Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy
Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mit...
Saved in:
Published in | The Journal of cell biology Vol. 219; no. 9; p. 1 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
07.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN–ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria. |
---|---|
AbstractList | Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN–ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria. Damaged mitochondria are selectively eliminated by Parkin/PINK1-mediated autophagy. Kikuchi et al. show that in addition to binding ATG8 proteins, one of the critical autophagy adaptors, OPTN, possesses an ATG9A binding site that contributes to de novo synthesis of autophagosomal membranes. Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN–ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria. Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson's disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN-ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria.Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson's disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN-ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria. |
Author | Kikuchi, Reika Demizu, Yosuke Kawawaki, Junko Tanaka, Keiji Kojima, Waka Koyano, Fumika Shoda, Takuji Yamano, Koji Naito, Mikihiko Matsuda, Noriyuki Hayashida, Ryota |
AuthorAffiliation | 2 Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan 1 Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan 5 Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, Japan 4 Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa, Japan 3 Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan |
AuthorAffiliation_xml | – name: 2 Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan – name: 3 Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan – name: 1 Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan – name: 4 Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa, Japan – name: 5 Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, Japan |
Author_xml | – sequence: 1 givenname: Koji orcidid: 0000-0002-4692-161X surname: Yamano fullname: Yamano, Koji – sequence: 2 givenname: Reika surname: Kikuchi fullname: Kikuchi, Reika – sequence: 3 givenname: Waka surname: Kojima fullname: Kojima, Waka – sequence: 4 givenname: Ryota surname: Hayashida fullname: Hayashida, Ryota – sequence: 5 givenname: Fumika surname: Koyano fullname: Koyano, Fumika – sequence: 6 givenname: Junko surname: Kawawaki fullname: Kawawaki, Junko – sequence: 7 givenname: Takuji surname: Shoda fullname: Shoda, Takuji – sequence: 8 givenname: Yosuke orcidid: 0000-0001-7521-4861 surname: Demizu fullname: Demizu, Yosuke – sequence: 9 givenname: Mikihiko surname: Naito fullname: Naito, Mikihiko – sequence: 10 givenname: Keiji surname: Tanaka fullname: Tanaka, Keiji – sequence: 11 givenname: Noriyuki orcidid: 0000-0001-8199-952X surname: Matsuda fullname: Matsuda, Noriyuki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32556086$$D View this record in MEDLINE/PubMed |
BookMark | eNp10c1uEzEQB3ALFdG0cOSKVuLCZYvHH7vrC1IUQUGqWg7hbE1sb-NoY6f2bkVvvANvyJNg2hK1lXqyZP9mNOP_ETkIMThC3gI9AdrxjxuzOmEUFDAQ4gWZgRS07kDQAzKjlEGtJJOH5CjnDaVUtIK_IoecSdnQrpmR5SL50RscqhQHV8W-2voxmnUMNvlyO6381VREwNHHUGGw1bh21cX35fmfX7_ny1M1r_Cnz5UPt5W7NV7evCYvexyye3N_HpMfXz4vF1_rs4vTb4v5WW0EwFg3EqS1KBygQmGYYLRlFhtl-pXk1lm0lAtsRY-8dYp2qJxTpuUgrIVe8WPy6a7vblptnTUujAkHvUt-i-lGR_T68Uvwa30Zr3UrOgoUSoMP9w1SvJpcHvXWZ-OGAYOLU9ZMgGRdo1hX6PsndBOnFMp6RXEpBbTAi3r3cKL9KP8_vID6DpgUc06u3xOg-l-gugSq94EWz59448fbLMpCfnim6i_OlaTm |
CitedBy_id | crossref_primary_10_1016_j_ceb_2025_102493 crossref_primary_10_1016_j_chembiol_2021_05_006 crossref_primary_10_1126_sciadv_adg2997 crossref_primary_10_1016_j_stemcr_2021_03_030 crossref_primary_10_1016_j_molcel_2023_04_021 crossref_primary_10_3389_fnagi_2022_845330 crossref_primary_10_1126_sciadv_abg4922 crossref_primary_10_1093_jb_mvac041 crossref_primary_10_1167_iovs_64_7_5 crossref_primary_10_1093_jb_mvad098 crossref_primary_10_1038_s42255_024_01007_w crossref_primary_10_1091_mbc_E24_12_0535 crossref_primary_10_1155_2022_6481192 crossref_primary_10_3390_vetsci12030257 crossref_primary_10_1038_s41467_022_35501_0 crossref_primary_10_1042_BST20210272 crossref_primary_10_1038_s41594_024_01217_6 crossref_primary_10_1002_cbf_70029 crossref_primary_10_1083_jcb_202008031 crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002 crossref_primary_10_1016_j_cytogfr_2025_01_004 crossref_primary_10_1002_1873_3468_14060 crossref_primary_10_3390_cells11010030 crossref_primary_10_1080_15548627_2021_1908722 crossref_primary_10_1080_15548627_2020_1815457 crossref_primary_10_3390_ijms24076268 crossref_primary_10_1016_j_bmc_2021_116221 crossref_primary_10_1038_s41420_024_01844_4 crossref_primary_10_1007_s12192_023_01346_9 crossref_primary_10_1080_15548627_2023_2234797 crossref_primary_10_1038_s41419_022_04906_6 crossref_primary_10_1126_sciadv_adg2339 crossref_primary_10_3389_fcell_2021_664896 crossref_primary_10_1016_j_jmb_2024_168493 crossref_primary_10_15252_embj_2020104705 crossref_primary_10_15252_embr_202152864 crossref_primary_10_1371_journal_pbio_3002244 crossref_primary_10_1002_JLB_3MR0222_508R crossref_primary_10_1038_s41576_022_00562_w crossref_primary_10_3389_fphar_2022_843103 crossref_primary_10_1016_j_bbrc_2024_149779 crossref_primary_10_3389_fnins_2023_1250532 crossref_primary_10_1091_mbc_E24_03_0101 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_1111_cas_15112 crossref_primary_10_1016_j_cellsig_2023_110655 crossref_primary_10_3389_fcell_2022_837337 crossref_primary_10_1186_s12929_023_00975_7 crossref_primary_10_1016_j_celrep_2024_115115 crossref_primary_10_1038_s41594_024_01338_y crossref_primary_10_1038_s41598_020_78845_7 crossref_primary_10_3389_fcell_2023_1199902 crossref_primary_10_3390_genes14081550 crossref_primary_10_1039_D4SC03145H crossref_primary_10_1080_15548627_2021_1917284 crossref_primary_10_1002_iub_2689 crossref_primary_10_1242_jcs_259748 crossref_primary_10_1038_s41467_021_21874_1 crossref_primary_10_1159_000533602 crossref_primary_10_1016_j_ceb_2022_01_009 crossref_primary_10_1038_s41589_022_01178_1 crossref_primary_10_1016_j_molcel_2021_03_001 crossref_primary_10_1111_febs_16628 crossref_primary_10_3390_ijms22094363 crossref_primary_10_1038_s41598_023_40879_y crossref_primary_10_15252_embj_2022112006 crossref_primary_10_1038_s41467_022_31213_7 crossref_primary_10_15252_embr_202153552 crossref_primary_10_1016_j_cub_2022_11_002 crossref_primary_10_1155_2022_9366494 crossref_primary_10_1016_j_devcel_2021_02_009 crossref_primary_10_3390_ijms24076362 crossref_primary_10_1038_s41420_025_02328_9 crossref_primary_10_1038_s44318_024_00272_5 crossref_primary_10_1038_s41580_022_00542_2 crossref_primary_10_1016_j_cub_2022_07_058 crossref_primary_10_1016_j_molcel_2022_03_012 crossref_primary_10_1038_s41420_023_01504_z crossref_primary_10_1272_jnms_JNMS_2024_91_102 crossref_primary_10_1016_j_bbagen_2021_129871 crossref_primary_10_1016_j_arr_2025_102732 crossref_primary_10_1242_jcs_240465 crossref_primary_10_3389_fnmol_2021_786099 crossref_primary_10_2183_pjab_97_007 crossref_primary_10_1093_brain_awac313 crossref_primary_10_1038_s41388_024_03009_0 crossref_primary_10_1016_j_jbc_2024_107775 crossref_primary_10_1126_sciadv_abj0722 crossref_primary_10_2183_pjab_96_032 crossref_primary_10_1146_annurev_genet_022422_095608 crossref_primary_10_1016_j_jmb_2024_168489 crossref_primary_10_3390_antiox13060729 crossref_primary_10_1016_j_molcel_2024_01_016 crossref_primary_10_1038_s41467_021_25572_w crossref_primary_10_3389_fcell_2023_1290046 crossref_primary_10_1186_s12943_025_02277_y crossref_primary_10_1038_s41467_024_53558_x crossref_primary_10_1016_j_ensci_2020_100301 crossref_primary_10_1016_j_isci_2024_110448 crossref_primary_10_1016_j_devcel_2023_04_015 crossref_primary_10_1080_15548627_2021_1888244 crossref_primary_10_1146_annurev_cellbio_120219_035530 crossref_primary_10_3390_pathogens13121139 crossref_primary_10_1016_j_molmed_2022_06_007 crossref_primary_10_1016_j_mitoco_2024_07_002 crossref_primary_10_1002_adbi_202400235 crossref_primary_10_1051_medsci_2023220 crossref_primary_10_1016_j_bbagen_2021_129972 crossref_primary_10_1038_s41556_024_01571_z crossref_primary_10_1016_j_molcel_2023_08_021 crossref_primary_10_1152_physrev_00058_2021 crossref_primary_10_1038_s41556_024_01513_9 crossref_primary_10_1111_tra_70000 crossref_primary_10_1038_s41392_023_01503_7 crossref_primary_10_1111_eci_14138 crossref_primary_10_1038_s44318_024_00036_1 crossref_primary_10_1007_s13577_021_00650_9 crossref_primary_10_1038_s41556_021_00669_y crossref_primary_10_1080_15548627_2021_1874133 crossref_primary_10_1093_lifemedi_lnac043 crossref_primary_10_15252_embj_2023113491 crossref_primary_10_1016_j_molcel_2022_06_004 crossref_primary_10_1152_ajpcell_00360_2021 crossref_primary_10_1016_j_arr_2024_102583 crossref_primary_10_2139_ssrn_4075229 |
Cites_doi | 10.1016/j.bbrc.2012.10.041 10.1016/j.molcel.2016.09.014 10.15252/embj.201592237 10.15252/embr.201541486 10.1038/srep46380 10.1093/hmg/ddr048 10.1073/pnas.1716673115 10.1073/pnas.1506593112 10.1093/hmg/ddq526 10.7554/eLife.01612 10.1083/jcb.200910140 10.1038/nature14879 10.1021/ja100691p 10.1146/annurev-cellbio-092910-154005 10.1124/mol.116.105569 10.1016/j.bmcl.2012.04.134 10.1016/j.molcel.2019.02.010 10.1016/j.molcel.2014.09.007 10.15252/embr.201540891 10.1074/jbc.M115.671446 10.1074/jbc.RA118.006302 10.1371/journal.pbio.1000298 10.1083/jcb.201008084 10.1098/rsob.120080 10.1038/nature13392 10.1038/ncomms12708 10.1242/jcs.094110 10.1083/jcb.200809125 10.1371/journal.pgen.1004861 10.1016/j.devcel.2011.12.014 10.7554/eLife.31326 10.1042/BJ20140334 10.1083/jcb.201501002 10.1016/j.chom.2014.03.012 10.1038/cr.2013.66 10.1016/j.molcel.2019.01.041 10.4161/auto.6.8.13426 10.1007/978-1-62703-764-8_16 10.1038/sj.onc.1207072 10.1038/embor.2009.55 10.1016/j.jmb.2019.07.016 10.1038/nature14893 10.1146/annurev-cellbio-100818-125300 10.1073/pnas.1405752111 10.1126/science.aaf6136 10.7554/eLife.32866 10.1083/jcb.201410050 10.1242/jcs.126128 10.1083/jcb.201202061 10.1038/embor.2012.14 10.1016/j.tcb.2016.05.008 10.1073/pnas.1523926113 10.1126/science.1205405 10.1016/j.cell.2011.10.018 10.1016/j.molcel.2015.08.016 10.15252/embr.201947728 10.1038/nature12043 10.1016/j.cmet.2019.03.003 10.1038/srep01002 10.1016/j.neuron.2014.12.007 10.4161/auto.24633 10.1083/jcb.201402104 10.1038/nature12748 10.1038/s41467-019-08335-6 10.15252/embr.201540352 10.1016/j.chembiol.2011.05.013 10.1091/mbc.e11-09-0746 10.1083/jcb.201007013 10.15252/embj.201592337 10.1073/pnas.1523810113 |
ContentType | Journal Article |
Copyright | 2020 Yamano et al. Copyright Rockefeller University Press Sep 2020 2020 Yamano et al. 2020 |
Copyright_xml | – notice: 2020 Yamano et al. – notice: Copyright Rockefeller University Press Sep 2020 – notice: 2020 Yamano et al. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1083/jcb.201912144 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | OPTN recruits ATG9A vesicles upon mitophagy |
EISSN | 1540-8140 |
ExternalDocumentID | PMC7480101 32556086 10_1083_jcb_201912144 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: JP18H05500; JP18K06237; JP17J03737; JP18K14708; JP18H02443; JP19H05712; JP19H00997 ; JP17K08385; JP18H05502; JP16H05090 |
GroupedDBID | --- -DZ -~X .55 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S AAYXX ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ADBBV AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EMB F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ~KM CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c411t-6515dda4e1a9a4c242072da69cfb53dedad034a74fa37e908a9ee9c7314dd1f93 |
ISSN | 0021-9525 1540-8140 |
IngestDate | Thu Aug 21 18:13:51 EDT 2025 Thu Jul 10 23:29:31 EDT 2025 Mon Jun 30 10:27:28 EDT 2025 Thu Apr 03 07:05:43 EDT 2025 Tue Jul 01 02:00:48 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2020 Yamano et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c411t-6515dda4e1a9a4c242072da69cfb53dedad034a74fa37e908a9ee9c7314dd1f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8199-952X 0000-0002-4692-161X 0000-0001-7521-4861 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7480101 |
PMID | 32556086 |
PQID | 2435541713 |
PQPubID | 48855 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7480101 proquest_miscellaneous_2415286928 proquest_journals_2435541713 pubmed_primary_32556086 crossref_primary_10_1083_jcb_201912144 crossref_citationtrail_10_1083_jcb_201912144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-07 |
PublicationDateYYYYMMDD | 2020-09-07 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of cell biology |
PublicationTitleAlternate | J Cell Biol |
PublicationYear | 2020 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Sarraf (2023072407191874800_bib51) 2013; 496 Ohtake (2023072407191874800_bib38) 2016; 64 Okatsu (2023072407191874800_bib40) 2012; 428 Orsi (2023072407191874800_bib45) 2012; 23 Tsuboyama (2023072407191874800_bib56) 2016; 354 Richter (2023072407191874800_bib50) 2016; 113 Wild (2023072407191874800_bib61) 2011; 333 Narendra (2023072407191874800_bib34) 2010; 6 Ordureau (2023072407191874800_bib44) 2015; 112 Birgisdottir (2023072407191874800_bib1) 2013; 126 Zhang (2023072407191874800_bib69) 2014; 1116 McLelland (2023072407191874800_bib29) 2018; 7 Mizushima (2023072407191874800_bib30) 2011; 27 Komander (2023072407191874800_bib18) 2009; 10 Morishita (2023072407191874800_bib32) 2019; 35 Lazarou (2023072407191874800_bib26) 2015; 524 Ordureau (2023072407191874800_bib43) 2014; 56 Itoh (2023072407191874800_bib11) 2012; 22 Randow (2023072407191874800_bib48) 2014; 15 Kumar (2023072407191874800_bib23) 2015; 34 Narendra (2023072407191874800_bib33) 2008; 183 Yamano (2023072407191874800_bib67) 2016; 17 Yamano (2023072407191874800_bib64) 2013; 9 Lahiri (2023072407191874800_bib24) 2019; 29 Ravenhill (2023072407191874800_bib49) 2019; 74 Tanaka (2023072407191874800_bib55) 2010; 191 Yamano (2023072407191874800_bib66) 2015; 290 Itakura (2023072407191874800_bib9) 2012; 125 Herhaus (2023072407191874800_bib8) 2015; 16 Nezich (2023072407191874800_bib36) 2015; 210 Pickrell (2023072407191874800_bib47) 2015; 85 Yamamoto (2023072407191874800_bib63) 2012; 198 Heo (2023072407191874800_bib7) 2015; 60 Wong (2023072407191874800_bib62) 2014; 111 Greene (2023072407191874800_bib5) 2012; 13 Hasson (2023072407191874800_bib6) 2013; 504 Wang (2023072407191874800_bib58) 2011; 147 Chan (2023072407191874800_bib2) 2011; 20 Kazlauskaite (2023072407191874800_bib16) 2014; 460 Shiba-Fukushima (2023072407191874800_bib54) 2014; 10 Koyano (2023072407191874800_bib22) 2019; 294 Shiba-Fukushima (2023072407191874800_bib53) 2012; 2 Ohtake (2023072407191874800_bib39) 2018; 115 Kondapalli (2023072407191874800_bib19) 2012; 2 Wauer (2023072407191874800_bib60) 2015; 524 Matsuda (2023072407191874800_bib28) 2010; 189 Kane (2023072407191874800_bib14) 2014; 205 Padman (2023072407191874800_bib46) 2019; 10 Watanabe (2023072407191874800_bib59) 2017; 7 Okatsu (2023072407191874800_bib41) 2015; 209 Deas (2023072407191874800_bib3) 2011; 20 Sauvé (2023072407191874800_bib52) 2015; 34 Itoh (2023072407191874800_bib10) 2010; 132 Narendra (2023072407191874800_bib35) 2010; 8 Moore (2023072407191874800_bib31) 2016; 113 Yamano (2023072407191874800_bib68) 2018; 7 Zheng (2023072407191874800_bib70) 2013; 23 Yamano (2023072407191874800_bib65) 2014; 3 Okuhira (2023072407191874800_bib42) 2017; 91 Koyano (2023072407191874800_bib20) 2014; 510 Nguyen (2023072407191874800_bib37) 2016; 26 Li (2023072407191874800_bib27) 2016; 7 Koyano (2023072407191874800_bib21) 2019; 20 Johansen (2023072407191874800_bib13) 2019; 432 Kazlauskaite (2023072407191874800_bib17) 2015; 16 Vargas (2023072407191874800_bib57) 2019; 74 Lazarou (2023072407191874800_bib25) 2012; 22 Katayama (2023072407191874800_bib15) 2011; 18 Jin (2023072407191874800_bib12) 2010; 191 Denison (2023072407191874800_bib4) 2003; 22 32858748 - J Cell Biol. 2020 Sep 7;219(9) |
References_xml | – volume: 428 start-page: 197 year: 2012 ident: 2023072407191874800_bib40 article-title: Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase publication-title: Biochem. Biophys. Res. Commun doi: 10.1016/j.bbrc.2012.10.041 – volume: 64 start-page: 251 year: 2016 ident: 2023072407191874800_bib38 article-title: The K48-K63 Branched Ubiquitin Chain Regulates NF-κB Signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.014 – volume: 34 start-page: 2492 year: 2015 ident: 2023072407191874800_bib52 article-title: A Ubl/ubiquitin switch in the activation of Parkin publication-title: EMBO J doi: 10.15252/embj.201592237 – volume: 17 start-page: 300 year: 2016 ident: 2023072407191874800_bib67 article-title: The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation publication-title: EMBO Rep doi: 10.15252/embr.201541486 – volume: 7 start-page: 46380 year: 2017 ident: 2023072407191874800_bib59 article-title: Genetic visualization of protein interactions harnessing liquid phase transitions publication-title: Sci. Rep doi: 10.1038/srep46380 – volume: 20 start-page: 1726 year: 2011 ident: 2023072407191874800_bib2 article-title: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy publication-title: Hum. Mol. Genet doi: 10.1093/hmg/ddr048 – volume: 115 start-page: E1401 year: 2018 ident: 2023072407191874800_bib39 article-title: K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1716673115 – volume: 112 start-page: 6637 year: 2015 ident: 2023072407191874800_bib44 article-title: Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1506593112 – volume: 20 start-page: 867 year: 2011 ident: 2023072407191874800_bib3 article-title: PINK1 cleavage at position A103 by the mitochondrial protease PARL publication-title: Hum. Mol. Genet doi: 10.1093/hmg/ddq526 – volume: 3 year: 2014 ident: 2023072407191874800_bib65 article-title: Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy publication-title: eLife doi: 10.7554/eLife.01612 – volume: 189 start-page: 211 year: 2010 ident: 2023072407191874800_bib28 article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy publication-title: J. Cell Biol doi: 10.1083/jcb.200910140 – volume: 524 start-page: 370 year: 2015 ident: 2023072407191874800_bib60 article-title: Mechanism of phospho-ubiquitin-induced PARKIN activation publication-title: Nature doi: 10.1038/nature14879 – volume: 132 start-page: 5820 year: 2010 ident: 2023072407191874800_bib10 article-title: Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins publication-title: J. Am. Chem. Soc doi: 10.1021/ja100691p – volume: 27 start-page: 107 year: 2011 ident: 2023072407191874800_bib30 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu. Rev. Cell Dev. Biol doi: 10.1146/annurev-cellbio-092910-154005 – volume: 91 start-page: 159 year: 2017 ident: 2023072407191874800_bib42 article-title: Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules publication-title: Mol. Pharmacol doi: 10.1124/mol.116.105569 – volume: 22 start-page: 4453 year: 2012 ident: 2023072407191874800_bib11 article-title: Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs antagonist publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2012.04.134 – volume: 74 start-page: 347 year: 2019 ident: 2023072407191874800_bib57 article-title: Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.010 – volume: 56 start-page: 360 year: 2014 ident: 2023072407191874800_bib43 article-title: Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.09.007 – volume: 16 start-page: 1071 year: 2015 ident: 2023072407191874800_bib8 article-title: Expanding the ubiquitin code through post-translational modification publication-title: EMBO Rep doi: 10.15252/embr.201540891 – volume: 290 start-page: 25199 year: 2015 ident: 2023072407191874800_bib66 article-title: Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation publication-title: J. Biol. Chem doi: 10.1074/jbc.M115.671446 – volume: 294 start-page: 10300 year: 2019 ident: 2023072407191874800_bib22 article-title: Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006302 – volume: 8 year: 2010 ident: 2023072407191874800_bib35 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000298 – volume: 191 start-page: 933 year: 2010 ident: 2023072407191874800_bib12 article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL publication-title: J. Cell Biol doi: 10.1083/jcb.201008084 – volume: 2 year: 2012 ident: 2023072407191874800_bib19 article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 publication-title: Open Biol doi: 10.1098/rsob.120080 – volume: 510 start-page: 162 year: 2014 ident: 2023072407191874800_bib20 article-title: Ubiquitin is phosphorylated by PINK1 to activate parkin publication-title: Nature doi: 10.1038/nature13392 – volume: 7 start-page: 12708 year: 2016 ident: 2023072407191874800_bib27 article-title: Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins publication-title: Nat. Commun doi: 10.1038/ncomms12708 – volume: 125 start-page: 1488 year: 2012 ident: 2023072407191874800_bib9 article-title: Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy publication-title: J. Cell Sci doi: 10.1242/jcs.094110 – volume: 183 start-page: 795 year: 2008 ident: 2023072407191874800_bib33 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol doi: 10.1083/jcb.200809125 – volume: 10 year: 2014 ident: 2023072407191874800_bib54 article-title: Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004861 – volume: 22 start-page: 320 year: 2012 ident: 2023072407191874800_bib25 article-title: Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.12.014 – volume: 7 year: 2018 ident: 2023072407191874800_bib68 article-title: Endosomal Rab cycles regulate Parkin-mediated mitophagy publication-title: eLife doi: 10.7554/eLife.31326 – volume: 460 start-page: 127 year: 2014 ident: 2023072407191874800_bib16 article-title: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 publication-title: Biochem. J doi: 10.1042/BJ20140334 – volume: 210 start-page: 435 year: 2015 ident: 2023072407191874800_bib36 article-title: MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5 publication-title: J. Cell Biol doi: 10.1083/jcb.201501002 – volume: 15 start-page: 403 year: 2014 ident: 2023072407191874800_bib48 article-title: Self and nonself: how autophagy targets mitochondria and bacteria publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.03.012 – volume: 23 start-page: 886 year: 2013 ident: 2023072407191874800_bib70 article-title: Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism publication-title: Cell Res doi: 10.1038/cr.2013.66 – volume: 74 start-page: 320 year: 2019 ident: 2023072407191874800_bib49 article-title: The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.01.041 – volume: 6 start-page: 1090 year: 2010 ident: 2023072407191874800_bib34 article-title: p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both publication-title: Autophagy. doi: 10.4161/auto.6.8.13426 – volume: 1116 start-page: 235 year: 2014 ident: 2023072407191874800_bib69 article-title: Seamless Ligation Cloning Extract (SLiCE) cloning method publication-title: Methods Mol. Biol doi: 10.1007/978-1-62703-764-8_16 – volume: 22 start-page: 8370 year: 2003 ident: 2023072407191874800_bib4 article-title: Alterations in the common fragile site gene Parkin in ovarian and other cancers publication-title: Oncogene doi: 10.1038/sj.onc.1207072 – volume: 10 start-page: 466 year: 2009 ident: 2023072407191874800_bib18 article-title: Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains publication-title: EMBO Rep doi: 10.1038/embor.2009.55 – volume: 432 start-page: 80 year: 2019 ident: 2023072407191874800_bib13 article-title: Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors publication-title: J. Mol. Biol doi: 10.1016/j.jmb.2019.07.016 – volume: 524 start-page: 309 year: 2015 ident: 2023072407191874800_bib26 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature doi: 10.1038/nature14893 – volume: 35 start-page: 453 year: 2019 ident: 2023072407191874800_bib32 article-title: Diverse Cellular Roles of Autophagy publication-title: Annu. Rev. Cell Dev. Biol doi: 10.1146/annurev-cellbio-100818-125300 – volume: 111 start-page: E4439 year: 2014 ident: 2023072407191874800_bib62 article-title: Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1405752111 – volume: 354 start-page: 1036 year: 2016 ident: 2023072407191874800_bib56 article-title: The ATG conjugation systems are important for degradation of the inner autophagosomal membrane publication-title: Science doi: 10.1126/science.aaf6136 – volume: 7 year: 2018 ident: 2023072407191874800_bib29 article-title: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy publication-title: eLife doi: 10.7554/eLife.32866 – volume: 209 start-page: 111 year: 2015 ident: 2023072407191874800_bib41 article-title: Phosphorylated ubiquitin chain is the genuine Parkin receptor publication-title: J. Cell Biol doi: 10.1083/jcb.201410050 – volume: 126 start-page: 3237 year: 2013 ident: 2023072407191874800_bib1 article-title: The LIR motif - crucial for selective autophagy publication-title: J. Cell Sci doi: 10.1242/jcs.126128 – volume: 198 start-page: 219 year: 2012 ident: 2023072407191874800_bib63 article-title: Atg9 vesicles are an important membrane source during early steps of autophagosome formation publication-title: J. Cell Biol doi: 10.1083/jcb.201202061 – volume: 13 start-page: 378 year: 2012 ident: 2023072407191874800_bib5 article-title: Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment publication-title: EMBO Rep doi: 10.1038/embor.2012.14 – volume: 26 start-page: 733 year: 2016 ident: 2023072407191874800_bib37 article-title: Deciphering the Molecular Signals of PINK1/Parkin Mitophagy publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2016.05.008 – volume: 113 start-page: 4039 year: 2016 ident: 2023072407191874800_bib50 article-title: Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1523926113 – volume: 333 start-page: 228 year: 2011 ident: 2023072407191874800_bib61 article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth publication-title: Science doi: 10.1126/science.1205405 – volume: 147 start-page: 893 year: 2011 ident: 2023072407191874800_bib58 article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility publication-title: Cell doi: 10.1016/j.cell.2011.10.018 – volume: 60 start-page: 7 year: 2015 ident: 2023072407191874800_bib7 article-title: The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.016 – volume: 20 year: 2019 ident: 2023072407191874800_bib21 article-title: Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes publication-title: EMBO Rep. doi: 10.15252/embr.201947728 – volume: 496 start-page: 372 year: 2013 ident: 2023072407191874800_bib51 article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization publication-title: Nature doi: 10.1038/nature12043 – volume: 29 start-page: 803 year: 2019 ident: 2023072407191874800_bib24 article-title: Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2019.03.003 – volume: 2 start-page: 1002 year: 2012 ident: 2023072407191874800_bib53 article-title: PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy publication-title: Sci. Rep doi: 10.1038/srep01002 – volume: 85 start-page: 257 year: 2015 ident: 2023072407191874800_bib47 article-title: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease publication-title: Neuron doi: 10.1016/j.neuron.2014.12.007 – volume: 9 start-page: 1758 year: 2013 ident: 2023072407191874800_bib64 article-title: PINK1 is degraded through the N-end rule pathway publication-title: Autophagy doi: 10.4161/auto.24633 – volume: 205 start-page: 143 year: 2014 ident: 2023072407191874800_bib14 article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity publication-title: J. Cell Biol doi: 10.1083/jcb.201402104 – volume: 504 start-page: 291 year: 2013 ident: 2023072407191874800_bib6 article-title: High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy publication-title: Nature doi: 10.1038/nature12748 – volume: 10 start-page: 408 year: 2019 ident: 2023072407191874800_bib46 article-title: LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy publication-title: Nat. Commun doi: 10.1038/s41467-019-08335-6 – volume: 16 start-page: 939 year: 2015 ident: 2023072407191874800_bib17 article-title: Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation publication-title: EMBO Rep doi: 10.15252/embr.201540352 – volume: 18 start-page: 1042 year: 2011 ident: 2023072407191874800_bib15 article-title: A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery publication-title: Chem. Biol doi: 10.1016/j.chembiol.2011.05.013 – volume: 23 start-page: 1860 year: 2012 ident: 2023072407191874800_bib45 article-title: Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-09-0746 – volume: 191 start-page: 1367 year: 2010 ident: 2023072407191874800_bib55 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol doi: 10.1083/jcb.201007013 – volume: 34 start-page: 2506 year: 2015 ident: 2023072407191874800_bib23 article-title: Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis publication-title: EMBO J doi: 10.15252/embj.201592337 – volume: 113 start-page: E3349 year: 2016 ident: 2023072407191874800_bib31 article-title: Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1523810113 – reference: 32858748 - J Cell Biol. 2020 Sep 7;219(9): |
SSID | ssj0004743 |
Score | 2.6293018 |
Snippet | Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin... Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson's disease, amplify ubiquitin... Damaged mitochondria are selectively eliminated by Parkin/PINK1-mediated autophagy. Kikuchi et al. show that in addition to binding ATG8 proteins, one of the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1 |
SubjectTerms | Activation Adapters Adaptor proteins Animals Autophagy Autophagy - physiology Autophagy-Related Proteins - metabolism Binding Biochemistry Carrier Proteins - metabolism Cell Cycle Proteins - metabolism Cell Line, Tumor Cells, Cultured Fluorescence HCT116 Cells HEK293 Cells HeLa Cells Humans Mammals - metabolism Mammals - physiology Membrane Proteins - metabolism Membrane Transport Proteins - metabolism Mitochondria Mitochondria - metabolism Mitochondria - physiology Mitophagy Mitophagy - physiology Movement disorders Neurodegenerative diseases Organelles Parkin protein Parkinson's disease Phagocytosis Protein Kinases - metabolism Proteins PTEN-induced putative kinase Ubiquitin Ubiquitin - metabolism Ubiquitin-Protein Ligases - metabolism Ubiquitination Ubiquitination - physiology Vesicular Transport Proteins - metabolism |
Title | Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32556086 https://www.proquest.com/docview/2435541713 https://www.proquest.com/docview/2415286928 https://pubmed.ncbi.nlm.nih.gov/PMC7480101 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCIkXxJ2MgYyEeCmBOPGa-LFCGxWbOkCp6Fvk2M4WRpMNUony6zknF6eBIg1eoso5TSqfz6effW6EvIgiHSqNrn8_ylwuUuFGiqVuJrDCj8CjizrKdzaezvn7xf6ia3HfZpdU6Wv1c2teyf9oFcZAr5gl-w-atQ-FAfgM-oUraBiuV9Kx7VPQxQguYX2CPSt03YtjleaXK5BoDvxsrOTJh3jmTuJ3YjKSP_I6Hha_d3EmTwc-3j5rrOareMQ_ams2WVshl7Lu3T06Kr_kvT__HFusNNrLz63hR5llTVY_y350KtfY0Ek3LHZdVnLzJAK2nehXCTeNJ_fwSLHxs5gtY63F7axkAy2x1ZIDNURLrlIMvxMMK7v1f1mdm352khzOj4-T-GARXyc3fNgqoK07-rhRMb5Nsuh-R1tnFR7_ZvDwIS_5Y7Pxe8zsBgmJ75DbrTbopIHCXXLNFPfIzaaf6Po--dQBgiIgaJnRASDoEBAUAEEBELQHBEVA0LygFhAPyPzwIH47ddumGa7ijFUutrbXWnLDpJBcAQPzQl_LsVBZuh9oo6X2Ai5DnskgNMKLpDBGqDBgXGuWieAh2SnKwjwmlGkg9zLSPMPUdZ9LJkIJDDFIlWe8bOyQV92UJaqtKI-NTb4mdWRDFCQww4mdYYe8tOIXTSmVvwnudfOftKvte-JzZMYsZIFDntvbYAsR_bIw5QplgI1GYzA7DnnUqMu-KcBae7B_d0g4UKQVwDrrwztFflbXWw-xxJLHdq_w3ifkVr8y9shO9W1lngJrrdJnNSx_AeMrmDE |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+role+of+mitochondrial+ubiquitination+and+the+OPTN-ATG9A+axis+in+mitophagy&rft.jtitle=The+Journal+of+cell+biology&rft.au=Yamano%2C+Koji&rft.au=Kikuchi%2C+Reika&rft.au=Kojima%2C+Waka&rft.au=Hayashida%2C+Ryota&rft.date=2020-09-07&rft.issn=1540-8140&rft.eissn=1540-8140&rft.volume=219&rft.issue=9&rft_id=info:doi/10.1083%2Fjcb.201912144&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon |