Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy

Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mit...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 219; no. 9; p. 1
Main Authors Yamano, Koji, Kikuchi, Reika, Kojima, Waka, Hayashida, Ryota, Koyano, Fumika, Kawawaki, Junko, Shoda, Takuji, Demizu, Yosuke, Naito, Mikihiko, Tanaka, Keiji, Matsuda, Noriyuki
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 07.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN–ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria.
AbstractList Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN–ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria.
Damaged mitochondria are selectively eliminated by Parkin/PINK1-mediated autophagy. Kikuchi et al. show that in addition to binding ATG8 proteins, one of the critical autophagy adaptors, OPTN, possesses an ATG9A binding site that contributes to de novo synthesis of autophagosomal membranes. Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN–ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria.
Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson's disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN-ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria.Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson's disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN-ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria.
Author Kikuchi, Reika
Demizu, Yosuke
Kawawaki, Junko
Tanaka, Keiji
Kojima, Waka
Koyano, Fumika
Shoda, Takuji
Yamano, Koji
Naito, Mikihiko
Matsuda, Noriyuki
Hayashida, Ryota
AuthorAffiliation 2 Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
1 Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
5 Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, Japan
4 Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa, Japan
3 Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
AuthorAffiliation_xml – name: 2 Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
– name: 3 Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
– name: 1 Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
– name: 4 Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa, Japan
– name: 5 Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, Japan
Author_xml – sequence: 1
  givenname: Koji
  orcidid: 0000-0002-4692-161X
  surname: Yamano
  fullname: Yamano, Koji
– sequence: 2
  givenname: Reika
  surname: Kikuchi
  fullname: Kikuchi, Reika
– sequence: 3
  givenname: Waka
  surname: Kojima
  fullname: Kojima, Waka
– sequence: 4
  givenname: Ryota
  surname: Hayashida
  fullname: Hayashida, Ryota
– sequence: 5
  givenname: Fumika
  surname: Koyano
  fullname: Koyano, Fumika
– sequence: 6
  givenname: Junko
  surname: Kawawaki
  fullname: Kawawaki, Junko
– sequence: 7
  givenname: Takuji
  surname: Shoda
  fullname: Shoda, Takuji
– sequence: 8
  givenname: Yosuke
  orcidid: 0000-0001-7521-4861
  surname: Demizu
  fullname: Demizu, Yosuke
– sequence: 9
  givenname: Mikihiko
  surname: Naito
  fullname: Naito, Mikihiko
– sequence: 10
  givenname: Keiji
  surname: Tanaka
  fullname: Tanaka, Keiji
– sequence: 11
  givenname: Noriyuki
  orcidid: 0000-0001-8199-952X
  surname: Matsuda
  fullname: Matsuda, Noriyuki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32556086$$D View this record in MEDLINE/PubMed
BookMark eNp10c1uEzEQB3ALFdG0cOSKVuLCZYvHH7vrC1IUQUGqWg7hbE1sb-NoY6f2bkVvvANvyJNg2hK1lXqyZP9mNOP_ETkIMThC3gI9AdrxjxuzOmEUFDAQ4gWZgRS07kDQAzKjlEGtJJOH5CjnDaVUtIK_IoecSdnQrpmR5SL50RscqhQHV8W-2voxmnUMNvlyO6381VREwNHHUGGw1bh21cX35fmfX7_ny1M1r_Cnz5UPt5W7NV7evCYvexyye3N_HpMfXz4vF1_rs4vTb4v5WW0EwFg3EqS1KBygQmGYYLRlFhtl-pXk1lm0lAtsRY-8dYp2qJxTpuUgrIVe8WPy6a7vblptnTUujAkHvUt-i-lGR_T68Uvwa30Zr3UrOgoUSoMP9w1SvJpcHvXWZ-OGAYOLU9ZMgGRdo1hX6PsndBOnFMp6RXEpBbTAi3r3cKL9KP8_vID6DpgUc06u3xOg-l-gugSq94EWz59448fbLMpCfnim6i_OlaTm
CitedBy_id crossref_primary_10_1016_j_ceb_2025_102493
crossref_primary_10_1016_j_chembiol_2021_05_006
crossref_primary_10_1126_sciadv_adg2997
crossref_primary_10_1016_j_stemcr_2021_03_030
crossref_primary_10_1016_j_molcel_2023_04_021
crossref_primary_10_3389_fnagi_2022_845330
crossref_primary_10_1126_sciadv_abg4922
crossref_primary_10_1093_jb_mvac041
crossref_primary_10_1167_iovs_64_7_5
crossref_primary_10_1093_jb_mvad098
crossref_primary_10_1038_s42255_024_01007_w
crossref_primary_10_1091_mbc_E24_12_0535
crossref_primary_10_1155_2022_6481192
crossref_primary_10_3390_vetsci12030257
crossref_primary_10_1038_s41467_022_35501_0
crossref_primary_10_1042_BST20210272
crossref_primary_10_1038_s41594_024_01217_6
crossref_primary_10_1002_cbf_70029
crossref_primary_10_1083_jcb_202008031
crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002
crossref_primary_10_1016_j_cytogfr_2025_01_004
crossref_primary_10_1002_1873_3468_14060
crossref_primary_10_3390_cells11010030
crossref_primary_10_1080_15548627_2021_1908722
crossref_primary_10_1080_15548627_2020_1815457
crossref_primary_10_3390_ijms24076268
crossref_primary_10_1016_j_bmc_2021_116221
crossref_primary_10_1038_s41420_024_01844_4
crossref_primary_10_1007_s12192_023_01346_9
crossref_primary_10_1080_15548627_2023_2234797
crossref_primary_10_1038_s41419_022_04906_6
crossref_primary_10_1126_sciadv_adg2339
crossref_primary_10_3389_fcell_2021_664896
crossref_primary_10_1016_j_jmb_2024_168493
crossref_primary_10_15252_embj_2020104705
crossref_primary_10_15252_embr_202152864
crossref_primary_10_1371_journal_pbio_3002244
crossref_primary_10_1002_JLB_3MR0222_508R
crossref_primary_10_1038_s41576_022_00562_w
crossref_primary_10_3389_fphar_2022_843103
crossref_primary_10_1016_j_bbrc_2024_149779
crossref_primary_10_3389_fnins_2023_1250532
crossref_primary_10_1091_mbc_E24_03_0101
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_1111_cas_15112
crossref_primary_10_1016_j_cellsig_2023_110655
crossref_primary_10_3389_fcell_2022_837337
crossref_primary_10_1186_s12929_023_00975_7
crossref_primary_10_1016_j_celrep_2024_115115
crossref_primary_10_1038_s41594_024_01338_y
crossref_primary_10_1038_s41598_020_78845_7
crossref_primary_10_3389_fcell_2023_1199902
crossref_primary_10_3390_genes14081550
crossref_primary_10_1039_D4SC03145H
crossref_primary_10_1080_15548627_2021_1917284
crossref_primary_10_1002_iub_2689
crossref_primary_10_1242_jcs_259748
crossref_primary_10_1038_s41467_021_21874_1
crossref_primary_10_1159_000533602
crossref_primary_10_1016_j_ceb_2022_01_009
crossref_primary_10_1038_s41589_022_01178_1
crossref_primary_10_1016_j_molcel_2021_03_001
crossref_primary_10_1111_febs_16628
crossref_primary_10_3390_ijms22094363
crossref_primary_10_1038_s41598_023_40879_y
crossref_primary_10_15252_embj_2022112006
crossref_primary_10_1038_s41467_022_31213_7
crossref_primary_10_15252_embr_202153552
crossref_primary_10_1016_j_cub_2022_11_002
crossref_primary_10_1155_2022_9366494
crossref_primary_10_1016_j_devcel_2021_02_009
crossref_primary_10_3390_ijms24076362
crossref_primary_10_1038_s41420_025_02328_9
crossref_primary_10_1038_s44318_024_00272_5
crossref_primary_10_1038_s41580_022_00542_2
crossref_primary_10_1016_j_cub_2022_07_058
crossref_primary_10_1016_j_molcel_2022_03_012
crossref_primary_10_1038_s41420_023_01504_z
crossref_primary_10_1272_jnms_JNMS_2024_91_102
crossref_primary_10_1016_j_bbagen_2021_129871
crossref_primary_10_1016_j_arr_2025_102732
crossref_primary_10_1242_jcs_240465
crossref_primary_10_3389_fnmol_2021_786099
crossref_primary_10_2183_pjab_97_007
crossref_primary_10_1093_brain_awac313
crossref_primary_10_1038_s41388_024_03009_0
crossref_primary_10_1016_j_jbc_2024_107775
crossref_primary_10_1126_sciadv_abj0722
crossref_primary_10_2183_pjab_96_032
crossref_primary_10_1146_annurev_genet_022422_095608
crossref_primary_10_1016_j_jmb_2024_168489
crossref_primary_10_3390_antiox13060729
crossref_primary_10_1016_j_molcel_2024_01_016
crossref_primary_10_1038_s41467_021_25572_w
crossref_primary_10_3389_fcell_2023_1290046
crossref_primary_10_1186_s12943_025_02277_y
crossref_primary_10_1038_s41467_024_53558_x
crossref_primary_10_1016_j_ensci_2020_100301
crossref_primary_10_1016_j_isci_2024_110448
crossref_primary_10_1016_j_devcel_2023_04_015
crossref_primary_10_1080_15548627_2021_1888244
crossref_primary_10_1146_annurev_cellbio_120219_035530
crossref_primary_10_3390_pathogens13121139
crossref_primary_10_1016_j_molmed_2022_06_007
crossref_primary_10_1016_j_mitoco_2024_07_002
crossref_primary_10_1002_adbi_202400235
crossref_primary_10_1051_medsci_2023220
crossref_primary_10_1016_j_bbagen_2021_129972
crossref_primary_10_1038_s41556_024_01571_z
crossref_primary_10_1016_j_molcel_2023_08_021
crossref_primary_10_1152_physrev_00058_2021
crossref_primary_10_1038_s41556_024_01513_9
crossref_primary_10_1111_tra_70000
crossref_primary_10_1038_s41392_023_01503_7
crossref_primary_10_1111_eci_14138
crossref_primary_10_1038_s44318_024_00036_1
crossref_primary_10_1007_s13577_021_00650_9
crossref_primary_10_1038_s41556_021_00669_y
crossref_primary_10_1080_15548627_2021_1874133
crossref_primary_10_1093_lifemedi_lnac043
crossref_primary_10_15252_embj_2023113491
crossref_primary_10_1016_j_molcel_2022_06_004
crossref_primary_10_1152_ajpcell_00360_2021
crossref_primary_10_1016_j_arr_2024_102583
crossref_primary_10_2139_ssrn_4075229
Cites_doi 10.1016/j.bbrc.2012.10.041
10.1016/j.molcel.2016.09.014
10.15252/embj.201592237
10.15252/embr.201541486
10.1038/srep46380
10.1093/hmg/ddr048
10.1073/pnas.1716673115
10.1073/pnas.1506593112
10.1093/hmg/ddq526
10.7554/eLife.01612
10.1083/jcb.200910140
10.1038/nature14879
10.1021/ja100691p
10.1146/annurev-cellbio-092910-154005
10.1124/mol.116.105569
10.1016/j.bmcl.2012.04.134
10.1016/j.molcel.2019.02.010
10.1016/j.molcel.2014.09.007
10.15252/embr.201540891
10.1074/jbc.M115.671446
10.1074/jbc.RA118.006302
10.1371/journal.pbio.1000298
10.1083/jcb.201008084
10.1098/rsob.120080
10.1038/nature13392
10.1038/ncomms12708
10.1242/jcs.094110
10.1083/jcb.200809125
10.1371/journal.pgen.1004861
10.1016/j.devcel.2011.12.014
10.7554/eLife.31326
10.1042/BJ20140334
10.1083/jcb.201501002
10.1016/j.chom.2014.03.012
10.1038/cr.2013.66
10.1016/j.molcel.2019.01.041
10.4161/auto.6.8.13426
10.1007/978-1-62703-764-8_16
10.1038/sj.onc.1207072
10.1038/embor.2009.55
10.1016/j.jmb.2019.07.016
10.1038/nature14893
10.1146/annurev-cellbio-100818-125300
10.1073/pnas.1405752111
10.1126/science.aaf6136
10.7554/eLife.32866
10.1083/jcb.201410050
10.1242/jcs.126128
10.1083/jcb.201202061
10.1038/embor.2012.14
10.1016/j.tcb.2016.05.008
10.1073/pnas.1523926113
10.1126/science.1205405
10.1016/j.cell.2011.10.018
10.1016/j.molcel.2015.08.016
10.15252/embr.201947728
10.1038/nature12043
10.1016/j.cmet.2019.03.003
10.1038/srep01002
10.1016/j.neuron.2014.12.007
10.4161/auto.24633
10.1083/jcb.201402104
10.1038/nature12748
10.1038/s41467-019-08335-6
10.15252/embr.201540352
10.1016/j.chembiol.2011.05.013
10.1091/mbc.e11-09-0746
10.1083/jcb.201007013
10.15252/embj.201592337
10.1073/pnas.1523810113
ContentType Journal Article
Copyright 2020 Yamano et al.
Copyright Rockefeller University Press Sep 2020
2020 Yamano et al. 2020
Copyright_xml – notice: 2020 Yamano et al.
– notice: Copyright Rockefeller University Press Sep 2020
– notice: 2020 Yamano et al. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1083/jcb.201912144
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate OPTN recruits ATG9A vesicles upon mitophagy
EISSN 1540-8140
ExternalDocumentID PMC7480101
32556086
10_1083_jcb_201912144
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: JP18H05500; JP18K06237; JP17J03737; JP18K14708; JP18H02443; JP19H05712; JP19H00997 ; JP17K08385; JP18H05502; JP16H05090
GroupedDBID ---
-DZ
-~X
.55
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
AAYXX
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CITATION
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c411t-6515dda4e1a9a4c242072da69cfb53dedad034a74fa37e908a9ee9c7314dd1f93
ISSN 0021-9525
1540-8140
IngestDate Thu Aug 21 18:13:51 EDT 2025
Thu Jul 10 23:29:31 EDT 2025
Mon Jun 30 10:27:28 EDT 2025
Thu Apr 03 07:05:43 EDT 2025
Tue Jul 01 02:00:48 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2020 Yamano et al.
This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-6515dda4e1a9a4c242072da69cfb53dedad034a74fa37e908a9ee9c7314dd1f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8199-952X
0000-0002-4692-161X
0000-0001-7521-4861
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7480101
PMID 32556086
PQID 2435541713
PQPubID 48855
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7480101
proquest_miscellaneous_2415286928
proquest_journals_2435541713
pubmed_primary_32556086
crossref_primary_10_1083_jcb_201912144
crossref_citationtrail_10_1083_jcb_201912144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-07
PublicationDateYYYYMMDD 2020-09-07
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2020
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Sarraf (2023072407191874800_bib51) 2013; 496
Ohtake (2023072407191874800_bib38) 2016; 64
Okatsu (2023072407191874800_bib40) 2012; 428
Orsi (2023072407191874800_bib45) 2012; 23
Tsuboyama (2023072407191874800_bib56) 2016; 354
Richter (2023072407191874800_bib50) 2016; 113
Wild (2023072407191874800_bib61) 2011; 333
Narendra (2023072407191874800_bib34) 2010; 6
Ordureau (2023072407191874800_bib44) 2015; 112
Birgisdottir (2023072407191874800_bib1) 2013; 126
Zhang (2023072407191874800_bib69) 2014; 1116
McLelland (2023072407191874800_bib29) 2018; 7
Mizushima (2023072407191874800_bib30) 2011; 27
Komander (2023072407191874800_bib18) 2009; 10
Morishita (2023072407191874800_bib32) 2019; 35
Lazarou (2023072407191874800_bib26) 2015; 524
Ordureau (2023072407191874800_bib43) 2014; 56
Itoh (2023072407191874800_bib11) 2012; 22
Randow (2023072407191874800_bib48) 2014; 15
Kumar (2023072407191874800_bib23) 2015; 34
Narendra (2023072407191874800_bib33) 2008; 183
Yamano (2023072407191874800_bib67) 2016; 17
Yamano (2023072407191874800_bib64) 2013; 9
Lahiri (2023072407191874800_bib24) 2019; 29
Ravenhill (2023072407191874800_bib49) 2019; 74
Tanaka (2023072407191874800_bib55) 2010; 191
Yamano (2023072407191874800_bib66) 2015; 290
Itakura (2023072407191874800_bib9) 2012; 125
Herhaus (2023072407191874800_bib8) 2015; 16
Nezich (2023072407191874800_bib36) 2015; 210
Pickrell (2023072407191874800_bib47) 2015; 85
Yamamoto (2023072407191874800_bib63) 2012; 198
Heo (2023072407191874800_bib7) 2015; 60
Wong (2023072407191874800_bib62) 2014; 111
Greene (2023072407191874800_bib5) 2012; 13
Hasson (2023072407191874800_bib6) 2013; 504
Wang (2023072407191874800_bib58) 2011; 147
Chan (2023072407191874800_bib2) 2011; 20
Kazlauskaite (2023072407191874800_bib16) 2014; 460
Shiba-Fukushima (2023072407191874800_bib54) 2014; 10
Koyano (2023072407191874800_bib22) 2019; 294
Shiba-Fukushima (2023072407191874800_bib53) 2012; 2
Ohtake (2023072407191874800_bib39) 2018; 115
Kondapalli (2023072407191874800_bib19) 2012; 2
Wauer (2023072407191874800_bib60) 2015; 524
Matsuda (2023072407191874800_bib28) 2010; 189
Kane (2023072407191874800_bib14) 2014; 205
Padman (2023072407191874800_bib46) 2019; 10
Watanabe (2023072407191874800_bib59) 2017; 7
Okatsu (2023072407191874800_bib41) 2015; 209
Deas (2023072407191874800_bib3) 2011; 20
Sauvé (2023072407191874800_bib52) 2015; 34
Itoh (2023072407191874800_bib10) 2010; 132
Narendra (2023072407191874800_bib35) 2010; 8
Moore (2023072407191874800_bib31) 2016; 113
Yamano (2023072407191874800_bib68) 2018; 7
Zheng (2023072407191874800_bib70) 2013; 23
Yamano (2023072407191874800_bib65) 2014; 3
Okuhira (2023072407191874800_bib42) 2017; 91
Koyano (2023072407191874800_bib20) 2014; 510
Nguyen (2023072407191874800_bib37) 2016; 26
Li (2023072407191874800_bib27) 2016; 7
Koyano (2023072407191874800_bib21) 2019; 20
Johansen (2023072407191874800_bib13) 2019; 432
Kazlauskaite (2023072407191874800_bib17) 2015; 16
Vargas (2023072407191874800_bib57) 2019; 74
Lazarou (2023072407191874800_bib25) 2012; 22
Katayama (2023072407191874800_bib15) 2011; 18
Jin (2023072407191874800_bib12) 2010; 191
Denison (2023072407191874800_bib4) 2003; 22
32858748 - J Cell Biol. 2020 Sep 7;219(9)
References_xml – volume: 428
  start-page: 197
  year: 2012
  ident: 2023072407191874800_bib40
  article-title: Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase
  publication-title: Biochem. Biophys. Res. Commun
  doi: 10.1016/j.bbrc.2012.10.041
– volume: 64
  start-page: 251
  year: 2016
  ident: 2023072407191874800_bib38
  article-title: The K48-K63 Branched Ubiquitin Chain Regulates NF-κB Signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.09.014
– volume: 34
  start-page: 2492
  year: 2015
  ident: 2023072407191874800_bib52
  article-title: A Ubl/ubiquitin switch in the activation of Parkin
  publication-title: EMBO J
  doi: 10.15252/embj.201592237
– volume: 17
  start-page: 300
  year: 2016
  ident: 2023072407191874800_bib67
  article-title: The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation
  publication-title: EMBO Rep
  doi: 10.15252/embr.201541486
– volume: 7
  start-page: 46380
  year: 2017
  ident: 2023072407191874800_bib59
  article-title: Genetic visualization of protein interactions harnessing liquid phase transitions
  publication-title: Sci. Rep
  doi: 10.1038/srep46380
– volume: 20
  start-page: 1726
  year: 2011
  ident: 2023072407191874800_bib2
  article-title: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/ddr048
– volume: 115
  start-page: E1401
  year: 2018
  ident: 2023072407191874800_bib39
  article-title: K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1716673115
– volume: 112
  start-page: 6637
  year: 2015
  ident: 2023072407191874800_bib44
  article-title: Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1506593112
– volume: 20
  start-page: 867
  year: 2011
  ident: 2023072407191874800_bib3
  article-title: PINK1 cleavage at position A103 by the mitochondrial protease PARL
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/ddq526
– volume: 3
  year: 2014
  ident: 2023072407191874800_bib65
  article-title: Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
  publication-title: eLife
  doi: 10.7554/eLife.01612
– volume: 189
  start-page: 211
  year: 2010
  ident: 2023072407191874800_bib28
  article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.200910140
– volume: 524
  start-page: 370
  year: 2015
  ident: 2023072407191874800_bib60
  article-title: Mechanism of phospho-ubiquitin-induced PARKIN activation
  publication-title: Nature
  doi: 10.1038/nature14879
– volume: 132
  start-page: 5820
  year: 2010
  ident: 2023072407191874800_bib10
  article-title: Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja100691p
– volume: 27
  start-page: 107
  year: 2011
  ident: 2023072407191874800_bib30
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu. Rev. Cell Dev. Biol
  doi: 10.1146/annurev-cellbio-092910-154005
– volume: 91
  start-page: 159
  year: 2017
  ident: 2023072407191874800_bib42
  article-title: Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules
  publication-title: Mol. Pharmacol
  doi: 10.1124/mol.116.105569
– volume: 22
  start-page: 4453
  year: 2012
  ident: 2023072407191874800_bib11
  article-title: Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs antagonist
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2012.04.134
– volume: 74
  start-page: 347
  year: 2019
  ident: 2023072407191874800_bib57
  article-title: Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.010
– volume: 56
  start-page: 360
  year: 2014
  ident: 2023072407191874800_bib43
  article-title: Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.09.007
– volume: 16
  start-page: 1071
  year: 2015
  ident: 2023072407191874800_bib8
  article-title: Expanding the ubiquitin code through post-translational modification
  publication-title: EMBO Rep
  doi: 10.15252/embr.201540891
– volume: 290
  start-page: 25199
  year: 2015
  ident: 2023072407191874800_bib66
  article-title: Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M115.671446
– volume: 294
  start-page: 10300
  year: 2019
  ident: 2023072407191874800_bib22
  article-title: Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.006302
– volume: 8
  year: 2010
  ident: 2023072407191874800_bib35
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000298
– volume: 191
  start-page: 933
  year: 2010
  ident: 2023072407191874800_bib12
  article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201008084
– volume: 2
  year: 2012
  ident: 2023072407191874800_bib19
  article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
  publication-title: Open Biol
  doi: 10.1098/rsob.120080
– volume: 510
  start-page: 162
  year: 2014
  ident: 2023072407191874800_bib20
  article-title: Ubiquitin is phosphorylated by PINK1 to activate parkin
  publication-title: Nature
  doi: 10.1038/nature13392
– volume: 7
  start-page: 12708
  year: 2016
  ident: 2023072407191874800_bib27
  article-title: Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins
  publication-title: Nat. Commun
  doi: 10.1038/ncomms12708
– volume: 125
  start-page: 1488
  year: 2012
  ident: 2023072407191874800_bib9
  article-title: Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.094110
– volume: 183
  start-page: 795
  year: 2008
  ident: 2023072407191874800_bib33
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.200809125
– volume: 10
  year: 2014
  ident: 2023072407191874800_bib54
  article-title: Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004861
– volume: 22
  start-page: 320
  year: 2012
  ident: 2023072407191874800_bib25
  article-title: Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.12.014
– volume: 7
  year: 2018
  ident: 2023072407191874800_bib68
  article-title: Endosomal Rab cycles regulate Parkin-mediated mitophagy
  publication-title: eLife
  doi: 10.7554/eLife.31326
– volume: 460
  start-page: 127
  year: 2014
  ident: 2023072407191874800_bib16
  article-title: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
  publication-title: Biochem. J
  doi: 10.1042/BJ20140334
– volume: 210
  start-page: 435
  year: 2015
  ident: 2023072407191874800_bib36
  article-title: MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201501002
– volume: 15
  start-page: 403
  year: 2014
  ident: 2023072407191874800_bib48
  article-title: Self and nonself: how autophagy targets mitochondria and bacteria
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.03.012
– volume: 23
  start-page: 886
  year: 2013
  ident: 2023072407191874800_bib70
  article-title: Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
  publication-title: Cell Res
  doi: 10.1038/cr.2013.66
– volume: 74
  start-page: 320
  year: 2019
  ident: 2023072407191874800_bib49
  article-title: The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.01.041
– volume: 6
  start-page: 1090
  year: 2010
  ident: 2023072407191874800_bib34
  article-title: p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
  publication-title: Autophagy.
  doi: 10.4161/auto.6.8.13426
– volume: 1116
  start-page: 235
  year: 2014
  ident: 2023072407191874800_bib69
  article-title: Seamless Ligation Cloning Extract (SLiCE) cloning method
  publication-title: Methods Mol. Biol
  doi: 10.1007/978-1-62703-764-8_16
– volume: 22
  start-page: 8370
  year: 2003
  ident: 2023072407191874800_bib4
  article-title: Alterations in the common fragile site gene Parkin in ovarian and other cancers
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207072
– volume: 10
  start-page: 466
  year: 2009
  ident: 2023072407191874800_bib18
  article-title: Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains
  publication-title: EMBO Rep
  doi: 10.1038/embor.2009.55
– volume: 432
  start-page: 80
  year: 2019
  ident: 2023072407191874800_bib13
  article-title: Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors
  publication-title: J. Mol. Biol
  doi: 10.1016/j.jmb.2019.07.016
– volume: 524
  start-page: 309
  year: 2015
  ident: 2023072407191874800_bib26
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
  doi: 10.1038/nature14893
– volume: 35
  start-page: 453
  year: 2019
  ident: 2023072407191874800_bib32
  article-title: Diverse Cellular Roles of Autophagy
  publication-title: Annu. Rev. Cell Dev. Biol
  doi: 10.1146/annurev-cellbio-100818-125300
– volume: 111
  start-page: E4439
  year: 2014
  ident: 2023072407191874800_bib62
  article-title: Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1405752111
– volume: 354
  start-page: 1036
  year: 2016
  ident: 2023072407191874800_bib56
  article-title: The ATG conjugation systems are important for degradation of the inner autophagosomal membrane
  publication-title: Science
  doi: 10.1126/science.aaf6136
– volume: 7
  year: 2018
  ident: 2023072407191874800_bib29
  article-title: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
  publication-title: eLife
  doi: 10.7554/eLife.32866
– volume: 209
  start-page: 111
  year: 2015
  ident: 2023072407191874800_bib41
  article-title: Phosphorylated ubiquitin chain is the genuine Parkin receptor
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201410050
– volume: 126
  start-page: 3237
  year: 2013
  ident: 2023072407191874800_bib1
  article-title: The LIR motif - crucial for selective autophagy
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.126128
– volume: 198
  start-page: 219
  year: 2012
  ident: 2023072407191874800_bib63
  article-title: Atg9 vesicles are an important membrane source during early steps of autophagosome formation
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201202061
– volume: 13
  start-page: 378
  year: 2012
  ident: 2023072407191874800_bib5
  article-title: Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
  publication-title: EMBO Rep
  doi: 10.1038/embor.2012.14
– volume: 26
  start-page: 733
  year: 2016
  ident: 2023072407191874800_bib37
  article-title: Deciphering the Molecular Signals of PINK1/Parkin Mitophagy
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2016.05.008
– volume: 113
  start-page: 4039
  year: 2016
  ident: 2023072407191874800_bib50
  article-title: Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1523926113
– volume: 333
  start-page: 228
  year: 2011
  ident: 2023072407191874800_bib61
  article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
  publication-title: Science
  doi: 10.1126/science.1205405
– volume: 147
  start-page: 893
  year: 2011
  ident: 2023072407191874800_bib58
  article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.018
– volume: 60
  start-page: 7
  year: 2015
  ident: 2023072407191874800_bib7
  article-title: The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.016
– volume: 20
  year: 2019
  ident: 2023072407191874800_bib21
  article-title: Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201947728
– volume: 496
  start-page: 372
  year: 2013
  ident: 2023072407191874800_bib51
  article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
  publication-title: Nature
  doi: 10.1038/nature12043
– volume: 29
  start-page: 803
  year: 2019
  ident: 2023072407191874800_bib24
  article-title: Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2019.03.003
– volume: 2
  start-page: 1002
  year: 2012
  ident: 2023072407191874800_bib53
  article-title: PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
  publication-title: Sci. Rep
  doi: 10.1038/srep01002
– volume: 85
  start-page: 257
  year: 2015
  ident: 2023072407191874800_bib47
  article-title: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.007
– volume: 9
  start-page: 1758
  year: 2013
  ident: 2023072407191874800_bib64
  article-title: PINK1 is degraded through the N-end rule pathway
  publication-title: Autophagy
  doi: 10.4161/auto.24633
– volume: 205
  start-page: 143
  year: 2014
  ident: 2023072407191874800_bib14
  article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201402104
– volume: 504
  start-page: 291
  year: 2013
  ident: 2023072407191874800_bib6
  article-title: High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
  publication-title: Nature
  doi: 10.1038/nature12748
– volume: 10
  start-page: 408
  year: 2019
  ident: 2023072407191874800_bib46
  article-title: LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy
  publication-title: Nat. Commun
  doi: 10.1038/s41467-019-08335-6
– volume: 16
  start-page: 939
  year: 2015
  ident: 2023072407191874800_bib17
  article-title: Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
  publication-title: EMBO Rep
  doi: 10.15252/embr.201540352
– volume: 18
  start-page: 1042
  year: 2011
  ident: 2023072407191874800_bib15
  article-title: A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery
  publication-title: Chem. Biol
  doi: 10.1016/j.chembiol.2011.05.013
– volume: 23
  start-page: 1860
  year: 2012
  ident: 2023072407191874800_bib45
  article-title: Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-09-0746
– volume: 191
  start-page: 1367
  year: 2010
  ident: 2023072407191874800_bib55
  article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201007013
– volume: 34
  start-page: 2506
  year: 2015
  ident: 2023072407191874800_bib23
  article-title: Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis
  publication-title: EMBO J
  doi: 10.15252/embj.201592337
– volume: 113
  start-page: E3349
  year: 2016
  ident: 2023072407191874800_bib31
  article-title: Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1523810113
– reference: 32858748 - J Cell Biol. 2020 Sep 7;219(9):
SSID ssj0004743
Score 2.6293018
Snippet Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson’s disease, amplify ubiquitin...
Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson's disease, amplify ubiquitin...
Damaged mitochondria are selectively eliminated by Parkin/PINK1-mediated autophagy. Kikuchi et al. show that in addition to binding ATG8 proteins, one of the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1
SubjectTerms Activation
Adapters
Adaptor proteins
Animals
Autophagy
Autophagy - physiology
Autophagy-Related Proteins - metabolism
Binding
Biochemistry
Carrier Proteins - metabolism
Cell Cycle Proteins - metabolism
Cell Line, Tumor
Cells, Cultured
Fluorescence
HCT116 Cells
HEK293 Cells
HeLa Cells
Humans
Mammals - metabolism
Mammals - physiology
Membrane Proteins - metabolism
Membrane Transport Proteins - metabolism
Mitochondria
Mitochondria - metabolism
Mitochondria - physiology
Mitophagy
Mitophagy - physiology
Movement disorders
Neurodegenerative diseases
Organelles
Parkin protein
Parkinson's disease
Phagocytosis
Protein Kinases - metabolism
Proteins
PTEN-induced putative kinase
Ubiquitin
Ubiquitin - metabolism
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Ubiquitination - physiology
Vesicular Transport Proteins - metabolism
Title Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy
URI https://www.ncbi.nlm.nih.gov/pubmed/32556086
https://www.proquest.com/docview/2435541713
https://www.proquest.com/docview/2415286928
https://pubmed.ncbi.nlm.nih.gov/PMC7480101
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCIkXxJ2MgYyEeCmBOPGa-LFCGxWbOkCp6Fvk2M4WRpMNUony6zknF6eBIg1eoso5TSqfz6effW6EvIgiHSqNrn8_ylwuUuFGiqVuJrDCj8CjizrKdzaezvn7xf6ia3HfZpdU6Wv1c2teyf9oFcZAr5gl-w-atQ-FAfgM-oUraBiuV9Kx7VPQxQguYX2CPSt03YtjleaXK5BoDvxsrOTJh3jmTuJ3YjKSP_I6Hha_d3EmTwc-3j5rrOareMQ_ams2WVshl7Lu3T06Kr_kvT__HFusNNrLz63hR5llTVY_y350KtfY0Ek3LHZdVnLzJAK2nehXCTeNJ_fwSLHxs5gtY63F7axkAy2x1ZIDNURLrlIMvxMMK7v1f1mdm352khzOj4-T-GARXyc3fNgqoK07-rhRMb5Nsuh-R1tnFR7_ZvDwIS_5Y7Pxe8zsBgmJ75DbrTbopIHCXXLNFPfIzaaf6Po--dQBgiIgaJnRASDoEBAUAEEBELQHBEVA0LygFhAPyPzwIH47ddumGa7ijFUutrbXWnLDpJBcAQPzQl_LsVBZuh9oo6X2Ai5DnskgNMKLpDBGqDBgXGuWieAh2SnKwjwmlGkg9zLSPMPUdZ9LJkIJDDFIlWe8bOyQV92UJaqtKI-NTb4mdWRDFCQww4mdYYe8tOIXTSmVvwnudfOftKvte-JzZMYsZIFDntvbYAsR_bIw5QplgI1GYzA7DnnUqMu-KcBae7B_d0g4UKQVwDrrwztFflbXWw-xxJLHdq_w3ifkVr8y9shO9W1lngJrrdJnNSx_AeMrmDE
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+role+of+mitochondrial+ubiquitination+and+the+OPTN-ATG9A+axis+in+mitophagy&rft.jtitle=The+Journal+of+cell+biology&rft.au=Yamano%2C+Koji&rft.au=Kikuchi%2C+Reika&rft.au=Kojima%2C+Waka&rft.au=Hayashida%2C+Ryota&rft.date=2020-09-07&rft.issn=1540-8140&rft.eissn=1540-8140&rft.volume=219&rft.issue=9&rft_id=info:doi/10.1083%2Fjcb.201912144&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon