Cites_doi | 10.1016/j.energy.2017.11.153 10.1088/1361-665X/aac0b6 10.1063/1.5134948 10.1016/j.jfluidstructs.2019.102780 10.1109/AIM.2018.8452411 10.1016/j.enconman.2018.02.026 10.1016/j.jweia.2017.10.022 10.1155/2017/4350437 10.1016/j.apenergy.2018.06.056 10.1016/j.egypro.2017.12.051 10.3390/app9102049 10.1063/1.4906463 10.1063/1.5126476 10.1016/j.jsv.2017.04.013 10.1016/j.egypro.2017.12.006 10.1063/1.5016102 10.1115/ISPS2017-5456 10.1016/j.enbuild.2017.09.099 10.2514/6.2018-0463 10.1007/s11012-018-0875-6 10.1016/j.jweia.2020.104099 10.1016/j.enconman.2018.12.034 10.1007/s40430-018-1509-6 10.3390/en13010071 10.1088/1361-665X/aa5e41 10.1016/j.jsv.2017.01.037 10.2514/6.2017-1120 10.1088/1361-665X/ab4216 10.1016/j.jfluidstructs.2017.09.007 10.1016/j.energy.2018.10.109 10.1016/j.jweia.2019.104051 10.1016/j.jsv.2017.11.019 10.1088/1361-665X/ab5249 10.1115/1.2957913 10.1016/j.ijengsci.2018.02.003 10.3390/en13010091 10.1109/TMECH.2016.2630732 10.1007/s11071-017-3597-8 10.1016/j.jweia.2017.10.031 10.1080/15567036.2018.1513100 10.1063/1.4999765 10.1016/j.renene.2018.01.038 10.1016/j.oceaneng.2018.02.030 10.1063/1.5029415 10.1016/j.jsv.2017.05.024 10.1088/1361-665X/aa8b1e 10.1016/j.jfluidstructs.2003.12.004 10.1016/j.rser.2016.11.202 10.1016/j.ijome.2016.02.005 10.1016/j.energy.2018.09.138 10.1063/1.5042774 10.1063/1.5008918 10.1016/j.sna.2018.06.059 10.1063/1.4959181 10.1016/j.jsv.2010.01.028 10.2514/6.2018-1959 10.2514/6.2018-3717 10.1016/j.sna.2017.04.035 10.1016/j.rser.2014.07.051 10.1016/j.proeng.2017.09.456 10.1016/j.oceaneng.2018.07.042 10.1109/TMECH.2014.2308182 10.1016/j.rser.2015.12.027 10.1016/j.ijmecsci.2019.105135 10.1016/j.jfluidstructs.2017.02.006 10.1177/1045389X17711784 10.1016/j.ymssp.2018.05.016 10.1016/j.ijmecsci.2017.07.028 10.1016/j.nanoen.2017.02.005 10.1063/1.5038884 10.1016/j.enconman.2019.111993 10.1016/j.jsv.2017.07.029 10.1063/1.5035383 10.1016/j.ast.2016.11.011 10.1063/1.5043586 10.1063/1.4944555 10.1016/j.apenergy.2017.12.059 10.1177/1077546317707877 10.1007/s11071-012-0538-4 10.1016/j.rser.2017.09.094 10.1049/iet-rpg.2016.0612 10.1016/j.apenergy.2017.03.016 10.1016/j.apenergy.2018.05.029 10.1016/j.cnsns.2017.12.009 10.1016/j.jfluidstructs.2017.12.007 10.1016/j.apenergy.2019.113871 10.1016/j.apenergy.2017.06.041 10.1109/EESMS.2017.8052693 10.1007/s40799-016-0084-y 10.1016/j.apenergy.2017.12.042 10.1080/15567036.2018.1486916 10.1088/1361-665X/aa74f5 10.1016/j.jsv.2015.09.043 10.1016/j.jfluidstructs.2018.03.008 10.1142/9789813232808_0015 10.1016/j.rser.2013.12.041 10.1063/1.4982967 10.1016/j.proeng.2017.09.496 10.2514/6.2017-0730 10.1016/j.ijmecsci.2019.04.019 10.1016/j.proeng.2017.09.489 10.1063/1.4979508 10.1007/s10409-020-00928-5 10.1016/j.cnsns.2018.02.015 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2020.114902 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2020_114902 S0306261920304141 |
GeographicLocations | Michigan |
GeographicLocations_xml | – name: Michigan |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c411t-70c04ad4f2c848465cd2a4336f9347cd266f9821583f8a6b76f78188851da34b3 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Tue Aug 05 09:38:59 EDT 2025 Tue Jul 01 02:53:49 EDT 2025 Thu Apr 24 22:55:26 EDT 2025 Fri Feb 23 02:47:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrokinetic energy Wind energy Flow-induced vibrations Energy harvester |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-70c04ad4f2c848465cd2a4336f9347cd266f9821583f8a6b76f78188851da34b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0944-0948 0000-0002-4989-3634 0000-0003-4453-0946 0000-0001-5977-5028 |
PQID | 2439437874 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2439437874 crossref_citationtrail_10_1016_j_apenergy_2020_114902 crossref_primary_10_1016_j_apenergy_2020_114902 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114902 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhu, Gao (b0580) 2018; 165 Zhang, Meng, Xia (b0035) 2020 Zhou, Wang (b0450) 2018; 8 Orrego, Shoele, Ruas (b0530) 2017; 194 Tan, Yan (b0245) 2017; 7 Olivieri, Boccalero, Mazzino (b0395) 2017; 199 Liu, Li, Yang (b0535) 2018; 53 Zhang, Wang, Song (b0130) 2018; 165 Ding, Yang, Yang (b0315) 2020; 196 He X, Shang Z, Rao Y et al. Experimental investigation of a micromachined piezoelectric energy harvester with low critical wind speed. In Micro-nano technology Xvii-xviii-proceedings of the 17th-18th annual conference and 6th-7th international conference of the Chinese society of micro/nano technology. World Scientific; 2017. Song, Hu, Tse (b0110) 2017; 111 Barbarelli, Florio, Amelio (b0625) 2018; 224 Zhang, Mao, Song (b0125) 2018; 144 Franzini, Bunzel (b0200) 2018; 77 Javed U, Abdelkefi A. Nonlinear analysis of hybrid galloping energy harvesting system integrated with a nonlinear torsional spring. In: 2018 Fluid dynamics conference; 2018. Bunzel LO, Franzini GR. Numerical studies on piezoelectric energy harvesting from vortex-induced vibrations considering cross-wise and in-line oscillations. In: Proceedings of the 9th European nonlinear dynamics conference-ENOC2017; 2017. Rostami, Armandei (b0610) 2017; 70 Wu, Sun, Lv (b0605) 2018; 155 Phan, Shin, Heon Jeon (b0560) 2017; 33 Zhang, Klumpner, Lin (b0570) 2018 Dai, Yang, Abdelkefi (b0285) 2018; 59 Sun, Jo, Seok (b0340) 2019; 156 Barbarelli, Amelio, Florio (b0620) 2017; 142 Zhao, Yang (b0360) 2018; 212 Li, Laima, Li (b0140) 2018; 172 Lai, Wang, Zhang (b0040) 2019; 199 . Boccalero, Boragno, Olivieri (b0540) 2017; 199 Maruai, Mat Ali, Ismail (b0120) 2017; 24 Tang, Zhao, Yang (b0220) 2014; 20 Hu, Tse, Kwok (b0320) 2016; 108 Gkoumas, Petrini, Bontempi (b0505) 2017; 199 Aquino, Calautit, Hughes (b0550) 2017; 142 Tang, Kraatz, Qu (b0590) 2014; 32 Villarreal DJY, SL VB. VIV resonant wind generators; 2018. Chizfahm, Yazdi, Eghtesad (b0485) 2018; 121 Zhang, Dai, Abdelkefi (b0350) 2018 Armandei, Fernandes (b0425) 2016; 14 Perez, Boisseau, Geisler (b0555) 2017; 27 Rezaei, Talebitooti (b0440) 2019; 163 Bernitsas, Raghavan, Ben-Simon (b0020) 2008; 130 Alhadidi, Daqaq (b0435) 2016; 109 Modir, Goudarzi (b0095) 2018 Tang, Qu, Chen (b0585) 2014; 39 Wang, Li, Zhang (b0100) 2018; 40 Kabir, Kumar, Kumar (b0005) 2018; 82 Hu, Kwok (b0145) 2020; 198 Yazdi (b0490) 2018; 27 Hémon, Amandolese, Andrianne (b0525) 2017; 70 Nishi, Fukuda, Shinohara (b0185) 2017; 394 Tabesh, Fréchette (b0210) 2009; 2009 Tan, Yan, Huang (b0335) 2017; 131 Hafezi, Mirdamadi (b0415) 2019; 41 Wang, Geng, Zhang (b0455) 2018; 2018 Naseer R, Abdelkefi A, Dai H et al. Characteristics and comparative analysis of monostable and bistable piezomagnetoelastic energy harvesters under vortex-induced vibrations. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2018. Zhao, Tang, Liang (b0260) 2017; 22 Wang, Geng, Zhou (b0280) 2020 Facchinetti M, De Langre E, Fontaine E et al. VIV of two cylinders in tandem arrangement: analytical and numerical modeling. In: The twelfth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers; 2002. Wang, Tang, Zhao (b0515) 2019 Petrini, Gkoumas (b0510) 2018; 158 Trade DO, Industry U. Energy white paper; our energy future: creating a low carbon economy. London: TheStationeryOffice; 2003. Huang, Li, Hua (b0150) 2019; 9 Tang, Dowell (b0385) 2018; 76 Andrianne, Aryoputro, Laurent (b0115) 2018; 172 Kong, Roussinova, Stoilov (b0600) 2018 Javed, Abdelkefi (b0225) 2017; 400 Tran, Ghayesh, Arjomandi (b0045) 2018; 127 Bashir, Rajendran, Khan (b0075) 2018 Lin, Zhao, Zhao (b0575) 2017; 11 Jo, Sun, Son (b0230) 2018; 8 Pigolotti, Mannini, Bartoli (b0390) 2017; 404 Zhang, Abdelkefi, Dai (b0165) 2017; 408 Naseer, Dai, Abdelkefi (b0065) 2020; 13 Noel, Yadav, Li (b0275) 2018; 112 Wang, Zhou, Zhang (b0310) 2019; 181 Zhang, Zhang, Shu (b0500) 2017; 110 Hu, Tse, Wei (b0305) 2018; 226 Chawdhury, Morgenthal (b0420) 2017; 29 Santos CR, Marques FD. Energy harvesting from stall-induced oscillations of pitching airfoils at high-subsonic regime. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2018. Yang, Wang, Yurchenko (b0295) 2019; 115 Zhang, Dai, Abdelkefi (b0105) 2017; 111 Yang, He, Li (b0345) 2019 Armandei, Fernandes, Rostami (b0070) 2016; 40 Barrero-Gil, Vicente-Ludlam, Gutierrez (b0270) 2020; 13 Hu, Yang, Chen (b0445) 2018; 162 Aquino, Calautit, Hughes (b0545) 2017; 207 Liu, Zou, Zhang (b0300) 2018; 112 Zhao L. Performance enhancement of an aeroelastic energy harvester for efficient power harvesting from concurrent wind flows and base vibrations. In: 2018 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE; 2018. Pasquato L, Bonotto N, Tosato P et al. An optimized wind energy harvester for remote pollution monitoring. In: Environmental, energy, and structural monitoring systems (EESMS), 2017 IEEE workshop on. IEEE; 2017. Wang, He, Wang (b0495) 2018; 279 Javed U, Abdelmoula H, Abdelkefi A. On the nonlinear dynamics and performance of hybrid piezoelectric-inductive energy harvesters subjected to vortex-induced vibrations. In: 25th AIAA/AHS adaptive structures conference; 2017. Lan, Tang, Harne (b0265) 2018; 421 Zhang, Zhao, Wang (b0135) 2017; 2017 Cajas JC, Houzeaux G, Yáñez DJ et al. SHAPE project Vortex Bladeless: Parallel multi-code coupling for fluid-structure interaction in wind energy generation; 2016. Wang, Hu, Su (b0050) 2019; 28 Abdelmoula, Abdelkefi (b0330) 2017; 89 Wang, Zhao, Zhang (b0010) 2018; 40 Pantazopoulos MS. Vortex-induced vibration parameters: critical review. New York, NY (United States): American Society of Mechanical Engineers; 1994. Bibo, Alhadidi, Daqaq (b0290) 2015; 117 Yan, Sun, Tan (b0235) 2018; 62 Zou, Zhao, Gao (b0060) 2019; 255 Zhao, Yang (b0255) 2017; 261 Facchinetti, De Langre, Biolley (b0085) 2004; 19 Azadeh-Ranjbar, Elvin, Andreopoulos (b0090) 2018; 30 Hu, Liu, Li (b0325) 2019; 91 Zhao J, Zhang H, Su F et al. A novel model of piezoelectric-electromagnetic hybrid energy harvester based on vortex-induced vibration. In: Green energy and applications (ICGEA), international conference on. IEEE; 2017. Yun G, Oh D, Kim Y et al. Mechanical feasibility of airfoil shaped energy harvesting device based on aerodynamic instability phenomena. In: ASME 2017 conference on information storage and processing systems 2017. American Society of Mechanical Engineers. Abdelkefi, Hajj, Nayfeh (b0030) 2012; 70 Ravi, Zilian (b0370) 2019; 114 Zhao, Yang (b0205) 2017; 2017 Zhu, Zhao, Zhou (b0170) 2018; 212 Tan, Yan, Lei (b0250) 2017; 26 Grainger L, Rezgui D, Barton D. Optimisation of an aeroelastic flutter energy harvester. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2017. Barrero-Gil, Alonso, Sanz-Andres (b0215) 2010; 329 Tummala, Velamati, Sinha (b0470) 2016; 56 Zhang, Mao, Song (b0460) 2018; 165 McCarthy, Watkins, Deivasigamani (b0365) 2016; 361 Zhao (b0055) 2020; 116 Leclercq, de Langre (b0190) 2018; 80 Blevins RD. Flow-induced vibration; 1990. Tan, Yan (b0240) 2017; 26 Sun, Tan, Yan (b0565) 2018; 8 Rong, Cao, Hu (b0380) 2017; 60 Modir (10.1016/j.apenergy.2020.114902_b0095) 2018 10.1016/j.apenergy.2020.114902_b0465 Gkoumas (10.1016/j.apenergy.2020.114902_b0505) 2017; 199 Bibo (10.1016/j.apenergy.2020.114902_b0290) 2015; 117 Zhou (10.1016/j.apenergy.2020.114902_b0450) 2018; 8 Zhang (10.1016/j.apenergy.2020.114902_b0130) 2018; 165 Yang (10.1016/j.apenergy.2020.114902_b0295) 2019; 115 Yazdi (10.1016/j.apenergy.2020.114902_b0490) 2018; 27 Zhang (10.1016/j.apenergy.2020.114902_b0165) 2017; 408 Hafezi (10.1016/j.apenergy.2020.114902_b0415) 2019; 41 Lin (10.1016/j.apenergy.2020.114902_b0575) 2017; 11 Hémon (10.1016/j.apenergy.2020.114902_b0525) 2017; 70 Andrianne (10.1016/j.apenergy.2020.114902_b0115) 2018; 172 Barrero-Gil (10.1016/j.apenergy.2020.114902_b0270) 2020; 13 Tang (10.1016/j.apenergy.2020.114902_b0585) 2014; 39 Zhang (10.1016/j.apenergy.2020.114902_b0125) 2018; 144 10.1016/j.apenergy.2020.114902_b0615 Lai (10.1016/j.apenergy.2020.114902_b0040) 2019; 199 Zou (10.1016/j.apenergy.2020.114902_b0060) 2019; 255 Aquino (10.1016/j.apenergy.2020.114902_b0550) 2017; 142 10.1016/j.apenergy.2020.114902_b0175 Huang (10.1016/j.apenergy.2020.114902_b0150) 2019; 9 Leclercq (10.1016/j.apenergy.2020.114902_b0190) 2018; 80 10.1016/j.apenergy.2020.114902_b0180 Ravi (10.1016/j.apenergy.2020.114902_b0370) 2019; 114 Zhao (10.1016/j.apenergy.2020.114902_b0205) 2017; 2017 Zhang (10.1016/j.apenergy.2020.114902_b0460) 2018; 165 Bashir (10.1016/j.apenergy.2020.114902_b0075) 2018 Zhao (10.1016/j.apenergy.2020.114902_b0260) 2017; 22 Wang (10.1016/j.apenergy.2020.114902_b0100) 2018; 40 Abdelmoula (10.1016/j.apenergy.2020.114902_b0330) 2017; 89 Barbarelli (10.1016/j.apenergy.2020.114902_b0625) 2018; 224 Zhang (10.1016/j.apenergy.2020.114902_b0570) 2018 10.1016/j.apenergy.2020.114902_b0160 Wang (10.1016/j.apenergy.2020.114902_b0280) 2020 Chawdhury (10.1016/j.apenergy.2020.114902_b0420) 2017; 29 Petrini (10.1016/j.apenergy.2020.114902_b0510) 2018; 158 Wang (10.1016/j.apenergy.2020.114902_b0515) 2019 Sun (10.1016/j.apenergy.2020.114902_b0340) 2019; 156 Facchinetti (10.1016/j.apenergy.2020.114902_b0085) 2004; 19 Franzini (10.1016/j.apenergy.2020.114902_b0200) 2018; 77 Tan (10.1016/j.apenergy.2020.114902_b0240) 2017; 26 Noel (10.1016/j.apenergy.2020.114902_b0275) 2018; 112 Orrego (10.1016/j.apenergy.2020.114902_b0530) 2017; 194 Zhang (10.1016/j.apenergy.2020.114902_b0350) 2018 Bernitsas (10.1016/j.apenergy.2020.114902_b0020) 2008; 130 Li (10.1016/j.apenergy.2020.114902_b0140) 2018; 172 Rong (10.1016/j.apenergy.2020.114902_b0380) 2017; 60 Zhu (10.1016/j.apenergy.2020.114902_b0580) 2018; 165 Jo (10.1016/j.apenergy.2020.114902_b0230) 2018; 8 Javed (10.1016/j.apenergy.2020.114902_b0225) 2017; 400 10.1016/j.apenergy.2020.114902_b0155 10.1016/j.apenergy.2020.114902_b0430 Dai (10.1016/j.apenergy.2020.114902_b0285) 2018; 59 Armandei (10.1016/j.apenergy.2020.114902_b0425) 2016; 14 Wu (10.1016/j.apenergy.2020.114902_b0605) 2018; 155 Rezaei (10.1016/j.apenergy.2020.114902_b0440) 2019; 163 Wang (10.1016/j.apenergy.2020.114902_b0495) 2018; 279 Barbarelli (10.1016/j.apenergy.2020.114902_b0620) 2017; 142 Kabir (10.1016/j.apenergy.2020.114902_b0005) 2018; 82 Maruai (10.1016/j.apenergy.2020.114902_b0120) 2017; 24 Naseer (10.1016/j.apenergy.2020.114902_b0065) 2020; 13 10.1016/j.apenergy.2020.114902_b0025 Lan (10.1016/j.apenergy.2020.114902_b0265) 2018; 421 Wang (10.1016/j.apenergy.2020.114902_b0455) 2018; 2018 Wang (10.1016/j.apenergy.2020.114902_b0050) 2019; 28 Azadeh-Ranjbar (10.1016/j.apenergy.2020.114902_b0090) 2018; 30 Perez (10.1016/j.apenergy.2020.114902_b0555) 2017; 27 Zhang (10.1016/j.apenergy.2020.114902_b0500) 2017; 110 Nishi (10.1016/j.apenergy.2020.114902_b0185) 2017; 394 Zhao (10.1016/j.apenergy.2020.114902_b0255) 2017; 261 Rostami (10.1016/j.apenergy.2020.114902_b0610) 2017; 70 Wang (10.1016/j.apenergy.2020.114902_b0010) 2018; 40 Liu (10.1016/j.apenergy.2020.114902_b0300) 2018; 112 Zhao (10.1016/j.apenergy.2020.114902_b0055) 2020; 116 Alhadidi (10.1016/j.apenergy.2020.114902_b0435) 2016; 109 Zhang (10.1016/j.apenergy.2020.114902_b0035) 2020 Tabesh (10.1016/j.apenergy.2020.114902_b0210) 2009; 2009 Tan (10.1016/j.apenergy.2020.114902_b0250) 2017; 26 Liu (10.1016/j.apenergy.2020.114902_b0535) 2018; 53 Tang (10.1016/j.apenergy.2020.114902_b0590) 2014; 32 Tan (10.1016/j.apenergy.2020.114902_b0245) 2017; 7 Abdelkefi (10.1016/j.apenergy.2020.114902_b0030) 2012; 70 Barrero-Gil (10.1016/j.apenergy.2020.114902_b0215) 2010; 329 Hu (10.1016/j.apenergy.2020.114902_b0325) 2019; 91 Zhang (10.1016/j.apenergy.2020.114902_b0135) 2017; 2017 Ding (10.1016/j.apenergy.2020.114902_b0315) 2020; 196 Kong (10.1016/j.apenergy.2020.114902_b0600) 2018 10.1016/j.apenergy.2020.114902_b0410 10.1016/j.apenergy.2020.114902_b0015 Boccalero (10.1016/j.apenergy.2020.114902_b0540) 2017; 199 Yang (10.1016/j.apenergy.2020.114902_b0345) 2019 Yan (10.1016/j.apenergy.2020.114902_b0235) 2018; 62 Tang (10.1016/j.apenergy.2020.114902_b0385) 2018; 76 10.1016/j.apenergy.2020.114902_b0375 Sun (10.1016/j.apenergy.2020.114902_b0565) 2018; 8 Tan (10.1016/j.apenergy.2020.114902_b0335) 2017; 131 Phan (10.1016/j.apenergy.2020.114902_b0560) 2017; 33 Hu (10.1016/j.apenergy.2020.114902_b0445) 2018; 162 Hu (10.1016/j.apenergy.2020.114902_b0145) 2020; 198 Tang (10.1016/j.apenergy.2020.114902_b0220) 2014; 20 Chizfahm (10.1016/j.apenergy.2020.114902_b0485) 2018; 121 10.1016/j.apenergy.2020.114902_b0520 10.1016/j.apenergy.2020.114902_b0400 Zhu (10.1016/j.apenergy.2020.114902_b0170) 2018; 212 10.1016/j.apenergy.2020.114902_b0405 10.1016/j.apenergy.2020.114902_b0480 Tran (10.1016/j.apenergy.2020.114902_b0045) 2018; 127 Song (10.1016/j.apenergy.2020.114902_b0110) 2017; 111 Wang (10.1016/j.apenergy.2020.114902_b0310) 2019; 181 McCarthy (10.1016/j.apenergy.2020.114902_b0365) 2016; 361 Olivieri (10.1016/j.apenergy.2020.114902_b0395) 2017; 199 Tummala (10.1016/j.apenergy.2020.114902_b0470) 2016; 56 10.1016/j.apenergy.2020.114902_b0355 Hu (10.1016/j.apenergy.2020.114902_b0320) 2016; 108 Hu (10.1016/j.apenergy.2020.114902_b0305) 2018; 226 Zhao (10.1016/j.apenergy.2020.114902_b0360) 2018; 212 10.1016/j.apenergy.2020.114902_b0195 Pigolotti (10.1016/j.apenergy.2020.114902_b0390) 2017; 404 Zhang (10.1016/j.apenergy.2020.114902_b0105) 2017; 111 Aquino (10.1016/j.apenergy.2020.114902_b0545) 2017; 207 10.1016/j.apenergy.2020.114902_b0595 10.1016/j.apenergy.2020.114902_b0475 Armandei (10.1016/j.apenergy.2020.114902_b0070) 2016; 40 10.1016/j.apenergy.2020.114902_b0080 |
References_xml | – volume: 111 year: 2017 ident: b0110 article-title: Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate publication-title: Appl Phys Lett – volume: 116 year: 2020 ident: b0055 article-title: Synchronization extension using a bistable galloping oscillator for enhanced power generation from concurrent wind and base vibration publication-title: Appl Phys Lett – year: 2019 ident: b0515 article-title: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies publication-title: Energy – volume: 112 year: 2018 ident: b0275 article-title: Improving the performance of galloping micro-power generators by passively manipulating the trailing edge publication-title: Appl Phys Lett – volume: 2018 start-page: 1 year: 2018 end-page: 14 ident: b0455 article-title: Broadening band of wind speed for aeroelastic energy scavenging of a cylinder through buffeting in the wakes of a squared prism publication-title: Shock Vib – reference: Javed U, Abdelmoula H, Abdelkefi A. On the nonlinear dynamics and performance of hybrid piezoelectric-inductive energy harvesters subjected to vortex-induced vibrations. In: 25th AIAA/AHS adaptive structures conference; 2017. – volume: 59 start-page: 580 year: 2018 end-page: 591 ident: b0285 article-title: Nonlinear analysis and characteristics of inductive galloping energy harvesters publication-title: Commun Nonlinear Sci Numer Simul – volume: 70 start-page: 390 year: 2017 end-page: 402 ident: b0525 article-title: Energy harvesting from galloping of prisms: A wind tunnel experiment publication-title: J Fluids Struct – reference: Pasquato L, Bonotto N, Tosato P et al. An optimized wind energy harvester for remote pollution monitoring. In: Environmental, energy, and structural monitoring systems (EESMS), 2017 IEEE workshop on. IEEE; 2017. – volume: 158 start-page: 371 year: 2018 end-page: 383 ident: b0510 article-title: Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts publication-title: Energy Build – volume: 131 start-page: 516 year: 2017 end-page: 526 ident: b0335 article-title: Broadband design of hybrid piezoelectric energy harvester publication-title: Int J Mech Sci – volume: 11 start-page: 1503 year: 2017 end-page: 1508 ident: b0575 article-title: Asymmetric arc-shaped vortex-induced electromagnetic generator for harvesting energy from low-velocity flowing water publication-title: IET Renew Power Gener – volume: 109 year: 2016 ident: b0435 article-title: A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon publication-title: Appl Phys Lett – volume: 117 year: 2015 ident: b0290 article-title: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters publication-title: J Appl Phys – volume: 199 start-page: 3428 year: 2017 end-page: 3433 ident: b0540 article-title: FLuttering energy harvester for autonomous powering (FLEHAP): a synergy between EMc and dielectric elastomers generators publication-title: Proc Eng – volume: 53 start-page: 2807 year: 2018 end-page: 2831 ident: b0535 article-title: On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter publication-title: Meccanica – volume: 40 start-page: 1788 year: 2018 end-page: 1797 ident: b0010 article-title: Efficient study of a coarse structure number on the bluff body during the harvesting of wind energy publication-title: Energy Sources Part A – reference: Javed U, Abdelkefi A. Nonlinear analysis of hybrid galloping energy harvesting system integrated with a nonlinear torsional spring. In: 2018 Fluid dynamics conference; 2018. – year: 2018 ident: b0075 article-title: Energy harvesting from aerodynamic instabilities: current prospect and future trends publication-title: IOP conference series: materials science and engineering – year: 2018 ident: b0095 article-title: Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder publication-title: Europ J Mech – B/Fluids – volume: 261 start-page: 117 year: 2017 end-page: 129 ident: b0255 article-title: Comparison of four electrical interfacing circuits in wind energy harvesting publication-title: Sens Actuators, A – volume: 13 start-page: 91 year: 2020 ident: b0270 article-title: Enhance of energy harvesting from transverse galloping by actively rotating the galloping body publication-title: Energies – volume: 13 start-page: 71 year: 2020 ident: b0065 article-title: Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics publication-title: Energies – volume: 33 start-page: 476 year: 2017 end-page: 484 ident: b0560 article-title: Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy publication-title: Nano Energy – volume: 394 start-page: 321 year: 2017 end-page: 332 ident: b0185 article-title: Experimental energy harvesting from fluid flow by using two vibrating masses publication-title: J Sound Vib – reference: Yun G, Oh D, Kim Y et al. Mechanical feasibility of airfoil shaped energy harvesting device based on aerodynamic instability phenomena. In: ASME 2017 conference on information storage and processing systems 2017. American Society of Mechanical Engineers. – volume: 14 start-page: 52 year: 2016 end-page: 67 ident: b0425 article-title: Marine current energy extraction through buffeting publication-title: Int J Mar Energy – volume: 199 start-page: 3474 year: 2017 end-page: 3479 ident: b0395 article-title: FLuttering Energy Harvester for Autonomous Powering (FLEHAP): aeroelastic characterisation and preliminary performance evaluation publication-title: Proc Eng – volume: 207 start-page: 61 year: 2017 end-page: 77 ident: b0545 article-title: Evaluation of the integration of the Wind-Induced Flutter Energy Harvester (WIFEH) into the built environment: experimental and numerical analysis publication-title: Appl Energy – volume: 165 start-page: 1259 year: 2018 end-page: 1281 ident: b0580 article-title: Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips publication-title: Energy – volume: 80 start-page: 77 year: 2018 end-page: 93 ident: b0190 article-title: Vortex-induced vibrations of cylinders bent by the flow publication-title: J Fluids Struct – year: 2019 ident: b0345 article-title: Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping publication-title: Smart Mater Struct – volume: 111 year: 2017 ident: b0105 article-title: Improving the performance of aeroelastic energy harvesters by an interference cylinder publication-title: Appl Phys Lett – volume: 56 start-page: 1351 year: 2016 end-page: 1371 ident: b0470 article-title: A review on small scale wind turbines publication-title: Renew Sustain Energy Rev – volume: 155 start-page: 392 year: 2018 end-page: 410 ident: b0605 article-title: Modelling of a hydrokinetic energy converter for flow-induced vibration based on experimental data publication-title: Ocean Eng – volume: 8 year: 2018 ident: b0230 article-title: Galloping-based energy harvester considering enclosure effect publication-title: AIP Adv – volume: 112 year: 2018 ident: b0300 article-title: Y-type three-blade bluff body for wind energy harvesting publication-title: Appl Phys Lett – volume: 198 year: 2020 ident: b0145 article-title: Predicting wind pressures around circular cylinders using machine learning techniques publication-title: J Wind Eng Ind Aerodyn – volume: 172 start-page: 196 year: 2018 end-page: 211 ident: b0140 article-title: Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression publication-title: J Wind Eng Ind Aerodyn – volume: 404 start-page: 116 year: 2017 end-page: 140 ident: b0390 article-title: Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators publication-title: J Sound Vib – year: 2020 ident: b0035 article-title: Galloping triboelectric nanogenerator for energy harvesting under low wind speed publication-title: Nano Energy – volume: 26 year: 2017 ident: b0240 article-title: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode publication-title: Smart Mater Struct – volume: 60 start-page: 203 year: 2017 end-page: 209 ident: b0380 article-title: Stability analysis on an aeroelastic system for design of a flutter energy harvester publication-title: Aerosp Sci Technol – volume: 82 start-page: 894 year: 2018 end-page: 900 ident: b0005 article-title: Solar energy: potential and future prospects publication-title: Renew Sustain Energy Rev – volume: 130 year: 2008 ident: b0020 article-title: VIVACE (Vortex Induced Vibration Aquatic Clean Energy): a new concept in generation of clean and renewable energy from fluid flow publication-title: J Offshore Mech Arct Eng – reference: Bunzel LO, Franzini GR. Numerical studies on piezoelectric energy harvesting from vortex-induced vibrations considering cross-wise and in-line oscillations. In: Proceedings of the 9th European nonlinear dynamics conference-ENOC2017; 2017. – reference: Santos CR, Marques FD. Energy harvesting from stall-induced oscillations of pitching airfoils at high-subsonic regime. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2018. – reference: Pantazopoulos MS. Vortex-induced vibration parameters: critical review. New York, NY (United States): American Society of Mechanical Engineers; 1994. – reference: Villarreal DJY, SL VB. VIV resonant wind generators; 2018. – volume: 22 start-page: 1093 year: 2017 end-page: 1103 ident: b0260 article-title: Synergy of wind energy harvesting and synchronized switch harvesting interface circuit publication-title: IEEE/ASME Trans Mechatron – volume: 108 year: 2016 ident: b0320 article-title: Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism publication-title: Appl Phys Lett – volume: 89 start-page: 2461 year: 2017 end-page: 2479 ident: b0330 article-title: Investigations on the presence of electrical frequency on the characteristics of energy harvesters under base and galloping excitations publication-title: Nonlinear Dyn – reference: Naseer R, Abdelkefi A, Dai H et al. Characteristics and comparative analysis of monostable and bistable piezomagnetoelastic energy harvesters under vortex-induced vibrations. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2018. – reference: Grainger L, Rezgui D, Barton D. Optimisation of an aeroelastic flutter energy harvester. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2017. – volume: 2017 start-page: 1 year: 2017 end-page: 18 ident: b0135 article-title: Study on fluid-induced vibration power harvesting of square columns under different attack angles publication-title: Geofluids – volume: 115 year: 2019 ident: b0295 article-title: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting publication-title: Appl Phys Lett – reference: Zhao L. Performance enhancement of an aeroelastic energy harvester for efficient power harvesting from concurrent wind flows and base vibrations. In: 2018 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE; 2018. – volume: 163 year: 2019 ident: b0440 article-title: Wideband PZT energy harvesting from the wake of a bluff body in varying flow speeds publication-title: Int J Mech Sci – volume: 127 start-page: 162 year: 2018 end-page: 185 ident: b0045 article-title: Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement publication-title: Int J Eng Sci – volume: 27 year: 2017 ident: b0555 article-title: Aeroelastic flutter energy harvesters self-polarized by triboelectric effects publication-title: Smart Mater Struct – volume: 70 start-page: 193 year: 2017 end-page: 214 ident: b0610 article-title: Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies publication-title: Renew Sustain Energy Rev – volume: 77 start-page: 196 year: 2018 end-page: 212 ident: b0200 article-title: A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom publication-title: J Fluids Struct – volume: 110 year: 2017 ident: b0500 article-title: Enhanced piezoelectric wind energy harvesting based on a buckled beam publication-title: Appl Phys Lett – volume: 70 start-page: 1355 year: 2012 end-page: 1363 ident: b0030 article-title: Power harvesting from transverse galloping of square cylinder publication-title: Nonlinear Dyn – volume: 172 start-page: 164 year: 2018 end-page: 169 ident: b0115 article-title: Energy harvesting from different aeroelastic instabilities of a square cylinder publication-title: J Wind Eng Ind Aerodyn – volume: 421 start-page: 61 year: 2018 end-page: 78 ident: b0265 article-title: Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits publication-title: J Sound Vib – volume: 165 start-page: 949 year: 2018 end-page: 964 ident: b0130 article-title: Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion publication-title: Energy – volume: 329 start-page: 2873 year: 2010 end-page: 2883 ident: b0215 article-title: Energy harvesting from transverse galloping publication-title: J Sound Vib – volume: 76 start-page: 14 year: 2018 end-page: 36 ident: b0385 article-title: Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate publication-title: J Fluids Struct – volume: 199 year: 2019 ident: b0040 article-title: Harvest wind energy from a vibro-impact DEG embedded into a bluff body publication-title: Energy Convers Manage – volume: 32 start-page: 960 year: 2014 end-page: 982 ident: b0590 article-title: High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: a case study at coast of New Jersey, USA publication-title: Renew Sustain Energy Rev – volume: 39 start-page: 412 year: 2014 end-page: 425 ident: b0585 article-title: Potential sites for tidal power generation: a thorough search at coast of New Jersey, USA publication-title: Renew Sustain Energy Rev – volume: 19 start-page: 123 year: 2004 end-page: 140 ident: b0085 article-title: Coupling of structure and wake oscillators in vortex-induced vibrations publication-title: J Fluids Struct – volume: 62 start-page: 90 year: 2018 end-page: 116 ident: b0235 article-title: Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions publication-title: Commun Nonlinear Sci Numer Simul – volume: 181 start-page: 645 year: 2019 end-page: 652 ident: b0310 article-title: High-performance piezoelectric wind energy harvester with Y-shaped attachments publication-title: Energy Convers Manage – reference: Trade DO, Industry U. Energy white paper; our energy future: creating a low carbon economy. London: TheStationeryOffice; 2003. – volume: 194 start-page: 212 year: 2017 end-page: 222 ident: b0530 article-title: Harvesting ambient wind energy with an inverted piezoelectric flag publication-title: Appl Energy – volume: 408 start-page: 210 year: 2017 end-page: 219 ident: b0165 article-title: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations publication-title: J Sound Vib – volume: 226 start-page: 682 year: 2018 end-page: 689 ident: b0305 article-title: Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments publication-title: Appl Energy – volume: 26 year: 2017 ident: b0250 article-title: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits publication-title: Smart Mater Struct – volume: 212 start-page: 233 year: 2018 end-page: 243 ident: b0360 article-title: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting publication-title: Appl Energy – volume: 20 start-page: 834 year: 2014 end-page: 844 ident: b0220 article-title: Equivalent circuit representation and analysis of galloping-based wind energy harvesting publication-title: IEEE/ASME Trans Mechatron – volume: 196 year: 2020 ident: b0315 article-title: Performance improvement of aeroelastic energy harvesters with two symmetrical fin-shaped rods publication-title: J Wind Eng Ind Aerodyn – volume: 142 start-page: 321 year: 2017 end-page: 327 ident: b0550 article-title: A study on the wind-induced flutter energy harvester (WIFEH) integration into buildings publication-title: Energy Proc – volume: 144 start-page: 218 year: 2018 end-page: 231 ident: b0125 article-title: Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM publication-title: Energy – volume: 212 start-page: 304 year: 2018 end-page: 321 ident: b0170 article-title: CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller publication-title: Appl Energy – volume: 40 start-page: 2903 year: 2018 end-page: 2913 ident: b0100 article-title: Energy harvesting from flow-induced vibration: a lumped parameter model publication-title: Energy Sources Part A – volume: 400 start-page: 213 year: 2017 end-page: 226 ident: b0225 article-title: Impacts of the aerodynamic force representation on the stability and performance of a galloping-based energy harvester publication-title: J Sound Vib – reference: Zhao J, Zhang H, Su F et al. A novel model of piezoelectric-electromagnetic hybrid energy harvester based on vortex-induced vibration. In: Green energy and applications (ICGEA), international conference on. IEEE; 2017. – volume: 121 start-page: 632 year: 2018 end-page: 643 ident: b0485 article-title: Dynamic modeling of vortex induced vibration wind turbines publication-title: Renew Energy – volume: 165 start-page: 55 year: 2018 end-page: 68 ident: b0460 article-title: Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation publication-title: Ocean Eng – volume: 162 start-page: 145 year: 2018 end-page: 158 ident: b0445 article-title: Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration publication-title: Energy Convers Manage – reference: Cajas JC, Houzeaux G, Yáñez DJ et al. SHAPE project Vortex Bladeless: Parallel multi-code coupling for fluid-structure interaction in wind energy generation; 2016. – year: 2018 ident: b0570 article-title: Energy harvesting utilizing reciprocating flow-induced torsional vibration on a T-shaped cantilever beam publication-title: Smart Mater Struct – volume: 40 start-page: 833 year: 2016 end-page: 839 ident: b0070 article-title: Hydroelastic buffeting assessment over a vertically hinged flat plate publication-title: Exp Tech – volume: 361 start-page: 355 year: 2016 end-page: 377 ident: b0365 article-title: Fluttering energy harvesters in the wind: a review publication-title: J Sound Vib – volume: 24 start-page: 3555 year: 2017 end-page: 3568 ident: b0120 article-title: Downstream flat plate as the flow-induced vibration enhancer for energy harvesting publication-title: J Vib Control – volume: 2009 start-page: 368 year: 2009 end-page: 371 ident: b0210 article-title: On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester publication-title: Proc Power MEMS – volume: 255 year: 2019 ident: b0060 article-title: Mechanical modulations for enhancing energy harvesting: Principles, methods and applications publication-title: Appl Energy – year: 2020 ident: b0280 article-title: Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester publication-title: Acta Mech Sinica – reference: He X, Shang Z, Rao Y et al. Experimental investigation of a micromachined piezoelectric energy harvester with low critical wind speed. In Micro-nano technology Xvii-xviii-proceedings of the 17th-18th annual conference and 6th-7th international conference of the Chinese society of micro/nano technology. World Scientific; 2017. – volume: 142 start-page: 29 year: 2017 end-page: 36 ident: b0620 article-title: Innovative on-shore system recovering energy from tidal currents publication-title: Energy Proc – volume: 8 year: 2018 ident: b0450 article-title: Dual serial vortex-induced energy harvesting system for enhanced energy harvesting publication-title: AIP Adv – volume: 28 start-page: 12LT02 year: 2019 ident: b0050 article-title: A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations publication-title: Smart Mater Struct – volume: 91 year: 2019 ident: b0325 article-title: Wind energy harvesting performance of tandem circular cylinders with triangular protrusions publication-title: J Fluids Struct – start-page: 1 year: 2018 end-page: 18 ident: b0600 article-title: Renewable energy harvesting from water flow publication-title: Int J Environ Stud – reference: . – volume: 114 start-page: 259 year: 2019 end-page: 274 ident: b0370 article-title: Simultaneous finite element analysis of circuit-integrated piezoelectric energy harvesting from fluid-structure interaction publication-title: Mech Syst Sig Process – volume: 30 year: 2018 ident: b0090 article-title: Vortex-induced vibration of finite-length circular cylinders with spanwise free-ends: broadening the lock-in envelope publication-title: Phys Fluids – volume: 41 start-page: 9 year: 2019 ident: b0415 article-title: A novel design for an adaptive aeroelastic energy harvesting system: flutter and power analysis publication-title: J Braz Soc Mech Sci Eng – volume: 29 start-page: 479 year: 2017 end-page: 495 ident: b0420 article-title: Numerical simulations of aeroelastic instabilities to optimize the performance of flutter-based electromagnetic energy harvesters publication-title: J Intell Mater Syst Struct – volume: 2017 start-page: 1 year: 2017 end-page: 31 ident: b0205 article-title: Toward small-scale wind energy harvesting: design, enhancement, performance comparison, and applicability publication-title: Shock Vib – volume: 9 start-page: 2049 year: 2019 ident: b0150 article-title: Automatic identification of bridge vortex-induced vibration using random decrement method publication-title: Appl Sci – volume: 7 year: 2017 ident: b0245 article-title: Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters publication-title: AIP Adv – volume: 8 year: 2018 ident: b0565 article-title: Energy harvesting from water flow in open channel with macro fiber composite publication-title: AIP Adv – volume: 224 start-page: 717 year: 2018 end-page: 730 ident: b0625 article-title: Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents publication-title: Appl Energy – volume: 199 start-page: 3444 year: 2017 end-page: 3449 ident: b0505 article-title: Piezoelectric vibration energy harvesting from airflow in HVAC (Heating Ventilation and Air Conditioning) systems publication-title: Proc Eng – volume: 279 start-page: 467 year: 2018 end-page: 473 ident: b0495 article-title: A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins publication-title: Sens Actuators, A – year: 2018 ident: b0350 article-title: Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections publication-title: Energy – reference: Facchinetti M, De Langre E, Fontaine E et al. VIV of two cylinders in tandem arrangement: analytical and numerical modeling. In: The twelfth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers; 2002. – volume: 27 year: 2018 ident: b0490 article-title: Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine publication-title: Smart Mater Struct – reference: Blevins RD. Flow-induced vibration; 1990. – volume: 156 start-page: 435 year: 2019 end-page: 445 ident: b0340 article-title: Development of the optimal bluff body for wind energy harvesting using the synergetic effect of coupled vortex induced vibration and galloping phenomena publication-title: Int J Mech Sci – volume: 144 start-page: 218 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0125 article-title: Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM publication-title: Energy doi: 10.1016/j.energy.2017.11.153 – volume: 27 issue: 7 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0490 article-title: Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aac0b6 – volume: 116 issue: 5 year: 2020 ident: 10.1016/j.apenergy.2020.114902_b0055 article-title: Synchronization extension using a bistable galloping oscillator for enhanced power generation from concurrent wind and base vibration publication-title: Appl Phys Lett doi: 10.1063/1.5134948 – volume: 91 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0325 article-title: Wind energy harvesting performance of tandem circular cylinders with triangular protrusions publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2019.102780 – ident: 10.1016/j.apenergy.2020.114902_b0355 doi: 10.1109/AIM.2018.8452411 – volume: 162 start-page: 145 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0445 article-title: Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.02.026 – volume: 172 start-page: 196 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0140 article-title: Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2017.10.022 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0205 article-title: Toward small-scale wind energy harvesting: design, enhancement, performance comparison, and applicability publication-title: Shock Vib doi: 10.1155/2017/4350437 – ident: 10.1016/j.apenergy.2020.114902_b0595 – volume: 226 start-page: 682 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0305 article-title: Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.056 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0455 article-title: Broadening band of wind speed for aeroelastic energy scavenging of a cylinder through buffeting in the wakes of a squared prism publication-title: Shock Vib – volume: 142 start-page: 321 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0550 article-title: A study on the wind-induced flutter energy harvester (WIFEH) integration into buildings publication-title: Energy Proc doi: 10.1016/j.egypro.2017.12.051 – volume: 9 start-page: 2049 issue: 10 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0150 article-title: Automatic identification of bridge vortex-induced vibration using random decrement method publication-title: Appl Sci doi: 10.3390/app9102049 – volume: 117 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2020.114902_b0290 article-title: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters publication-title: J Appl Phys doi: 10.1063/1.4906463 – volume: 115 issue: 19 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0295 article-title: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting publication-title: Appl Phys Lett doi: 10.1063/1.5126476 – volume: 400 start-page: 213 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0225 article-title: Impacts of the aerodynamic force representation on the stability and performance of a galloping-based energy harvester publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.04.013 – ident: 10.1016/j.apenergy.2020.114902_b0180 – volume: 142 start-page: 29 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0620 article-title: Innovative on-shore system recovering energy from tidal currents publication-title: Energy Proc doi: 10.1016/j.egypro.2017.12.006 – volume: 112 issue: 8 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0275 article-title: Improving the performance of galloping micro-power generators by passively manipulating the trailing edge publication-title: Appl Phys Lett doi: 10.1063/1.5016102 – ident: 10.1016/j.apenergy.2020.114902_b0400 doi: 10.1115/ISPS2017-5456 – ident: 10.1016/j.apenergy.2020.114902_b0080 – volume: 158 start-page: 371 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0510 article-title: Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts publication-title: Energy Build doi: 10.1016/j.enbuild.2017.09.099 – ident: 10.1016/j.apenergy.2020.114902_b0375 doi: 10.2514/6.2018-0463 – volume: 53 start-page: 2807 issue: 11–12 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0535 article-title: On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter publication-title: Meccanica doi: 10.1007/s11012-018-0875-6 – volume: 198 year: 2020 ident: 10.1016/j.apenergy.2020.114902_b0145 article-title: Predicting wind pressures around circular cylinders using machine learning techniques publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2020.104099 – volume: 181 start-page: 645 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0310 article-title: High-performance piezoelectric wind energy harvester with Y-shaped attachments publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.12.034 – volume: 41 start-page: 9 issue: 1 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0415 article-title: A novel design for an adaptive aeroelastic energy harvesting system: flutter and power analysis publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-018-1509-6 – volume: 13 start-page: 71 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2020.114902_b0065 article-title: Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics publication-title: Energies doi: 10.3390/en13010071 – volume: 26 issue: 3 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0240 article-title: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa5e41 – ident: 10.1016/j.apenergy.2020.114902_b0015 – volume: 394 start-page: 321 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0185 article-title: Experimental energy harvesting from fluid flow by using two vibrating masses publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.01.037 – ident: 10.1016/j.apenergy.2020.114902_b0405 doi: 10.2514/6.2017-1120 – year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0345 article-title: Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab4216 – volume: 76 start-page: 14 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0385 article-title: Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2017.09.007 – volume: 165 start-page: 1259 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0580 article-title: Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips publication-title: Energy doi: 10.1016/j.energy.2018.10.109 – volume: 196 year: 2020 ident: 10.1016/j.apenergy.2020.114902_b0315 article-title: Performance improvement of aeroelastic energy harvesters with two symmetrical fin-shaped rods publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2019.104051 – volume: 421 start-page: 61 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0265 article-title: Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.11.019 – ident: 10.1016/j.apenergy.2020.114902_b0615 – volume: 28 start-page: 12LT02 issue: 12 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0050 article-title: A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab5249 – ident: 10.1016/j.apenergy.2020.114902_b0195 – volume: 130 issue: 4 year: 2008 ident: 10.1016/j.apenergy.2020.114902_b0020 article-title: VIVACE (Vortex Induced Vibration Aquatic Clean Energy): a new concept in generation of clean and renewable energy from fluid flow publication-title: J Offshore Mech Arct Eng doi: 10.1115/1.2957913 – volume: 127 start-page: 162 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0045 article-title: Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement publication-title: Int J Eng Sci doi: 10.1016/j.ijengsci.2018.02.003 – ident: 10.1016/j.apenergy.2020.114902_b0025 – volume: 13 start-page: 91 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2020.114902_b0270 article-title: Enhance of energy harvesting from transverse galloping by actively rotating the galloping body publication-title: Energies doi: 10.3390/en13010091 – volume: 22 start-page: 1093 issue: 2 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0260 article-title: Synergy of wind energy harvesting and synchronized switch harvesting interface circuit publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2016.2630732 – volume: 89 start-page: 2461 issue: 4 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0330 article-title: Investigations on the presence of electrical frequency on the characteristics of energy harvesters under base and galloping excitations publication-title: Nonlinear Dyn doi: 10.1007/s11071-017-3597-8 – volume: 172 start-page: 164 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0115 article-title: Energy harvesting from different aeroelastic instabilities of a square cylinder publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2017.10.031 – volume: 40 start-page: 2903 issue: 24 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0100 article-title: Energy harvesting from flow-induced vibration: a lumped parameter model publication-title: Energy Sources Part A doi: 10.1080/15567036.2018.1513100 – volume: 111 issue: 7 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0105 article-title: Improving the performance of aeroelastic energy harvesters by an interference cylinder publication-title: Appl Phys Lett doi: 10.1063/1.4999765 – volume: 121 start-page: 632 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0485 article-title: Dynamic modeling of vortex induced vibration wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2018.01.038 – volume: 155 start-page: 392 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0605 article-title: Modelling of a hydrokinetic energy converter for flow-induced vibration based on experimental data publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.02.030 – volume: 112 issue: 23 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0300 article-title: Y-type three-blade bluff body for wind energy harvesting publication-title: Appl Phys Lett doi: 10.1063/1.5029415 – volume: 404 start-page: 116 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0390 article-title: Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.05.024 – volume: 27 issue: 1 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0555 article-title: Aeroelastic flutter energy harvesters self-polarized by triboelectric effects publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa8b1e – ident: 10.1016/j.apenergy.2020.114902_b0475 – year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0075 article-title: Energy harvesting from aerodynamic instabilities: current prospect and future trends – volume: 19 start-page: 123 issue: 2 year: 2004 ident: 10.1016/j.apenergy.2020.114902_b0085 article-title: Coupling of structure and wake oscillators in vortex-induced vibrations publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2003.12.004 – volume: 70 start-page: 193 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0610 article-title: Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.11.202 – volume: 14 start-page: 52 year: 2016 ident: 10.1016/j.apenergy.2020.114902_b0425 article-title: Marine current energy extraction through buffeting publication-title: Int J Mar Energy doi: 10.1016/j.ijome.2016.02.005 – volume: 2009 start-page: 368 year: 2009 ident: 10.1016/j.apenergy.2020.114902_b0210 article-title: On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester publication-title: Proc Power MEMS – start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0600 article-title: Renewable energy harvesting from water flow publication-title: Int J Environ Stud – volume: 165 start-page: 949 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0130 article-title: Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion publication-title: Energy doi: 10.1016/j.energy.2018.09.138 – year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0095 article-title: Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder publication-title: Europ J Mech – B/Fluids – volume: 30 issue: 10 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0090 article-title: Vortex-induced vibration of finite-length circular cylinders with spanwise free-ends: broadening the lock-in envelope publication-title: Phys Fluids doi: 10.1063/1.5042774 – volume: 111 issue: 22 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0110 article-title: Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate publication-title: Appl Phys Lett doi: 10.1063/1.5008918 – volume: 279 start-page: 467 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0495 article-title: A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins publication-title: Sens Actuators, A doi: 10.1016/j.sna.2018.06.059 – volume: 109 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2020.114902_b0435 article-title: A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon publication-title: Appl Phys Lett doi: 10.1063/1.4959181 – volume: 329 start-page: 2873 issue: 14 year: 2010 ident: 10.1016/j.apenergy.2020.114902_b0215 article-title: Energy harvesting from transverse galloping publication-title: J Sound Vib doi: 10.1016/j.jsv.2010.01.028 – ident: 10.1016/j.apenergy.2020.114902_b0155 doi: 10.2514/6.2018-1959 – ident: 10.1016/j.apenergy.2020.114902_b0175 doi: 10.2514/6.2018-3717 – volume: 261 start-page: 117 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0255 article-title: Comparison of four electrical interfacing circuits in wind energy harvesting publication-title: Sens Actuators, A doi: 10.1016/j.sna.2017.04.035 – volume: 39 start-page: 412 year: 2014 ident: 10.1016/j.apenergy.2020.114902_b0585 article-title: Potential sites for tidal power generation: a thorough search at coast of New Jersey, USA publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.051 – volume: 199 start-page: 3474 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0395 article-title: FLuttering Energy Harvester for Autonomous Powering (FLEHAP): aeroelastic characterisation and preliminary performance evaluation publication-title: Proc Eng doi: 10.1016/j.proeng.2017.09.456 – ident: 10.1016/j.apenergy.2020.114902_b0430 – volume: 165 start-page: 55 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0460 article-title: Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.07.042 – volume: 20 start-page: 834 issue: 2 year: 2014 ident: 10.1016/j.apenergy.2020.114902_b0220 article-title: Equivalent circuit representation and analysis of galloping-based wind energy harvesting publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2014.2308182 – volume: 56 start-page: 1351 year: 2016 ident: 10.1016/j.apenergy.2020.114902_b0470 article-title: A review on small scale wind turbines publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.027 – volume: 163 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0440 article-title: Wideband PZT energy harvesting from the wake of a bluff body in varying flow speeds publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.105135 – volume: 70 start-page: 390 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0525 article-title: Energy harvesting from galloping of prisms: A wind tunnel experiment publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2017.02.006 – volume: 29 start-page: 479 issue: 4 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0420 article-title: Numerical simulations of aeroelastic instabilities to optimize the performance of flutter-based electromagnetic energy harvesters publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X17711784 – volume: 114 start-page: 259 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0370 article-title: Simultaneous finite element analysis of circuit-integrated piezoelectric energy harvesting from fluid-structure interaction publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2018.05.016 – volume: 131 start-page: 516 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0335 article-title: Broadband design of hybrid piezoelectric energy harvester publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2017.07.028 – volume: 33 start-page: 476 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0560 article-title: Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.005 – volume: 8 issue: 7 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0450 article-title: Dual serial vortex-induced energy harvesting system for enhanced energy harvesting publication-title: AIP Adv doi: 10.1063/1.5038884 – volume: 199 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0040 article-title: Harvest wind energy from a vibro-impact DEG embedded into a bluff body publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.111993 – volume: 408 start-page: 210 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0165 article-title: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.07.029 – volume: 8 issue: 9 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0565 article-title: Energy harvesting from water flow in open channel with macro fiber composite publication-title: AIP Adv doi: 10.1063/1.5035383 – volume: 60 start-page: 203 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0380 article-title: Stability analysis on an aeroelastic system for design of a flutter energy harvester publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2016.11.011 – volume: 8 issue: 9 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0230 article-title: Galloping-based energy harvester considering enclosure effect publication-title: AIP Adv doi: 10.1063/1.5043586 – year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0350 article-title: Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections publication-title: Energy – volume: 108 issue: 12 year: 2016 ident: 10.1016/j.apenergy.2020.114902_b0320 article-title: Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism publication-title: Appl Phys Lett doi: 10.1063/1.4944555 – volume: 212 start-page: 304 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0170 article-title: CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.059 – volume: 24 start-page: 3555 issue: 16 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0120 article-title: Downstream flat plate as the flow-induced vibration enhancer for energy harvesting publication-title: J Vib Control doi: 10.1177/1077546317707877 – year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0570 article-title: Energy harvesting utilizing reciprocating flow-induced torsional vibration on a T-shaped cantilever beam publication-title: Smart Mater Struct – volume: 70 start-page: 1355 issue: 2 year: 2012 ident: 10.1016/j.apenergy.2020.114902_b0030 article-title: Power harvesting from transverse galloping of square cylinder publication-title: Nonlinear Dyn doi: 10.1007/s11071-012-0538-4 – volume: 82 start-page: 894 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0005 article-title: Solar energy: potential and future prospects publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.09.094 – volume: 11 start-page: 1503 issue: 12 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0575 article-title: Asymmetric arc-shaped vortex-induced electromagnetic generator for harvesting energy from low-velocity flowing water publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2016.0612 – volume: 194 start-page: 212 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0530 article-title: Harvesting ambient wind energy with an inverted piezoelectric flag publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.016 – volume: 224 start-page: 717 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0625 article-title: Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.05.029 – volume: 59 start-page: 580 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0285 article-title: Nonlinear analysis and characteristics of inductive galloping energy harvesters publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2017.12.009 – volume: 77 start-page: 196 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0200 article-title: A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2017.12.007 – year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0515 article-title: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies publication-title: Energy – volume: 255 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0060 article-title: Mechanical modulations for enhancing energy harvesting: Principles, methods and applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113871 – volume: 207 start-page: 61 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0545 article-title: Evaluation of the integration of the Wind-Induced Flutter Energy Harvester (WIFEH) into the built environment: experimental and numerical analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.041 – ident: 10.1016/j.apenergy.2020.114902_b0410 doi: 10.1109/EESMS.2017.8052693 – year: 2020 ident: 10.1016/j.apenergy.2020.114902_b0035 article-title: Galloping triboelectric nanogenerator for energy harvesting under low wind speed publication-title: Nano Energy – volume: 40 start-page: 833 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2020.114902_b0070 article-title: Hydroelastic buffeting assessment over a vertically hinged flat plate publication-title: Exp Tech doi: 10.1007/s40799-016-0084-y – ident: 10.1016/j.apenergy.2020.114902_b0465 – volume: 212 start-page: 233 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0360 article-title: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.042 – volume: 40 start-page: 1788 issue: 15 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0010 article-title: Efficient study of a coarse structure number on the bluff body during the harvesting of wind energy publication-title: Energy Sources Part A doi: 10.1080/15567036.2018.1486916 – volume: 26 issue: 7 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0250 article-title: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa74f5 – volume: 361 start-page: 355 year: 2016 ident: 10.1016/j.apenergy.2020.114902_b0365 article-title: Fluttering energy harvesters in the wind: a review publication-title: J Sound Vib doi: 10.1016/j.jsv.2015.09.043 – ident: 10.1016/j.apenergy.2020.114902_b0480 – volume: 80 start-page: 77 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0190 article-title: Vortex-induced vibrations of cylinders bent by the flow publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2018.03.008 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0135 article-title: Study on fluid-induced vibration power harvesting of square columns under different attack angles publication-title: Geofluids – ident: 10.1016/j.apenergy.2020.114902_b0520 doi: 10.1142/9789813232808_0015 – volume: 32 start-page: 960 year: 2014 ident: 10.1016/j.apenergy.2020.114902_b0590 article-title: High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: a case study at coast of New Jersey, USA publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.12.041 – volume: 110 issue: 18 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0500 article-title: Enhanced piezoelectric wind energy harvesting based on a buckled beam publication-title: Appl Phys Lett doi: 10.1063/1.4982967 – volume: 199 start-page: 3444 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0505 article-title: Piezoelectric vibration energy harvesting from airflow in HVAC (Heating Ventilation and Air Conditioning) systems publication-title: Proc Eng doi: 10.1016/j.proeng.2017.09.496 – ident: 10.1016/j.apenergy.2020.114902_b0160 doi: 10.2514/6.2017-0730 – volume: 156 start-page: 435 year: 2019 ident: 10.1016/j.apenergy.2020.114902_b0340 article-title: Development of the optimal bluff body for wind energy harvesting using the synergetic effect of coupled vortex induced vibration and galloping phenomena publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.04.019 – volume: 199 start-page: 3428 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0540 article-title: FLuttering energy harvester for autonomous powering (FLEHAP): a synergy between EMc and dielectric elastomers generators publication-title: Proc Eng doi: 10.1016/j.proeng.2017.09.489 – volume: 7 issue: 3 year: 2017 ident: 10.1016/j.apenergy.2020.114902_b0245 article-title: Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters publication-title: AIP Adv doi: 10.1063/1.4979508 – year: 2020 ident: 10.1016/j.apenergy.2020.114902_b0280 article-title: Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester publication-title: Acta Mech Sinica doi: 10.1007/s10409-020-00928-5 – volume: 62 start-page: 90 year: 2018 ident: 10.1016/j.apenergy.2020.114902_b0235 article-title: Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2018.02.015 |
SSID | ssj0002120 |
Score | 2.6962898 |
SecondaryResourceType | review_article |
Snippet | •The concepts of energy harvesting from flow-induced vibrations are classified.•The methods and principles of flow-induced vibrations energy harvesting are... In this paper, the currently popular flow-induced vibrations energy harvesting technologies are reviewed, including numerical and experimental endeavors, and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114902 |
SubjectTerms | clean energy energy Energy harvester Flow-induced vibrations harvesters Hydrokinetic energy magnetic materials Michigan vibration water power Wind energy wind power |
Title | The state-of-the-art review on energy harvesting from flow-induced vibrations |
URI | https://dx.doi.org/10.1016/j.apenergy.2020.114902 https://www.proquest.com/docview/2439437874 |
Volume | 267 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IXvRgFCXig9TEa4HddrvbIyEQ1MhFSbg13ZdCyC7hoTd_u9NuV9CYcPC23bSbZjqd-WY73xShO315g0gpJ8INOhCgxB0iEkVJ7ESChxAguIlJkB3x4Zg9TLxJBfVKLoxOq7S2v7DpxlrbN20rzfZiOm0_a7Rr8L8-3XMMeZ0xX2t563Ob5uHa0ozQmejeOyzhWUstEsOwgzjRNWVzhf298oeD-mWqjf8ZnKBjCxxxt5jbKaokWQ0d7ZQTrKF6f8tag652267O0BMoAzbUIZKnBCCfzofDBWsF5xkupoff1NIU3chesWad4HSefxCI2WH1Y_yu42qjpOdoPOi_9IbE3qNAIuY4a-J3og5TMUvdKGCAN7wodhWjlKeCMh8aHJ4C8P0BTQPFQ5-nPvjxAMBYrCgLaR1VszxLLhD2VCB8ESYhY7qwnBOomKuQg5GCOJDGbgN5pfBkZIuM67su5rLMJpvJUuhSC10WQm-g9ve4RVFmY-8IUa6N_KEwEnzB3rG35WJK2E36iERlSb5ZSVcThSkYMXb5j-9foUPdKjLKrlF1vdwkN4Bd1mHTKGcTHXTvH4ejL3Em7WQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYABQQHxxkisJontOvGIqlYF2i6AxGY5iQNFKKmgwMZv5-w4FBASA1sedmTdne8R33eH0Ilt3iALJoikSQgBSh4SaTQjeZRJkUKAQI1LkB2LwQ2_uO3cLqBug4WxaZVe99c63Wlr_yTw1Aymk0lwZb1d5__b073IgtcXOWxf28bg9H2e50F9bUYYTezwLzDhh1M9NQ5iB4EidXVzpf-_8ouF-qGrnQHqr6FV7znis3px62jBlG208qWeYBtt9eawNRjq9-3zBhqBNGCHHSJVQcDnswlxuIat4KrE9fLwvX5yVTfKO2xhJ7h4rN4IBO3A_hy_2sDaSekmuun3rrsD4hspkIxH0YzEYRZynfOCZgkHh6OT5VRzxkQhGY_hRsBVAsY_YUWiRRqLIgZDnoA3lmvGU7aFWmVVmm2EOzqRsUxNyrmtLBclOhc6FaClIBBkOd1BnYZ4KvNVxm2zi0fVpJM9qIboyhJd1UTfQcHnvGldZ-PPGbLhjfomMQqMwZ9zjxtmKthO9oxEl6Z6eVbUIoUZaDG--4_vH6GlwfVoqIbn48s9tGzf1Oll-6g1e3oxB-DIzNJDJ6gf5iTu8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+state-of-the-art+review+on+energy+harvesting+from+flow-induced+vibrations&rft.jtitle=Applied+energy&rft.au=Wang%2C+Junlei&rft.au=Geng%2C+Linfeng&rft.au=Ding%2C+Lin&rft.au=Zhu%2C+Hongjun&rft.date=2020-06-01&rft.issn=0306-2619&rft.volume=267&rft.spage=114902&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_114902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |