Evaluation of adjacent and opposite current injection patterns for a wearable chest electrical impedance tomography system

Objective. Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 45; no. 2; pp. 25004 - 25020
Main Authors Yang, Lin, Gao, Zhijun, Wang, Chunchen, Wang, Hang, Dai, Jing, Liu, Yang, Qin, Yilong, Dai, Meng, Cao, Xinsheng, Zhao, Zhanqi
Format Journal Article
LanguageEnglish
Published England IOP Publishing 15.02.2024
Subjects
Online AccessGet full text
ISSN0967-3334
1361-6579
1361-6579
DOI10.1088/1361-6579/ad2215

Cover

Abstract Objective. Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers. Approach. A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters. Main results. Compared with adjacent injection, opposite injection had higher SNR ( p < 0.01), less inverse artifacts ( p < 0.01), and less boundary artifacts ( p < 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters ( p < 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics ( p < 0.05) and four EIT-based clinical parameters ( p < 0.01) between the group of 125 uA and the other grou p s. Significance. For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters.
AbstractList Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers. A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters. Compared with adjacent injection, opposite injection had higher SNR ( < 0.01), less inverse artifacts ( < 0.01), and less boundary artifacts ( < 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters ( < 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics ( < 0.05) and four EIT-based clinical parameters ( < 0.01) between the group of 125 uA and the other grou s. For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters.
Objective.Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers.Approach.A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters.Main results.Compared with adjacent injection, opposite injection had higher SNR (p< 0.01), less inverse artifacts (p< 0.01), and less boundary artifacts (p< 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters (p< 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics (p< 0.05) and four EIT-based clinical parameters (p< 0.01) between the group of 125 uA and the other groups.Significance.For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters.Objective.Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers.Approach.A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters.Main results.Compared with adjacent injection, opposite injection had higher SNR (p< 0.01), less inverse artifacts (p< 0.01), and less boundary artifacts (p< 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters (p< 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics (p< 0.05) and four EIT-based clinical parameters (p< 0.01) between the group of 125 uA and the other groups.Significance.For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters.
Objective. Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers. Approach. A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters. Main results. Compared with adjacent injection, opposite injection had higher SNR ( p < 0.01), less inverse artifacts ( p < 0.01), and less boundary artifacts ( p < 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters ( p < 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics ( p < 0.05) and four EIT-based clinical parameters ( p < 0.01) between the group of 125 uA and the other grou p s. Significance. For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters.
Author Cao, Xinsheng
Zhao, Zhanqi
Dai, Jing
Yang, Lin
Gao, Zhijun
Wang, Chunchen
Wang, Hang
Liu, Yang
Dai, Meng
Qin, Yilong
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0003-1641-2926
  surname: Yang
  fullname: Yang, Lin
  organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China
– sequence: 2
  givenname: Zhijun
  surname: Gao
  fullname: Gao, Zhijun
  organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China
– sequence: 3
  givenname: Chunchen
  surname: Wang
  fullname: Wang, Chunchen
  organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China
– sequence: 4
  givenname: Hang
  surname: Wang
  fullname: Wang, Hang
  organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China
– sequence: 5
  givenname: Jing
  surname: Dai
  fullname: Dai, Jing
  organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China
– sequence: 6
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China
– sequence: 7
  givenname: Yilong
  surname: Qin
  fullname: Qin, Yilong
  organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China
– sequence: 8
  givenname: Meng
  surname: Dai
  fullname: Dai, Meng
  organization: Air Force Medical University Department of Biomedical Engineering, Xi’an, People’s Republic of China
– sequence: 9
  givenname: Xinsheng
  surname: Cao
  fullname: Cao, Xinsheng
  organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China
– sequence: 10
  givenname: Zhanqi
  orcidid: 0000-0002-1279-2207
  surname: Zhao
  fullname: Zhao, Zhanqi
  organization: Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38266301$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLeFOyfkYw-E-iP2JkdUlRapEhc4WxNnTL1KbGM7oOWvJ9ttOSDU00hPvzeaee-MnIQYkJC3nH3grOsuudS80WrbX8IoBFcvyOavdEI2rNfbRkrZnpKzUnaMcd4J9Yqcyk5oLRnfkN_XP2FaoPoYaHQUxh1YDJVCGGlMKRZfkdol54Poww7tA5qgVsyhUBczBfoLIcMwreQ9lkpxWrHsLUzUzwlHCBZpjXP8niHd72nZl4rza_LSwVTwzeM8J98-XX-9um3uvtx8vvp419iW89rojumts1axoUM2Ssdkj5o51OC47VUv9Ppnr1zvrOjlMAw9WNG2jndb0a7KObk47k05_ljW-8zsi8VpgoBxKUb0vFNccaFX9N0jugwzjiZlP0Pem6e8VkAfAZtjKRmdsb4-pFcz-MlwZg7FmEML5tCCORazGtk_xqfdz1jeHy0-JrOLSw5rSs_hF__B04xgWmWEYUIx1po0OvkHHT6sqQ
CODEN PMEAE3
CitedBy_id crossref_primary_10_3390_s24206642
crossref_primary_10_3389_fphys_2024_1352391
crossref_primary_10_1088_1361_6579_ad68c1
Cites_doi 10.1016/j.measurement.2012.01.002
10.1109/TIM.2021.3126366
10.1109/TMI.2018.2828303
10.1088/0967-3334/29/6/S05
10.1152/ajplung.00180.2023
10.1088/0967-3334/33/5/831
10.1038/s41598-021-98793-0
10.1109/JSEN.2019.2940070
10.1088/0967-3334/34/7/823
10.1109/OJCAS.2021.3075302
10.1088/0967-3334/30/6/S03
10.1016/j.flowmeasinst.2021.102087
10.1038/s41598-018-28284-2
10.3390/s23031182
10.1088/0143-0815/8/4A/003
10.1088/1361-6579/ac0e84
10.3389/fvets.2022.946911
10.3389/fphys.2021.762791
10.1007/s10439-010-0003-9
10.1109/TMI.2012.2200904
10.1186/s13054-023-04467-w
10.1016/j.conengprac.2016.03.003
10.36548/jismac.2021.2.002
10.1093/qjmed/hcad147
10.1186/s13054-023-04360-6
10.1088/0967-3334/32/7/S01
10.1016/j.measurement.2015.09.031
10.1109/TMI.2020.3030024
10.1007/s11517-015-1274-y
10.1109/TMI.2020.3004806
10.1007/s10877-013-9536-4
10.1109/TMI.2016.2613511
10.1109/TBME.2017.2659540
10.1038/srep25951
10.21037/atm-20-7442
10.1088/1361-6579/ac7cc3
10.1088/0967-3334/27/5/S06
10.1109/ACCESS.2019.2902975
10.1088/1361-6579/aa9eb4
10.1016/j.heliyon.2023.e15910
10.1016/j.measurement.2022.110874
10.3390/s17091999
10.1109/JSEN.2018.2836336
10.1097/MCC.0000000000000936
10.1016/j.heliyon.2023.e15195
10.1109/TPAMI.2023.3240565
10.1155/2022/8565490
10.1186/1475-925X-5-28
10.1016/j.jcp.2019.109119
10.1186/s12938-018-0526-0
10.1016/j.bja.2020.05.041
10.1109/TRO.2011.2125310
10.1063/5.0022704
10.1109/JSSC.2015.2464705
10.1088/1361-6579/ab0daa
ContentType Journal Article
Copyright 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1361-6579/ad2215
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1361-6579
ExternalDocumentID 38266301
10_1088_1361_6579_ad2215
pmeaad2215
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51837011; 52077216; NSFC 61901478
  funderid: https://doi.org/10.13039/501100001809
– fundername: Equipment Program of PLA
  grantid: KJ2018-2019C132
– fundername: Natural Science Foundation of Shaanxi Province, China
  grantid: 2023-YBSF-130
– fundername: Medical Program of FMMU
  grantid: 2019ZTC01
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TSCCA
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
ID FETCH-LOGICAL-c411t-68067fcc50b8e0d3f039e60fe6af1c9592609695f9fc293bbb9ac244f18724293
IEDL.DBID O3W
ISSN 0967-3334
1361-6579
IngestDate Fri Sep 05 11:13:44 EDT 2025
Thu Apr 03 06:54:24 EDT 2025
Tue Jul 01 04:29:58 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Tue Aug 20 22:15:35 EDT 2024
Sun Aug 18 15:50:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords wearable EIT system
small current
electrical impedance tomography (EIT)
current injection pattern
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-68067fcc50b8e0d3f039e60fe6af1c9592609695f9fc293bbb9ac244f18724293
Notes PMEA-105342.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1279-2207
0000-0003-1641-2926
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6579/ad2215
PMID 38266301
PQID 2918515126
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2918515126
crossref_citationtrail_10_1088_1361_6579_ad2215
crossref_primary_10_1088_1361_6579_ad2215
pubmed_primary_38266301
iop_journals_10_1088_1361_6579_ad2215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Feb-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physiological measurement
PublicationTitleAbbrev PMEA
PublicationTitleAlternate Physiol. Meas
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Qu (pmeaad2215bib40) 2021; 11
Yang (pmeaad2215bib60) 2021a; 9
Tang (pmeaad2215bib51) 2010; 38
Tawil (pmeaad2215bib53) 2011; 27
Yang (pmeaad2215bib63) 2022; 9
Adler (pmeaad2215bib3) 2011; 32
Pennati (pmeaad2215bib39) 2023; 23
Grychtol (pmeaad2215bib16) 2012; 31
Girrbach (pmeaad2215bib14) 2020; 125
Wu (pmeaad2215bib57) 2019; 99
Fan (pmeaad2215bib11) 2020; 404
He (pmeaad2215bib20) 2023; QIM
Brabant (pmeaad2215bib8) 2022; 9
Ma (pmeaad2215bib37) 2020; 14
Hamilton (pmeaad2215bib19) 2017; 36
Liu (pmeaad2215bib34) 2013; 34
Zhao (pmeaad2215bib67) 2018; 39
Yang (pmeaad2215bib61) 2021b; 70
Teschner (pmeaad2215bib55) 2015
Li (pmeaad2215bib30) 2023; 9
Liu (pmeaad2215bib35) 2015; 53
Bera (pmeaad2215bib6) 2012; 45
Wu (pmeaad2215bib58) 2021; 2
Graham (pmeaad2215bib15) 2006; 27
Xu (pmeaad2215bib59) 2008; vol 2008
Yang (pmeaad2215bib62) 2023; 9
Huang (pmeaad2215bib24) 2015; 9435
Shiraz (pmeaad2215bib47) 2019; 40
Huang (pmeaad2215bib23) 2016; 78
Hahn (pmeaad2215bib17) 2008; 29
Adler (pmeaad2215bib4) 2021
Hong (pmeaad2215bib22) 2015; 50
Taenaka (pmeaad2215bib50) 2023; 27
Zhang (pmeaad2215bib65) 2020; 128
Soleimani (pmeaad2215bib48) 2006; 5
Stowe (pmeaad2215bib49) 2020; 2020
Frerichs (pmeaad2215bib12) 2021; 12
Rubin (pmeaad2215bib42) 2022; 28
Tuffet (pmeaad2215bib56) 2023; 27
Zhang (pmeaad2215bib64) 2010; vol 2010
Schullcke (pmeaad2215bib44) 2016; 6
Braun (pmeaad2215bib9) 2017; 64
Czaplik (pmeaad2215bib10) 2014; 28
Minseo (pmeaad2215bib38) 2017; 52
Adler (pmeaad2215bib5) 2023; vol 2023
Shi (pmeaad2215bib46) 2018; 18
Larrabee (pmeaad2215bib25) 2023; 325
Liu (pmeaad2215bib33) 2023; 45
Borgmann (pmeaad2215bib7) 2022; 43
Li (pmeaad2215bib27) 2018; 8
Adler (pmeaad2215bib2) 2009; 30
Li (pmeaad2215bib29) 2019b; 7
Rezanejad Gatabi (pmeaad2215bib41) 2022; 2022
Gaggero (pmeaad2215bib13) 2012; 33
Tarabi (pmeaad2215bib52) 2022; 83
Zhao (pmeaad2215bib66) 2022; 192
Russo (pmeaad2215bib43) 2017; 17
Hentze (pmeaad2215bib21) 2021; 42
Seagar (pmeaad2215bib45) 1987; 8
Luppi Silva (pmeaad2215bib36) 2017; 58
Leonhäuser (pmeaad2215bib26) 2018; 17
Teng (pmeaad2215bib54) 2014
Adam (pmeaad2215bib1) 2021; 2
Li (pmeaad2215bib28) 2019a; 19
Liu (pmeaad2215bib31) 2021; 40
Liu (pmeaad2215bib32) 2020; 39
Hamilton (pmeaad2215bib18) 2018; 37
References_xml – volume: 45
  start-page: 663
  year: 2012
  ident: pmeaad2215bib6
  article-title: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT)
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.01.002
– volume: 70
  start-page: 1
  year: 2021b
  ident: pmeaad2215bib61
  article-title: A wireless, low-power, and miniaturized eit system for remote and long-term monitoring of lung ventilation in the isolation ward of ICU
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3126366
– volume: 37
  start-page: 2367
  year: 2018
  ident: pmeaad2215bib18
  article-title: Deep d-bar: real-time electrical impedance tomography imaging with deep neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2828303
– volume: 29
  start-page: S51
  year: 2008
  ident: pmeaad2215bib17
  article-title: Improvements in the image quality of ventilatory tomograms by electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/29/6/S05
– volume: 325
  start-page: L638
  year: 2023
  ident: pmeaad2215bib25
  article-title: Three-dimensional electrical impedance tomography to study regional ventilation/perfusion ratios in anesthetized pigs
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00180.2023
– volume: 33
  start-page: 831
  year: 2012
  ident: pmeaad2215bib13
  article-title: Electrical impedance tomography system based on active electrodes
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/33/5/831
– volume: 11
  start-page: 19273
  year: 2021
  ident: pmeaad2215bib40
  article-title: System introduction and evaluation of the first chinese chest EIT device for ICU applications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-98793-0
– volume: 52
  start-page: 1
  year: 2017
  ident: pmeaad2215bib38
  article-title: A 1.4 m Ω-sensitivity 94 dB dynamic-range electrical impedance tomography SoC and 48-channel hub-SoC for 3D lung ventilation monitoring system
  publication-title: IEEE J. Solid-state Circuits
– volume: 19
  start-page: 12297
  year: 2019a
  ident: pmeaad2215bib28
  article-title: Adaptive $L_{p}$ regularization for electrical impedance tomography
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2940070
– year: 2015
  ident: pmeaad2215bib55
– volume: 34
  start-page: 823
  year: 2013
  ident: pmeaad2215bib34
  article-title: A novel combined regularization algorithm of total variation and Tikhonov regularization for open electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/34/7/823
– volume: 2
  start-page: 380
  year: 2021
  ident: pmeaad2215bib58
  article-title: Electrical impedance tomography for biomedical applications: circuits and systems review
  publication-title: IEEE Open J. Circuits Syst.
  doi: 10.1109/OJCAS.2021.3075302
– volume: 30
  start-page: S35
  year: 2009
  ident: pmeaad2215bib2
  article-title: GREIT: a unified approach to 2D linear EIT reconstruction of lung images
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/6/S03
– volume: vol 2023
  start-page: p 68
  year: 2023
  ident: pmeaad2215bib5
  article-title: Resolution as a function of stimulation and Measurement Patterns
– volume: 83
  year: 2022
  ident: pmeaad2215bib52
  article-title: Experimental evaluation of some current injection-voltage reading patterns in electrical impedance tomography (EIT) and comparison to simulation results—case study: large scales
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2021.102087
– volume: 8
  start-page: 10086
  year: 2018
  ident: pmeaad2215bib27
  article-title: Combing signal processing methods with algorithm priori information to produce synergetic improvements on continuous imaging of brain electrical impedance tomography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28284-2
– volume: 23
  year: 2023
  ident: pmeaad2215bib39
  article-title: Electrical impedance tomography: from the traditional design to the novel frontier of wearables
  publication-title: Sensors
  doi: 10.3390/s23031182
– volume: 8
  start-page: 13
  year: 1987
  ident: pmeaad2215bib45
  article-title: Theoretical limits to sensitivity and resolution in impedance imaging
  publication-title: Clin. Phys. Physiol. Meas.
  doi: 10.1088/0143-0815/8/4A/003
– volume: 42
  year: 2021
  ident: pmeaad2215bib21
  article-title: A model-based source separation algorithm for lung perfusion imaging using electrical impedance tomography
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac0e84
– volume: 9
  year: 2022
  ident: pmeaad2215bib8
  article-title: Thoracic electrical impedance tomography—the 2022 veterinary consensus statement
  publication-title: Front. Veterinary Sci.
  doi: 10.3389/fvets.2022.946911
– volume: 12
  year: 2021
  ident: pmeaad2215bib12
  article-title: Spatial ventilation inhomogeneity determined by electrical impedance tomography in patients with chronic obstructive lung disease
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.762791
– volume: 38
  start-page: 2733
  year: 2010
  ident: pmeaad2215bib51
  article-title: A robust current pattern for the detection of intraventricular hemorrhage in neonates using electrical impedance tomography
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0003-9
– volume: 31
  start-page: 1754
  year: 2012
  ident: pmeaad2215bib16
  article-title: Impact of model shape mismatch on reconstruction quality in electrical impedance tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2200904
– volume: vol 2008
  start-page: 1500
  year: 2008
  ident: pmeaad2215bib59
  article-title: Comparison of drive patterns for single current source EIT in computational phantom
– volume: 2020
  start-page: 1457
  year: 2020
  ident: pmeaad2215bib49
  article-title: The effect of internal electrodes on electrical impedance tomography sensitivity
  publication-title: Annual Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 27
  start-page: 176
  year: 2023
  ident: pmeaad2215bib56
  article-title: Impact of cardiac output and alveolar ventilation in estimating ventilation/perfusion mismatch in ARDS using electrical impedance tomography
  publication-title: Crit. Care
  doi: 10.1186/s13054-023-04467-w
– volume: 58
  start-page: 276
  year: 2017
  ident: pmeaad2215bib36
  article-title: Influence of current injection pattern and electric potential measurement strategies in electrical impedance tomography
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2016.03.003
– volume: 9
  year: 2022
  ident: pmeaad2215bib63
  article-title: Removing clinical motion artifacts during ventilation monitoring with electrical impedance tomography: introduction of methodology and validation with simulation and patient data
  publication-title: Front. Med.
– volume: 2
  start-page: 82
  year: 2021
  ident: pmeaad2215bib1
  article-title: Survey on medical imaging of electrical impedance tomography (EIT) by variable current pattern methods
  publication-title: J. ISMAC
  doi: 10.36548/jismac.2021.2.002
– volume: QIM
  start-page: hcad147
  year: 2023
  ident: pmeaad2215bib20
  article-title: New application of saline contrast-enhanced electrical impedance tomography method for right ventriculography besides lung perfusion: detection of right-to-left intracardiac shunt
  publication-title: QJM
  doi: 10.1093/qjmed/hcad147
– volume: 27
  start-page: 152
  year: 2023
  ident: pmeaad2215bib50
  article-title: Personalized ventilatory strategy based on lung recruitablity in COVID-19-associated acute respiratory distress syndrome: a prospective clinical study
  publication-title: Crit. Care
  doi: 10.1186/s13054-023-04360-6
– volume: 32
  start-page: 731
  year: 2011
  ident: pmeaad2215bib3
  article-title: Adjacent stimulation and measurement patterns considered harmful
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/32/7/S01
– volume: 78
  start-page: 9
  year: 2016
  ident: pmeaad2215bib23
  article-title: Design of wearable and wireless electrical impedance tomography system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.09.031
– volume: 40
  start-page: 481
  year: 2021
  ident: pmeaad2215bib31
  article-title: Shape-driven EIT reconstruction using fourier representations
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3030024
– volume: 53
  start-page: 589
  year: 2015
  ident: pmeaad2215bib35
  article-title: Evaluation of measurement and stimulation patterns in open electrical impedance tomography with scanning electrode
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1274-y
– volume: 99
  start-page: 1
  year: 2019
  ident: pmeaad2215bib57
  article-title: Calibrated frequency-difference electrical impedance tomography for 3D tissue culture monitoring
  publication-title: IEEE Sens. J.
– volume: 39
  start-page: 3801
  year: 2020
  ident: pmeaad2215bib32
  article-title: Shape-driven difference electrical impedance tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3004806
– volume: 28
  start-page: 299
  year: 2014
  ident: pmeaad2215bib10
  article-title: Application of internal electrodes to the oesophageal and tracheal tube in an animal trial: evaluation of its clinical and technical potentiality in electrical impedance tomography
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-013-9536-4
– start-page: 632
  year: 2014
  ident: pmeaad2215bib54
  article-title: A 10 MHz 85 dB dynamic range instrumentation amplifier for electrical impedance tomography
– volume: 36
  start-page: 457
  year: 2017
  ident: pmeaad2215bib19
  article-title: Incorporating a spatial prior into nonlinear d-bar eit imaging for complex admittivities
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2613511
– volume: 64
  start-page: 2321
  year: 2017
  ident: pmeaad2215bib9
  article-title: A versatile noise performance metric for electrical impedance tomography algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2659540
– volume: 6
  start-page: 25951
  year: 2016
  ident: pmeaad2215bib44
  article-title: Structural-functional lung imaging using a combined CT-EIT and a discrete cosine transformation reconstruction method
  publication-title: Sci. Rep.
  doi: 10.1038/srep25951
– volume: 9
  start-page: 789
  year: 2021a
  ident: pmeaad2215bib60
  article-title: Regional ventilation distribution in healthy lungs: can reference values be established for electrical impedance tomography parameters?
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-20-7442
– volume: 9435
  year: 2015
  ident: pmeaad2215bib24
  article-title: Development of a portable electrical impedance tomography data acquisition system for near-real-time spatial sensing
  publication-title: Proc. SPIE
– volume: 43
  year: 2022
  ident: pmeaad2215bib7
  article-title: Lung area estimation using functional tidal electrical impedance variation images and active contouring
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac7cc3
– volume: 27
  start-page: S65
  year: 2006
  ident: pmeaad2215bib15
  article-title: Objective selection of hyperparameter for EIT
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/27/5/S06
– volume: 7
  start-page: 61570
  year: 2019b
  ident: pmeaad2215bib29
  article-title: Fast high-precision electrical impedance tomography system for real-time perfusion imaging
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902975
– volume: 39
  year: 2018
  ident: pmeaad2215bib67
  article-title: Comparison of different functional EIT approaches to quantify tidal ventilation distribution
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aa9eb4
– volume: 9
  year: 2023
  ident: pmeaad2215bib62
  article-title: The influence of gravity on electrical impedance tomography measurements during upper body position change
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15910
– volume: 192
  year: 2022
  ident: pmeaad2215bib66
  article-title: Evaluation of electrical impedance tomography sensor using internal-external electrodes for small-scale cylindrical root zones
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110874
– volume: vol 2010
  start-page: 1477
  year: 2010
  ident: pmeaad2215bib64
  article-title: Single source current drive patterns for electrical impedance tomography
– volume: 17
  year: 2017
  ident: pmeaad2215bib43
  article-title: A quantitative evaluation of drive pattern selection for optimizing EIT-Based stretchable sensors
  publication-title: Sensors
  doi: 10.3390/s17091999
– volume: 18
  start-page: 5974
  year: 2018
  ident: pmeaad2215bib46
  article-title: High-precision electrical impedance tomography data acquisition system for brain imaging
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2836336
– volume: 28
  start-page: 292
  year: 2022
  ident: pmeaad2215bib42
  article-title: Electrical impedance tomography in the adult intensive care unit: clinical applications and future directions
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000936
– volume: 9
  year: 2023
  ident: pmeaad2215bib30
  article-title: Robust electrical impedance tomography for biological application: a mini review
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15195
– volume: 45
  start-page: 9627
  year: 2023
  ident: pmeaad2215bib33
  article-title: DeepEIT: deep image prior enabled electrical impedance tomography
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3240565
– volume: 2022
  year: 2022
  ident: pmeaad2215bib41
  article-title: The accuracy of electrical impedance tomography for breast cancer detection: a systematic review and meta-analysis
  publication-title: Breast J.
  doi: 10.1155/2022/8565490
– volume: 5
  start-page: 28
  year: 2006
  ident: pmeaad2215bib48
  article-title: Electrical impedance tomography system: an open access circuit design
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-5-28
– volume: 404
  year: 2020
  ident: pmeaad2215bib11
  article-title: Solving electrical impedance tomography with deep learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109119
– volume: 17
  start-page: 95
  year: 2018
  ident: pmeaad2215bib26
  article-title: Evaluation of electrical impedance tomography for determination of urinary bladder volume: comparison with standard ultrasound methods in healthy volunteers
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0526-0
– volume: 125
  start-page: 373
  year: 2020
  ident: pmeaad2215bib14
  article-title: Individualised positive end-expiratory pressure guided by electrical impedance tomography for robot-assisted laparoscopic radical prostatectomy: a prospective, randomised controlled clinical trial
  publication-title: Br. J. Anaesthesia
  doi: 10.1016/j.bja.2020.05.041
– volume: 27
  start-page: 425
  year: 2011
  ident: pmeaad2215bib53
  article-title: Improved image reconstruction for an EIT-based sensitive skin with multiple internal electrodes
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2011.2125310
– volume: 128
  year: 2020
  ident: pmeaad2215bib65
  article-title: Influence of current injection scheme on electrical impedance tomography for monitoring of the respiratory function of obese subjects
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0022704
– volume: 14
  start-page: 402
  year: 2020
  ident: pmeaad2215bib37
  article-title: An optimal electrical impedance tomography drive pattern for human-computer interaction applications
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– year: 2021
  ident: pmeaad2215bib4
– volume: 50
  start-page: 1
  year: 2015
  ident: pmeaad2215bib22
  article-title: A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system
  publication-title: IEEE J. Solid-state Circuits
  doi: 10.1109/JSSC.2015.2464705
– volume: 40
  year: 2019
  ident: pmeaad2215bib47
  article-title: Compressive sensing in electrical impedance tomography for breathing monitoring
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab0daa
SSID ssj0011825
Score 2.4196155
Snippet Objective. Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special...
Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system...
Objective.Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25004
SubjectTerms current injection pattern
Electric Impedance
electrical impedance tomography (EIT)
Humans
Lung
Reproducibility of Results
small current
Tomography - methods
Tomography, X-Ray Computed
wearable EIT system
Wearable Electronic Devices
Title Evaluation of adjacent and opposite current injection patterns for a wearable chest electrical impedance tomography system
URI https://iopscience.iop.org/article/10.1088/1361-6579/ad2215
https://www.ncbi.nlm.nih.gov/pubmed/38266301
https://www.proquest.com/docview/2918515126
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEN8ARgMHok9FRMmY6MFDfW23u92NJ2MgaIJwgMhts58JRNrG9wgJfz2z3aWRRIm3HmbTbedjf5uZ-Q0h76UQoa1NWwTTtgUGvApdqsRgaJxAe6Gu1rHB-fAHPzhtvp-xsxXyeeqF6Ycc-j_hYyIKTr8wF8SJeUV5FSs25Fy7uo4N5o-o4CJ65RH9OaUQEDiznJf826p759AqvuvfEHM8avafks2MEeFL2tEzsuK7Gdn4gzlwRp4c5pz4jDweizjt4jm52Zuou6EPoN2FjrWXoDsH_TCWZ3mwiZAJzruLsQqrg2Gk2OwWgPgVNFyj7cd-KhhHaUGakxNVCecIsV20Elj2l5nqGhIV9Atyur938vWgyLMVCttU1bLgAo-pYC0rjfClo6Gk0vMyeK5DZSWTeM-RXLIgg0VEYIyR2iIUCJVo8VSX9CVZ6_rOvyIg69B6JkNpEFwZZwRrqBWhQeDjrQ98m8zv_rSymXg8zr_4pcYEuBAq6kZF3aikm23ycVoxJNKNB2Q_oPJU9rzFA3Lv7skNl16rhqlaRRRYNmpwAWXuTEChl8XUie58f7VQaMMITREc4ddsJduYdkbxhsYxTr7-z53skPUakVEs_a7YG7K2_H3l3yKyWZpdsvrt6Hh3tONbouzykA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoEVU5IFgeLc9BggOHsEkcO_YRQVfl0cKBit4sP6VWNInYrZD49YwfXVEJKm45jBUn89nzWTP-hpAXUojQt6avgun7Cje8BpdUjZuhcQLxQl2r4wXng0O-f9R9OGbHpc9pugszTmXrf42PWSg4_8JSECfmDeVNrNiQc-1ajFjzyYUNcp1RzqJ4_mf6bZ1GQPLMSm7ybyMvxaINfN-_aWYKN4vb5FbhifAmz-oOueaHGbn5h3rgjGwdlLz4jNxIhZx2eZf82lvLd8MYQLtTHesvQQ8OximVaHmwWZQJTobTVIk1wJRkNoclIIcFDT8R__FOFaR2WpB75UR3wgnSbBeRAqvxrMhdQ5aDvkeOFntf3-5Xpb9CZbumWVVcYKgK1rLaCF87GmoqPa-D5zo0VjKJZx3JJQsyWGQFxhipLdKB0IgeI7uk98nmMA5-h4BsQ--ZDLVBgmWcEayjVoQOyY-3PvBdMr_408oW8fHYA-O7SklwIVT0jYq-Udk3u-TVesSUhTeusH2JzlNl9S2vsHt-yW4681p1TLUqMsG6U4gktLmAgMKVFtMnevDj-VIhjpGeIkHCr3mQsbGeGcVTGse98uF_zuQZ2frybqE-vT_8-Ihst0iUYiV4wx6TzdWPc_8Eic7KPE1g_g34sPV_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+adjacent+and+opposite+current+injection+patterns+for+a+wearable+chest+electrical+impedance+tomography+system&rft.jtitle=Physiological+measurement&rft.au=Yang%2C+Lin&rft.au=Gao%2C+Zhijun&rft.au=Wang%2C+Chunchen&rft.au=Wang%2C+Hang&rft.date=2024-02-15&rft.issn=1361-6579&rft.eissn=1361-6579&rft.volume=45&rft.issue=2&rft_id=info:doi/10.1088%2F1361-6579%2Fad2215&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon