DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features
Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the perf...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 1; pp. 451 - 462 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.01.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF. |
---|---|
AbstractList | Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF. Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF. Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF. |
Author | Kaushik, Aman Chandra Wei, Dong-Qing Xiong, Yi Chu, Yanyi Wang, Wei Zhang, Yufang Wang, Xiangeng Shan, Xiaoqi Salahub, Dennis Russell |
Author_xml | – sequence: 1 givenname: Yanyi surname: Chu fullname: Chu, Yanyi email: a96123155@sjtu.edu.cn organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 2 givenname: Aman Chandra surname: Kaushik fullname: Kaushik, Aman Chandra email: amanbioinfo@sjtu.edu.cn organization: School of Medicine, Jiangnan University, Wuxi, China – sequence: 3 givenname: Xiangeng surname: Wang fullname: Wang, Xiangeng email: wangxiangeng@sjtu.edu.cn organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei email: wei-wang@sjtu.edu.cn organization: Mathematical Sciences, Shanghai Jiao Tong University – sequence: 5 givenname: Yufang surname: Zhang fullname: Zhang, Yufang email: yufangz@sjtu.edu.cn organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 6 givenname: Xiaoqi surname: Shan fullname: Shan, Xiaoqi email: cynthiakkai@sjtu.edu.cn organization: School of Life Sciences and Biotechnology – sequence: 7 givenname: Dennis Russell surname: Salahub fullname: Salahub, Dennis Russell email: dsalahub@ucalgary.ca organization: Department of Chemistry, University of Calgary, Fellow Royal Society of Canada – sequence: 8 givenname: Yi surname: Xiong fullname: Xiong, Yi email: xiongyi@sjtu.edu.cn organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 9 givenname: Dong-Qing surname: Wei fullname: Wei, Dong-Qing email: dqwei@sjtu.edu.cn organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31885041$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJaD7aS39AEZRCKTiRLMmScyubJlkI5JKejT7GiYLXciWZsPn10Wa3PYSQ08wwz7zMzHuE9sYwAkJfKDmhpGWnxptTY56oqD-gQ8qlrDgRfG-TN7ISvGEH6CilB0JqIhX9iA4YVUoQTg_RdH67rBbnF2dYY6uT1Q6wA5hwHyKkjFfBwYBzeNTRJZzvAU8RnLfZhxGHHrs431VZxzvI2I8Zon5pJWx0AocLdL820Tvcg85zkfyE9ns9JPi8i8foz8Xv28VVdX1zuVz8uq4spzRXnLVcSGqoVoq0zkhle8tLCb0w0ApruDMcpGbSKWfAWidap7jRDWGcKnaMfmx1pxj-zuWUbuWThWHQI4Q5dTVjlDNJm6ag316hD2GOY9muq0Xdtk3TyI3g1x01mxW4bop-peO6-_fLAvzcAjaGlCL0_xFKuo1RXTGq2xpVYPIKtj7rzety1H54e-T7diTM03vSz3rPo7o |
CitedBy_id | crossref_primary_10_1002_isaf_1517 crossref_primary_10_1039_D3CP03651K crossref_primary_10_1016_j_csbj_2022_06_004 crossref_primary_10_1016_j_csbj_2025_01_020 crossref_primary_10_1371_journal_pone_0282042 crossref_primary_10_1109_JBHI_2024_3483316 crossref_primary_10_1038_s42256_023_00640_6 crossref_primary_10_1109_JBHI_2023_3343075 crossref_primary_10_1039_D1SC05180F crossref_primary_10_1093_bioinformatics_btae039 crossref_primary_10_1109_JBHI_2022_3219213 crossref_primary_10_1007_s00521_024_10714_0 crossref_primary_10_1109_ACCESS_2020_2992468 crossref_primary_10_3390_rs14143494 crossref_primary_10_1186_s13321_023_00771_3 crossref_primary_10_2174_0115748936299646240625092734 crossref_primary_10_1002_minf_202200102 crossref_primary_10_1016_j_neucom_2023_126509 crossref_primary_10_1080_17460441_2021_1909567 crossref_primary_10_1093_bib_bbab515 crossref_primary_10_1007_s40199_024_00548_5 crossref_primary_10_1016_j_compbiomed_2022_106464 crossref_primary_10_1039_D1CP05928A crossref_primary_10_1007_s11030_021_10217_3 crossref_primary_10_1016_j_eswa_2023_120754 crossref_primary_10_2174_1574893615999200601122328 crossref_primary_10_1007_s12539_021_00483_y crossref_primary_10_1007_s12539_021_00448_1 crossref_primary_10_3389_fphar_2022_1009996 crossref_primary_10_1155_2021_6480456 crossref_primary_10_1109_ACCESS_2020_2985111 crossref_primary_10_1007_s10462_022_10321_2 crossref_primary_10_1146_annurev_pharmtox_051921_023255 crossref_primary_10_1016_j_jchemneu_2023_102236 crossref_primary_10_1155_2020_9235920 crossref_primary_10_3389_fcell_2021_795883 crossref_primary_10_1016_j_compbiomed_2022_105728 crossref_primary_10_1038_s41598_024_76367_0 crossref_primary_10_3389_fgene_2025_1527300 crossref_primary_10_1155_2020_8852258 crossref_primary_10_1186_s12859_024_05893_5 crossref_primary_10_1021_acs_jcim_3c01841 crossref_primary_10_1093_bib_bbac364 crossref_primary_10_1007_s11103_020_01102_y crossref_primary_10_1016_j_compbiomed_2021_104676 crossref_primary_10_1016_j_compbiomed_2023_107621 crossref_primary_10_1080_15476286_2021_1875180 crossref_primary_10_1186_s13065_020_00704_3 crossref_primary_10_1371_journal_pone_0276609 crossref_primary_10_1016_j_compbiolchem_2020_107406 crossref_primary_10_1109_TCBB_2024_3453499 crossref_primary_10_1186_s12915_024_02012_x crossref_primary_10_1021_acs_jcim_0c01115 crossref_primary_10_1186_s12859_022_05062_6 crossref_primary_10_2139_ssrn_4156581 crossref_primary_10_1016_j_ymeth_2022_08_016 crossref_primary_10_1109_ACCESS_2021_3096830 crossref_primary_10_1109_TCBB_2022_3205282 crossref_primary_10_1021_acsomega_1c05203 crossref_primary_10_1016_j_compbiomed_2023_106784 crossref_primary_10_1016_j_compbiomed_2023_107355 crossref_primary_10_1007_s11030_021_10273_9 crossref_primary_10_1109_TCBB_2023_3237863 crossref_primary_10_1016_j_artmed_2024_103023 crossref_primary_10_3390_molecules28052284 crossref_primary_10_1021_acs_jctc_1c01257 crossref_primary_10_1109_JBHI_2023_3312374 crossref_primary_10_1093_bib_bbab453 crossref_primary_10_1002_aisy_202200104 crossref_primary_10_1007_s12539_020_00399_z crossref_primary_10_3389_fbioe_2020_00892 crossref_primary_10_1016_j_compbiomed_2022_105984 crossref_primary_10_3390_biology11050741 crossref_primary_10_1109_JBHI_2021_3121798 crossref_primary_10_1002_jcc_27388 crossref_primary_10_7717_peerj_10813 crossref_primary_10_1155_2022_5852089 crossref_primary_10_1016_j_compbiolchem_2024_108137 crossref_primary_10_1016_j_sbi_2025_103017 crossref_primary_10_1109_TCBB_2024_3404889 crossref_primary_10_1016_j_chemolab_2020_104122 crossref_primary_10_23919_cje_2022_00_384 crossref_primary_10_1093_bib_bbab606 crossref_primary_10_7717_peerj_11906 crossref_primary_10_1007_s00521_021_06047_x crossref_primary_10_1109_ACCESS_2021_3049142 crossref_primary_10_1016_j_ymeth_2024_04_016 crossref_primary_10_1093_bib_bbab562 crossref_primary_10_1109_JBHI_2023_3335402 crossref_primary_10_1002_jcc_27490 crossref_primary_10_2174_1573409919666230111164340 crossref_primary_10_3389_fbioe_2020_00267 crossref_primary_10_1177_14727978251321647 crossref_primary_10_1016_j_jmgm_2023_108498 crossref_primary_10_1016_j_compbiomed_2022_105214 crossref_primary_10_1016_j_compbiomed_2020_103670 crossref_primary_10_1016_j_compbiomed_2022_105216 crossref_primary_10_1016_j_compbiomed_2023_107414 crossref_primary_10_1021_acs_jpclett_2c03906 crossref_primary_10_1016_j_compbiomed_2023_107137 crossref_primary_10_3390_math13010118 crossref_primary_10_1109_TCBB_2022_3153963 crossref_primary_10_1016_j_chemolab_2024_105065 crossref_primary_10_1007_s12539_021_00488_7 crossref_primary_10_3390_molecules28135013 crossref_primary_10_1007_s13755_023_00243_w crossref_primary_10_1021_acsomega_0c03972 crossref_primary_10_1093_bioinformatics_btab548 crossref_primary_10_3389_fmicb_2020_580382 crossref_primary_10_1007_s10489_021_02495_z crossref_primary_10_1093_bioinformatics_btab384 crossref_primary_10_1016_j_compbiomed_2024_109218 crossref_primary_10_1049_cje_2021_06_003 crossref_primary_10_1371_journal_pcbi_1010511 crossref_primary_10_1055_a_2306_8311 crossref_primary_10_2174_1574893616666211119093100 crossref_primary_10_1016_j_compbiomed_2023_107545 crossref_primary_10_1093_bib_bbac434 crossref_primary_10_1109_JSTARS_2021_3110994 crossref_primary_10_1007_s12539_021_00456_1 crossref_primary_10_2174_0113816128282837240130102817 crossref_primary_10_1186_s12859_023_05387_w crossref_primary_10_3389_fnagi_2023_1176400 crossref_primary_10_1016_j_ymeth_2023_06_006 crossref_primary_10_3389_fmicb_2022_1092467 crossref_primary_10_1016_j_inffus_2023_101950 crossref_primary_10_1016_j_ab_2024_115691 crossref_primary_10_1093_bfgp_elad037 crossref_primary_10_1016_j_imu_2024_101604 crossref_primary_10_1186_s12859_023_05447_1 crossref_primary_10_3389_fbioe_2020_00245 crossref_primary_10_1038_s44385_024_00003_9 crossref_primary_10_1093_bioinformatics_btac006 crossref_primary_10_1021_acs_jpclett_1c00867 crossref_primary_10_1109_ACCESS_2022_3217926 crossref_primary_10_1186_s12859_023_05620_6 crossref_primary_10_1109_ACCESS_2020_2980897 crossref_primary_10_1186_s12859_022_05101_2 crossref_primary_10_1007_s12539_021_00484_x crossref_primary_10_1155_2020_8845133 crossref_primary_10_1038_s41598_024_57879_1 crossref_primary_10_3389_fgene_2023_1272016 |
Cites_doi | 10.1093/nar/gkw1092 10.1093/bib/bby098 10.1093/bib/bbx041 10.1093/bioinformatics/btz111 10.1016/j.jtbi.2014.06.008 10.1093/bioinformatics/bty593 10.1186/s12859-016-1377-y 10.1016/j.ymeth.2017.05.016 10.1093/nar/gkh081 10.1093/bioinformatics/bty543 10.1016/j.compbiolchem.2011.10.003 10.1016/j.ymeth.2015.04.036 10.1371/journal.pone.0193959 10.1038/srep40376 10.1016/j.neucom.2016.10.039 10.1016/j.febslet.2008.02.024 10.1155/2018/1425608 10.24963/ijcai.2017/497 10.1093/nar/gkm862 10.1016/j.cmpb.2017.09.003 10.1186/s12859-018-2254-7 10.1016/j.omtn.2018.12.002 10.1023/A:1010933404324 10.1093/bib/bbv066 10.1038/nmeth.2810 10.1186/s13321-015-0089-z 10.1021/acs.molpharmaceut.9b00384 10.1093/bioinformatics/bts670 10.1371/journal.pcbi.1004760 10.1093/bioinformatics/btp433 10.1038/s41467-017-00680-8 10.3390/molecules22071119 10.1208/s12248-017-0092-6 10.1186/s13321-016-0128-4 10.1038/s41598-017-18025-2 10.1016/j.aca.2016.01.014 10.1371/journal.pone.0062975 10.1093/bioinformatics/btv256 10.1093/bioinformatics/bti1141 10.1089/cmb.2010.0213 10.1016/j.compbiolchem.2017.03.011 10.1016/j.ygeno.2018.12.007 10.1093/bib/bby002 10.1109/TCBB.2016.2530062 10.1021/acs.jcim.9b00129 10.1093/nar/gkj067 10.1371/journal.pone.0011764 10.2174/1568026617666170414145015 10.1093/bioinformatics/btx160 10.1186/s12859-016-0977-x 10.1093/bioinformatics/bts360 10.1002/prot.21082 10.1093/bioinformatics/btr500 10.1016/j.aca.2012.09.021 10.1093/bioinformatics/btw244 10.1371/journal.pone.0171839 10.2174/1389203720666190123164310 10.1093/bioinformatics/btq176 10.1109/ACCESS.2019.2910277 10.1038/nrd.2016.230 10.1039/c2mb00002d 10.1186/s12864-018-5031-0 10.1186/s12859-018-2095-4 10.1093/bioinformatics/btx731 10.1016/j.ymeth.2016.06.024 10.1016/j.ymeth.2019.02.009 10.1093/nar/gkv1075 10.1145/2939672.2939785 10.1186/1752-0509-4-S2-S6 10.1517/17425255.2014.950222 10.1038/nbt1284 10.3390/molecules22122056 10.1093/bioinformatics/btn409 10.1093/bioinformatics/btw318 10.1186/s12859-016-1005-x 10.1016/j.jtbi.2018.12.024 10.1021/acs.jproteome.6b00618 10.2174/092986711798347270 10.1186/1752-0509-9-S3-S4 10.1186/s12859-016-0890-3 10.1186/s13321-018-0284-9 10.1039/C5MB00615E 10.3390/molecules24162999 10.1093/bioinformatics/btn162 10.1093/bioinformatics/bts412 10.1093/bib/bbt056 10.1186/s12859-018-2199-x 10.1093/bib/bbu010 10.1016/j.compbiolchem.2018.11.028 10.1186/s12859-017-1845-z 10.2174/1389200219666180821094047 10.1016/j.vascn.2015.11.002 10.1093/bioinformatics/btt307 10.1016/j.neucom.2016.03.080 10.1155/2017/6340316 10.1038/s41598-017-10724-0 10.1186/s12859-017-1460-z 10.1371/journal.pcbi.1002503 10.1016/j.cmpb.2018.08.011 10.2174/1389203718666161114111656 10.1186/1752-0509-7-S6-S3 10.1093/bioinformatics/btt234 10.1093/bioinformatics/bts413 10.2174/1389203718666161108091609 10.1371/journal.pone.0080129 10.1016/j.ins.2017.08.045 10.3389/fgene.2019.00459 10.1371/journal.pcbi.1007129 10.1093/bioinformatics/btv695 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz152 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Genetics Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 462 |
ExternalDocumentID | 31885041 10_1093_bib_bbz152 10.1093/bib/bbz152 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABPQP ABXZS ACUXJ AHGBF ALXQX ANAKG CITATION JXSIZ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c411t-4394571b1a8809db78cfc4b1aef5be95cb4db4e7a37d8dbeccd59d84ba6034183 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 14:12:04 EDT 2025 Mon Jun 30 08:52:06 EDT 2025 Wed Feb 19 02:29:57 EST 2025 Tue Jul 01 03:39:28 EDT 2025 Thu Apr 24 22:54:36 EDT 2025 Thu Feb 27 05:38:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ensemble learning drug-target interaction machine learning cascade deep forest |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-4394571b1a8809db78cfc4b1aef5be95cb4db4e7a37d8dbeccd59d84ba6034183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31885041 |
PQID | 2529966678 |
PQPubID | 26846 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2331437166 proquest_journals_2529966678 pubmed_primary_31885041 crossref_primary_10_1093_bib_bbz152 crossref_citationtrail_10_1093_bib_bbz152 oup_primary_10_1093_bib_bbz152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan-18 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Zhou (2021012203304079400_ref106) Luo (2021012203304079400_ref37) 2017; 8 Chen (2021012203304079400_ref19) 2012; 8 Zong (2021012203304079400_ref42) 2017; 33 Seal (2021012203304079400_ref44) 2018; 19 Wang (2021012203304079400_ref90) 2013; 29 Wadhwa (2021012203304079400_ref110) 2018; 13 Chen (2021012203304079400_ref4) 2016; 17 Ban (2021012203304079400_ref46) 2019; 18 Mousavian (2021012203304079400_ref60) 2014; 10 Ding (2021012203304079400_ref3) 2014; 15 Nascimento (2021012203304079400_ref31) 2016; 17 Chen (2021012203304079400_ref113) 2018 Yin (2021012203304079400_ref114) 2019; 16 Hao (2021012203304079400_ref66) 2016; 909 Wang (2021012203304079400_ref24) 2013 Gunther (2021012203304079400_ref100) 2008; 36 Rayhan (2021012203304079400_ref77) 2017; 7 Ba-Alawi (2021012203304079400_ref28) 2016; 8 Ding (2021012203304079400_ref108) 2016; 32 Ezzat (2021012203304079400_ref34) 2017; 14 Kanehisa (2021012203304079400_ref98) 2017; 45 Meng (2021012203304079400_ref76) 2017; 22 Zhang (2021012203304079400_ref11) 2019; 20 Seal (2021012203304079400_ref26) 2015; 7 Lan (2021012203304079400_ref29) 2016; 206 Wen (2021012203304079400_ref92) 2017; 16 Guo (2021012203304079400_ref97) 2018; 19 Wishart (2021012203304079400_ref101) 2006; 34 Zhang (2021012203304079400_ref6) 2017; 17 Durán (2021012203304079400_ref33) 2018 Liu (2021012203304079400_ref61) 2015; 31 Lee (2021012203304079400_ref43) 2018; 19 Wang (2021012203304079400_ref105) 2014; 11 Zhang (2021012203304079400_ref40) 2017; 22 Min (2021012203304079400_ref111) 2017; 18 Alaimo (2021012203304079400_ref21) 2013; 29 Cao (2021012203304079400_ref54) 2012; 752 Chen (2021012203304079400_ref87) 2013; 8 Rayhan (2021012203304079400_ref85) 2019; 464 Breiman (2021012203304079400_ref107) 2001; 45 Wang (2021012203304079400_ref82) 2018; 19 Wang (2021012203304079400_ref52) 2011; 35 Takarabe (2021012203304079400_ref104) 2012; 28 Karimi (2021012203304079400_ref118) 2019; 35 Yuan (2021012203304079400_ref70) 2016; 32 Li (2021012203304079400_ref83) 2019; 24 Wang (2021012203304079400_ref45) 2018; 2018 Yan (2021012203304079400_ref47) 2019; 78 Ozturk (2021012203304079400_ref69) 2016; 17 Zhang (2021012203304079400_ref78) 2017; 228 Cheng (2021012203304079400_ref20) 2012; 8 Fu (2021012203304079400_ref65) 2016; 17 Ding (2021012203304079400_ref10) 2019 Qu (2021012203304079400_ref115) 2019; 14 Ozturk (2021012203304079400_ref117) 2018; 34 Chen (2021012203304079400_ref109) 2016 Tabei (2021012203304079400_ref57) 2013; 7 Leslie (2021012203304079400_ref102) 2002 Mahmud (2021012203304079400_ref84) 2019; 7 Xia (2021012203304079400_ref49) 2010; 4 Kim (2021012203304079400_ref25) 2013; 8 Li (2021012203304079400_ref67) 2016; 32 Shi (2021012203304079400_ref81) 2018; 111 Xie (2021012203304079400_ref91) 2018; 19 Yang (2021012203304079400_ref59) 2014 Li (2021012203304079400_ref75) 2017; 7 Zhu (2021012203304079400_ref89) 2005; 21 Zhang (2021012203304079400_ref41) 2017; 69 Zhao (2021012203304079400_ref18) 2010; 5 Ezzat (2021012203304079400_ref64) 2016; 17 Chen (2021012203304079400_ref8) 2018; 23 Pahikkala (2021012203304079400_ref62) 2015; 16 Yan (2021012203304079400_ref27) 2016; 12 Lu (2021012203304079400_ref36) 2017; 18 Ding (2021012203304079400_ref71) 2017; 418 Cheng (2021012203304079400_ref5) 2017; 19 Hao (2021012203304079400_ref35) 2017; 7 Liu (2021012203304079400_ref30) 2016; 12 Xuan (2021012203304079400_ref86) 2019; 10 Perlman (2021012203304079400_ref53) 2011; 18 Peska (2021012203304079400_ref38) 2017; 152 Ezzat (2021012203304079400_ref72) 2017; 129 Nanni (2021012203304079400_ref58) 2014; 359 Mousavian (2021012203304079400_ref68) 2016; 78 Laarhoven (2021012203304079400_ref50) 2011; 27 Zhao (2021012203304079400_ref12) 2019; 20 Anusuya (2021012203304079400_ref7) 2018; 19 Alaimo (2021012203304079400_ref22) 2015; 9 Sharma (2021012203304079400_ref80) 2018; 165 Yamanishi (2021012203304079400_ref15) 2008; 24 Wang (2021012203304079400_ref116) 2019; 59 Bleakley (2021012203304079400_ref16) 2009; 25 Lee (2021012203304079400_ref94) 2019; 15 Olayan (2021012203304079400_ref79) 2018; 34 Wu (2021012203304079400_ref39) 2017; 18 Kuhn (2021012203304079400_ref103) 2016; 44 Gu (2021012203304079400_ref88) 2016 Mei (2021012203304079400_ref23) 2013; 29 Su (2021012203304079400_ref96) 2019; 166 Bolgar (2021012203304079400_ref32) 2017; 18 Ezzat (2021012203304079400_ref9) 2019; 20 Sousa (2021012203304079400_ref14) 2006; 65 Keum (2021012203304079400_ref74) 2017; 12 Kuhn (2021012203304079400_ref2) 2008; 582 Jiang (2021012203304079400_ref73) 2017; 2017 Tian (2021012203304079400_ref93) 2016; 110 Schomburg (2021012203304079400_ref99) 2004; 32 Tabei (2021012203304079400_ref56) 2012; 28 Santos (2021012203304079400_ref1) 2017; 16 Yamanishi (2021012203304079400_ref17) 2010; 26 Keiser (2021012203304079400_ref13) 2007; 25 Qu (2021012203304079400_ref112) 2018; 10 Shi (2021012203304079400_ref63) 2015; 83 Wan (2021012203304079400_ref95) 2019; 35 Yu (2021012203304079400_ref51) 2011; 18 Gonen (2021012203304079400_ref55) 2012; 28 Jacob (2021012203304079400_ref48) 2008; 24 |
References_xml | – volume: 45 start-page: D353 year: 2017 ident: 2021012203304079400_ref98 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1092 – year: 2018 ident: 2021012203304079400_ref113 article-title: MicroRNA-small molecule association identification: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bby098 – start-page: 1183 year: 2018 ident: 2021012203304079400_ref33 article-title: Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory publication-title: Brief Bioinform doi: 10.1093/bib/bbx041 – volume: 35 start-page: 3329 year: 2019 ident: 2021012203304079400_ref118 article-title: DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz111 – volume: 359 start-page: 120 year: 2014 ident: 2021012203304079400_ref58 article-title: A set of descriptors for identifying the protein-drug interaction in cellular networking publication-title: J Theor Biol doi: 10.1016/j.jtbi.2014.06.008 – volume: 34 start-page: i821 year: 2018 ident: 2021012203304079400_ref117 article-title: DeepDTA: deep drug-target binding affinity prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty593 – volume: 17 start-page: 509 year: 2016 ident: 2021012203304079400_ref64 article-title: Drug-target interaction prediction via class imbalance-aware ensemble learning publication-title: BMC Bioinform doi: 10.1186/s12859-016-1377-y – volume: 129 start-page: 81 year: 2017 ident: 2021012203304079400_ref72 article-title: Drug-target interaction prediction using ensemble learning and dimensionality reduction publication-title: Methods doi: 10.1016/j.ymeth.2017.05.016 – volume: 18 start-page: 851 year: 2017 ident: 2021012203304079400_ref111 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – volume: 32 start-page: D431 year: 2004 ident: 2021012203304079400_ref99 article-title: BRENDA, the enzyme database: updates and major new developments publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh081 – volume: 35 start-page: 104 year: 2019 ident: 2021012203304079400_ref95 article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty543 – volume: 35 start-page: 353 year: 2011 ident: 2021012203304079400_ref52 article-title: Kernel-based data fusion improves the drug-protein interaction prediction publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2011.10.003 – volume: 83 start-page: 98 year: 2015 ident: 2021012203304079400_ref63 article-title: Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering publication-title: Methods doi: 10.1016/j.ymeth.2015.04.036 – volume: 13 start-page: e0193959 year: 2018 ident: 2021012203304079400_ref110 article-title: A hierarchical anatomical classification schema for prediction of phenotypic side effects publication-title: PLoS One doi: 10.1371/journal.pone.0193959 – volume: 7 start-page: 40376 year: 2017 ident: 2021012203304079400_ref35 article-title: Predicting drug-target interactions by dual-network integrated logistic matrix factorization publication-title: Sci Rep doi: 10.1038/srep40376 – volume: 228 start-page: 256 year: 2017 ident: 2021012203304079400_ref78 article-title: DrugRPE: random projection ensemble approach to drug-target interaction prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.039 – volume: 582 start-page: 1283 year: 2008 ident: 2021012203304079400_ref2 article-title: Large-scale prediction of drug-target relationships publication-title: FEBS Lett doi: 10.1016/j.febslet.2008.02.024 – volume: 2018 start-page: 1425608 year: 2018 ident: 2021012203304079400_ref45 article-title: Drug-target interaction prediction via dual Laplacian graph regularized matrix completion publication-title: Biomed Res Int doi: 10.1155/2018/1425608 – ident: 2021012203304079400_ref106 article-title: Deep forest: Towards an alternative to deep neural networks doi: 10.24963/ijcai.2017/497 – volume: 36 start-page: D919 year: 2008 ident: 2021012203304079400_ref100 article-title: SuperTarget and matador: resources for exploring drug-target relationships publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm862 – volume: 152 start-page: 15 year: 2017 ident: 2021012203304079400_ref38 article-title: Drug-target interaction prediction: a Bayesian ranking approach publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2017.09.003 – start-page: 148 year: 2014 ident: 2021012203304079400_ref59 article-title: Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data publication-title: Pac Symp Biocomput – volume: 19 start-page: 265 year: 2018 ident: 2021012203304079400_ref44 article-title: Netpredictor: R and shiny package to perform drug-target network analysis and prediction of missing links publication-title: BMC Bioinform doi: 10.1186/s12859-018-2254-7 – volume: 14 start-page: 274 year: 2019 ident: 2021012203304079400_ref115 article-title: In Silico prediction of small molecule-miRNA associations based on the HeteSim algorithm publication-title: Mol Ther Nucleic Acid doi: 10.1016/j.omtn.2018.12.002 – volume: 45 start-page: 5 year: 2001 ident: 2021012203304079400_ref107 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 17 start-page: 696 year: 2016 ident: 2021012203304079400_ref4 article-title: Drug-target interaction prediction: databases, web servers and computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbv066 – start-page: 7185 volume-title: Proceedings of the 35th Chinese Control Conference 2016 year: 2016 ident: 2021012203304079400_ref88 – volume: 11 start-page: 333 year: 2014 ident: 2021012203304079400_ref105 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods doi: 10.1038/nmeth.2810 – volume: 7 start-page: 40 year: 2015 ident: 2021012203304079400_ref26 article-title: Optimizing drug-target interaction prediction based on random walk on heterogeneous networks publication-title: J Chem doi: 10.1186/s13321-015-0089-z – volume: 16 start-page: 3157 year: 2019 ident: 2021012203304079400_ref114 article-title: Prediction of small molecule-MicroRNA associations by sparse learning and heterogeneous graph inference publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.9b00384 – volume: 29 start-page: 238 year: 2013 ident: 2021012203304079400_ref23 article-title: Drug-target interaction prediction by learning from local information and neighbors publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts670 – volume: 12 start-page: e1004760 year: 2016 ident: 2021012203304079400_ref30 article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004760 – volume: 25 start-page: 2397 year: 2009 ident: 2021012203304079400_ref16 article-title: Supervised prediction of drug-target interactions using bipartite local models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp433 – volume: 8 start-page: 573 year: 2017 ident: 2021012203304079400_ref37 article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information publication-title: Nat Commun doi: 10.1038/s41467-017-00680-8 – volume: 22 start-page: 1119 year: 2017 ident: 2021012203304079400_ref76 article-title: Prediction of drug-target interaction networks from the integration of protein sequences and drug chemical structures publication-title: Molecules doi: 10.3390/molecules22071119 – volume: 19 start-page: 1264 year: 2017 ident: 2021012203304079400_ref5 article-title: Large-scale prediction of drug-target interaction: a data-centric review publication-title: AAPS J doi: 10.1208/s12248-017-0092-6 – volume: 8 start-page: 15 year: 2016 ident: 2021012203304079400_ref28 article-title: DASPfind: new efficient method to predict drug-target interactions publication-title: J Chem doi: 10.1186/s13321-016-0128-4 – volume: 7 start-page: 17731 year: 2017 ident: 2021012203304079400_ref77 article-title: iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting publication-title: Sci Rep doi: 10.1038/s41598-017-18025-2 – volume: 909 start-page: 41 year: 2016 ident: 2021012203304079400_ref66 article-title: Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique publication-title: Anal Chim Acta doi: 10.1016/j.aca.2016.01.014 – volume: 8 start-page: e62975 year: 2013 ident: 2021012203304079400_ref87 article-title: A semi-supervised method for drug-target interaction prediction with consistency in networks publication-title: PLoS One doi: 10.1371/journal.pone.0062975 – volume: 31 start-page: i221 year: 2015 ident: 2021012203304079400_ref61 article-title: Improving compound-protein interaction prediction by building up highly credible negative samples publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv256 – volume: 21 start-page: ii245 issue: Suppl 2 year: 2005 ident: 2021012203304079400_ref89 article-title: A probabilistic model for mining implicit 'chemical compound-gene' relations from literature publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1141 – volume: 18 start-page: 133 year: 2011 ident: 2021012203304079400_ref53 article-title: Combining drug and gene similarity measures for drug-target elucidation publication-title: J Comput Biol doi: 10.1089/cmb.2010.0213 – volume: 69 start-page: 185 year: 2017 ident: 2021012203304079400_ref41 article-title: Drug-target interaction prediction by integrating multiview network data publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2017.03.011 – volume: 111 start-page: 1839 year: 2018 ident: 2021012203304079400_ref81 article-title: Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure publication-title: Genomics. doi: 10.1016/j.ygeno.2018.12.007 – volume: 20 start-page: 1337 year: 2019 ident: 2021012203304079400_ref9 article-title: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey publication-title: Brief Bioinform doi: 10.1093/bib/bby002 – year: 2019 ident: 2021012203304079400_ref10 article-title: The computational models of drug-target interaction prediction publication-title: Protein Pept Lett – volume: 14 start-page: 646 year: 2017 ident: 2021012203304079400_ref34 article-title: Drug-target interaction prediction with graph regularized matrix factorization publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2530062 – volume: 59 start-page: 1668 year: 2019 ident: 2021012203304079400_ref116 article-title: RFSMMA: a new computational model to identify and prioritize potential small molecule-MiRNA associations publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00129 – volume: 34 start-page: D668 year: 2006 ident: 2021012203304079400_ref101 article-title: DrugBank: a comprehensive resource for in silico drug discovery and exploration publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj067 – volume: 5 start-page: e11764 year: 2010 ident: 2021012203304079400_ref18 article-title: Network-based relating pharmacological and genomic spaces for drug target identification publication-title: PLoS One doi: 10.1371/journal.pone.0011764 – volume: 17 start-page: 2456 year: 2017 ident: 2021012203304079400_ref6 article-title: Some remarks on prediction of drug-target interaction with network models publication-title: Curr Top Med Chem doi: 10.2174/1568026617666170414145015 – volume: 33 start-page: 2337 year: 2017 ident: 2021012203304079400_ref42 article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx160 – volume: 17 start-page: 128 year: 2016 ident: 2021012203304079400_ref69 article-title: A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction publication-title: BMC Bioinform doi: 10.1186/s12859-016-0977-x – volume: 28 start-page: 2304 year: 2012 ident: 2021012203304079400_ref55 article-title: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts360 – volume: 23 year: 2018 ident: 2021012203304079400_ref8 article-title: Machine learning for drug-target interaction prediction publication-title: Molecules – volume: 65 start-page: 15 year: 2006 ident: 2021012203304079400_ref14 article-title: Protein-ligand docking: current status and future challenges publication-title: Proteins doi: 10.1002/prot.21082 – start-page: 564 year: 2002 ident: 2021012203304079400_ref102 article-title: The spectrum kernel: a string kernel for SVM protein classification publication-title: Pac Symp Biocomput – volume: 27 start-page: 3036 year: 2011 ident: 2021012203304079400_ref50 article-title: Gaussian interaction profile kernels for predicting drug-target interaction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr500 – volume: 752 start-page: 1 year: 2012 ident: 2021012203304079400_ref54 article-title: Large-scale prediction of drug-target interactions using protein sequences and drug topological structures publication-title: Anal Chim Acta doi: 10.1016/j.aca.2012.09.021 – volume: 32 start-page: i18 year: 2016 ident: 2021012203304079400_ref70 article-title: DrugE-rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw244 – volume: 12 start-page: e0171839 year: 2017 ident: 2021012203304079400_ref74 article-title: SELF-BLM: prediction of drug-target interactions via self-training SVM publication-title: PLoS One doi: 10.1371/journal.pone.0171839 – volume: 20 start-page: 492 year: 2019 ident: 2021012203304079400_ref12 article-title: Computational model development of drug-target interaction prediction: a review publication-title: Curr Protein Pept Sci doi: 10.2174/1389203720666190123164310 – volume: 26 start-page: i246 year: 2010 ident: 2021012203304079400_ref17 article-title: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq176 – volume: 7 start-page: 48699 year: 2019 ident: 2021012203304079400_ref84 article-title: iDTi-CSsmoteB: identification of drug-target interaction based on drug chemical structure and protein sequence using XGBoost with over-sampling technique SMOTE publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2910277 – volume: 16 start-page: 19 year: 2017 ident: 2021012203304079400_ref1 article-title: A comprehensive map of molecular drug targets, nature reviews publication-title: Drug Des Discov doi: 10.1038/nrd.2016.230 – volume: 8 start-page: 1970 year: 2012 ident: 2021012203304079400_ref19 article-title: Drug-target interaction prediction by random walk on the heterogeneous network publication-title: Mol BioSyst doi: 10.1039/c2mb00002d – volume: 19 start-page: 667 year: 2018 ident: 2021012203304079400_ref91 article-title: Deep learning-based transcriptome data classification for drug-target interaction prediction publication-title: BMC Genomics doi: 10.1186/s12864-018-5031-0 – volume: 19 start-page: 118 year: 2018 ident: 2021012203304079400_ref97 article-title: BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data publication-title: BMC Bioinform doi: 10.1186/s12859-018-2095-4 – volume: 34 start-page: 1164 year: 2018 ident: 2021012203304079400_ref79 article-title: DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx731 – volume: 110 start-page: 64 year: 2016 ident: 2021012203304079400_ref93 article-title: Boosting compound-protein interaction prediction by deep learning publication-title: Methods doi: 10.1016/j.ymeth.2016.06.024 – volume: 166 start-page: 91 year: 2019 ident: 2021012203304079400_ref96 article-title: Deep-resp-forest: a deep forest model to predict anti-cancer drug response publication-title: Methods doi: 10.1016/j.ymeth.2019.02.009 – volume: 44 start-page: D1075 year: 2016 ident: 2021012203304079400_ref103 article-title: The SIDER database of drugs and side effects publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1075 – start-page: 785 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2021012203304079400_ref109 doi: 10.1145/2939672.2939785 – volume: 18 start-page: 333 year: 2017 ident: 2021012203304079400_ref39 article-title: SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning publication-title: Brief Bioinform – volume: 4 start-page: S6 issue: Suppl 2 year: 2010 ident: 2021012203304079400_ref49 article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S2-S6 – volume: 10 start-page: 1273 year: 2014 ident: 2021012203304079400_ref60 article-title: Drug-target interaction prediction via chemogenomic space: learning-based methods publication-title: Expert Opin Drug Metab Toxicol doi: 10.1517/17425255.2014.950222 – volume: 25 start-page: 197 year: 2007 ident: 2021012203304079400_ref13 article-title: Relating protein pharmacology by ligand chemistry publication-title: Nat Biotechnol doi: 10.1038/nbt1284 – volume: 22 start-page: 2056 year: 2017 ident: 2021012203304079400_ref40 article-title: Drug-target interaction prediction through label propagation with linear neighborhood information publication-title: Molecules doi: 10.3390/molecules22122056 – volume: 18 start-page: 100615 year: 2019 ident: 2021012203304079400_ref46 article-title: NRLMFbeta: beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug-target interaction prediction publication-title: Biochem Biophys Rep – volume: 24 start-page: 2149 year: 2008 ident: 2021012203304079400_ref48 article-title: Protein-ligand interaction prediction: an improved chemogenomics approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn409 – volume: 32 start-page: 2768 year: 2016 ident: 2021012203304079400_ref108 article-title: TarPmiR: a new approach for microRNA target site prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw318 – volume: 17 start-page: 160 year: 2016 ident: 2021012203304079400_ref65 article-title: Predicting drug target interactions using meta-path-based semantic network analysis publication-title: BMC Bioinform doi: 10.1186/s12859-016-1005-x – volume: 464 start-page: 1 year: 2019 ident: 2021012203304079400_ref85 article-title: CFSBoost: cumulative feature subspace boosting for drug-target interaction prediction publication-title: J Theor Biol doi: 10.1016/j.jtbi.2018.12.024 – volume: 16 start-page: 1401 year: 2017 ident: 2021012203304079400_ref92 article-title: Deep-learning-based drug-target interaction prediction publication-title: J Proteome Res doi: 10.1021/acs.jproteome.6b00618 – volume: 18 start-page: 5687 year: 2011 ident: 2021012203304079400_ref51 article-title: Using feature selection technique for drug-target interaction networks prediction publication-title: Curr Med Chem doi: 10.2174/092986711798347270 – volume: 9 start-page: S4 issue: Suppl 3 year: 2015 ident: 2021012203304079400_ref22 article-title: DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference publication-title: BMC Syst Biol doi: 10.1186/1752-0509-9-S3-S4 – volume: 17 start-page: 46 year: 2016 ident: 2021012203304079400_ref31 article-title: A multiple kernel learning algorithm for drug-target interaction prediction publication-title: BMC Bioinform doi: 10.1186/s12859-016-0890-3 – volume: 10 start-page: 30 year: 2018 ident: 2021012203304079400_ref112 article-title: Inferring potential small molecule-miRNA association based on triple layer heterogeneous network publication-title: J Chem doi: 10.1186/s13321-018-0284-9 – volume: 12 start-page: 520 year: 2016 ident: 2021012203304079400_ref27 article-title: Prediction of drug-target interaction by label propagation with mutual interaction information derived from heterogeneous network publication-title: Mol BioSyst doi: 10.1039/C5MB00615E – volume: 24 start-page: 2999 year: 2019 ident: 2021012203304079400_ref83 article-title: Drug-target interaction prediction based on drug fingerprint information and protein sequence publication-title: Molecules doi: 10.3390/molecules24162999 – start-page: 53 year: 2013 ident: 2021012203304079400_ref24 article-title: Drug target predictions based on heterogeneous graph inference publication-title: Pac Symp Biocomput – volume: 24 start-page: i232 year: 2008 ident: 2021012203304079400_ref15 article-title: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn162 – volume: 28 start-page: i487 year: 2012 ident: 2021012203304079400_ref56 article-title: Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts412 – volume: 15 start-page: 734 year: 2014 ident: 2021012203304079400_ref3 article-title: Similarity-based machine learning methods for predicting drug-target interactions: a brief review publication-title: Brief Bioinform doi: 10.1093/bib/bbt056 – volume: 19 start-page: 208 year: 2018 ident: 2021012203304079400_ref43 article-title: Identification of drug-target interaction by a random walk with restart method on an interactome network publication-title: BMC Bioinform doi: 10.1186/s12859-018-2199-x – volume: 16 start-page: 325 year: 2015 ident: 2021012203304079400_ref62 article-title: Toward more realistic drug-target interaction predictions publication-title: Brief Bioinform doi: 10.1093/bib/bbu010 – volume: 78 start-page: 460 year: 2019 ident: 2021012203304079400_ref47 article-title: Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2018.11.028 – volume: 18 start-page: 440 year: 2017 ident: 2021012203304079400_ref32 article-title: VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization publication-title: BMC Bioinform doi: 10.1186/s12859-017-1845-z – volume: 20 start-page: 194 year: 2019 ident: 2021012203304079400_ref11 article-title: Recent advances in the machine learning-based drug-target interaction prediction publication-title: Curr Drug Metab doi: 10.2174/1389200219666180821094047 – volume: 78 start-page: 42 year: 2016 ident: 2021012203304079400_ref68 article-title: Drug-target interaction prediction from PSSM based evolutionary information publication-title: J Pharmacol Toxicol Methods doi: 10.1016/j.vascn.2015.11.002 – volume: 29 start-page: 2004 year: 2013 ident: 2021012203304079400_ref21 article-title: Drug-target interaction prediction through domain-tuned network-based inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt307 – volume: 206 start-page: 50 year: 2016 ident: 2021012203304079400_ref29 article-title: Predicting drug-target interaction using positive-unlabeled learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.080 – volume: 2017 start-page: 6340316 year: 2017 ident: 2021012203304079400_ref73 article-title: DrugECs: an ensemble system with feature subspaces for accurate drug-target interaction prediction publication-title: Biomed Res Int doi: 10.1155/2017/6340316 – volume: 7 start-page: 11174 year: 2017 ident: 2021012203304079400_ref75 article-title: In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences publication-title: Sci Rep doi: 10.1038/s41598-017-10724-0 – volume: 18 start-page: 39 year: 2017 ident: 2021012203304079400_ref36 article-title: Link prediction in drug-target interactions network using similarity indices publication-title: BMC Bioinform doi: 10.1186/s12859-017-1460-z – volume: 8 start-page: e1002503 year: 2012 ident: 2021012203304079400_ref20 article-title: Prediction of drug-target interactions and drug repositioning via network-based inference publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002503 – volume: 165 start-page: 151 year: 2018 ident: 2021012203304079400_ref80 article-title: BE-DTI': ensemble framework for drug target interaction prediction using dimensionality reduction and active learning publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2018.08.011 – volume: 19 start-page: 445 year: 2018 ident: 2021012203304079400_ref82 article-title: RFDT: a rotation Forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information publication-title: Curr Protein Pept Sci doi: 10.2174/1389203718666161114111656 – volume: 7 start-page: S3 issue: Suppl 6 year: 2013 ident: 2021012203304079400_ref57 article-title: Scalable prediction of compound-protein interactions using minwise hashing publication-title: BMC Syst Biol doi: 10.1186/1752-0509-7-S6-S3 – volume: 29 start-page: i126 year: 2013 ident: 2021012203304079400_ref90 article-title: Predicting drug-target interactions using restricted Boltzmann machines publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt234 – volume: 28 start-page: i611 year: 2012 ident: 2021012203304079400_ref104 article-title: Drug target prediction using adverse event report systems: a pharmacogenomic approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts413 – volume: 19 start-page: 537 year: 2018 ident: 2021012203304079400_ref7 article-title: Drug-target interactions: prediction methods and applications publication-title: Curr Protein Pept Sci doi: 10.2174/1389203718666161108091609 – volume: 8 start-page: e80129 year: 2013 ident: 2021012203304079400_ref25 article-title: Predicting drug-target interactions using drug-drug interactions publication-title: PLoS One doi: 10.1371/journal.pone.0080129 – volume: 418 start-page: 546 year: 2017 ident: 2021012203304079400_ref71 article-title: Identification of drug-target interactions via multiple information integration publication-title: Inf Sci doi: 10.1016/j.ins.2017.08.045 – volume: 10 start-page: 459 year: 2019 ident: 2021012203304079400_ref86 article-title: Gradient boosting decision tree-based method for predicting interactions between target genes and drugs publication-title: Front Genet doi: 10.3389/fgene.2019.00459 – volume: 15 start-page: e1007129 year: 2019 ident: 2021012203304079400_ref94 article-title: DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007129 – volume: 32 start-page: 1057 year: 2016 ident: 2021012203304079400_ref67 article-title: Identification of drug-target interaction from interactome network with 'guilt-by-association' principle and topology features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv695 |
SSID | ssj0020781 |
Score | 2.6169913 |
Snippet | Abstract
Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively... Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement... Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 451 |
SubjectTerms | Artificial neural networks Computer applications Datasets Drugs Feature extraction Machine learning Neural networks Predictions Similarity Source code Therapeutic targets |
Title | DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31885041 https://www.proquest.com/docview/2529966678 https://www.proquest.com/docview/2331437166 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR39ZHWdGLh8VudjfZeJNqqYJ6aaG3kH1EBWlL0x701zuTTQvFoseQSQIz2f2-ZWa-IeRKxSaJilgw7WPJpFOSGe5T1raikMIXyijsRn5-iXsD-TRUw7qIplyTwk_FjfkwN8Z8A9DATgvoiwr5_dfh8liFcjWhhyhhKO6-ECFdeXQFdlZa2X4xygpZujtku6aE9C7EcJds-NEe2QxDIr_2yeS-_8g6991bmlObl1jPTp33Ewp0E15Lq1k2dFaVv5YU-BydTDH7gh6n44K66fyNhYJviuIQ09DKUFIEMEfB6P0L27Zo4SuRz_KADLoP_U6P1XMSmJWczxg2t6qEG57DYkydSbQtrIRLdLVPlTXSGemTXCROOwyaU6nT0uRxG0BMi0PSGI1H_phQHUtgdEWKMl4yt0CeItgRPffa21gmokmuF27MbC0ijrMsPrOQzBYZuDwLLm-Sy6XtJEhnrLVqQTT-NDhbBCqr11eZRSrCgxogbZNcLG_DysB0Rz7y4znYCAFkEM6DcZMchQAvPwM7mVZtyU_--_op2YqwiqXNGddnpDGbzv050JCZaVV_4Q_HV9o2 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DTI-CDF%3A+a+cascade+deep+forest+model+towards+the+prediction+of+drug-target+interactions+based+on+hybrid+features&rft.jtitle=Briefings+in+bioinformatics&rft.au=Chu%2C+Yanyi&rft.au=Kaushik%2C+Aman+Chandra&rft.au=Wang%2C+Xiangeng&rft.au=Wang%2C+Wei&rft.date=2021-01-18&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=451&rft_id=info:doi/10.1093%2Fbib%2Fbbz152&rft_id=info%3Apmid%2F31885041&rft.externalDocID=31885041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |