Evaluation of adjacent and opposite current injection patterns for a wearable chest electrical impedance tomography system
Objective. Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the...
Saved in:
Published in | Physiological measurement Vol. 45; no. 2; pp. 25004 - 25020 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
15.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0967-3334 1361-6579 1361-6579 |
DOI | 10.1088/1361-6579/ad2215 |
Cover
Abstract | Objective.
Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers.
Approach.
A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters.
Main results.
Compared with adjacent injection, opposite injection had higher SNR (
p
< 0.01), less inverse artifacts (
p
< 0.01), and less boundary artifacts (
p
< 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters (
p
< 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics (
p
< 0.05) and four EIT-based clinical parameters (
p
< 0.01) between the group of 125 uA and the other grou
p
s.
Significance.
For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters. |
---|---|
AbstractList | Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers.
A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters.
Compared with adjacent injection, opposite injection had higher SNR (
< 0.01), less inverse artifacts (
< 0.01), and less boundary artifacts (
< 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters (
< 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics (
< 0.05) and four EIT-based clinical parameters (
< 0.01) between the group of 125 uA and the other grou
s.
For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters. Objective.Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers.Approach.A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters.Main results.Compared with adjacent injection, opposite injection had higher SNR (p< 0.01), less inverse artifacts (p< 0.01), and less boundary artifacts (p< 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters (p< 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics (p< 0.05) and four EIT-based clinical parameters (p< 0.01) between the group of 125 uA and the other groups.Significance.For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters.Objective.Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers.Approach.A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters.Main results.Compared with adjacent injection, opposite injection had higher SNR (p< 0.01), less inverse artifacts (p< 0.01), and less boundary artifacts (p< 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters (p< 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics (p< 0.05) and four EIT-based clinical parameters (p< 0.01) between the group of 125 uA and the other groups.Significance.For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters. Objective. Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers. Approach. A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters. Main results. Compared with adjacent injection, opposite injection had higher SNR ( p < 0.01), less inverse artifacts ( p < 0.01), and less boundary artifacts ( p < 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters ( p < 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics ( p < 0.05) and four EIT-based clinical parameters ( p < 0.01) between the group of 125 uA and the other grou p s. Significance. For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters. |
Author | Cao, Xinsheng Zhao, Zhanqi Dai, Jing Yang, Lin Gao, Zhijun Wang, Chunchen Wang, Hang Liu, Yang Dai, Meng Qin, Yilong |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0003-1641-2926 surname: Yang fullname: Yang, Lin organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China – sequence: 2 givenname: Zhijun surname: Gao fullname: Gao, Zhijun organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China – sequence: 3 givenname: Chunchen surname: Wang fullname: Wang, Chunchen organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China – sequence: 4 givenname: Hang surname: Wang fullname: Wang, Hang organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China – sequence: 5 givenname: Jing surname: Dai fullname: Dai, Jing organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China – sequence: 6 givenname: Yang surname: Liu fullname: Liu, Yang organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China – sequence: 7 givenname: Yilong surname: Qin fullname: Qin, Yilong organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China – sequence: 8 givenname: Meng surname: Dai fullname: Dai, Meng organization: Air Force Medical University Department of Biomedical Engineering, Xi’an, People’s Republic of China – sequence: 9 givenname: Xinsheng surname: Cao fullname: Cao, Xinsheng organization: Air Force Medical University Department of Aerospace Medicine, Xi’an, People’s Republic of China – sequence: 10 givenname: Zhanqi orcidid: 0000-0002-1279-2207 surname: Zhao fullname: Zhao, Zhanqi organization: Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38266301$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URLeFOyfkYw-E-iP2JkdUlRapEhc4WxNnTL1KbGM7oOWvJ9ttOSDU00hPvzeaee-MnIQYkJC3nH3grOsuudS80WrbX8IoBFcvyOavdEI2rNfbRkrZnpKzUnaMcd4J9Yqcyk5oLRnfkN_XP2FaoPoYaHQUxh1YDJVCGGlMKRZfkdol54Poww7tA5qgVsyhUBczBfoLIcMwreQ9lkpxWrHsLUzUzwlHCBZpjXP8niHd72nZl4rza_LSwVTwzeM8J98-XX-9um3uvtx8vvp419iW89rojumts1axoUM2Ssdkj5o51OC47VUv9Ppnr1zvrOjlMAw9WNG2jndb0a7KObk47k05_ljW-8zsi8VpgoBxKUb0vFNccaFX9N0jugwzjiZlP0Pem6e8VkAfAZtjKRmdsb4-pFcz-MlwZg7FmEML5tCCORazGtk_xqfdz1jeHy0-JrOLSw5rSs_hF__B04xgWmWEYUIx1po0OvkHHT6sqQ |
CODEN | PMEAE3 |
CitedBy_id | crossref_primary_10_3390_s24206642 crossref_primary_10_3389_fphys_2024_1352391 crossref_primary_10_1088_1361_6579_ad68c1 |
Cites_doi | 10.1016/j.measurement.2012.01.002 10.1109/TIM.2021.3126366 10.1109/TMI.2018.2828303 10.1088/0967-3334/29/6/S05 10.1152/ajplung.00180.2023 10.1088/0967-3334/33/5/831 10.1038/s41598-021-98793-0 10.1109/JSEN.2019.2940070 10.1088/0967-3334/34/7/823 10.1109/OJCAS.2021.3075302 10.1088/0967-3334/30/6/S03 10.1016/j.flowmeasinst.2021.102087 10.1038/s41598-018-28284-2 10.3390/s23031182 10.1088/0143-0815/8/4A/003 10.1088/1361-6579/ac0e84 10.3389/fvets.2022.946911 10.3389/fphys.2021.762791 10.1007/s10439-010-0003-9 10.1109/TMI.2012.2200904 10.1186/s13054-023-04467-w 10.1016/j.conengprac.2016.03.003 10.36548/jismac.2021.2.002 10.1093/qjmed/hcad147 10.1186/s13054-023-04360-6 10.1088/0967-3334/32/7/S01 10.1016/j.measurement.2015.09.031 10.1109/TMI.2020.3030024 10.1007/s11517-015-1274-y 10.1109/TMI.2020.3004806 10.1007/s10877-013-9536-4 10.1109/TMI.2016.2613511 10.1109/TBME.2017.2659540 10.1038/srep25951 10.21037/atm-20-7442 10.1088/1361-6579/ac7cc3 10.1088/0967-3334/27/5/S06 10.1109/ACCESS.2019.2902975 10.1088/1361-6579/aa9eb4 10.1016/j.heliyon.2023.e15910 10.1016/j.measurement.2022.110874 10.3390/s17091999 10.1109/JSEN.2018.2836336 10.1097/MCC.0000000000000936 10.1016/j.heliyon.2023.e15195 10.1109/TPAMI.2023.3240565 10.1155/2022/8565490 10.1186/1475-925X-5-28 10.1016/j.jcp.2019.109119 10.1186/s12938-018-0526-0 10.1016/j.bja.2020.05.041 10.1109/TRO.2011.2125310 10.1063/5.0022704 10.1109/JSSC.2015.2464705 10.1088/1361-6579/ab0daa |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd Creative Commons Attribution license. |
Copyright_xml | – notice: 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1361-6579/ad2215 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Physics |
EISSN | 1361-6579 |
ExternalDocumentID | 38266301 10_1088_1361_6579_ad2215 pmeaad2215 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51837011; 52077216; NSFC 61901478 funderid: https://doi.org/10.13039/501100001809 – fundername: Equipment Program of PLA grantid: KJ2018-2019C132 – fundername: Natural Science Foundation of Shaanxi Province, China grantid: 2023-YBSF-130 – fundername: Medical Program of FMMU grantid: 2019ZTC01 |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TSCCA UCJ W28 XPP ZMT AAYXX ADEQX CITATION CGR CUY CVF ECM EIF NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c411t-68067fcc50b8e0d3f039e60fe6af1c9592609695f9fc293bbb9ac244f18724293 |
IEDL.DBID | O3W |
ISSN | 0967-3334 1361-6579 |
IngestDate | Fri Sep 05 11:13:44 EDT 2025 Thu Apr 03 06:54:24 EDT 2025 Tue Jul 01 04:29:58 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Tue Aug 20 22:15:35 EDT 2024 Sun Aug 18 15:50:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | wearable EIT system small current electrical impedance tomography (EIT) current injection pattern |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-68067fcc50b8e0d3f039e60fe6af1c9592609695f9fc293bbb9ac244f18724293 |
Notes | PMEA-105342.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1279-2207 0000-0003-1641-2926 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6579/ad2215 |
PMID | 38266301 |
PQID | 2918515126 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2918515126 crossref_citationtrail_10_1088_1361_6579_ad2215 crossref_primary_10_1088_1361_6579_ad2215 pubmed_primary_38266301 iop_journals_10_1088_1361_6579_ad2215 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb-15 |
PublicationDateYYYYMMDD | 2024-02-15 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physiological measurement |
PublicationTitleAbbrev | PMEA |
PublicationTitleAlternate | Physiol. Meas |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Qu (pmeaad2215bib40) 2021; 11 Yang (pmeaad2215bib60) 2021a; 9 Tang (pmeaad2215bib51) 2010; 38 Tawil (pmeaad2215bib53) 2011; 27 Yang (pmeaad2215bib63) 2022; 9 Adler (pmeaad2215bib3) 2011; 32 Pennati (pmeaad2215bib39) 2023; 23 Grychtol (pmeaad2215bib16) 2012; 31 Girrbach (pmeaad2215bib14) 2020; 125 Wu (pmeaad2215bib57) 2019; 99 Fan (pmeaad2215bib11) 2020; 404 He (pmeaad2215bib20) 2023; QIM Brabant (pmeaad2215bib8) 2022; 9 Ma (pmeaad2215bib37) 2020; 14 Hamilton (pmeaad2215bib19) 2017; 36 Liu (pmeaad2215bib34) 2013; 34 Zhao (pmeaad2215bib67) 2018; 39 Yang (pmeaad2215bib61) 2021b; 70 Teschner (pmeaad2215bib55) 2015 Li (pmeaad2215bib30) 2023; 9 Liu (pmeaad2215bib35) 2015; 53 Bera (pmeaad2215bib6) 2012; 45 Wu (pmeaad2215bib58) 2021; 2 Graham (pmeaad2215bib15) 2006; 27 Xu (pmeaad2215bib59) 2008; vol 2008 Yang (pmeaad2215bib62) 2023; 9 Huang (pmeaad2215bib24) 2015; 9435 Shiraz (pmeaad2215bib47) 2019; 40 Huang (pmeaad2215bib23) 2016; 78 Hahn (pmeaad2215bib17) 2008; 29 Adler (pmeaad2215bib4) 2021 Hong (pmeaad2215bib22) 2015; 50 Taenaka (pmeaad2215bib50) 2023; 27 Zhang (pmeaad2215bib65) 2020; 128 Soleimani (pmeaad2215bib48) 2006; 5 Stowe (pmeaad2215bib49) 2020; 2020 Frerichs (pmeaad2215bib12) 2021; 12 Rubin (pmeaad2215bib42) 2022; 28 Tuffet (pmeaad2215bib56) 2023; 27 Zhang (pmeaad2215bib64) 2010; vol 2010 Schullcke (pmeaad2215bib44) 2016; 6 Braun (pmeaad2215bib9) 2017; 64 Czaplik (pmeaad2215bib10) 2014; 28 Minseo (pmeaad2215bib38) 2017; 52 Adler (pmeaad2215bib5) 2023; vol 2023 Shi (pmeaad2215bib46) 2018; 18 Larrabee (pmeaad2215bib25) 2023; 325 Liu (pmeaad2215bib33) 2023; 45 Borgmann (pmeaad2215bib7) 2022; 43 Li (pmeaad2215bib27) 2018; 8 Adler (pmeaad2215bib2) 2009; 30 Li (pmeaad2215bib29) 2019b; 7 Rezanejad Gatabi (pmeaad2215bib41) 2022; 2022 Gaggero (pmeaad2215bib13) 2012; 33 Tarabi (pmeaad2215bib52) 2022; 83 Zhao (pmeaad2215bib66) 2022; 192 Russo (pmeaad2215bib43) 2017; 17 Hentze (pmeaad2215bib21) 2021; 42 Seagar (pmeaad2215bib45) 1987; 8 Luppi Silva (pmeaad2215bib36) 2017; 58 Leonhäuser (pmeaad2215bib26) 2018; 17 Teng (pmeaad2215bib54) 2014 Adam (pmeaad2215bib1) 2021; 2 Li (pmeaad2215bib28) 2019a; 19 Liu (pmeaad2215bib31) 2021; 40 Liu (pmeaad2215bib32) 2020; 39 Hamilton (pmeaad2215bib18) 2018; 37 |
References_xml | – volume: 45 start-page: 663 year: 2012 ident: pmeaad2215bib6 article-title: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT) publication-title: Measurement doi: 10.1016/j.measurement.2012.01.002 – volume: 70 start-page: 1 year: 2021b ident: pmeaad2215bib61 article-title: A wireless, low-power, and miniaturized eit system for remote and long-term monitoring of lung ventilation in the isolation ward of ICU publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3126366 – volume: 37 start-page: 2367 year: 2018 ident: pmeaad2215bib18 article-title: Deep d-bar: real-time electrical impedance tomography imaging with deep neural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2828303 – volume: 29 start-page: S51 year: 2008 ident: pmeaad2215bib17 article-title: Improvements in the image quality of ventilatory tomograms by electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/29/6/S05 – volume: 325 start-page: L638 year: 2023 ident: pmeaad2215bib25 article-title: Three-dimensional electrical impedance tomography to study regional ventilation/perfusion ratios in anesthetized pigs publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.00180.2023 – volume: 33 start-page: 831 year: 2012 ident: pmeaad2215bib13 article-title: Electrical impedance tomography system based on active electrodes publication-title: Physiol. Meas. doi: 10.1088/0967-3334/33/5/831 – volume: 11 start-page: 19273 year: 2021 ident: pmeaad2215bib40 article-title: System introduction and evaluation of the first chinese chest EIT device for ICU applications publication-title: Sci. Rep. doi: 10.1038/s41598-021-98793-0 – volume: 52 start-page: 1 year: 2017 ident: pmeaad2215bib38 article-title: A 1.4 m Ω-sensitivity 94 dB dynamic-range electrical impedance tomography SoC and 48-channel hub-SoC for 3D lung ventilation monitoring system publication-title: IEEE J. Solid-state Circuits – volume: 19 start-page: 12297 year: 2019a ident: pmeaad2215bib28 article-title: Adaptive $L_{p}$ regularization for electrical impedance tomography publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2940070 – year: 2015 ident: pmeaad2215bib55 – volume: 34 start-page: 823 year: 2013 ident: pmeaad2215bib34 article-title: A novel combined regularization algorithm of total variation and Tikhonov regularization for open electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/34/7/823 – volume: 2 start-page: 380 year: 2021 ident: pmeaad2215bib58 article-title: Electrical impedance tomography for biomedical applications: circuits and systems review publication-title: IEEE Open J. Circuits Syst. doi: 10.1109/OJCAS.2021.3075302 – volume: 30 start-page: S35 year: 2009 ident: pmeaad2215bib2 article-title: GREIT: a unified approach to 2D linear EIT reconstruction of lung images publication-title: Physiol. Meas. doi: 10.1088/0967-3334/30/6/S03 – volume: vol 2023 start-page: p 68 year: 2023 ident: pmeaad2215bib5 article-title: Resolution as a function of stimulation and Measurement Patterns – volume: 83 year: 2022 ident: pmeaad2215bib52 article-title: Experimental evaluation of some current injection-voltage reading patterns in electrical impedance tomography (EIT) and comparison to simulation results—case study: large scales publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2021.102087 – volume: 8 start-page: 10086 year: 2018 ident: pmeaad2215bib27 article-title: Combing signal processing methods with algorithm priori information to produce synergetic improvements on continuous imaging of brain electrical impedance tomography publication-title: Sci. Rep. doi: 10.1038/s41598-018-28284-2 – volume: 23 year: 2023 ident: pmeaad2215bib39 article-title: Electrical impedance tomography: from the traditional design to the novel frontier of wearables publication-title: Sensors doi: 10.3390/s23031182 – volume: 8 start-page: 13 year: 1987 ident: pmeaad2215bib45 article-title: Theoretical limits to sensitivity and resolution in impedance imaging publication-title: Clin. Phys. Physiol. Meas. doi: 10.1088/0143-0815/8/4A/003 – volume: 42 year: 2021 ident: pmeaad2215bib21 article-title: A model-based source separation algorithm for lung perfusion imaging using electrical impedance tomography publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac0e84 – volume: 9 year: 2022 ident: pmeaad2215bib8 article-title: Thoracic electrical impedance tomography—the 2022 veterinary consensus statement publication-title: Front. Veterinary Sci. doi: 10.3389/fvets.2022.946911 – volume: 12 year: 2021 ident: pmeaad2215bib12 article-title: Spatial ventilation inhomogeneity determined by electrical impedance tomography in patients with chronic obstructive lung disease publication-title: Front. Physiol. doi: 10.3389/fphys.2021.762791 – volume: 38 start-page: 2733 year: 2010 ident: pmeaad2215bib51 article-title: A robust current pattern for the detection of intraventricular hemorrhage in neonates using electrical impedance tomography publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0003-9 – volume: 31 start-page: 1754 year: 2012 ident: pmeaad2215bib16 article-title: Impact of model shape mismatch on reconstruction quality in electrical impedance tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2200904 – volume: vol 2008 start-page: 1500 year: 2008 ident: pmeaad2215bib59 article-title: Comparison of drive patterns for single current source EIT in computational phantom – volume: 2020 start-page: 1457 year: 2020 ident: pmeaad2215bib49 article-title: The effect of internal electrodes on electrical impedance tomography sensitivity publication-title: Annual Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 27 start-page: 176 year: 2023 ident: pmeaad2215bib56 article-title: Impact of cardiac output and alveolar ventilation in estimating ventilation/perfusion mismatch in ARDS using electrical impedance tomography publication-title: Crit. Care doi: 10.1186/s13054-023-04467-w – volume: 58 start-page: 276 year: 2017 ident: pmeaad2215bib36 article-title: Influence of current injection pattern and electric potential measurement strategies in electrical impedance tomography publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2016.03.003 – volume: 9 year: 2022 ident: pmeaad2215bib63 article-title: Removing clinical motion artifacts during ventilation monitoring with electrical impedance tomography: introduction of methodology and validation with simulation and patient data publication-title: Front. Med. – volume: 2 start-page: 82 year: 2021 ident: pmeaad2215bib1 article-title: Survey on medical imaging of electrical impedance tomography (EIT) by variable current pattern methods publication-title: J. ISMAC doi: 10.36548/jismac.2021.2.002 – volume: QIM start-page: hcad147 year: 2023 ident: pmeaad2215bib20 article-title: New application of saline contrast-enhanced electrical impedance tomography method for right ventriculography besides lung perfusion: detection of right-to-left intracardiac shunt publication-title: QJM doi: 10.1093/qjmed/hcad147 – volume: 27 start-page: 152 year: 2023 ident: pmeaad2215bib50 article-title: Personalized ventilatory strategy based on lung recruitablity in COVID-19-associated acute respiratory distress syndrome: a prospective clinical study publication-title: Crit. Care doi: 10.1186/s13054-023-04360-6 – volume: 32 start-page: 731 year: 2011 ident: pmeaad2215bib3 article-title: Adjacent stimulation and measurement patterns considered harmful publication-title: Physiol. Meas. doi: 10.1088/0967-3334/32/7/S01 – volume: 78 start-page: 9 year: 2016 ident: pmeaad2215bib23 article-title: Design of wearable and wireless electrical impedance tomography system publication-title: Measurement doi: 10.1016/j.measurement.2015.09.031 – volume: 40 start-page: 481 year: 2021 ident: pmeaad2215bib31 article-title: Shape-driven EIT reconstruction using fourier representations publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3030024 – volume: 53 start-page: 589 year: 2015 ident: pmeaad2215bib35 article-title: Evaluation of measurement and stimulation patterns in open electrical impedance tomography with scanning electrode publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-015-1274-y – volume: 99 start-page: 1 year: 2019 ident: pmeaad2215bib57 article-title: Calibrated frequency-difference electrical impedance tomography for 3D tissue culture monitoring publication-title: IEEE Sens. J. – volume: 39 start-page: 3801 year: 2020 ident: pmeaad2215bib32 article-title: Shape-driven difference electrical impedance tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3004806 – volume: 28 start-page: 299 year: 2014 ident: pmeaad2215bib10 article-title: Application of internal electrodes to the oesophageal and tracheal tube in an animal trial: evaluation of its clinical and technical potentiality in electrical impedance tomography publication-title: J. Clin. Monit. Comput. doi: 10.1007/s10877-013-9536-4 – start-page: 632 year: 2014 ident: pmeaad2215bib54 article-title: A 10 MHz 85 dB dynamic range instrumentation amplifier for electrical impedance tomography – volume: 36 start-page: 457 year: 2017 ident: pmeaad2215bib19 article-title: Incorporating a spatial prior into nonlinear d-bar eit imaging for complex admittivities publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2613511 – volume: 64 start-page: 2321 year: 2017 ident: pmeaad2215bib9 article-title: A versatile noise performance metric for electrical impedance tomography algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2659540 – volume: 6 start-page: 25951 year: 2016 ident: pmeaad2215bib44 article-title: Structural-functional lung imaging using a combined CT-EIT and a discrete cosine transformation reconstruction method publication-title: Sci. Rep. doi: 10.1038/srep25951 – volume: 9 start-page: 789 year: 2021a ident: pmeaad2215bib60 article-title: Regional ventilation distribution in healthy lungs: can reference values be established for electrical impedance tomography parameters? publication-title: Ann. Transl. Med. doi: 10.21037/atm-20-7442 – volume: 9435 year: 2015 ident: pmeaad2215bib24 article-title: Development of a portable electrical impedance tomography data acquisition system for near-real-time spatial sensing publication-title: Proc. SPIE – volume: 43 year: 2022 ident: pmeaad2215bib7 article-title: Lung area estimation using functional tidal electrical impedance variation images and active contouring publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac7cc3 – volume: 27 start-page: S65 year: 2006 ident: pmeaad2215bib15 article-title: Objective selection of hyperparameter for EIT publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/5/S06 – volume: 7 start-page: 61570 year: 2019b ident: pmeaad2215bib29 article-title: Fast high-precision electrical impedance tomography system for real-time perfusion imaging publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902975 – volume: 39 year: 2018 ident: pmeaad2215bib67 article-title: Comparison of different functional EIT approaches to quantify tidal ventilation distribution publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa9eb4 – volume: 9 year: 2023 ident: pmeaad2215bib62 article-title: The influence of gravity on electrical impedance tomography measurements during upper body position change publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15910 – volume: 192 year: 2022 ident: pmeaad2215bib66 article-title: Evaluation of electrical impedance tomography sensor using internal-external electrodes for small-scale cylindrical root zones publication-title: Measurement doi: 10.1016/j.measurement.2022.110874 – volume: vol 2010 start-page: 1477 year: 2010 ident: pmeaad2215bib64 article-title: Single source current drive patterns for electrical impedance tomography – volume: 17 year: 2017 ident: pmeaad2215bib43 article-title: A quantitative evaluation of drive pattern selection for optimizing EIT-Based stretchable sensors publication-title: Sensors doi: 10.3390/s17091999 – volume: 18 start-page: 5974 year: 2018 ident: pmeaad2215bib46 article-title: High-precision electrical impedance tomography data acquisition system for brain imaging publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2836336 – volume: 28 start-page: 292 year: 2022 ident: pmeaad2215bib42 article-title: Electrical impedance tomography in the adult intensive care unit: clinical applications and future directions publication-title: Curr. Opin. Crit. Care doi: 10.1097/MCC.0000000000000936 – volume: 9 year: 2023 ident: pmeaad2215bib30 article-title: Robust electrical impedance tomography for biological application: a mini review publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15195 – volume: 45 start-page: 9627 year: 2023 ident: pmeaad2215bib33 article-title: DeepEIT: deep image prior enabled electrical impedance tomography publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3240565 – volume: 2022 year: 2022 ident: pmeaad2215bib41 article-title: The accuracy of electrical impedance tomography for breast cancer detection: a systematic review and meta-analysis publication-title: Breast J. doi: 10.1155/2022/8565490 – volume: 5 start-page: 28 year: 2006 ident: pmeaad2215bib48 article-title: Electrical impedance tomography system: an open access circuit design publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-5-28 – volume: 404 year: 2020 ident: pmeaad2215bib11 article-title: Solving electrical impedance tomography with deep learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109119 – volume: 17 start-page: 95 year: 2018 ident: pmeaad2215bib26 article-title: Evaluation of electrical impedance tomography for determination of urinary bladder volume: comparison with standard ultrasound methods in healthy volunteers publication-title: Biomed. Eng. Online doi: 10.1186/s12938-018-0526-0 – volume: 125 start-page: 373 year: 2020 ident: pmeaad2215bib14 article-title: Individualised positive end-expiratory pressure guided by electrical impedance tomography for robot-assisted laparoscopic radical prostatectomy: a prospective, randomised controlled clinical trial publication-title: Br. J. Anaesthesia doi: 10.1016/j.bja.2020.05.041 – volume: 27 start-page: 425 year: 2011 ident: pmeaad2215bib53 article-title: Improved image reconstruction for an EIT-based sensitive skin with multiple internal electrodes publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2011.2125310 – volume: 128 year: 2020 ident: pmeaad2215bib65 article-title: Influence of current injection scheme on electrical impedance tomography for monitoring of the respiratory function of obese subjects publication-title: J. Appl. Phys. doi: 10.1063/5.0022704 – volume: 14 start-page: 402 year: 2020 ident: pmeaad2215bib37 article-title: An optimal electrical impedance tomography drive pattern for human-computer interaction applications publication-title: IEEE Trans. Biomed. Circuits Syst. – year: 2021 ident: pmeaad2215bib4 – volume: 50 start-page: 1 year: 2015 ident: pmeaad2215bib22 article-title: A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system publication-title: IEEE J. Solid-state Circuits doi: 10.1109/JSSC.2015.2464705 – volume: 40 year: 2019 ident: pmeaad2215bib47 article-title: Compressive sensing in electrical impedance tomography for breathing monitoring publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab0daa |
SSID | ssj0011825 |
Score | 2.4196155 |
Snippet | Objective.
Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special... Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system... Objective.Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 25004 |
SubjectTerms | current injection pattern Electric Impedance electrical impedance tomography (EIT) Humans Lung Reproducibility of Results small current Tomography - methods Tomography, X-Ray Computed wearable EIT system Wearable Electronic Devices |
Title | Evaluation of adjacent and opposite current injection patterns for a wearable chest electrical impedance tomography system |
URI | https://iopscience.iop.org/article/10.1088/1361-6579/ad2215 https://www.ncbi.nlm.nih.gov/pubmed/38266301 https://www.proquest.com/docview/2918515126 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEN8ARgMHok9FRMmY6MFDfW23u92NJ2MgaIJwgMhts58JRNrG9wgJfz2z3aWRRIm3HmbTbedjf5uZ-Q0h76UQoa1NWwTTtgUGvApdqsRgaJxAe6Gu1rHB-fAHPzhtvp-xsxXyeeqF6Ycc-j_hYyIKTr8wF8SJeUV5FSs25Fy7uo4N5o-o4CJ65RH9OaUQEDiznJf826p759AqvuvfEHM8avafks2MEeFL2tEzsuK7Gdn4gzlwRp4c5pz4jDweizjt4jm52Zuou6EPoN2FjrWXoDsH_TCWZ3mwiZAJzruLsQqrg2Gk2OwWgPgVNFyj7cd-KhhHaUGakxNVCecIsV20Elj2l5nqGhIV9Atyur938vWgyLMVCttU1bLgAo-pYC0rjfClo6Gk0vMyeK5DZSWTeM-RXLIgg0VEYIyR2iIUCJVo8VSX9CVZ6_rOvyIg69B6JkNpEFwZZwRrqBWhQeDjrQ98m8zv_rSymXg8zr_4pcYEuBAq6kZF3aikm23ycVoxJNKNB2Q_oPJU9rzFA3Lv7skNl16rhqlaRRRYNmpwAWXuTEChl8XUie58f7VQaMMITREc4ddsJduYdkbxhsYxTr7-z53skPUakVEs_a7YG7K2_H3l3yKyWZpdsvrt6Hh3tONbouzykA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoEVU5IFgeLc9BggOHsEkcO_YRQVfl0cKBit4sP6VWNInYrZD49YwfXVEJKm45jBUn89nzWTP-hpAXUojQt6avgun7Cje8BpdUjZuhcQLxQl2r4wXng0O-f9R9OGbHpc9pugszTmXrf42PWSg4_8JSECfmDeVNrNiQc-1ajFjzyYUNcp1RzqJ4_mf6bZ1GQPLMSm7ybyMvxaINfN-_aWYKN4vb5FbhifAmz-oOueaHGbn5h3rgjGwdlLz4jNxIhZx2eZf82lvLd8MYQLtTHesvQQ8OximVaHmwWZQJTobTVIk1wJRkNoclIIcFDT8R__FOFaR2WpB75UR3wgnSbBeRAqvxrMhdQ5aDvkeOFntf3-5Xpb9CZbumWVVcYKgK1rLaCF87GmoqPa-D5zo0VjKJZx3JJQsyWGQFxhipLdKB0IgeI7uk98nmMA5-h4BsQ--ZDLVBgmWcEayjVoQOyY-3PvBdMr_408oW8fHYA-O7SklwIVT0jYq-Udk3u-TVesSUhTeusH2JzlNl9S2vsHt-yW4681p1TLUqMsG6U4gktLmAgMKVFtMnevDj-VIhjpGeIkHCr3mQsbGeGcVTGse98uF_zuQZ2frybqE-vT_8-Ihst0iUYiV4wx6TzdWPc_8Eic7KPE1g_g34sPV_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+adjacent+and+opposite+current+injection+patterns+for+a+wearable+chest+electrical+impedance+tomography+system&rft.jtitle=Physiological+measurement&rft.au=Yang%2C+Lin&rft.au=Gao%2C+Zhijun&rft.au=Wang%2C+Chunchen&rft.au=Wang%2C+Hang&rft.date=2024-02-15&rft.issn=1361-6579&rft.eissn=1361-6579&rft.volume=45&rft.issue=2&rft_id=info:doi/10.1088%2F1361-6579%2Fad2215&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon |