Machine learning and statistical methods for clustering single-cell RNA-sequencing data

Abstract   Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 21; no. 4; pp. 1209 - 1223
Main Authors Petegrosso, Raphael, Li, Zhuliu, Kuang, Rui
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.07.2020
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract   Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics. Availability All the source code and data are available at https://github.com/kuanglab/single-cell-review.
AbstractList Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics. All the source code and data are available at https://github.com/kuanglab/single-cell-review.
Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics. Availability All the source code and data are available at https://github.com/kuanglab/single-cell-review.
Abstract   Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics. Availability All the source code and data are available at https://github.com/kuanglab/single-cell-review.
Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics.Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics.All the source code and data are available at https://github.com/kuanglab/single-cell-review.AVAILABILITYAll the source code and data are available at https://github.com/kuanglab/single-cell-review.
Author Li, Zhuliu
Petegrosso, Raphael
Kuang, Rui
Author_xml – sequence: 1
  givenname: Raphael
  surname: Petegrosso
  fullname: Petegrosso, Raphael
  organization: CREST (Ensai, Université Bretagne Loire), Bruz, France
– sequence: 2
  givenname: Zhuliu
  surname: Li
  fullname: Li, Zhuliu
  organization: CREST (Ensai, Université Bretagne Loire), Bruz, France
– sequence: 3
  givenname: Rui
  surname: Kuang
  fullname: Kuang, Rui
  email: kuang@umn.edu
  organization: CREST (Ensai, Université Bretagne Loire), Bruz, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31243426$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYNUbH1s_AEyIIIIo3nNayniC6qCKC5DkklsyjSpSWahv94MtSBFXCS5kO-ee7hnF4ysswqAQwTPEWzIhTDiQogvWJItMEG0qnIKCzr6VY_BbghzCDGsarQDxgRhSiguJ-DtgcuZsSrrFPfW2PeM2zYLkUcTopG8yxYqzlwbMu18Jrs-ROUHLKSrU7lUXZc9P17mQX30ysrhq-WR74NtzbugDn7ePfB6c_1ydZdPn27vry6nuaQIxZw2pNRUFLjSmrc1bqSqSi1R3RSI6EKXWiONJRW0Kdt0IK2gpi0WWjS6xJjsgdOV7tK7ZCBEtjBhMMWtcn1gGNOaVHWF6oQeb6Bz13ub3DFMizKNJJQk6uiH6sVCtWzpzYL7T7ZeWQLgCpDeheCVZtIM63I2em46hiAbUmEpFbZKJbWcbbSsVf-ET1aw65f_cd-N6JqK
CitedBy_id crossref_primary_10_1007_s00441_021_03483_y
crossref_primary_10_26508_lsa_202302103
crossref_primary_10_1007_s13369_021_05893_0
crossref_primary_10_1093_bib_bbae485
crossref_primary_10_1093_bib_bbae486
crossref_primary_10_1155_2022_3603353
crossref_primary_10_1186_s40779_022_00434_8
crossref_primary_10_3390_biomedinformatics4020072
crossref_primary_10_1093_bib_bbab531
crossref_primary_10_1093_bib_bbac068
crossref_primary_10_3389_fphar_2024_1523779
crossref_primary_10_1002_advs_202204113
crossref_primary_10_1016_j_bbadis_2025_167693
crossref_primary_10_1214_23_AOAS1761
crossref_primary_10_1093_bioinformatics_btae434
crossref_primary_10_3390_buildings14030698
crossref_primary_10_1080_21645515_2023_2234792
crossref_primary_10_3389_fgene_2023_1179859
crossref_primary_10_1093_bib_bbaa316
crossref_primary_10_3390_biology12091183
crossref_primary_10_1007_s10489_024_05442_w
crossref_primary_10_1111_clr_14271
crossref_primary_10_1371_journal_pone_0306608
crossref_primary_10_1007_s13198_021_01225_5
crossref_primary_10_1038_s41578_021_00339_3
crossref_primary_10_1038_s41526_024_00379_3
crossref_primary_10_1109_JBHI_2024_3370868
crossref_primary_10_1186_s13059_023_03046_0
crossref_primary_10_1016_j_cam_2024_115842
crossref_primary_10_1016_j_patter_2022_100602
crossref_primary_10_1093_bib_bbad021
crossref_primary_10_1111_biom_13630
crossref_primary_10_3389_fbioe_2022_1019929
crossref_primary_10_1093_bib_bbab236
crossref_primary_10_1007_s12539_023_00574_y
crossref_primary_10_1109_ACCESS_2020_3027481
crossref_primary_10_1186_s13005_025_00492_y
crossref_primary_10_3389_fgene_2021_666771
crossref_primary_10_1111_raq_12806
crossref_primary_10_3389_fcvm_2022_962992
crossref_primary_10_1109_TNNLS_2021_3054635
crossref_primary_10_1016_j_compbiomed_2023_106939
crossref_primary_10_1016_j_ymeth_2023_11_019
crossref_primary_10_1371_journal_pone_0311791
crossref_primary_10_1007_s12539_023_00601_y
crossref_primary_10_1111_insr_12593
crossref_primary_10_1016_j_csbj_2021_07_021
crossref_primary_10_1007_s40846_024_00859_7
crossref_primary_10_3389_fgene_2023_1183099
crossref_primary_10_1186_s42492_022_00118_z
crossref_primary_10_3390_life12111778
crossref_primary_10_1007_s12539_020_00411_6
crossref_primary_10_1093_bioinformatics_btad493
crossref_primary_10_1016_j_actbio_2021_05_053
crossref_primary_10_1016_j_heliyon_2024_e39039
crossref_primary_10_1186_s12859_023_05177_4
crossref_primary_10_3390_ijms23073811
crossref_primary_10_1089_cmb_2021_0597
crossref_primary_10_1093_bib_bbac191
crossref_primary_10_3389_fendo_2024_1325434
crossref_primary_10_1093_bioinformatics_btac288
crossref_primary_10_7717_peerj_12570
crossref_primary_10_1093_bib_bbae371
crossref_primary_10_1007_s42979_024_03444_6
crossref_primary_10_1007_s10142_023_01009_z
crossref_primary_10_1016_j_biosystems_2023_105095
crossref_primary_10_3389_fnut_2022_963060
crossref_primary_10_1016_j_it_2024_02_007
crossref_primary_10_1093_bib_bbaa169
crossref_primary_10_1021_acs_jcim_2c01161
crossref_primary_10_1186_s12859_023_05339_4
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1016_j_coisb_2021_04_006
crossref_primary_10_3389_fimmu_2023_1145300
crossref_primary_10_1155_2021_5569039
crossref_primary_10_1093_bib_bbae203
crossref_primary_10_3389_fevo_2023_1196859
crossref_primary_10_1016_j_ins_2022_11_049
crossref_primary_10_1242_bio_059001
crossref_primary_10_3389_fgene_2023_1226336
crossref_primary_10_1016_j_fss_2024_108860
crossref_primary_10_1038_s12276_020_0421_1
crossref_primary_10_1093_bioinformatics_btad546
crossref_primary_10_1186_s12864_024_10764_7
crossref_primary_10_1111_tpj_15905
crossref_primary_10_1007_s13204_021_02071_4
crossref_primary_10_1111_ejn_16242
crossref_primary_10_1093_bib_bbab567
crossref_primary_10_1109_TFUZZ_2024_3399740
crossref_primary_10_1016_j_neucom_2022_06_046
crossref_primary_10_1097_BS9_0000000000000172
crossref_primary_10_1039_D3LC00224A
crossref_primary_10_1109_TCBB_2024_3405731
crossref_primary_10_1016_j_jseint_2024_04_015
crossref_primary_10_1097_HC9_0000000000000278
crossref_primary_10_1038_s41392_024_02050_5
crossref_primary_10_1109_TNNLS_2022_3190289
crossref_primary_10_3389_fenrg_2023_1297356
crossref_primary_10_1002_adhm_202403698
crossref_primary_10_1016_j_compbiolchem_2025_108362
crossref_primary_10_1093_bioinformatics_btab499
crossref_primary_10_1161_JAHA_120_019433
crossref_primary_10_1093_bib_bbae273
crossref_primary_10_3389_fbiom_2024_1358508
crossref_primary_10_1007_s00586_025_08653_y
crossref_primary_10_1016_j_compbiomed_2022_105697
crossref_primary_10_1109_ACCESS_2020_3001986
crossref_primary_10_3390_jpm13020183
crossref_primary_10_1016_j_heliyon_2023_e13831
crossref_primary_10_1109_ACCESS_2022_3202187
crossref_primary_10_3389_fbioe_2023_1208648
crossref_primary_10_1089_cmb_2021_0051
crossref_primary_10_1093_bib_bbae703
crossref_primary_10_1109_ACCESS_2022_3228238
crossref_primary_10_1016_j_coisb_2021_02_002
crossref_primary_10_1093_nar_gkad570
crossref_primary_10_3389_fendo_2024_1377322
crossref_primary_10_1093_bib_bbae068
crossref_primary_10_1016_j_jaut_2022_102919
crossref_primary_10_1021_acs_jcim_3c00674
crossref_primary_10_3389_fgene_2024_1521269
crossref_primary_10_1016_j_jcmgh_2023_06_010
crossref_primary_10_1038_s41598_023_42482_7
crossref_primary_10_3390_ijms241411467
crossref_primary_10_3892_ol_2025_14904
crossref_primary_10_3390_math11173785
crossref_primary_10_1186_s12967_024_05009_w
crossref_primary_10_3390_computation9100106
crossref_primary_10_1016_j_jjcc_2023_04_020
crossref_primary_10_1089_cmb_2022_0118
crossref_primary_10_1093_bib_bbac317
crossref_primary_10_1016_j_molimm_2024_12_004
crossref_primary_10_1093_bib_bbab345
crossref_primary_10_3389_fcell_2023_1163529
crossref_primary_10_3390_pr9081466
crossref_primary_10_3389_fgene_2021_652974
crossref_primary_10_1002_advs_202411041
crossref_primary_10_1016_j_compbiomed_2024_109066
crossref_primary_10_1016_j_compbiomed_2024_108497
crossref_primary_10_1155_2021_2897823
crossref_primary_10_2174_1574893618666221130094050
crossref_primary_10_1093_bib_bbab460
crossref_primary_10_1093_bioinformatics_btad731
crossref_primary_10_1109_ACCESS_2025_3535590
crossref_primary_10_62347_SMSG9047
crossref_primary_10_1016_j_intimp_2023_109909
crossref_primary_10_1109_TCBB_2021_3126641
crossref_primary_10_1109_TCBB_2022_3230098
crossref_primary_10_1016_j_gpb_2022_06_006
crossref_primary_10_1042_ETLS20210249
crossref_primary_10_1155_2022_7253876
crossref_primary_10_26599_BDMA_2024_9020034
crossref_primary_10_1093_bioinformatics_btaa908
crossref_primary_10_2174_1574893618666221103114320
Cites_doi 10.1126/science.aaa1934
10.1101/gr.121095.111
10.1186/s12859-016-0984-y
10.1186/s13059-015-0844-5
10.1109/TKDE.2004.68
10.1038/nature19348
10.1093/biomet/58.3.433
10.1186/s13059-016-0975-3
10.1016/j.gde.2017.01.002
10.1007/BF03040854
10.1038/nmeth.4644
10.1186/s13059-015-0805-z
10.1186/s12859-018-2092-7
10.1038/nature22796
10.1186/s13059-016-1010-4
10.1038/ncomms14049
10.1016/j.stem.2016.05.010
10.1093/bioinformatics/btv088
10.1038/nbt.4096
10.1371/journal.pcbi.1004575
10.1126/science.1136800
10.1186/s12859-017-1647-3
10.1007/BF02288916
10.1038/ncomms15081
10.1073/pnas.1408993111
10.1093/bioinformatics/bti329
10.1186/s13059-016-0927-y
10.1038/nmeth.4236
10.1126/science.aan6826
10.1038/nmeth.2967
10.1101/gr.232272.117
10.1038/s41467-017-02554-5
10.1186/s13059-017-1382-0
10.1088/1742-5468/2008/10/P10008
10.1016/j.stem.2014.11.005
10.1186/s12920-018-0433-z
10.1038/nbt.2859
10.1126/science.1242072
10.1177/0962280211428386
10.1038/nmeth.4292
10.1038/ng.3818
10.1186/s12859-016-1175-6
10.1038/nature14966
10.1126/science.aab1601
10.1007/s40745-015-0040-1
10.1089/106652799318274
10.1186/s13059-016-0970-8
10.18632/oncotarget.7580
10.1186/s12864-017-4019-5
10.3233/IDA-2001-5502
10.1371/journal.pcbi.1006053
10.1186/s13059-017-1188-0
10.1093/nar/gkw430
10.1016/j.molcel.2015.04.005
10.1038/nmeth.4402
10.1021/ac4040218
10.1038/nrg3833
10.1109/5.58325
10.2307/2333955
10.1140/epjb/e2013-40829-0
10.3390/biology1030658
10.1038/nmeth.4207
10.1038/nbt.3192
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz063
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Genetics Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 1477-4054
EndPage 1223
ExternalDocumentID 31243426
10_1093_bib_bbz063
10.1093/bib/bbz063
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
GROUPED_DOAJ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c411t-4936f4b527ffad829ce76fc189513f5f6ff1f2c4b496d4960470f4d2bfb9f6223
IEDL.DBID TOX
ISSN 1477-4054
1467-5463
IngestDate Fri Jul 11 13:32:53 EDT 2025
Mon Jun 30 10:57:42 EDT 2025
Wed Feb 19 02:32:39 EST 2025
Tue Jul 01 03:39:28 EDT 2025
Thu Apr 24 22:54:36 EDT 2025
Wed Aug 28 03:17:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords clustering
scRNA sequencing
machine learning
single-cell technology
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-4936f4b527ffad829ce76fc189513f5f6ff1f2c4b496d4960470f4d2bfb9f6223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 31243426
PQID 2456895343
PQPubID 26846
PageCount 15
ParticipantIDs proquest_miscellaneous_2248378718
proquest_journals_2456895343
pubmed_primary_31243426
crossref_citationtrail_10_1093_bib_bbz063
crossref_primary_10_1093_bib_bbz063
oup_primary_10_1093_bib_bbz063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200715
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 07
  year: 2020
  text: 20200715
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2020
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References van der Maaten (2020080709264010300_ref28) 2008; 9
Trapnell (2020080709264010300_ref61) 2014; 32
Yau (2020080709264010300_ref25) 2016; 17
Kolodziejczyk (2020080709264010300_ref4) 2015; 58
Kiselev (2020080709264010300_ref26) 2017; 14
Wang (2020080709264010300_ref39) 2017; 14
Prabhakaran (2020080709264010300_ref21) 2016
Lv (2020080709264010300_ref55) 2016; 7
Shintaku (2020080709264010300_ref6) 2014; 86
Qiu (2020080709264010300_ref51) 2017; 14
Tsafrir (2020080709264010300_ref44) 2005; 21
Guha (2020080709264010300_ref43) 1998
Cusanovich (2020080709264010300_ref71) 2015; 348
Pierson (2020080709264010300_ref23) 2015; 16
Finak (2020080709264010300_ref63) 2015; 16
Kim (2020080709264010300_ref53) 2015; 16
Li (2020080709264010300_ref64) 2013; 22
Grün (2020080709264010300_ref42) 2016; 19
Kharchenko (2020080709264010300_ref65) 2014; 11
Tsoucas (2020080709264010300_ref5) 2017; 42
Welch (2020080709264010300_ref62) 2016; 17
Hotelling (2020080709264010300_ref32) 1936; 28
Alexander Wolf (2020080709264010300_ref49) 2018; 19
Pellegrino (2020080709264010300_ref72) 2018; 28
Zhang (2020080709264010300_ref17) 2018; 19
Ester (2020080709264010300_ref50) 1996
Yang (2020080709264010300_ref30) 2017; 18
Camp (2020080709264010300_ref54) 2017; 546
Guo (2020080709264010300_ref20) 2015; 11
Ji (2020080709264010300_ref46) 2016; 44
Wang (2020080709264010300_ref38) 2017; 18
Stegle (2020080709264010300_ref3) 2015; 16
Butler (2020080709264010300_ref12) 2018; 36
Grün (2020080709264010300_ref22) 2015; 525
Murtagh (2020080709264010300_ref37) 1995; 12
Rahul (2020080709264010300_ref11) 2015; 33
Jiang (2020080709264010300_ref2) 2004; 16
Yotsukura (2020080709264010300_ref34) 2016; 17
Hicks (2020080709264010300_ref58) 2015
Kelsey (2020080709264010300_ref69) 2017; 358
Hebenstreit (2020080709264010300_ref7) 2012; 1
Huipeng (2020080709264010300_ref19) 2017; 49
Torgerson (2020080709264010300_ref27) 1952; 17
Blondel (2020080709264010300_ref48) 2008; 2008
Zhang (2020080709264010300_ref9) 2018; 14
Kohonen (2020080709264010300_ref35) 1990; 78
Bacher (2020080709264010300_ref8) 2016; 17
Frey (2020080709264010300_ref57) 2007; 315
Zheng (2020080709264010300_ref66) 2017; 8
Liu (2020080709264010300_ref70) 2018
Vallejos (2020080709264010300_ref10) 2017; 14
Lin (2020080709264010300_ref16) 2017; 18
Flexer (2020080709264010300_ref36) 2001; 5
Xu (2020080709264010300_ref18) 2015; 31
Blei (2020080709264010300_ref33) 2003; 3
Zeisel (2020080709264010300_ref29) 2015; 347
Peng (2020080709264010300_ref56) 2017
Olsson (2020080709264010300_ref40) 2016; 537
Kettenring (2020080709264010300_ref59) 1971; 58
Waltman (2020080709264010300_ref60) 2013; 86
Ng (2020080709264010300_ref47) 2002
Risso (2020080709264010300_ref24) 2018; 9
Jiang (2020080709264010300_ref15) 2011; 21
Ben-Dor (2020080709264010300_ref1) 1999; 6
Xu (2020080709264010300_ref45) 2015; 2
Kiselev (2020080709264010300_ref68) 2018; 15
Ntranos (2020080709264010300_ref13) 2016; 17
Chung (2020080709264010300_ref67) 2017; 8
Jiang (2020080709264010300_ref14) 2016; 17
Gan (2020080709264010300_ref31) 2018; 11
Rodriguez (2020080709264010300_ref52) 2014; 344
Marco (2020080709264010300_ref41) 2014; 111
References_xml – volume: 347
  start-page: 1138
  issue: 6226
  year: 2015
  ident: 2020080709264010300_ref29
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 21
  start-page: 1543
  issue: 9
  year: 2011
  ident: 2020080709264010300_ref15
  article-title: Synthetic spike-in standards for RNA-seq experiments
  publication-title: Genome Res
  doi: 10.1101/gr.121095.111
– volume: 17
  start-page: 140
  issue: 1
  year: 2016
  ident: 2020080709264010300_ref25
  article-title: pcaReduce: hierarchical clustering of single cell transcriptional profiles
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0984-y
– volume: 16
  start-page: 278
  issue: 1
  year: 2015
  ident: 2020080709264010300_ref63
  article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0844-5
– volume: 16
  start-page: 1370
  issue: 11
  year: 2004
  ident: 2020080709264010300_ref2
  article-title: Cluster analysis for gene expression data: a survey
  publication-title: IEEE Trans Knowl Data E
  doi: 10.1109/TKDE.2004.68
– volume: 537
  start-page: 698
  issue: 7622
  year: 2016
  ident: 2020080709264010300_ref40
  article-title: Single-cell analysis of mixed-lineage states leading to a binary cell fate choice
  publication-title: Nature
  doi: 10.1038/nature19348
– volume: 58
  start-page: 433
  issue: 3
  year: 1971
  ident: 2020080709264010300_ref59
  article-title: Canonical analysis of several sets of variables
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.433
– volume: 17
  start-page: 106
  issue: 1
  year: 2016
  ident: 2020080709264010300_ref62
  article-title: SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0975-3
– volume: 42
  start-page: 22
  year: 2017
  ident: 2020080709264010300_ref5
  article-title: Recent progress in single-cell cancer genomics
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2017.01.002
– volume: 12
  start-page: 165
  issue: 2
  year: 1995
  ident: 2020080709264010300_ref37
  article-title: The kohonen self-organizing map method: an assessment
  publication-title: J Classification
  doi: 10.1007/BF03040854
– volume: 15
  start-page: 359
  issue: 5
  year: 2018
  ident: 2020080709264010300_ref68
  article-title: Scmap: projection of single-cell RNA-seq data across data sets
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4644
– volume: 16
  start-page: 241
  issue: 1
  year: 2015
  ident: 2020080709264010300_ref23
  article-title: ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0805-z
– volume: 19
  start-page: 93
  issue: 1
  year: 2018
  ident: 2020080709264010300_ref17
  article-title: An interpretable framework for clustering single-cell RNA-Seq datasets
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-018-2092-7
– volume: 546
  start-page: 533
  issue: 7659
  year: 2017
  ident: 2020080709264010300_ref54
  article-title: Multilineage communication regulates human liver bud development from pluripotency
  publication-title: Nature
  doi: 10.1038/nature22796
– volume: 17
  start-page: 144
  issue: 1
  year: 2016
  ident: 2020080709264010300_ref14
  article-title: GiniClust: detecting rare cell types from single-cell gene expression data with Gini index
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1010-4
– volume: 8
  start-page: 14049
  year: 2017
  ident: 2020080709264010300_ref66
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 19
  start-page: 266
  issue: 2
  year: 2016
  ident: 2020080709264010300_ref42
  article-title: De novo prediction of stem cell identity using single-cell transcriptome data
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.05.010
– volume: 31
  start-page: 1974
  issue: 12
  year: 2015
  ident: 2020080709264010300_ref18
  article-title: Identification of cell types from single-cell transcriptomes using a novel clustering method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv088
– volume: 36
  start-page: 411
  issue: 5
  year: 2018
  ident: 2020080709264010300_ref12
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– start-page: 1070
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: 2020080709264010300_ref21
  article-title: Dirichlet process mixture model for correcting technical variation in single-cell gene expression data
– volume: 11
  issue: 11
  year: 2015
  ident: 2020080709264010300_ref20
  article-title: SINCERA: a pipeline for single-cell RNA-Seq profiling analysis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004575
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 2020080709264010300_ref57
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 18
  start-page: 270
  issue: 1
  year: 2017
  ident: 2020080709264010300_ref38
  article-title: DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1647-3
– start-page: 849
  volume-title: Advances in Neural Information Processing Systems
  year: 2002
  ident: 2020080709264010300_ref47
  article-title: On spectral clustering: analysis and an algorithm
– volume: 17
  start-page: 401
  issue: 4
  year: 1952
  ident: 2020080709264010300_ref27
  article-title: Multidimensional scaling: I. theory and method
  publication-title: Psychometrika
  doi: 10.1007/BF02288916
– volume: 8
  start-page: 15081
  year: 2017
  ident: 2020080709264010300_ref67
  article-title: Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer
  publication-title: Nat Commun
  doi: 10.1038/ncomms15081
– volume: 111
  start-page: E5643
  issue: 52
  year: 2014
  ident: 2020080709264010300_ref41
  article-title: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1408993111
– volume: 21
  start-page: 2301
  issue: 10
  year: 2005
  ident: 2020080709264010300_ref44
  article-title: Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti329
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 2020080709264010300_ref28
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 17
  start-page: 63
  issue: 1
  year: 2016
  ident: 2020080709264010300_ref8
  article-title: Design and computational analysis of single-cell RNA-sequencing experiments
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0927-y
– volume: 14
  start-page: 483
  issue: 5
  year: 2017
  ident: 2020080709264010300_ref26
  article-title: SC3: consensus clustering of single-cell RNA-seq data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4236
– start-page: 226
  volume-title: Kdd
  year: 1996
  ident: 2020080709264010300_ref50
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 358
  start-page: 69
  issue: 6359
  year: 2017
  ident: 2020080709264010300_ref69
  article-title: Single-cell epigenomics: recording the past and predicting the future
  publication-title: Science
  doi: 10.1126/science.aan6826
– volume: 11
  start-page: 740
  issue: 7
  year: 2014
  ident: 2020080709264010300_ref65
  article-title: Bayesian approach to single-cell differential expression analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2967
– volume: 28
  start-page: 1345
  issue: 9
  year: 2018
  ident: 2020080709264010300_ref72
  article-title: High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics
  publication-title: Genome Res
  doi: 10.1101/gr.232272.117
– volume: 9
  start-page: 284
  issue: 1
  year: 2018
  ident: 2020080709264010300_ref24
  article-title: A general and flexible method for signal extraction from single-cell RNA-seq data
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02554-5
– volume: 19
  start-page: 15
  issue: 1
  year: 2018
  ident: 2020080709264010300_ref49
  article-title: Large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 2008
  start-page: P10008
  issue: 10
  year: 2008
  ident: 2020080709264010300_ref48
  article-title: Fast unfolding of communities in large networks
  publication-title: J Statist Mech Theory Experiment
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 16
  start-page: 88
  issue: 1
  year: 2015
  ident: 2020080709264010300_ref53
  article-title: Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.11.005
– volume: 11
  start-page: 117
  issue: 6
  year: 2018
  ident: 2020080709264010300_ref31
  article-title: Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-018-0433-z
– volume: 32
  start-page: 381
  issue: 4
  year: 2014
  ident: 2020080709264010300_ref61
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2859
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 2020080709264010300_ref52
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 22
  start-page: 519
  issue: 5
  year: 2013
  ident: 2020080709264010300_ref64
  article-title: Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280211428386
– start-page: i96
  volume-title: Bioinformatics
  year: 2018
  ident: 2020080709264010300_ref70
  article-title: Unsupervised embedding of single-cell Hi-C data
– volume: 14
  start-page: 565
  issue: 6
  year: 2017
  ident: 2020080709264010300_ref10
  article-title: Normalizing single-cell RNA sequencing data: challenges and opportunities
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4292
– volume: 49
  start-page: 708
  issue: 5
  year: 2017
  ident: 2020080709264010300_ref19
  article-title: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors
  publication-title: Nat Genet
  doi: 10.1038/ng.3818
– volume: 17
  start-page: 363
  issue: 1
  year: 2016
  ident: 2020080709264010300_ref34
  article-title: CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1175-6
– volume: 525
  start-page: 251
  issue: 7568
  year: 2015
  ident: 2020080709264010300_ref22
  article-title: Single-cell messenger RNA sequencing reveals rare intestinal cell types
  publication-title: Nature
  doi: 10.1038/nature14966
– volume: 348
  start-page: 910
  issue: 6237
  year: 2015
  ident: 2020080709264010300_ref71
  article-title: Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing
  publication-title: Science
  doi: 10.1126/science.aab1601
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 2020080709264010300_ref45
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-015-0040-1
– volume: 6
  start-page: 281
  issue: 3–4
  year: 1999
  ident: 2020080709264010300_ref1
  article-title: Clustering gene expression patterns
  publication-title: J Comput Biol
  doi: 10.1089/106652799318274
– start-page: 124693
  volume-title: SOMSC: self-organization-map for high-dimensional single-cell data of cellular states and their transitions. bioRxiv
  year: 2017
  ident: 2020080709264010300_ref56
– volume: 17
  start-page: 112
  issue: 1
  year: 2016
  ident: 2020080709264010300_ref13
  article-title: Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0970-8
– volume: 7
  start-page: 18403
  issue: 14
  year: 2016
  ident: 2020080709264010300_ref55
  article-title: Systematic characterization of lncRNAs’ cell-to-cell expression heterogeneity in glioblastoma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7580
– volume: 18
  start-page: 689
  issue: 6
  year: 2017
  ident: 2020080709264010300_ref30
  article-title: SAIC: an iterative clustering approach for analysis of single cell RNA-seq data
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4019-5
– volume: 5
  start-page: 373
  issue: 5
  year: 2001
  ident: 2020080709264010300_ref36
  article-title: On the use of self-organizing maps for clustering and visualization
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2001-5502
– volume: 14
  issue: 4
  year: 2018
  ident: 2020080709264010300_ref9
  article-title: A multitask clustering approach for single-cell RNA-seq analysis in recessive dystrophic epidermolysis bullosa
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006053
– volume: 18
  start-page: 59
  issue: 1
  year: 2017
  ident: 2020080709264010300_ref16
  article-title: CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1188-0
– volume: 44
  start-page: e117
  issue: 13
  year: 2016
  ident: 2020080709264010300_ref46
  article-title: TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw430
– volume: 58
  start-page: 610
  issue: 4
  year: 2015
  ident: 2020080709264010300_ref4
  article-title: The technology and biology of single-cell RNA sequencing
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.04.005
– volume: 14
  start-page: 979
  issue: 10
  year: 2017
  ident: 2020080709264010300_ref51
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4402
– volume: 86
  start-page: 1953
  issue: 4
  year: 2014
  ident: 2020080709264010300_ref6
  article-title: On-chip separation and analysis of RNA and DNA from single cells
  publication-title: Anal Chem
  doi: 10.1021/ac4040218
– volume: 16
  start-page: 133
  issue: 3
  year: 2015
  ident: 2020080709264010300_ref3
  article-title: Computational and analytical challenges in single-cell transcriptomics
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3833
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: 2020080709264010300_ref35
  article-title: The self-organizing map
  publication-title: Proc IEEE
  doi: 10.1109/5.58325
– start-page: 73
  volume-title: ACM Sigmod Record
  year: 1998
  ident: 2020080709264010300_ref43
  article-title: CURE: an efficient clustering algorithm for large databases
– volume: 28
  start-page: 321
  issue: 3/4
  year: 1936
  ident: 2020080709264010300_ref32
  article-title: Relations between two sets of variates
  publication-title: Biometrika
  doi: 10.2307/2333955
– volume-title: On the widespread and critical impact of systematic bias and batch effects in single-cell rna-seq data. bioRxiv
  year: 2015
  ident: 2020080709264010300_ref58
– volume: 86
  start-page: 471
  issue: 11
  year: 2013
  ident: 2020080709264010300_ref60
  article-title: A smart local moving algorithm for large-scale modularity-based community detection
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2013-40829-0
– volume: 1
  start-page: 658
  issue: 3
  year: 2012
  ident: 2020080709264010300_ref7
  article-title: Methods, challenges and potentials of single cell RNA-seq
  publication-title: Biology
  doi: 10.3390/biology1030658
– volume: 3
  start-page: 993
  issue: Jan
  year: 2003
  ident: 2020080709264010300_ref33
  article-title: Andrew Y Ng, Michael I Jordan
  publication-title: J Mach Learn Res
– volume: 14
  start-page: 414
  issue: 4
  year: 2017
  ident: 2020080709264010300_ref39
  article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4207
– volume: 33
  start-page: 495
  issue: 5
  year: 2015
  ident: 2020080709264010300_ref11
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3192
SSID ssj0020781
Score 2.6278987
SecondaryResourceType review_article
Snippet Abstract   Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a...
Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1209
SubjectTerms Cluster analysis
Clustering
Core analysis
Data analysis
Gene expression
Gene sequencing
Learning algorithms
Machine learning
Mathematical analysis
Neural networks
Optimization
Probabilistic models
Ribonucleic acid
RNA
Source code
Statistical methods
Statistics
Title Machine learning and statistical methods for clustering single-cell RNA-sequencing data
URI https://www.ncbi.nlm.nih.gov/pubmed/31243426
https://www.proquest.com/docview/2456895343
https://www.proquest.com/docview/2248378718
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA8iCL6I307niOiLD2HLR9P0cYhjCJsgG-6tNGlOhLGJ2x70r_fSdoXhUOjbXQm9S3u_611-R8hdZLzmYIDlHQ5MuSRnmY04Aw7cShvltjgkNhjq_lg9TaJJ1USz2FLCT2Tbvtu2td8YS_FLi9E3MOSPnid1WhXoatbEoxvqG6Fm4_jaLxRZRJPeITmoYCDtln47Ijt-dkz2ysGQXyfkdVD0OHpaDXV4o5jw03D4p-BVxjvLyc8LipiTuukq0B0EtZD5Tz0Lv-Ppy7DLqk7pIAq9oKdk3HscPfRZNQKBOcX5kqlEalA2EjFAlhuROB9rcNwgMJIQgQY0qnDKqkTnKhCtxB1QubBgE9AY-s_I7mw-8xeEOhcL4LE1Ci-jZZbF3BvuMm-017FokPu1tVJX8YOHMRXTtKxTyxQtm5aWbZDbWvejZMXYqtVCo_-p0Fz7I61enUUaKrH4eFKh-KYW46YPpstmfr5CHVEQ4WNcbZDz0o_1MhIRi0Tccfnf6ldkX4TkObBkRk2yu_xc-WtEGEvbKjbYD6KA0KU
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+statistical+methods+for+clustering+single-cell+RNA-sequencing+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Petegrosso%2C+Raphael&rft.au=Li%2C+Zhuliu&rft.au=Kuang%2C+Rui&rft.date=2020-07-15&rft.eissn=1477-4054&rft_id=info:doi/10.1093%2Fbib%2Fbbz063&rft_id=info%3Apmid%2F31243426&rft.externalDocID=31243426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-4054&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-4054&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-4054&client=summon