Machine learning and statistical methods for clustering single-cell RNA-sequencing data
Abstract Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell...
Saved in:
Published in | Briefings in bioinformatics Vol. 21; no. 4; pp. 1209 - 1223 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.07.2020
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models,
$k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics.
Availability
All the source code and data are available at https://github.com/kuanglab/single-cell-review. |
---|---|
AbstractList | Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics.
All the source code and data are available at https://github.com/kuanglab/single-cell-review. Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics. Availability All the source code and data are available at https://github.com/kuanglab/single-cell-review. Abstract Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics. Availability All the source code and data are available at https://github.com/kuanglab/single-cell-review. Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics.Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics.All the source code and data are available at https://github.com/kuanglab/single-cell-review.AVAILABILITYAll the source code and data are available at https://github.com/kuanglab/single-cell-review. |
Author | Li, Zhuliu Petegrosso, Raphael Kuang, Rui |
Author_xml | – sequence: 1 givenname: Raphael surname: Petegrosso fullname: Petegrosso, Raphael organization: CREST (Ensai, Université Bretagne Loire), Bruz, France – sequence: 2 givenname: Zhuliu surname: Li fullname: Li, Zhuliu organization: CREST (Ensai, Université Bretagne Loire), Bruz, France – sequence: 3 givenname: Rui surname: Kuang fullname: Kuang, Rui email: kuang@umn.edu organization: CREST (Ensai, Université Bretagne Loire), Bruz, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31243426$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEUhYNUbH1s_AEyIIIIo3nNayniC6qCKC5DkklsyjSpSWahv94MtSBFXCS5kO-ee7hnF4ysswqAQwTPEWzIhTDiQogvWJItMEG0qnIKCzr6VY_BbghzCDGsarQDxgRhSiguJ-DtgcuZsSrrFPfW2PeM2zYLkUcTopG8yxYqzlwbMu18Jrs-ROUHLKSrU7lUXZc9P17mQX30ysrhq-WR74NtzbugDn7ePfB6c_1ydZdPn27vry6nuaQIxZw2pNRUFLjSmrc1bqSqSi1R3RSI6EKXWiONJRW0Kdt0IK2gpi0WWjS6xJjsgdOV7tK7ZCBEtjBhMMWtcn1gGNOaVHWF6oQeb6Bz13ub3DFMizKNJJQk6uiH6sVCtWzpzYL7T7ZeWQLgCpDeheCVZtIM63I2em46hiAbUmEpFbZKJbWcbbSsVf-ET1aw65f_cd-N6JqK |
CitedBy_id | crossref_primary_10_1007_s00441_021_03483_y crossref_primary_10_26508_lsa_202302103 crossref_primary_10_1007_s13369_021_05893_0 crossref_primary_10_1093_bib_bbae485 crossref_primary_10_1093_bib_bbae486 crossref_primary_10_1155_2022_3603353 crossref_primary_10_1186_s40779_022_00434_8 crossref_primary_10_3390_biomedinformatics4020072 crossref_primary_10_1093_bib_bbab531 crossref_primary_10_1093_bib_bbac068 crossref_primary_10_3389_fphar_2024_1523779 crossref_primary_10_1002_advs_202204113 crossref_primary_10_1016_j_bbadis_2025_167693 crossref_primary_10_1214_23_AOAS1761 crossref_primary_10_1093_bioinformatics_btae434 crossref_primary_10_3390_buildings14030698 crossref_primary_10_1080_21645515_2023_2234792 crossref_primary_10_3389_fgene_2023_1179859 crossref_primary_10_1093_bib_bbaa316 crossref_primary_10_3390_biology12091183 crossref_primary_10_1007_s10489_024_05442_w crossref_primary_10_1111_clr_14271 crossref_primary_10_1371_journal_pone_0306608 crossref_primary_10_1007_s13198_021_01225_5 crossref_primary_10_1038_s41578_021_00339_3 crossref_primary_10_1038_s41526_024_00379_3 crossref_primary_10_1109_JBHI_2024_3370868 crossref_primary_10_1186_s13059_023_03046_0 crossref_primary_10_1016_j_cam_2024_115842 crossref_primary_10_1016_j_patter_2022_100602 crossref_primary_10_1093_bib_bbad021 crossref_primary_10_1111_biom_13630 crossref_primary_10_3389_fbioe_2022_1019929 crossref_primary_10_1093_bib_bbab236 crossref_primary_10_1007_s12539_023_00574_y crossref_primary_10_1109_ACCESS_2020_3027481 crossref_primary_10_1186_s13005_025_00492_y crossref_primary_10_3389_fgene_2021_666771 crossref_primary_10_1111_raq_12806 crossref_primary_10_3389_fcvm_2022_962992 crossref_primary_10_1109_TNNLS_2021_3054635 crossref_primary_10_1016_j_compbiomed_2023_106939 crossref_primary_10_1016_j_ymeth_2023_11_019 crossref_primary_10_1371_journal_pone_0311791 crossref_primary_10_1007_s12539_023_00601_y crossref_primary_10_1111_insr_12593 crossref_primary_10_1016_j_csbj_2021_07_021 crossref_primary_10_1007_s40846_024_00859_7 crossref_primary_10_3389_fgene_2023_1183099 crossref_primary_10_1186_s42492_022_00118_z crossref_primary_10_3390_life12111778 crossref_primary_10_1007_s12539_020_00411_6 crossref_primary_10_1093_bioinformatics_btad493 crossref_primary_10_1016_j_actbio_2021_05_053 crossref_primary_10_1016_j_heliyon_2024_e39039 crossref_primary_10_1186_s12859_023_05177_4 crossref_primary_10_3390_ijms23073811 crossref_primary_10_1089_cmb_2021_0597 crossref_primary_10_1093_bib_bbac191 crossref_primary_10_3389_fendo_2024_1325434 crossref_primary_10_1093_bioinformatics_btac288 crossref_primary_10_7717_peerj_12570 crossref_primary_10_1093_bib_bbae371 crossref_primary_10_1007_s42979_024_03444_6 crossref_primary_10_1007_s10142_023_01009_z crossref_primary_10_1016_j_biosystems_2023_105095 crossref_primary_10_3389_fnut_2022_963060 crossref_primary_10_1016_j_it_2024_02_007 crossref_primary_10_1093_bib_bbaa169 crossref_primary_10_1021_acs_jcim_2c01161 crossref_primary_10_1186_s12859_023_05339_4 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1016_j_coisb_2021_04_006 crossref_primary_10_3389_fimmu_2023_1145300 crossref_primary_10_1155_2021_5569039 crossref_primary_10_1093_bib_bbae203 crossref_primary_10_3389_fevo_2023_1196859 crossref_primary_10_1016_j_ins_2022_11_049 crossref_primary_10_1242_bio_059001 crossref_primary_10_3389_fgene_2023_1226336 crossref_primary_10_1016_j_fss_2024_108860 crossref_primary_10_1038_s12276_020_0421_1 crossref_primary_10_1093_bioinformatics_btad546 crossref_primary_10_1186_s12864_024_10764_7 crossref_primary_10_1111_tpj_15905 crossref_primary_10_1007_s13204_021_02071_4 crossref_primary_10_1111_ejn_16242 crossref_primary_10_1093_bib_bbab567 crossref_primary_10_1109_TFUZZ_2024_3399740 crossref_primary_10_1016_j_neucom_2022_06_046 crossref_primary_10_1097_BS9_0000000000000172 crossref_primary_10_1039_D3LC00224A crossref_primary_10_1109_TCBB_2024_3405731 crossref_primary_10_1016_j_jseint_2024_04_015 crossref_primary_10_1097_HC9_0000000000000278 crossref_primary_10_1038_s41392_024_02050_5 crossref_primary_10_1109_TNNLS_2022_3190289 crossref_primary_10_3389_fenrg_2023_1297356 crossref_primary_10_1002_adhm_202403698 crossref_primary_10_1016_j_compbiolchem_2025_108362 crossref_primary_10_1093_bioinformatics_btab499 crossref_primary_10_1161_JAHA_120_019433 crossref_primary_10_1093_bib_bbae273 crossref_primary_10_3389_fbiom_2024_1358508 crossref_primary_10_1007_s00586_025_08653_y crossref_primary_10_1016_j_compbiomed_2022_105697 crossref_primary_10_1109_ACCESS_2020_3001986 crossref_primary_10_3390_jpm13020183 crossref_primary_10_1016_j_heliyon_2023_e13831 crossref_primary_10_1109_ACCESS_2022_3202187 crossref_primary_10_3389_fbioe_2023_1208648 crossref_primary_10_1089_cmb_2021_0051 crossref_primary_10_1093_bib_bbae703 crossref_primary_10_1109_ACCESS_2022_3228238 crossref_primary_10_1016_j_coisb_2021_02_002 crossref_primary_10_1093_nar_gkad570 crossref_primary_10_3389_fendo_2024_1377322 crossref_primary_10_1093_bib_bbae068 crossref_primary_10_1016_j_jaut_2022_102919 crossref_primary_10_1021_acs_jcim_3c00674 crossref_primary_10_3389_fgene_2024_1521269 crossref_primary_10_1016_j_jcmgh_2023_06_010 crossref_primary_10_1038_s41598_023_42482_7 crossref_primary_10_3390_ijms241411467 crossref_primary_10_3892_ol_2025_14904 crossref_primary_10_3390_math11173785 crossref_primary_10_1186_s12967_024_05009_w crossref_primary_10_3390_computation9100106 crossref_primary_10_1016_j_jjcc_2023_04_020 crossref_primary_10_1089_cmb_2022_0118 crossref_primary_10_1093_bib_bbac317 crossref_primary_10_1016_j_molimm_2024_12_004 crossref_primary_10_1093_bib_bbab345 crossref_primary_10_3389_fcell_2023_1163529 crossref_primary_10_3390_pr9081466 crossref_primary_10_3389_fgene_2021_652974 crossref_primary_10_1002_advs_202411041 crossref_primary_10_1016_j_compbiomed_2024_109066 crossref_primary_10_1016_j_compbiomed_2024_108497 crossref_primary_10_1155_2021_2897823 crossref_primary_10_2174_1574893618666221130094050 crossref_primary_10_1093_bib_bbab460 crossref_primary_10_1093_bioinformatics_btad731 crossref_primary_10_1109_ACCESS_2025_3535590 crossref_primary_10_62347_SMSG9047 crossref_primary_10_1016_j_intimp_2023_109909 crossref_primary_10_1109_TCBB_2021_3126641 crossref_primary_10_1109_TCBB_2022_3230098 crossref_primary_10_1016_j_gpb_2022_06_006 crossref_primary_10_1042_ETLS20210249 crossref_primary_10_1155_2022_7253876 crossref_primary_10_26599_BDMA_2024_9020034 crossref_primary_10_1093_bioinformatics_btaa908 crossref_primary_10_2174_1574893618666221103114320 |
Cites_doi | 10.1126/science.aaa1934 10.1101/gr.121095.111 10.1186/s12859-016-0984-y 10.1186/s13059-015-0844-5 10.1109/TKDE.2004.68 10.1038/nature19348 10.1093/biomet/58.3.433 10.1186/s13059-016-0975-3 10.1016/j.gde.2017.01.002 10.1007/BF03040854 10.1038/nmeth.4644 10.1186/s13059-015-0805-z 10.1186/s12859-018-2092-7 10.1038/nature22796 10.1186/s13059-016-1010-4 10.1038/ncomms14049 10.1016/j.stem.2016.05.010 10.1093/bioinformatics/btv088 10.1038/nbt.4096 10.1371/journal.pcbi.1004575 10.1126/science.1136800 10.1186/s12859-017-1647-3 10.1007/BF02288916 10.1038/ncomms15081 10.1073/pnas.1408993111 10.1093/bioinformatics/bti329 10.1186/s13059-016-0927-y 10.1038/nmeth.4236 10.1126/science.aan6826 10.1038/nmeth.2967 10.1101/gr.232272.117 10.1038/s41467-017-02554-5 10.1186/s13059-017-1382-0 10.1088/1742-5468/2008/10/P10008 10.1016/j.stem.2014.11.005 10.1186/s12920-018-0433-z 10.1038/nbt.2859 10.1126/science.1242072 10.1177/0962280211428386 10.1038/nmeth.4292 10.1038/ng.3818 10.1186/s12859-016-1175-6 10.1038/nature14966 10.1126/science.aab1601 10.1007/s40745-015-0040-1 10.1089/106652799318274 10.1186/s13059-016-0970-8 10.18632/oncotarget.7580 10.1186/s12864-017-4019-5 10.3233/IDA-2001-5502 10.1371/journal.pcbi.1006053 10.1186/s13059-017-1188-0 10.1093/nar/gkw430 10.1016/j.molcel.2015.04.005 10.1038/nmeth.4402 10.1021/ac4040218 10.1038/nrg3833 10.1109/5.58325 10.2307/2333955 10.1140/epjb/e2013-40829-0 10.3390/biology1030658 10.1038/nmeth.4207 10.1038/nbt.3192 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz063 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics |
EISSN | 1477-4054 |
EndPage | 1223 |
ExternalDocumentID | 31243426 10_1093_bib_bbz063 10.1093/bib/bbz063 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ GROUPED_DOAJ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c411t-4936f4b527ffad829ce76fc189513f5f6ff1f2c4b496d4960470f4d2bfb9f6223 |
IEDL.DBID | TOX |
ISSN | 1477-4054 1467-5463 |
IngestDate | Fri Jul 11 13:32:53 EDT 2025 Mon Jun 30 10:57:42 EDT 2025 Wed Feb 19 02:32:39 EST 2025 Tue Jul 01 03:39:28 EDT 2025 Thu Apr 24 22:54:36 EDT 2025 Wed Aug 28 03:17:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | clustering scRNA sequencing machine learning single-cell technology |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-4936f4b527ffad829ce76fc189513f5f6ff1f2c4b496d4960470f4d2bfb9f6223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 31243426 |
PQID | 2456895343 |
PQPubID | 26846 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2248378718 proquest_journals_2456895343 pubmed_primary_31243426 crossref_citationtrail_10_1093_bib_bbz063 crossref_primary_10_1093_bib_bbz063 oup_primary_10_1093_bib_bbz063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200715 |
PublicationDateYYYYMMDD | 2020-07-15 |
PublicationDate_xml | – month: 07 year: 2020 text: 20200715 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2020 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | van der Maaten (2020080709264010300_ref28) 2008; 9 Trapnell (2020080709264010300_ref61) 2014; 32 Yau (2020080709264010300_ref25) 2016; 17 Kolodziejczyk (2020080709264010300_ref4) 2015; 58 Kiselev (2020080709264010300_ref26) 2017; 14 Wang (2020080709264010300_ref39) 2017; 14 Prabhakaran (2020080709264010300_ref21) 2016 Lv (2020080709264010300_ref55) 2016; 7 Shintaku (2020080709264010300_ref6) 2014; 86 Qiu (2020080709264010300_ref51) 2017; 14 Tsafrir (2020080709264010300_ref44) 2005; 21 Guha (2020080709264010300_ref43) 1998 Cusanovich (2020080709264010300_ref71) 2015; 348 Pierson (2020080709264010300_ref23) 2015; 16 Finak (2020080709264010300_ref63) 2015; 16 Kim (2020080709264010300_ref53) 2015; 16 Li (2020080709264010300_ref64) 2013; 22 Grün (2020080709264010300_ref42) 2016; 19 Kharchenko (2020080709264010300_ref65) 2014; 11 Tsoucas (2020080709264010300_ref5) 2017; 42 Welch (2020080709264010300_ref62) 2016; 17 Hotelling (2020080709264010300_ref32) 1936; 28 Alexander Wolf (2020080709264010300_ref49) 2018; 19 Pellegrino (2020080709264010300_ref72) 2018; 28 Zhang (2020080709264010300_ref17) 2018; 19 Ester (2020080709264010300_ref50) 1996 Yang (2020080709264010300_ref30) 2017; 18 Camp (2020080709264010300_ref54) 2017; 546 Guo (2020080709264010300_ref20) 2015; 11 Ji (2020080709264010300_ref46) 2016; 44 Wang (2020080709264010300_ref38) 2017; 18 Stegle (2020080709264010300_ref3) 2015; 16 Butler (2020080709264010300_ref12) 2018; 36 Grün (2020080709264010300_ref22) 2015; 525 Murtagh (2020080709264010300_ref37) 1995; 12 Rahul (2020080709264010300_ref11) 2015; 33 Jiang (2020080709264010300_ref2) 2004; 16 Yotsukura (2020080709264010300_ref34) 2016; 17 Hicks (2020080709264010300_ref58) 2015 Kelsey (2020080709264010300_ref69) 2017; 358 Hebenstreit (2020080709264010300_ref7) 2012; 1 Huipeng (2020080709264010300_ref19) 2017; 49 Torgerson (2020080709264010300_ref27) 1952; 17 Blondel (2020080709264010300_ref48) 2008; 2008 Zhang (2020080709264010300_ref9) 2018; 14 Kohonen (2020080709264010300_ref35) 1990; 78 Bacher (2020080709264010300_ref8) 2016; 17 Frey (2020080709264010300_ref57) 2007; 315 Zheng (2020080709264010300_ref66) 2017; 8 Liu (2020080709264010300_ref70) 2018 Vallejos (2020080709264010300_ref10) 2017; 14 Lin (2020080709264010300_ref16) 2017; 18 Flexer (2020080709264010300_ref36) 2001; 5 Xu (2020080709264010300_ref18) 2015; 31 Blei (2020080709264010300_ref33) 2003; 3 Zeisel (2020080709264010300_ref29) 2015; 347 Peng (2020080709264010300_ref56) 2017 Olsson (2020080709264010300_ref40) 2016; 537 Kettenring (2020080709264010300_ref59) 1971; 58 Waltman (2020080709264010300_ref60) 2013; 86 Ng (2020080709264010300_ref47) 2002 Risso (2020080709264010300_ref24) 2018; 9 Jiang (2020080709264010300_ref15) 2011; 21 Ben-Dor (2020080709264010300_ref1) 1999; 6 Xu (2020080709264010300_ref45) 2015; 2 Kiselev (2020080709264010300_ref68) 2018; 15 Ntranos (2020080709264010300_ref13) 2016; 17 Chung (2020080709264010300_ref67) 2017; 8 Jiang (2020080709264010300_ref14) 2016; 17 Gan (2020080709264010300_ref31) 2018; 11 Rodriguez (2020080709264010300_ref52) 2014; 344 Marco (2020080709264010300_ref41) 2014; 111 |
References_xml | – volume: 347 start-page: 1138 issue: 6226 year: 2015 ident: 2020080709264010300_ref29 article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 21 start-page: 1543 issue: 9 year: 2011 ident: 2020080709264010300_ref15 article-title: Synthetic spike-in standards for RNA-seq experiments publication-title: Genome Res doi: 10.1101/gr.121095.111 – volume: 17 start-page: 140 issue: 1 year: 2016 ident: 2020080709264010300_ref25 article-title: pcaReduce: hierarchical clustering of single cell transcriptional profiles publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0984-y – volume: 16 start-page: 278 issue: 1 year: 2015 ident: 2020080709264010300_ref63 article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-015-0844-5 – volume: 16 start-page: 1370 issue: 11 year: 2004 ident: 2020080709264010300_ref2 article-title: Cluster analysis for gene expression data: a survey publication-title: IEEE Trans Knowl Data E doi: 10.1109/TKDE.2004.68 – volume: 537 start-page: 698 issue: 7622 year: 2016 ident: 2020080709264010300_ref40 article-title: Single-cell analysis of mixed-lineage states leading to a binary cell fate choice publication-title: Nature doi: 10.1038/nature19348 – volume: 58 start-page: 433 issue: 3 year: 1971 ident: 2020080709264010300_ref59 article-title: Canonical analysis of several sets of variables publication-title: Biometrika doi: 10.1093/biomet/58.3.433 – volume: 17 start-page: 106 issue: 1 year: 2016 ident: 2020080709264010300_ref62 article-title: SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-016-0975-3 – volume: 42 start-page: 22 year: 2017 ident: 2020080709264010300_ref5 article-title: Recent progress in single-cell cancer genomics publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2017.01.002 – volume: 12 start-page: 165 issue: 2 year: 1995 ident: 2020080709264010300_ref37 article-title: The kohonen self-organizing map method: an assessment publication-title: J Classification doi: 10.1007/BF03040854 – volume: 15 start-page: 359 issue: 5 year: 2018 ident: 2020080709264010300_ref68 article-title: Scmap: projection of single-cell RNA-seq data across data sets publication-title: Nat Methods doi: 10.1038/nmeth.4644 – volume: 16 start-page: 241 issue: 1 year: 2015 ident: 2020080709264010300_ref23 article-title: ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis publication-title: Genome Biol doi: 10.1186/s13059-015-0805-z – volume: 19 start-page: 93 issue: 1 year: 2018 ident: 2020080709264010300_ref17 article-title: An interpretable framework for clustering single-cell RNA-Seq datasets publication-title: BMC bioinformatics doi: 10.1186/s12859-018-2092-7 – volume: 546 start-page: 533 issue: 7659 year: 2017 ident: 2020080709264010300_ref54 article-title: Multilineage communication regulates human liver bud development from pluripotency publication-title: Nature doi: 10.1038/nature22796 – volume: 17 start-page: 144 issue: 1 year: 2016 ident: 2020080709264010300_ref14 article-title: GiniClust: detecting rare cell types from single-cell gene expression data with Gini index publication-title: Genome Biol doi: 10.1186/s13059-016-1010-4 – volume: 8 start-page: 14049 year: 2017 ident: 2020080709264010300_ref66 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat Commun doi: 10.1038/ncomms14049 – volume: 19 start-page: 266 issue: 2 year: 2016 ident: 2020080709264010300_ref42 article-title: De novo prediction of stem cell identity using single-cell transcriptome data publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.05.010 – volume: 31 start-page: 1974 issue: 12 year: 2015 ident: 2020080709264010300_ref18 article-title: Identification of cell types from single-cell transcriptomes using a novel clustering method publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv088 – volume: 36 start-page: 411 issue: 5 year: 2018 ident: 2020080709264010300_ref12 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – start-page: 1070 volume-title: International Conference on Machine Learning year: 2016 ident: 2020080709264010300_ref21 article-title: Dirichlet process mixture model for correcting technical variation in single-cell gene expression data – volume: 11 issue: 11 year: 2015 ident: 2020080709264010300_ref20 article-title: SINCERA: a pipeline for single-cell RNA-Seq profiling analysis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004575 – volume: 315 start-page: 972 issue: 5814 year: 2007 ident: 2020080709264010300_ref57 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – volume: 18 start-page: 270 issue: 1 year: 2017 ident: 2020080709264010300_ref38 article-title: DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1647-3 – start-page: 849 volume-title: Advances in Neural Information Processing Systems year: 2002 ident: 2020080709264010300_ref47 article-title: On spectral clustering: analysis and an algorithm – volume: 17 start-page: 401 issue: 4 year: 1952 ident: 2020080709264010300_ref27 article-title: Multidimensional scaling: I. theory and method publication-title: Psychometrika doi: 10.1007/BF02288916 – volume: 8 start-page: 15081 year: 2017 ident: 2020080709264010300_ref67 article-title: Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer publication-title: Nat Commun doi: 10.1038/ncomms15081 – volume: 111 start-page: E5643 issue: 52 year: 2014 ident: 2020080709264010300_ref41 article-title: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1408993111 – volume: 21 start-page: 2301 issue: 10 year: 2005 ident: 2020080709264010300_ref44 article-title: Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti329 – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 2020080709264010300_ref28 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – volume: 17 start-page: 63 issue: 1 year: 2016 ident: 2020080709264010300_ref8 article-title: Design and computational analysis of single-cell RNA-sequencing experiments publication-title: Genome Biol doi: 10.1186/s13059-016-0927-y – volume: 14 start-page: 483 issue: 5 year: 2017 ident: 2020080709264010300_ref26 article-title: SC3: consensus clustering of single-cell RNA-seq data publication-title: Nat Methods doi: 10.1038/nmeth.4236 – start-page: 226 volume-title: Kdd year: 1996 ident: 2020080709264010300_ref50 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 358 start-page: 69 issue: 6359 year: 2017 ident: 2020080709264010300_ref69 article-title: Single-cell epigenomics: recording the past and predicting the future publication-title: Science doi: 10.1126/science.aan6826 – volume: 11 start-page: 740 issue: 7 year: 2014 ident: 2020080709264010300_ref65 article-title: Bayesian approach to single-cell differential expression analysis publication-title: Nat Methods doi: 10.1038/nmeth.2967 – volume: 28 start-page: 1345 issue: 9 year: 2018 ident: 2020080709264010300_ref72 article-title: High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics publication-title: Genome Res doi: 10.1101/gr.232272.117 – volume: 9 start-page: 284 issue: 1 year: 2018 ident: 2020080709264010300_ref24 article-title: A general and flexible method for signal extraction from single-cell RNA-seq data publication-title: Nat Commun doi: 10.1038/s41467-017-02554-5 – volume: 19 start-page: 15 issue: 1 year: 2018 ident: 2020080709264010300_ref49 article-title: Large-scale single-cell gene expression data analysis publication-title: Genome Biol doi: 10.1186/s13059-017-1382-0 – volume: 2008 start-page: P10008 issue: 10 year: 2008 ident: 2020080709264010300_ref48 article-title: Fast unfolding of communities in large networks publication-title: J Statist Mech Theory Experiment doi: 10.1088/1742-5468/2008/10/P10008 – volume: 16 start-page: 88 issue: 1 year: 2015 ident: 2020080709264010300_ref53 article-title: Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.11.005 – volume: 11 start-page: 117 issue: 6 year: 2018 ident: 2020080709264010300_ref31 article-title: Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method publication-title: BMC Med Genomics doi: 10.1186/s12920-018-0433-z – volume: 32 start-page: 381 issue: 4 year: 2014 ident: 2020080709264010300_ref61 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat Biotechnol doi: 10.1038/nbt.2859 – volume: 344 start-page: 1492 issue: 6191 year: 2014 ident: 2020080709264010300_ref52 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 22 start-page: 519 issue: 5 year: 2013 ident: 2020080709264010300_ref64 article-title: Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data publication-title: Stat Methods Med Res doi: 10.1177/0962280211428386 – start-page: i96 volume-title: Bioinformatics year: 2018 ident: 2020080709264010300_ref70 article-title: Unsupervised embedding of single-cell Hi-C data – volume: 14 start-page: 565 issue: 6 year: 2017 ident: 2020080709264010300_ref10 article-title: Normalizing single-cell RNA sequencing data: challenges and opportunities publication-title: Nat Methods doi: 10.1038/nmeth.4292 – volume: 49 start-page: 708 issue: 5 year: 2017 ident: 2020080709264010300_ref19 article-title: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors publication-title: Nat Genet doi: 10.1038/ng.3818 – volume: 17 start-page: 363 issue: 1 year: 2016 ident: 2020080709264010300_ref34 article-title: CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1175-6 – volume: 525 start-page: 251 issue: 7568 year: 2015 ident: 2020080709264010300_ref22 article-title: Single-cell messenger RNA sequencing reveals rare intestinal cell types publication-title: Nature doi: 10.1038/nature14966 – volume: 348 start-page: 910 issue: 6237 year: 2015 ident: 2020080709264010300_ref71 article-title: Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing publication-title: Science doi: 10.1126/science.aab1601 – volume: 2 start-page: 165 issue: 2 year: 2015 ident: 2020080709264010300_ref45 article-title: A comprehensive survey of clustering algorithms publication-title: Ann Data Sci doi: 10.1007/s40745-015-0040-1 – volume: 6 start-page: 281 issue: 3–4 year: 1999 ident: 2020080709264010300_ref1 article-title: Clustering gene expression patterns publication-title: J Comput Biol doi: 10.1089/106652799318274 – start-page: 124693 volume-title: SOMSC: self-organization-map for high-dimensional single-cell data of cellular states and their transitions. bioRxiv year: 2017 ident: 2020080709264010300_ref56 – volume: 17 start-page: 112 issue: 1 year: 2016 ident: 2020080709264010300_ref13 article-title: Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts publication-title: Genome Biol doi: 10.1186/s13059-016-0970-8 – volume: 7 start-page: 18403 issue: 14 year: 2016 ident: 2020080709264010300_ref55 article-title: Systematic characterization of lncRNAs’ cell-to-cell expression heterogeneity in glioblastoma cells publication-title: Oncotarget doi: 10.18632/oncotarget.7580 – volume: 18 start-page: 689 issue: 6 year: 2017 ident: 2020080709264010300_ref30 article-title: SAIC: an iterative clustering approach for analysis of single cell RNA-seq data publication-title: BMC Genomics doi: 10.1186/s12864-017-4019-5 – volume: 5 start-page: 373 issue: 5 year: 2001 ident: 2020080709264010300_ref36 article-title: On the use of self-organizing maps for clustering and visualization publication-title: Intell Data Anal doi: 10.3233/IDA-2001-5502 – volume: 14 issue: 4 year: 2018 ident: 2020080709264010300_ref9 article-title: A multitask clustering approach for single-cell RNA-seq analysis in recessive dystrophic epidermolysis bullosa publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006053 – volume: 18 start-page: 59 issue: 1 year: 2017 ident: 2020080709264010300_ref16 article-title: CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-017-1188-0 – volume: 44 start-page: e117 issue: 13 year: 2016 ident: 2020080709264010300_ref46 article-title: TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw430 – volume: 58 start-page: 610 issue: 4 year: 2015 ident: 2020080709264010300_ref4 article-title: The technology and biology of single-cell RNA sequencing publication-title: Mol Cell doi: 10.1016/j.molcel.2015.04.005 – volume: 14 start-page: 979 issue: 10 year: 2017 ident: 2020080709264010300_ref51 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat Methods doi: 10.1038/nmeth.4402 – volume: 86 start-page: 1953 issue: 4 year: 2014 ident: 2020080709264010300_ref6 article-title: On-chip separation and analysis of RNA and DNA from single cells publication-title: Anal Chem doi: 10.1021/ac4040218 – volume: 16 start-page: 133 issue: 3 year: 2015 ident: 2020080709264010300_ref3 article-title: Computational and analytical challenges in single-cell transcriptomics publication-title: Nat Rev Genet doi: 10.1038/nrg3833 – volume: 78 start-page: 1464 issue: 9 year: 1990 ident: 2020080709264010300_ref35 article-title: The self-organizing map publication-title: Proc IEEE doi: 10.1109/5.58325 – start-page: 73 volume-title: ACM Sigmod Record year: 1998 ident: 2020080709264010300_ref43 article-title: CURE: an efficient clustering algorithm for large databases – volume: 28 start-page: 321 issue: 3/4 year: 1936 ident: 2020080709264010300_ref32 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.2307/2333955 – volume-title: On the widespread and critical impact of systematic bias and batch effects in single-cell rna-seq data. bioRxiv year: 2015 ident: 2020080709264010300_ref58 – volume: 86 start-page: 471 issue: 11 year: 2013 ident: 2020080709264010300_ref60 article-title: A smart local moving algorithm for large-scale modularity-based community detection publication-title: Eur Phys J B doi: 10.1140/epjb/e2013-40829-0 – volume: 1 start-page: 658 issue: 3 year: 2012 ident: 2020080709264010300_ref7 article-title: Methods, challenges and potentials of single cell RNA-seq publication-title: Biology doi: 10.3390/biology1030658 – volume: 3 start-page: 993 issue: Jan year: 2003 ident: 2020080709264010300_ref33 article-title: Andrew Y Ng, Michael I Jordan publication-title: J Mach Learn Res – volume: 14 start-page: 414 issue: 4 year: 2017 ident: 2020080709264010300_ref39 article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning publication-title: Nat Methods doi: 10.1038/nmeth.4207 – volume: 33 start-page: 495 issue: 5 year: 2015 ident: 2020080709264010300_ref11 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat Biotechnol doi: 10.1038/nbt.3192 |
SSID | ssj0020781 |
Score | 2.6278987 |
SecondaryResourceType | review_article |
Snippet | Abstract
Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a... Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1209 |
SubjectTerms | Cluster analysis Clustering Core analysis Data analysis Gene expression Gene sequencing Learning algorithms Machine learning Mathematical analysis Neural networks Optimization Probabilistic models Ribonucleic acid RNA Source code Statistical methods Statistics |
Title | Machine learning and statistical methods for clustering single-cell RNA-sequencing data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31243426 https://www.proquest.com/docview/2456895343 https://www.proquest.com/docview/2248378718 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA8iCL6I307niOiLD2HLR9P0cYhjCJsgG-6tNGlOhLGJ2x70r_fSdoXhUOjbXQm9S3u_611-R8hdZLzmYIDlHQ5MuSRnmY04Aw7cShvltjgkNhjq_lg9TaJJ1USz2FLCT2Tbvtu2td8YS_FLi9E3MOSPnid1WhXoatbEoxvqG6Fm4_jaLxRZRJPeITmoYCDtln47Ijt-dkz2ysGQXyfkdVD0OHpaDXV4o5jw03D4p-BVxjvLyc8LipiTuukq0B0EtZD5Tz0Lv-Ppy7DLqk7pIAq9oKdk3HscPfRZNQKBOcX5kqlEalA2EjFAlhuROB9rcNwgMJIQgQY0qnDKqkTnKhCtxB1QubBgE9AY-s_I7mw-8xeEOhcL4LE1Ci-jZZbF3BvuMm-017FokPu1tVJX8YOHMRXTtKxTyxQtm5aWbZDbWvejZMXYqtVCo_-p0Fz7I61enUUaKrH4eFKh-KYW46YPpstmfr5CHVEQ4WNcbZDz0o_1MhIRi0Tccfnf6ldkX4TkObBkRk2yu_xc-WtEGEvbKjbYD6KA0KU |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+statistical+methods+for+clustering+single-cell+RNA-sequencing+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Petegrosso%2C+Raphael&rft.au=Li%2C+Zhuliu&rft.au=Kuang%2C+Rui&rft.date=2020-07-15&rft.eissn=1477-4054&rft_id=info:doi/10.1093%2Fbib%2Fbbz063&rft_id=info%3Apmid%2F31243426&rft.externalDocID=31243426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-4054&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-4054&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-4054&client=summon |