Incorporation of WO3 species into TiO2 nanotubes via wet impregnation and their water-splitting performance

[Display omitted] ► Hybrid WO3–TiO2 nanotubes were prepared using anodization and wet impregnation techniques. ► A maximum photocurrent density of up to 2.1mA/cm2 (η≈5.1%) was achieved. ► Lattice doping of the W6+ ions within TiO2 formed WOTi bonds in this binary system. ► Optimum WO3 content acted...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 87; pp. 294 - 302
Main Authors Lai, Chin Wei, Sreekantan, Srimala
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► Hybrid WO3–TiO2 nanotubes were prepared using anodization and wet impregnation techniques. ► A maximum photocurrent density of up to 2.1mA/cm2 (η≈5.1%) was achieved. ► Lattice doping of the W6+ ions within TiO2 formed WOTi bonds in this binary system. ► Optimum WO3 content acted as an electron acceptor. ► Electrons trapped by WO3 transported rapidly from nanotube walls to the Ti substrate. Self-organized and highly ordered titanium dioxide (TiO2) nanotubes synthesized through anodization and wet impregnation were applied to incorporate tungsten trioxide (WO3) species uniformly throughout the walls of nanotubes. In this study, ammonium paratungstate (APT) was used as a precursor. The effect of APT molarity on the formation of WO3–TiO2 nanotubes was investigated using field emission microscopy, energy dispersion X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, photoluminescence, and X-ray photoelectron spectroscopy. The WO3–TiO2 nanotubes dipped in 0.3mM APT aqueous solution exhibited better photoelectrochemical water-splitting performance under visible illumination. A maximum photocurrent of 2.1mA/cm2 with a photoconversion efficiency of 5.1% was obtained, which is approximately twice higher than that of pure TiO2 nanotubes. The findings were mainly attributed to higher charge carrier separation, which minimized the recombination losses and enhanced the transportation of photo-induced electrons in this binary hybrid photoelectrode.
AbstractList Self-organized and highly ordered titanium dioxide (TiO2) nanotubes synthesized through anodization and wet impregnation were applied to incorporate tungsten trioxide (WO3) species uniformly throughout the walls of nanotubes. In this study, ammonium paratungstate (APT) was used as a precursor. The effect of APT molarity on the formation of WO3aTiO2 nanotubes was investigated using field emission microscopy, energy dispersion X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, photoluminescence, and X-ray photoelectron spectroscopy. The WO3aTiO2 nanotubes dipped in 0.3 mM APT aqueous solution exhibited better photoelectrochemical water-splitting performance under visible illumination. A maximum photocurrent of 2.1 mA/cm2 with a photoconversion efficiency of 5.1% was obtained, which is approximately twice higher than that of pure TiO2 nanotubes. The findings were mainly attributed to higher charge carrier separation, which minimized the recombination losses and enhanced the transportation of photo-induced electrons in this binary hybrid photoelectrode.
[Display omitted] ► Hybrid WO3–TiO2 nanotubes were prepared using anodization and wet impregnation techniques. ► A maximum photocurrent density of up to 2.1mA/cm2 (η≈5.1%) was achieved. ► Lattice doping of the W6+ ions within TiO2 formed WOTi bonds in this binary system. ► Optimum WO3 content acted as an electron acceptor. ► Electrons trapped by WO3 transported rapidly from nanotube walls to the Ti substrate. Self-organized and highly ordered titanium dioxide (TiO2) nanotubes synthesized through anodization and wet impregnation were applied to incorporate tungsten trioxide (WO3) species uniformly throughout the walls of nanotubes. In this study, ammonium paratungstate (APT) was used as a precursor. The effect of APT molarity on the formation of WO3–TiO2 nanotubes was investigated using field emission microscopy, energy dispersion X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, photoluminescence, and X-ray photoelectron spectroscopy. The WO3–TiO2 nanotubes dipped in 0.3mM APT aqueous solution exhibited better photoelectrochemical water-splitting performance under visible illumination. A maximum photocurrent of 2.1mA/cm2 with a photoconversion efficiency of 5.1% was obtained, which is approximately twice higher than that of pure TiO2 nanotubes. The findings were mainly attributed to higher charge carrier separation, which minimized the recombination losses and enhanced the transportation of photo-induced electrons in this binary hybrid photoelectrode.
Author Sreekantan, Srimala
Lai, Chin Wei
Author_xml – sequence: 1
  givenname: Chin Wei
  surname: Lai
  fullname: Lai, Chin Wei
– sequence: 2
  givenname: Srimala
  surname: Sreekantan
  fullname: Sreekantan, Srimala
  email: srimala@eng.usm.my
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26791487$$DView record in Pascal Francis
BookMark eNqNkU1LHTEUhkOx0Outv6HZCN3MNF-TTBYuRPohCHejuAyZzBmb69xkTHKV_vvGXnHRjUIgEJ7nhPO-x-goxAAIfaGkpYTKb9sWZnDF1tMyQllLdEsY-4BWtFe84X2nj9CKEMobIXv5CR3nvCWEKKnICt1fBhfTEpMtPgYcJ3y74Tgv4Dxk7EOJ-NpvGA42xLIf6tujt_gJCva7JcFdOHg2jLj8Bp_wky2QmrzMvhQf7vACaYppZ4ODz-jjZOcMJy_3Gt38-H598au52vy8vDi_apygtDQChoGrQTBKRMclmXTPuAQrhB1cJwYJ0yi0cLxXWo3doEbdcTU5LaXq2Wj5Gn09zF1SfNhDLmbns4N5tgHiPhsqFRVcV_1tlNefFBNSVPT0BbXZ2XlKdSWfzZL8zqY_hkmlqaiJr5E6cC7FnBNMrwgl5rkxszWvjZnnxgzRpjZWzbP_TOfLv3xLsn5-h39-8KGG--ghmVxbrMGPPlXejNG_OeMv73e6SQ
CODEN ELCAAV
CitedBy_id crossref_primary_10_1016_j_optmat_2023_113539
crossref_primary_10_1016_j_apcatb_2014_07_041
crossref_primary_10_1016_j_electacta_2014_08_055
crossref_primary_10_1021_acs_jpcc_5b08403
crossref_primary_10_1002_cssc_201402089
crossref_primary_10_1016_j_mssp_2014_05_034
crossref_primary_10_1155_2013_761971
crossref_primary_10_1109_TNANO_2021_3060786
crossref_primary_10_1016_j_inoche_2019_04_034
crossref_primary_10_1016_j_cej_2024_155036
crossref_primary_10_1016_j_ceramint_2020_07_064
crossref_primary_10_1016_j_electacta_2017_02_039
crossref_primary_10_1016_j_jclepro_2021_130039
crossref_primary_10_1016_j_optmat_2025_116721
crossref_primary_10_1021_cr400634p
crossref_primary_10_1016_j_jelechem_2020_114505
crossref_primary_10_1007_s00339_018_2096_1
crossref_primary_10_1039_C7QM00492C
crossref_primary_10_1088_0957_4484_26_25_254002
crossref_primary_10_1016_j_apcata_2020_117631
crossref_primary_10_1016_j_apsusc_2016_01_096
crossref_primary_10_1016_j_apmt_2018_11_005
crossref_primary_10_1016_j_electacta_2014_05_129
crossref_primary_10_1016_j_ijhydene_2018_05_063
crossref_primary_10_1016_j_ijhydene_2019_11_117
crossref_primary_10_1016_j_electacta_2014_08_036
crossref_primary_10_1021_acs_jpcc_1c08403
crossref_primary_10_1051_epjap_2014130453
crossref_primary_10_3390_ma8095270
crossref_primary_10_1007_s11244_022_01639_w
crossref_primary_10_1016_j_cattod_2013_10_090
crossref_primary_10_1155_2013_745301
crossref_primary_10_3390_catal14090633
crossref_primary_10_1016_j_jpowsour_2013_11_015
crossref_primary_10_3390_s131114813
crossref_primary_10_1590_1980_5373_mr_2016_0520
crossref_primary_10_1080_09593330_2019_1611936
crossref_primary_10_4028_www_scientific_net_AMR_1109_243
crossref_primary_10_1016_j_cap_2013_12_018
crossref_primary_10_1016_j_mtcomm_2020_101848
crossref_primary_10_1088_1757_899X_77_1_012010
crossref_primary_10_1021_acs_jpcc_4c00142
crossref_primary_10_1016_j_rser_2017_01_057
crossref_primary_10_1016_j_ijrmhm_2020_105189
crossref_primary_10_1002_pssr_201510245
crossref_primary_10_2478_lpts_2021_0043
crossref_primary_10_1016_j_jece_2020_104732
crossref_primary_10_4028_www_scientific_net_AMR_925_474
crossref_primary_10_1016_j_ijhydene_2019_04_035
crossref_primary_10_3762_bjnano_9_244
crossref_primary_10_1016_j_mssp_2013_02_002
crossref_primary_10_1016_j_electacta_2016_11_182
crossref_primary_10_1007_s10008_014_2402_6
crossref_primary_10_1016_j_tsf_2015_02_031
crossref_primary_10_1155_2013_276504
crossref_primary_10_1039_C4RA02161D
crossref_primary_10_1080_1478422X_2017_1316087
crossref_primary_10_1016_j_mseb_2015_09_005
crossref_primary_10_1016_j_ijrmhm_2018_11_012
crossref_primary_10_3390_ma6072892
crossref_primary_10_1016_j_matlet_2015_01_091
crossref_primary_10_1016_j_apcata_2015_03_035
crossref_primary_10_1016_j_jiec_2013_07_048
crossref_primary_10_1016_j_ijhydene_2012_12_025
crossref_primary_10_1016_j_jhazmat_2015_12_041
crossref_primary_10_1016_j_diamond_2022_109363
crossref_primary_10_1016_j_spmi_2014_12_008
crossref_primary_10_3389_fsens_2021_657931
crossref_primary_10_1016_j_electacta_2020_137149
crossref_primary_10_4028_www_scientific_net_NHC_20_1
Cites_doi 10.1016/j.apcata.2007.03.013
10.1021/cm0522782
10.1021/jp071906v
10.1007/s10853-010-4863-z
10.1016/j.cej.2010.12.020
10.1039/c1jm10274e
10.1126/science.1085169
10.1149/2.020112jes
10.1016/S1010-6030(01)00446-4
10.1016/j.jcat.2005.06.035
10.1016/S0013-4686(00)00337-6
10.1155/2011/142463
10.1016/j.jphotochem.2009.07.010
10.1007/s10853-009-3384-0
10.1006/jcat.1999.2776
10.1016/j.electacta.2008.10.063
10.1049/mnl.2012.0237
10.1016/j.ijhydene.2005.02.003
10.1016/j.apcatb.2009.06.005
10.1016/j.rser.2005.01.009
10.1016/j.jallcom.2009.11.112
10.1016/j.solmat.2006.04.007
10.1166/jnn.2012.5873
10.1002/cssc.201000014
10.1016/j.jhazmat.2009.12.102
10.1002/cphc.201000276
10.1016/j.jallcom.2009.05.152
10.1016/j.jallcom.2008.03.003
10.1166/jnn.2010.1695
10.1002/anie.201001374
10.1016/j.powtec.2005.08.012
10.1021/ja807106y
10.1039/b901957j
10.1002/adfm.201002258
10.1016/j.materresbull.2004.07.017
10.1016/j.electacta.2012.05.092
10.1002/cssc.200900018
10.1006/jssc.1994.1031
10.1063/1.2357878
10.1002/anie.200906010
10.1002/adfm.200902234
10.1016/j.apcatb.2009.11.002
10.1016/j.jallcom.2009.10.030
10.1155/2012/356943
10.1016/j.catcom.2009.01.010
10.1002/chem.201000397
10.1016/j.cej.2010.11.065
10.1088/0957-4484/21/36/365603
10.1016/S0360-3199(01)00154-9
10.1021/nn901087c
10.1557/jmr.2012.163
10.1016/j.jphotochem.2005.06.013
10.1126/science.285.5428.687
10.1016/j.jallcom.2005.11.051
10.1016/j.solener.2004.02.002
10.1021/jp1122823
10.1021/jp0465884
10.1021/cm051921h
10.1088/0957-4484/18/39/395604
10.1039/c1jm11072a
10.1002/adma.201102752
10.1016/j.ijhydene.2012.04.004
10.1021/jp0769781
10.1088/0022-3727/41/12/125307
10.1149/1.3054324
10.1166/jnn.2012.5874
10.1039/b701168g
10.1007/s11671-008-9200-y
10.1016/j.jallcom.2011.01.096
10.1557/jmr.2005.0408
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QQ
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2012.09.022
DatabaseName CrossRef
Pascal-Francis
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 302
ExternalDocumentID 26791487
10_1016_j_electacta_2012_09_022
S0013468612014843
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADIYS
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
ABTAH
IQODW
7QQ
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c411t-4ebb37b421045360f98236ea44abc54b6efd494c38797d5b7d9537fc966782da3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 11 12:29:54 EDT 2025
Mon Jul 21 10:31:04 EDT 2025
Wed Apr 02 07:15:09 EDT 2025
Tue Jul 01 01:44:51 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Fri Feb 23 02:17:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords WO3–TiO2 nanotubes
Ammonium paratungstate
Anodization
Photoelectrochemical
Wet impregnation
Water
Photoelectrochemistry
Titanium IV Oxides
Ammonium Tungstates
Nanotube
Tungsten Compounds
Impregnation
nanotubes
Anodizing
Tungsten VI Oxides
WO
Photoelectrolysis
TiO
Performance
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-4ebb37b421045360f98236ea44abc54b6efd494c38797d5b7d9537fc966782da3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1349472464
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671439879
proquest_miscellaneous_1349472464
pascalfrancis_primary_26791487
crossref_primary_10_1016_j_electacta_2012_09_022
crossref_citationtrail_10_1016_j_electacta_2012_09_022
elsevier_sciencedirect_doi_10_1016_j_electacta_2012_09_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
2013-1-00
2013
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Electrochimica acta
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Costi, Saunders, Banin (bib0180) 2010; 49
Yerga, Galván, del Valle, Villoria de la Mano, Fierro (bib0160) 2009; 2
Sreekantan, Saharudin, Lockman, Teoh (bib0350) 2010; 21
Paulose, Mor, Varghese, Shankar, Grimes (bib0120) 2006; 178
Sreekantan, Lockman, Hazan, Tasbihi, Tong, Mohamed (bib0065) 2009; 485
Bang, Kamat (bib0165) 2010; 20
Yu, Chen (bib0005) 2009; 4
Pan, Lee (bib0250) 2006; 18
Xie, Zhou, Lu (bib0125) 2009; 44
Lai, Sreekantan (bib0050) 2011; 2011
Tromp, Shia, Allen, Eiler, Yung (bib0020) 2003; 300
Fernandez-Garcia, Martinez-Arias, Fuerte, Conesa (bib0255) 2005; 109
Xiao, Wang, Huang, Wu, Dang (bib0185) 2009; 470
Ohi (bib0035) 2005; 20
Senthil, Yong (bib0355) 2007; 18
Tong, Ouyang, Bi, Umezawa, Oshikiri (bib0150) 2012; 24
Gong, Yang, Pu, Zhang (bib0285) 2011; 167
Hathway, Rockafellow, Oh, Jenks (bib0205) 2009; 207
Yang, Xiao, Liu, Cai, Luo, Zeng (bib0240) 2010; 94
Paramasiam, Nah, Das, Shrestha, Schmuki (bib0210) 2010; 16
Aroutiounian, Arakelyan, Shahnazaryan (bib0010) 2003; 78
Leung, Fu, Wang, Ni, Leung, Wang, Fu (bib0145) 2010; 3
Turner (bib0015) 1999; 285
Mor, Varghese, Paulose, Shankar, Grimes (bib0320) 2006; 90
Kwon, Song, Lee, Choi, Do (bib0270) 2000; 191
Lai, Sreekantan (bib0295) 2012; 7
Lai, Sreekantan (bib0190) 2012; 12
Komornicki, Radecka, Sobas (bib0315) 2004; 39
Sreekantan, Lai (bib0095) 2010; 490
Zhang, Bang, Tang, Kamat (bib0170) 2010; 4
Yan, Zhou (bib0115) 2011; 21
Lai, Sreekantan, Pei San E (bib0130) 2012; 27
Kim, Yang, Balaji, Cho, Kim, Kang, Djaoued, Kwon (bib0220) 2009; 11
Yang, Pan (bib0070) 2010; 492
Kim, Lee (bib0075) 2009; 12
Smith, Zhao (bib0245) 2009; 10
Sreekantan, Lai, Lockman (bib0290) 2011; 158
Do, Lee, Dwight, Wold (bib0265) 1994; 108
Tryk, Fujishima, Honda (bib0025) 2000; 45
Takahashi, Uno, Okui, Yamanaka (bib0045) 2006; 421
Bockris (bib0030) 2002; 27
Wang, Han, Feng, Chen, Li, Zhang (bib0215) 2011; 46
Sajjad, Shamaila, Tian, Chen, Zhang (bib0335) 2009; 91
Ni, Leung, Leung, Sumathy (bib0055) 2007; 11
Sun, Zhang, Sun, He (bib0100) 2010; 10
Song, Gao, Wang, Xia, Lynch (bib0280) 2011; 21
Park, Park (bib0195) 2006; 89
Mahajan, Misra, Raja, Mohapatra (bib0325) 2008; 41
Lenghari, Shamaila, Chen, Zhang (bib0225) 2011; 166
Lai, Sreekantan, Krengvirat (bib0345) 2012; 77
Kim, Kim, Kim, Choi (bib0175) 2011; 115
Lai, Sreekantan (bib0300) 2012; 2012
Ewan, Allen (bib0040) 2005; 30
Kitano, Matsuoka, Ueshima, Anpo (bib0080) 2007; 325
Nah, Paramasivam, Schmuki (bib0155) 2010; 11
Liu, Zhang, Zhao, Zhai, Jiang (bib0060) 2011; 21
Chen, Chen, Gao, Cao (bib0260) 2005; 160
Sajjad, Shamaiila, Tian, Chen, Zhang (bib0230) 2010; 177
Beranek, Macak, Gartner, Meyer, Schmuki (bib0140) 2009; 54
Li, Li, Yang, Ge (bib0330) 2001; 141
Valentin, Pacchioni, Selloni (bib0340) 2005; 17
Roy, Berger, Schmuki (bib0105) 2011; 50
Couselo, Einschlag, Candal, Jobbagy (bib0235) 2008; 112
Krengirat, Sreekantan, Noor, Negishi, Oh, Kawamura, Muto, Matsuda (bib0305) 2012; 37
Mohapatra, Misra, Mahajan, Raja (bib0310) 2007; 111
Wang, Wu, Qin, Xu, Hu, Cui, Zheng, Hong, Zhang (bib0090) 2011; 509
Grimes (bib0110) 2007; 17
Lai, Sreekantan, Lockman (bib0085) 2012; 12
Yang, Dai, Guo, Chen, Cao, Li, He, Fan (bib0275) 2005; 234
Shon, Phuntsho, Okour, Cho, Lim, Li, Na, Kim, Kim (bib0135) 2008; 19
Nah, Ghicov, Kim, Berger, Schmuki (bib0200) 2008; 130
Beranek (10.1016/j.electacta.2012.09.022_bib0140) 2009; 54
Lai (10.1016/j.electacta.2012.09.022_bib0130) 2012; 27
Do (10.1016/j.electacta.2012.09.022_bib0265) 1994; 108
Tong (10.1016/j.electacta.2012.09.022_bib0150) 2012; 24
Paulose (10.1016/j.electacta.2012.09.022_bib0120) 2006; 178
Xiao (10.1016/j.electacta.2012.09.022_bib0185) 2009; 470
Komornicki (10.1016/j.electacta.2012.09.022_bib0315) 2004; 39
Liu (10.1016/j.electacta.2012.09.022_bib0060) 2011; 21
Turner (10.1016/j.electacta.2012.09.022_bib0015) 1999; 285
Couselo (10.1016/j.electacta.2012.09.022_bib0235) 2008; 112
Shon (10.1016/j.electacta.2012.09.022_bib0135) 2008; 19
Sajjad (10.1016/j.electacta.2012.09.022_bib0230) 2010; 177
Fernandez-Garcia (10.1016/j.electacta.2012.09.022_bib0255) 2005; 109
Leung (10.1016/j.electacta.2012.09.022_bib0145) 2010; 3
Kim (10.1016/j.electacta.2012.09.022_bib0075) 2009; 12
Zhang (10.1016/j.electacta.2012.09.022_bib0170) 2010; 4
Sun (10.1016/j.electacta.2012.09.022_bib0100) 2010; 10
Sreekantan (10.1016/j.electacta.2012.09.022_bib0350) 2010; 21
Sreekantan (10.1016/j.electacta.2012.09.022_bib0095) 2010; 490
Ohi (10.1016/j.electacta.2012.09.022_bib0035) 2005; 20
Yang (10.1016/j.electacta.2012.09.022_bib0070) 2010; 492
Nah (10.1016/j.electacta.2012.09.022_bib0155) 2010; 11
Kitano (10.1016/j.electacta.2012.09.022_bib0080) 2007; 325
Yu (10.1016/j.electacta.2012.09.022_bib0005) 2009; 4
Sreekantan (10.1016/j.electacta.2012.09.022_bib0065) 2009; 485
Wang (10.1016/j.electacta.2012.09.022_bib0090) 2011; 509
Aroutiounian (10.1016/j.electacta.2012.09.022_bib0010) 2003; 78
Ni (10.1016/j.electacta.2012.09.022_bib0055) 2007; 11
Grimes (10.1016/j.electacta.2012.09.022_bib0110) 2007; 17
Li (10.1016/j.electacta.2012.09.022_bib0330) 2001; 141
Lai (10.1016/j.electacta.2012.09.022_bib0345) 2012; 77
Wang (10.1016/j.electacta.2012.09.022_bib0215) 2011; 46
Roy (10.1016/j.electacta.2012.09.022_bib0105) 2011; 50
Lai (10.1016/j.electacta.2012.09.022_bib0085) 2012; 12
Yerga (10.1016/j.electacta.2012.09.022_bib0160) 2009; 2
Kim (10.1016/j.electacta.2012.09.022_bib0220) 2009; 11
Pan (10.1016/j.electacta.2012.09.022_bib0250) 2006; 18
Tromp (10.1016/j.electacta.2012.09.022_bib0020) 2003; 300
Kim (10.1016/j.electacta.2012.09.022_bib0175) 2011; 115
Lenghari (10.1016/j.electacta.2012.09.022_bib0225) 2011; 166
Costi (10.1016/j.electacta.2012.09.022_bib0180) 2010; 49
Yan (10.1016/j.electacta.2012.09.022_bib0115) 2011; 21
Paramasiam (10.1016/j.electacta.2012.09.022_bib0210) 2010; 16
Lai (10.1016/j.electacta.2012.09.022_bib0300) 2012; 2012
Valentin (10.1016/j.electacta.2012.09.022_bib0340) 2005; 17
Krengirat (10.1016/j.electacta.2012.09.022_bib0305) 2012; 37
Bockris (10.1016/j.electacta.2012.09.022_bib0030) 2002; 27
Yang (10.1016/j.electacta.2012.09.022_bib0275) 2005; 234
Mahajan (10.1016/j.electacta.2012.09.022_bib0325) 2008; 41
Song (10.1016/j.electacta.2012.09.022_bib0280) 2011; 21
Mohapatra (10.1016/j.electacta.2012.09.022_bib0310) 2007; 111
Senthil (10.1016/j.electacta.2012.09.022_bib0355) 2007; 18
Takahashi (10.1016/j.electacta.2012.09.022_bib0045) 2006; 421
Kwon (10.1016/j.electacta.2012.09.022_bib0270) 2000; 191
Lai (10.1016/j.electacta.2012.09.022_bib0190) 2012; 12
Nah (10.1016/j.electacta.2012.09.022_bib0200) 2008; 130
Sreekantan (10.1016/j.electacta.2012.09.022_bib0290) 2011; 158
Xie (10.1016/j.electacta.2012.09.022_bib0125) 2009; 44
Smith (10.1016/j.electacta.2012.09.022_bib0245) 2009; 10
Yang (10.1016/j.electacta.2012.09.022_bib0240) 2010; 94
Hathway (10.1016/j.electacta.2012.09.022_bib0205) 2009; 207
Ewan (10.1016/j.electacta.2012.09.022_bib0040) 2005; 30
Chen (10.1016/j.electacta.2012.09.022_bib0260) 2005; 160
Mor (10.1016/j.electacta.2012.09.022_bib0320) 2006; 90
Park (10.1016/j.electacta.2012.09.022_bib0195) 2006; 89
Gong (10.1016/j.electacta.2012.09.022_bib0285) 2011; 167
Sajjad (10.1016/j.electacta.2012.09.022_bib0335) 2009; 91
Lai (10.1016/j.electacta.2012.09.022_bib0050) 2011; 2011
Bang (10.1016/j.electacta.2012.09.022_bib0165) 2010; 20
Tryk (10.1016/j.electacta.2012.09.022_bib0025) 2000; 45
Lai (10.1016/j.electacta.2012.09.022_bib0295) 2012; 7
References_xml – volume: 16
  start-page: 8993
  year: 2010
  ident: bib0210
  article-title: WO
  publication-title: Chemistry – A European Journal
– volume: 11
  start-page: 2698
  year: 2010
  ident: bib0155
  article-title: Doped TiO
  publication-title: ChemPhysChem
– volume: 4
  start-page: 387
  year: 2010
  ident: bib0170
  article-title: Tailored TiO
  publication-title: ACS Nano
– volume: 111
  start-page: 8677
  year: 2007
  ident: bib0310
  article-title: Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting application of TiO
  publication-title: Journal of Physical Chemistry C
– volume: 167
  start-page: 190
  year: 2011
  ident: bib0285
  article-title: Liquid phase deposition of tungsten doped TiO
  publication-title: Chemical Engineering Journal
– volume: 12
  start-page: 3170
  year: 2012
  ident: bib0190
  article-title: Visible light photoelectrochemical performance of W-loaded TiO
  publication-title: Journal of Nanoscience and Nanotechnology
– volume: 90
  start-page: 2011
  year: 2006
  ident: bib0320
  article-title: A review on highly ordered vertically oriented TiO
  publication-title: Solar Energy Materials and Solar Cells
– volume: 30
  start-page: 809
  year: 2005
  ident: bib0040
  article-title: A figure of merit assessment of the routes to hydrogen
  publication-title: International Journal of Hydrogen Energy
– volume: 160
  start-page: 198
  year: 2005
  ident: bib0260
  article-title: The preparation of coupled WO
  publication-title: Powder Technology
– volume: 158
  start-page: 397
  year: 2011
  ident: bib0290
  article-title: Extremely fast growth rate of TiO
  publication-title: Journal of the Electrochemical Society
– volume: 2011
  start-page: 142463
  year: 2011
  ident: bib0050
  article-title: Effect of applied potential on the formation of self-organized TiO
  publication-title: Journal of Nanomaterials
– volume: 78
  start-page: 581
  year: 2003
  ident: bib0010
  article-title: Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting
  publication-title: Solar Energy
– volume: 490
  start-page: 436
  year: 2010
  ident: bib0095
  article-title: Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method
  publication-title: Journal of Alloys and Compounds
– volume: 166
  start-page: 906
  year: 2011
  ident: bib0225
  article-title: WO
  publication-title: Chemical Engineering Journal
– volume: 21
  start-page: 1941
  year: 2011
  ident: bib0280
  article-title: Multistage coloring electrochromic device based on TiO
  publication-title: Advanced Functional Materials
– volume: 207
  start-page: 197
  year: 2009
  ident: bib0205
  article-title: Photocatalytic degradation using tungsten-modified TiO
  publication-title: Journal of Photochemistry and Photobiology A: Chemistry
– volume: 300
  start-page: 1740
  year: 2003
  ident: bib0020
  article-title: Potential environmental impact of a hydrogen economy on the stratosphere
  publication-title: Science
– volume: 177
  start-page: 781
  year: 2010
  ident: bib0230
  article-title: Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WO
  publication-title: Journal of Hazardous Materials
– volume: 37
  start-page: 10046
  year: 2012
  ident: bib0305
  article-title: Carbon-incorporated TiO
  publication-title: International Journal of Hydrogen Energy
– volume: 77
  start-page: 128
  year: 2012
  ident: bib0345
  article-title: Preparation and photoelectrochemical characterization of WO
  publication-title: Electrochimica Acta
– volume: 421
  start-page: 303
  year: 2006
  ident: bib0045
  article-title: Photoelectrochemical properties and band structure of oxide films on zirconium-transition metal alloys
  publication-title: Journal of Alloys and Compounds
– volume: 11
  start-page: 401
  year: 2007
  ident: bib0055
  article-title: A review and recent development in photocatalytic water-splitting using TiO
  publication-title: Renewable & Sustainable Energy Reviews
– volume: 39
  start-page: 2007
  year: 2004
  ident: bib0315
  article-title: Structural, electrical and optical properties of TiO
  publication-title: Materials Research Bulletin
– volume: 44
  start-page: 2907
  year: 2009
  ident: bib0125
  article-title: Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium
  publication-title: Journal of Materials Science
– volume: 24
  start-page: 229
  year: 2012
  ident: bib0150
  article-title: Nano-photocatalytic materials: possibilities and challenges
  publication-title: Advanced Materials
– volume: 54
  start-page: 2640
  year: 2009
  ident: bib0140
  article-title: Enhanced visible light photocurrent generation at surface–modified TiO
  publication-title: Electrochimica Acta
– volume: 2
  start-page: 471
  year: 2009
  ident: bib0160
  article-title: Water splitting on semiconductor catalysts under visible-light irradiation
  publication-title: ChemSusChem
– volume: 27
  start-page: 1695
  year: 2012
  ident: bib0130
  article-title: Effect of radio frequency sputtering power on W–TiO
  publication-title: Journal of Material Research
– volume: 19
  start-page: 1
  year: 2008
  ident: bib0135
  article-title: Visible light responsive titanium dioxide (TiO
  publication-title: Journal of the Korean Industrial and Engineering Chemistry
– volume: 21
  start-page: 9406
  year: 2011
  ident: bib0115
  article-title: TiO
  publication-title: Journal of Materials Chemistry
– volume: 91
  start-page: 397
  year: 2009
  ident: bib0335
  article-title: One step activation of WO
  publication-title: Applied Catalysis B-Environmental
– volume: 20
  start-page: 3167
  year: 2005
  ident: bib0035
  article-title: Hydrogen energy cycle: an overview
  publication-title: Journal of Materials Research
– volume: 234
  start-page: 438
  year: 2005
  ident: bib0275
  article-title: Synthesis of novel core-shell structured WO
  publication-title: Journal of Catalysis
– volume: 4
  start-page: 1
  year: 2009
  ident: bib0005
  article-title: Enhancing solar cell efficiencies through 1-D nanostructures
  publication-title: Nanoscale Research Letters
– volume: 10
  start-page: 1117
  year: 2009
  ident: bib0245
  article-title: Superior photocatalytic performance by vertically aligned core-shell TiO
  publication-title: Catalysis Communications
– volume: 109
  start-page: 6075
  year: 2005
  ident: bib0255
  article-title: Nano-structured Ti–W mixed-metal oxides: structural and electronic properties
  publication-title: Journal of Physical Chemistry B
– volume: 46
  start-page: 416
  year: 2011
  ident: bib0215
  article-title: Preparation andphotoelectrochemical characterization of WO
  publication-title: Journal of Materials Science
– volume: 21
  start-page: 10354
  year: 2011
  ident: bib0060
  article-title: 3-D vertical arrays of TiO
  publication-title: Journal of Materials Chemistry
– volume: 108
  start-page: 198
  year: 1994
  ident: bib0265
  article-title: The effect of WO
  publication-title: Journal of Solid State Chemistry
– volume: 7
  start-page: 443
  year: 2012
  ident: bib0295
  article-title: Dimensional control of TiO
  publication-title: Micro & Nano Letters
– volume: 130
  start-page: 16154
  year: 2008
  ident: bib0200
  article-title: TiO
  publication-title: Journal of the American Chemical Society
– volume: 2012
  start-page: 356943
  year: 2012
  ident: bib0300
  article-title: Photoelectrochemical performance of smooth TiO
  publication-title: International Journal of Photoenergy
– volume: 18
  start-page: 395604
  year: 2007
  ident: bib0355
  article-title: Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing
  publication-title: Nanotechnology
– volume: 21
  start-page: 365603
  year: 2010
  ident: bib0350
  article-title: Fast-rate formation of TiO
  publication-title: Nanotechnology
– volume: 17
  start-page: 6656
  year: 2005
  ident: bib0340
  article-title: Theory of carbon doping of titanium dioxide
  publication-title: Chemistry of Materials
– volume: 41
  start-page: 125307
  year: 2008
  ident: bib0325
  article-title: Self-organized TiO
  publication-title: Journal of Physics D: Applied Physics
– volume: 10
  start-page: 4551
  year: 2010
  ident: bib0100
  article-title: Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells
  publication-title: Journal of Nanoscience and Nanotechnology
– volume: 18
  start-page: 847
  year: 2006
  ident: bib0250
  article-title: Preparation of highly ordered cubic mesoporous WO
  publication-title: Chemistry of Materials
– volume: 285
  start-page: 687
  year: 1999
  ident: bib0015
  article-title: A realizable renewable energy future
  publication-title: Science
– volume: 49
  start-page: 2
  year: 2010
  ident: bib0180
  article-title: Colloidal hybrid nanostructures: a new type of functional materials
  publication-title: Angewandte Chemie International Edition
– volume: 50
  start-page: 2904
  year: 2011
  ident: bib0105
  article-title: TiO
  publication-title: Angewandte Chemie International Edition
– volume: 27
  start-page: 731
  year: 2002
  ident: bib0030
  article-title: The origin of ideas on a hydrogen economy and its solution to the decay of the environment
  publication-title: International Journal of Hydrogen Energy
– volume: 112
  start-page: 1094
  year: 2008
  ident: bib0235
  article-title: Tungsten-doped TiO
  publication-title: Journal of Physical Chemistry C
– volume: 141
  start-page: 209
  year: 2001
  ident: bib0330
  article-title: Photocatalytic activity of WO
  publication-title: Journal of Photochemistry and Photobiology A: Chemistry
– volume: 115
  start-page: 9797
  year: 2011
  ident: bib0175
  article-title: Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO
  publication-title: Journal of Physical Chemistry C
– volume: 191
  start-page: 192
  year: 2000
  ident: bib0270
  article-title: Photocatalytic behavior of WO
  publication-title: Journal of Catalysis
– volume: 485
  start-page: 478
  year: 2009
  ident: bib0065
  article-title: Influence of electrolyte pH on TiO
  publication-title: Journal of Alloys and Compounds
– volume: 17
  start-page: 1451
  year: 2007
  ident: bib0110
  article-title: Synthesis and application of highly ordered arrays of TiO
  publication-title: Journal of Materials Chemistry
– volume: 178
  start-page: 8
  year: 2006
  ident: bib0120
  article-title: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays
  publication-title: Journal of Photochemistry and Photobiology A: Chemistry
– volume: 470
  start-page: 486
  year: 2009
  ident: bib0185
  article-title: Synthesis and characterization of WO
  publication-title: Journal of Alloys and Compounds
– volume: 492
  start-page: 133
  year: 2010
  ident: bib0070
  article-title: Diameter controlled growth of TiO
  publication-title: Journal of Alloys and Compounds
– volume: 45
  start-page: 2363
  year: 2000
  ident: bib0025
  article-title: Recent topics in photoelectro-chemitry: achievement and future prospect
  publication-title: Electrochimica Acta
– volume: 509
  start-page: 157
  year: 2011
  ident: bib0090
  article-title: Rapid anodic oxidation of highly ordered TiO
  publication-title: Journal of Alloys and Compounds
– volume: 3
  start-page: 681
  year: 2010
  ident: bib0145
  article-title: Hydrogen production over titania-based photocatalysts
  publication-title: ChemSusChem
– volume: 94
  start-page: 142
  year: 2010
  ident: bib0240
  article-title: Photocatalytic reduction of Cr(VI) on WO
  publication-title: Applied Catalysis B-Environmental
– volume: 20
  start-page: 1970
  year: 2010
  ident: bib0165
  article-title: Solar cells by design: Photoelectrochemistry of TiO
  publication-title: Advanced Functional Materials
– volume: 11
  start-page: 1621
  year: 2009
  ident: bib0220
  article-title: Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species
  publication-title: Crystal Engineering Communication
– volume: 12
  start-page: 4057
  year: 2012
  ident: bib0085
  article-title: Photoelectrochemical behaviour of uniform growth TiO
  publication-title: Journal of Nanoscience and Nanotechnology
– volume: 325
  start-page: 1
  year: 2007
  ident: bib0080
  article-title: Recent developments in titanium oxide-based photocatalysts
  publication-title: Applied Catalysis A: General
– volume: 89
  start-page: 163106
  year: 2006
  ident: bib0195
  article-title: Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide
  publication-title: Applied Physics Letters
– volume: 12
  start-page: C10
  year: 2009
  ident: bib0075
  article-title: Dependence of the morphology of nanostructured titanium oxide on fluoride ion content
  publication-title: Electrochemical and Solid-State Letters
– volume: 325
  start-page: 1
  year: 2007
  ident: 10.1016/j.electacta.2012.09.022_bib0080
  article-title: Recent developments in titanium oxide-based photocatalysts
  publication-title: Applied Catalysis A: General
  doi: 10.1016/j.apcata.2007.03.013
– volume: 18
  start-page: 847
  year: 2006
  ident: 10.1016/j.electacta.2012.09.022_bib0250
  article-title: Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties
  publication-title: Chemistry of Materials
  doi: 10.1021/cm0522782
– volume: 111
  start-page: 8677
  year: 2007
  ident: 10.1016/j.electacta.2012.09.022_bib0310
  article-title: Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting application of TiO2−xCx nanotubes as photoanode and Pt/TiO2 nanotubes as a cathode
  publication-title: Journal of Physical Chemistry C
  doi: 10.1021/jp071906v
– volume: 46
  start-page: 416
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0215
  article-title: Preparation andphotoelectrochemical characterization of WO3/TiO2 nanotube array electrode
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-010-4863-z
– volume: 167
  start-page: 190
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0285
  article-title: Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecylbenenesulfonate
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2010.12.020
– volume: 21
  start-page: 9406
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0115
  article-title: TiO2 nanotubes: structure optimization for solar cells
  publication-title: Journal of Materials Chemistry
  doi: 10.1039/c1jm10274e
– volume: 300
  start-page: 1740
  year: 2003
  ident: 10.1016/j.electacta.2012.09.022_bib0020
  article-title: Potential environmental impact of a hydrogen economy on the stratosphere
  publication-title: Science
  doi: 10.1126/science.1085169
– volume: 158
  start-page: 397
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0290
  article-title: Extremely fast growth rate of TiO2 nanotube arrays in electrochemical bath containing H2O2
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/2.020112jes
– volume: 141
  start-page: 209
  year: 2001
  ident: 10.1016/j.electacta.2012.09.022_bib0330
  article-title: Photocatalytic activity of WOx–TiO2 under visible light irradiation
  publication-title: Journal of Photochemistry and Photobiology A: Chemistry
  doi: 10.1016/S1010-6030(01)00446-4
– volume: 234
  start-page: 438
  year: 2005
  ident: 10.1016/j.electacta.2012.09.022_bib0275
  article-title: Synthesis of novel core-shell structured WO3/TiO2 spheroids and its applications in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2
  publication-title: Journal of Catalysis
  doi: 10.1016/j.jcat.2005.06.035
– volume: 45
  start-page: 2363
  year: 2000
  ident: 10.1016/j.electacta.2012.09.022_bib0025
  article-title: Recent topics in photoelectro-chemitry: achievement and future prospect
  publication-title: Electrochimica Acta
  doi: 10.1016/S0013-4686(00)00337-6
– volume: 2011
  start-page: 142463
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0050
  article-title: Effect of applied potential on the formation of self-organized TiO2 nanotube arrays and its photoelectrochemical response
  publication-title: Journal of Nanomaterials
  doi: 10.1155/2011/142463
– volume: 207
  start-page: 197
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0205
  article-title: Photocatalytic degradation using tungsten-modified TiO2 and visible light: kinetic and mechanistic effect using multiple catalyst doping strategies
  publication-title: Journal of Photochemistry and Photobiology A: Chemistry
  doi: 10.1016/j.jphotochem.2009.07.010
– volume: 44
  start-page: 2907
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0125
  article-title: Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-009-3384-0
– volume: 191
  start-page: 192
  year: 2000
  ident: 10.1016/j.electacta.2012.09.022_bib0270
  article-title: Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction
  publication-title: Journal of Catalysis
  doi: 10.1006/jcat.1999.2776
– volume: 54
  start-page: 2640
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0140
  article-title: Enhanced visible light photocurrent generation at surface–modified TiO2 nanotube
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2008.10.063
– volume: 7
  start-page: 443
  year: 2012
  ident: 10.1016/j.electacta.2012.09.022_bib0295
  article-title: Dimensional control of TiO2 nanotube arrays with H2O2 content for high photoelectrochemical water splitting performance
  publication-title: Micro & Nano Letters
  doi: 10.1049/mnl.2012.0237
– volume: 30
  start-page: 809
  year: 2005
  ident: 10.1016/j.electacta.2012.09.022_bib0040
  article-title: A figure of merit assessment of the routes to hydrogen
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2005.02.003
– volume: 91
  start-page: 397
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0335
  article-title: One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity
  publication-title: Applied Catalysis B-Environmental
  doi: 10.1016/j.apcatb.2009.06.005
– volume: 11
  start-page: 401
  year: 2007
  ident: 10.1016/j.electacta.2012.09.022_bib0055
  article-title: A review and recent development in photocatalytic water-splitting using TiO2 for hydrogen production
  publication-title: Renewable & Sustainable Energy Reviews
  doi: 10.1016/j.rser.2005.01.009
– volume: 492
  start-page: 133
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0070
  article-title: Diameter controlled growth of TiO2 nanotube arrays by anodization and its photoelectric property
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2009.11.112
– volume: 90
  start-page: 2011
  year: 2006
  ident: 10.1016/j.electacta.2012.09.022_bib0320
  article-title: A review on highly ordered vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/j.solmat.2006.04.007
– volume: 12
  start-page: 4057
  year: 2012
  ident: 10.1016/j.electacta.2012.09.022_bib0085
  article-title: Photoelectrochemical behaviour of uniform growth TiO2 nanotubes via bubble blowing synthesised in ethylene glycol with H2O2
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2012.5873
– volume: 3
  start-page: 681
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0145
  article-title: Hydrogen production over titania-based photocatalysts
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000014
– volume: 177
  start-page: 781
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0230
  article-title: Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2009.12.102
– volume: 11
  start-page: 2698
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0155
  article-title: Doped TiO2 and TiO2 nanotubes: synthesis and applications
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201000276
– volume: 485
  start-page: 478
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0065
  article-title: Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2009.05.152
– volume: 470
  start-page: 486
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0185
  article-title: Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhance photocatalytic properties
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2008.03.003
– volume: 10
  start-page: 4551
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0100
  article-title: Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2010.1695
– volume: 50
  start-page: 2904
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0105
  article-title: TiO2 nanotubes: synthesis and applications
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201001374
– volume: 160
  start-page: 198
  year: 2005
  ident: 10.1016/j.electacta.2012.09.022_bib0260
  article-title: The preparation of coupled WO3/TiO2 photocatalyst by ball milling
  publication-title: Powder Technology
  doi: 10.1016/j.powtec.2005.08.012
– volume: 130
  start-page: 16154
  year: 2008
  ident: 10.1016/j.electacta.2012.09.022_bib0200
  article-title: TiO2–WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja807106y
– volume: 11
  start-page: 1621
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0220
  article-title: Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species
  publication-title: Crystal Engineering Communication
  doi: 10.1039/b901957j
– volume: 21
  start-page: 1941
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0280
  article-title: Multistage coloring electrochromic device based on TiO2 nanotube arrays modified with WO3 nanoparticles
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201002258
– volume: 39
  start-page: 2007
  year: 2004
  ident: 10.1016/j.electacta.2012.09.022_bib0315
  article-title: Structural, electrical and optical properties of TiO2–WO3 polycrystalline ceramics, Mater
  publication-title: Materials Research Bulletin
  doi: 10.1016/j.materresbull.2004.07.017
– volume: 77
  start-page: 128
  year: 2012
  ident: 10.1016/j.electacta.2012.09.022_bib0345
  article-title: Preparation and photoelectrochemical characterization of WO3-loaded TiO2 nanotube arrays via radio frequency sputtering
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2012.05.092
– volume: 2
  start-page: 471
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0160
  article-title: Water splitting on semiconductor catalysts under visible-light irradiation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900018
– volume: 108
  start-page: 198
  year: 1994
  ident: 10.1016/j.electacta.2012.09.022_bib0265
  article-title: The effect of WO3 on photocatalytic activity TiO2
  publication-title: Journal of Solid State Chemistry
  doi: 10.1006/jssc.1994.1031
– volume: 89
  start-page: 163106
  year: 2006
  ident: 10.1016/j.electacta.2012.09.022_bib0195
  article-title: Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2357878
– volume: 49
  start-page: 2
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0180
  article-title: Colloidal hybrid nanostructures: a new type of functional materials
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200906010
– volume: 20
  start-page: 1970
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0165
  article-title: Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CeSe
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.200902234
– volume: 94
  start-page: 142
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0240
  article-title: Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid
  publication-title: Applied Catalysis B-Environmental
  doi: 10.1016/j.apcatb.2009.11.002
– volume: 490
  start-page: 436
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0095
  article-title: Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2009.10.030
– volume: 2012
  start-page: 356943
  year: 2012
  ident: 10.1016/j.electacta.2012.09.022_bib0300
  article-title: Photoelectrochemical performance of smooth TiO2 nanotube arrays: Effect of anodization temperature and cleaning methods
  publication-title: International Journal of Photoenergy
  doi: 10.1155/2012/356943
– volume: 10
  start-page: 1117
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0245
  article-title: Superior photocatalytic performance by vertically aligned core-shell TiO2/WO3 nanorod arrays
  publication-title: Catalysis Communications
  doi: 10.1016/j.catcom.2009.01.010
– volume: 16
  start-page: 8993
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0210
  article-title: WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity
  publication-title: Chemistry – A European Journal
  doi: 10.1002/chem.201000397
– volume: 166
  start-page: 906
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0225
  article-title: WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2010.11.065
– volume: 21
  start-page: 365603
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0350
  article-title: Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/36/365603
– volume: 27
  start-page: 731
  year: 2002
  ident: 10.1016/j.electacta.2012.09.022_bib0030
  article-title: The origin of ideas on a hydrogen economy and its solution to the decay of the environment
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/S0360-3199(01)00154-9
– volume: 4
  start-page: 387
  year: 2010
  ident: 10.1016/j.electacta.2012.09.022_bib0170
  article-title: Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance
  publication-title: ACS Nano
  doi: 10.1021/nn901087c
– volume: 27
  start-page: 1695
  year: 2012
  ident: 10.1016/j.electacta.2012.09.022_bib0130
  article-title: Effect of radio frequency sputtering power on W–TiO2 nanotubes to improve photoelectrochemical performance
  publication-title: Journal of Material Research
  doi: 10.1557/jmr.2012.163
– volume: 178
  start-page: 8
  year: 2006
  ident: 10.1016/j.electacta.2012.09.022_bib0120
  article-title: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays
  publication-title: Journal of Photochemistry and Photobiology A: Chemistry
  doi: 10.1016/j.jphotochem.2005.06.013
– volume: 285
  start-page: 687
  year: 1999
  ident: 10.1016/j.electacta.2012.09.022_bib0015
  article-title: A realizable renewable energy future
  publication-title: Science
  doi: 10.1126/science.285.5428.687
– volume: 421
  start-page: 303
  year: 2006
  ident: 10.1016/j.electacta.2012.09.022_bib0045
  article-title: Photoelectrochemical properties and band structure of oxide films on zirconium-transition metal alloys
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2005.11.051
– volume: 78
  start-page: 581
  year: 2003
  ident: 10.1016/j.electacta.2012.09.022_bib0010
  article-title: Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2004.02.002
– volume: 115
  start-page: 9797
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0175
  article-title: Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer
  publication-title: Journal of Physical Chemistry C
  doi: 10.1021/jp1122823
– volume: 109
  start-page: 6075
  year: 2005
  ident: 10.1016/j.electacta.2012.09.022_bib0255
  article-title: Nano-structured Ti–W mixed-metal oxides: structural and electronic properties
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp0465884
– volume: 17
  start-page: 6656
  year: 2005
  ident: 10.1016/j.electacta.2012.09.022_bib0340
  article-title: Theory of carbon doping of titanium dioxide
  publication-title: Chemistry of Materials
  doi: 10.1021/cm051921h
– volume: 18
  start-page: 395604
  year: 2007
  ident: 10.1016/j.electacta.2012.09.022_bib0355
  article-title: Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/39/395604
– volume: 21
  start-page: 10354
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0060
  article-title: 3-D vertical arrays of TiO2 nanotubes on Ti meshes: efficient photoanodes for water photoelectrolysis
  publication-title: Journal of Materials Chemistry
  doi: 10.1039/c1jm11072a
– volume: 24
  start-page: 229
  year: 2012
  ident: 10.1016/j.electacta.2012.09.022_bib0150
  article-title: Nano-photocatalytic materials: possibilities and challenges
  publication-title: Advanced Materials
  doi: 10.1002/adma.201102752
– volume: 37
  start-page: 10046
  year: 2012
  ident: 10.1016/j.electacta.2012.09.022_bib0305
  article-title: Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.04.004
– volume: 112
  start-page: 1094
  year: 2008
  ident: 10.1016/j.electacta.2012.09.022_bib0235
  article-title: Tungsten-doped TiO2 vs pure TiO2 photocatalysts: effects on photobleaching kinetics and mechanism
  publication-title: Journal of Physical Chemistry C
  doi: 10.1021/jp0769781
– volume: 41
  start-page: 125307
  year: 2008
  ident: 10.1016/j.electacta.2012.09.022_bib0325
  article-title: Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures
  publication-title: Journal of Physics D: Applied Physics
  doi: 10.1088/0022-3727/41/12/125307
– volume: 12
  start-page: C10
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0075
  article-title: Dependence of the morphology of nanostructured titanium oxide on fluoride ion content
  publication-title: Electrochemical and Solid-State Letters
  doi: 10.1149/1.3054324
– volume: 12
  start-page: 3170
  year: 2012
  ident: 10.1016/j.electacta.2012.09.022_bib0190
  article-title: Visible light photoelectrochemical performance of W-loaded TiO2 nanotube arrays: structural properties
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2012.5874
– volume: 19
  start-page: 1
  year: 2008
  ident: 10.1016/j.electacta.2012.09.022_bib0135
  article-title: Visible light responsive titanium dioxide (TiO2)
  publication-title: Journal of the Korean Industrial and Engineering Chemistry
– volume: 17
  start-page: 1451
  year: 2007
  ident: 10.1016/j.electacta.2012.09.022_bib0110
  article-title: Synthesis and application of highly ordered arrays of TiO2 nanotubes
  publication-title: Journal of Materials Chemistry
  doi: 10.1039/b701168g
– volume: 4
  start-page: 1
  year: 2009
  ident: 10.1016/j.electacta.2012.09.022_bib0005
  article-title: Enhancing solar cell efficiencies through 1-D nanostructures
  publication-title: Nanoscale Research Letters
  doi: 10.1007/s11671-008-9200-y
– volume: 509
  start-page: 157
  year: 2011
  ident: 10.1016/j.electacta.2012.09.022_bib0090
  article-title: Rapid anodic oxidation of highly ordered TiO2 nanotube arrays
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2011.01.096
– volume: 20
  start-page: 3167
  year: 2005
  ident: 10.1016/j.electacta.2012.09.022_bib0035
  article-title: Hydrogen energy cycle: an overview
  publication-title: Journal of Materials Research
  doi: 10.1557/jmr.2005.0408
SSID ssj0007670
Score 2.366257
Snippet [Display omitted] ► Hybrid WO3–TiO2 nanotubes were prepared using anodization and wet impregnation techniques. ► A maximum photocurrent density of up to...
Self-organized and highly ordered titanium dioxide (TiO2) nanotubes synthesized through anodization and wet impregnation were applied to incorporate tungsten...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 294
SubjectTerms Ammonium paratungstate
Anodization
Anodizing
Chemistry
Concentration (composition)
Dispersions
Electrochemistry
Exact sciences and technology
General and physical chemistry
Impregnation
Nanotubes
Photoelectrochemical
Photoelectrochemistry. Electrochemiluminescence
Titanium dioxide
Tungsten oxides
Wet impregnation
WO3–TiO2 nanotubes
X-rays
Title Incorporation of WO3 species into TiO2 nanotubes via wet impregnation and their water-splitting performance
URI https://dx.doi.org/10.1016/j.electacta.2012.09.022
https://www.proquest.com/docview/1349472464
https://www.proquest.com/docview/1671439879
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gAIVVBAbCkrI3ENTeKJXXOrVq22INpLK3qzbMdB4ZFEu9n2xm9nJo8tKwQ9IOVkxYo1M5mXZ-Zj7C0GFYUIMWEA2iyCLKSRjgsfWbRteSJt5h3lOz6dy_kVfLjOrrfYbOyFobLKQff3Or3T1sPK4UDNw6Ysqcc3ESCP0ERTVgxo4ieAIil_9_OuzENJFY8oBvT2Ro1XBzVj8aEar7QbeJqmf7NQjxu7RLoVPeDFH7q7M0inT9ju4Eny4_6wT9lWqPbYg9kI4LbHHv02a_AZ-3ZGEyubgeO8LvjnC8Gp0RJjZV5Wbc0vy4uUV7aq25XDtZvS8tvQ8vJHswhf-qwht1XOu8sFfote6iJaohPblU7z5q4F4Tm7Oj25nM2jAWkh8pAkbQTBOaEcYPwHmZBxoQkHPVgA63wGToYiBw1eHCmt8sypXGdCFR5jJfQwcitesO2qrsJLxhOVx067BPlXgHZC-1x5S9ebFmQa3ITJkbrGD2PICQ3juxnrzb6aNVsMscXE2iBbJixeb2z6SRz3b3k_ss9sCJVBe3H_5ukGw9cfTaXSKHBqwt6MEmCQs3TRYqtQr5aGRj6CSkHCP96RhDyvkaD7_3PKV-xh2gF0UFLogG23i1V4jW5S66bdfzBlO8dnH-fnvwDx_RRe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aEghKCAujyKkbhGTfysuVUrql3abi9b0ZtlJ04VoEm0m6V_n3EeCysEPSDlZGUUa8aZl2fmA_iAQUXOfBwwAK2IuPA00nGeRhZtW5ZIK1IX8h0Xczm94p-vxfUOTIZemFBW2ev-Tqe32rpfOeq5eVQXRejxTRiXx2iiQ1aMswewG6ZTiRHsnszOpvONQlZSxQOQQSDYKvNq0WYsPqHMi7YzTyn9m5F6XNsVsi7vMC_-UN-tTTp9Ck96Z5KcdPt9Bju-3Ie9yYDhtg-Pfhs3-By-zcLQyroXOqly8uWSkdBrieEyKcqmIovikpLSllWzdrj2o7DkzjekuK2X_qZLHBJbZqS9XyB36KguoxX6sW31NKl_dSG8gKvTT4vJNOrBFqKUJ0kTce8cU45jCMgFk3GuAxS6t5xblwrupM8zrnnKjpVWmXAq04KpPMVwCZ2MzLKXMCqr0h8ASVQWO-0SFGHOtWM6zVRqww2n5ZJ6NwY5cNek_STyAIjx3QwlZ1_NRiwmiMXE2qBYxhBvCOtuGMf9JB8H8Zmtc2XQZNxPfLgl8M1HqVQaz5waw_vhBBiUbLhrsaWv1isTpj5yRbnk_3hHBvB5jQx99T-7fAd708XFuTmfzc9ew0Pa4nWEHNEbGDXLtX-LXlPjDvu_4idVPxcP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+WO3+species+into+TiO2+nanotubes+via+wet+impregnation+and+their+water-splitting+performance&rft.jtitle=Electrochimica+acta&rft.au=CHIN+WEI+LAI&rft.au=SREEKANTAN%2C+Srimala&rft.date=2013&rft.pub=Elsevier&rft.issn=0013-4686&rft.volume=87&rft.spage=294&rft.epage=302&rft_id=info:doi/10.1016%2Fj.electacta.2012.09.022&rft.externalDBID=n%2Fa&rft.externalDocID=26791487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon