DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features

Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the perf...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 1; pp. 451 - 462
Main Authors Chu, Yanyi, Kaushik, Aman Chandra, Wang, Xiangeng, Wang, Wei, Zhang, Yufang, Shan, Xiaoqi, Salahub, Dennis Russell, Xiong, Yi, Wei, Dong-Qing
Format Journal Article
LanguageEnglish
Published England Oxford University Press 18.01.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
AbstractList Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple similarity-based features between drugs and the similarity-based features between target proteins extracted from the heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST), or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases. The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
Author Kaushik, Aman Chandra
Wei, Dong-Qing
Xiong, Yi
Chu, Yanyi
Wang, Wei
Zhang, Yufang
Wang, Xiangeng
Shan, Xiaoqi
Salahub, Dennis Russell
Author_xml – sequence: 1
  givenname: Yanyi
  surname: Chu
  fullname: Chu, Yanyi
  email: a96123155@sjtu.edu.cn
  organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
– sequence: 2
  givenname: Aman Chandra
  surname: Kaushik
  fullname: Kaushik, Aman Chandra
  email: amanbioinfo@sjtu.edu.cn
  organization: School of Medicine, Jiangnan University, Wuxi, China
– sequence: 3
  givenname: Xiangeng
  surname: Wang
  fullname: Wang, Xiangeng
  email: wangxiangeng@sjtu.edu.cn
  organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wei-wang@sjtu.edu.cn
  organization: Mathematical Sciences, Shanghai Jiao Tong University
– sequence: 5
  givenname: Yufang
  surname: Zhang
  fullname: Zhang, Yufang
  email: yufangz@sjtu.edu.cn
  organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
– sequence: 6
  givenname: Xiaoqi
  surname: Shan
  fullname: Shan, Xiaoqi
  email: cynthiakkai@sjtu.edu.cn
  organization: School of Life Sciences and Biotechnology
– sequence: 7
  givenname: Dennis Russell
  surname: Salahub
  fullname: Salahub, Dennis Russell
  email: dsalahub@ucalgary.ca
  organization: Department of Chemistry, University of Calgary, Fellow Royal Society of Canada
– sequence: 8
  givenname: Yi
  surname: Xiong
  fullname: Xiong, Yi
  email: xiongyi@sjtu.edu.cn
  organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
– sequence: 9
  givenname: Dong-Qing
  surname: Wei
  fullname: Wei, Dong-Qing
  email: dqwei@sjtu.edu.cn
  organization: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31885041$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaD7aS39AEZRCKTiRLMmScyubJlkI5JKejT7GiYLXciWZsPn10Wa3PYSQ08wwz7zMzHuE9sYwAkJfKDmhpGWnxptTY56oqD-gQ8qlrDgRfG-TN7ISvGEH6CilB0JqIhX9iA4YVUoQTg_RdH67rBbnF2dYY6uT1Q6wA5hwHyKkjFfBwYBzeNTRJZzvAU8RnLfZhxGHHrs431VZxzvI2I8Zon5pJWx0AocLdL820Tvcg85zkfyE9ns9JPi8i8foz8Xv28VVdX1zuVz8uq4spzRXnLVcSGqoVoq0zkhle8tLCb0w0ApruDMcpGbSKWfAWidap7jRDWGcKnaMfmx1pxj-zuWUbuWThWHQI4Q5dTVjlDNJm6ag316hD2GOY9muq0Xdtk3TyI3g1x01mxW4bop-peO6-_fLAvzcAjaGlCL0_xFKuo1RXTGq2xpVYPIKtj7rzety1H54e-T7diTM03vSz3rPo7o
CitedBy_id crossref_primary_10_1002_isaf_1517
crossref_primary_10_1039_D3CP03651K
crossref_primary_10_1016_j_csbj_2022_06_004
crossref_primary_10_1016_j_csbj_2025_01_020
crossref_primary_10_1371_journal_pone_0282042
crossref_primary_10_1109_JBHI_2024_3483316
crossref_primary_10_1038_s42256_023_00640_6
crossref_primary_10_1109_JBHI_2023_3343075
crossref_primary_10_1039_D1SC05180F
crossref_primary_10_1093_bioinformatics_btae039
crossref_primary_10_1109_JBHI_2022_3219213
crossref_primary_10_1007_s00521_024_10714_0
crossref_primary_10_1109_ACCESS_2020_2992468
crossref_primary_10_3390_rs14143494
crossref_primary_10_1186_s13321_023_00771_3
crossref_primary_10_2174_0115748936299646240625092734
crossref_primary_10_1002_minf_202200102
crossref_primary_10_1016_j_neucom_2023_126509
crossref_primary_10_1080_17460441_2021_1909567
crossref_primary_10_1093_bib_bbab515
crossref_primary_10_1007_s40199_024_00548_5
crossref_primary_10_1016_j_compbiomed_2022_106464
crossref_primary_10_1039_D1CP05928A
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_1016_j_eswa_2023_120754
crossref_primary_10_2174_1574893615999200601122328
crossref_primary_10_1007_s12539_021_00483_y
crossref_primary_10_1007_s12539_021_00448_1
crossref_primary_10_3389_fphar_2022_1009996
crossref_primary_10_1155_2021_6480456
crossref_primary_10_1109_ACCESS_2020_2985111
crossref_primary_10_1007_s10462_022_10321_2
crossref_primary_10_1146_annurev_pharmtox_051921_023255
crossref_primary_10_1016_j_jchemneu_2023_102236
crossref_primary_10_1155_2020_9235920
crossref_primary_10_3389_fcell_2021_795883
crossref_primary_10_1016_j_compbiomed_2022_105728
crossref_primary_10_1038_s41598_024_76367_0
crossref_primary_10_3389_fgene_2025_1527300
crossref_primary_10_1155_2020_8852258
crossref_primary_10_1186_s12859_024_05893_5
crossref_primary_10_1021_acs_jcim_3c01841
crossref_primary_10_1093_bib_bbac364
crossref_primary_10_1007_s11103_020_01102_y
crossref_primary_10_1016_j_compbiomed_2021_104676
crossref_primary_10_1016_j_compbiomed_2023_107621
crossref_primary_10_1080_15476286_2021_1875180
crossref_primary_10_1186_s13065_020_00704_3
crossref_primary_10_1371_journal_pone_0276609
crossref_primary_10_1016_j_compbiolchem_2020_107406
crossref_primary_10_1109_TCBB_2024_3453499
crossref_primary_10_1186_s12915_024_02012_x
crossref_primary_10_1021_acs_jcim_0c01115
crossref_primary_10_1186_s12859_022_05062_6
crossref_primary_10_2139_ssrn_4156581
crossref_primary_10_1016_j_ymeth_2022_08_016
crossref_primary_10_1109_ACCESS_2021_3096830
crossref_primary_10_1109_TCBB_2022_3205282
crossref_primary_10_1021_acsomega_1c05203
crossref_primary_10_1016_j_compbiomed_2023_106784
crossref_primary_10_1016_j_compbiomed_2023_107355
crossref_primary_10_1007_s11030_021_10273_9
crossref_primary_10_1109_TCBB_2023_3237863
crossref_primary_10_1016_j_artmed_2024_103023
crossref_primary_10_3390_molecules28052284
crossref_primary_10_1021_acs_jctc_1c01257
crossref_primary_10_1109_JBHI_2023_3312374
crossref_primary_10_1093_bib_bbab453
crossref_primary_10_1002_aisy_202200104
crossref_primary_10_1007_s12539_020_00399_z
crossref_primary_10_3389_fbioe_2020_00892
crossref_primary_10_1016_j_compbiomed_2022_105984
crossref_primary_10_3390_biology11050741
crossref_primary_10_1109_JBHI_2021_3121798
crossref_primary_10_1002_jcc_27388
crossref_primary_10_7717_peerj_10813
crossref_primary_10_1155_2022_5852089
crossref_primary_10_1016_j_compbiolchem_2024_108137
crossref_primary_10_1016_j_sbi_2025_103017
crossref_primary_10_1109_TCBB_2024_3404889
crossref_primary_10_1016_j_chemolab_2020_104122
crossref_primary_10_23919_cje_2022_00_384
crossref_primary_10_1093_bib_bbab606
crossref_primary_10_7717_peerj_11906
crossref_primary_10_1007_s00521_021_06047_x
crossref_primary_10_1109_ACCESS_2021_3049142
crossref_primary_10_1016_j_ymeth_2024_04_016
crossref_primary_10_1093_bib_bbab562
crossref_primary_10_1109_JBHI_2023_3335402
crossref_primary_10_1002_jcc_27490
crossref_primary_10_2174_1573409919666230111164340
crossref_primary_10_3389_fbioe_2020_00267
crossref_primary_10_1177_14727978251321647
crossref_primary_10_1016_j_jmgm_2023_108498
crossref_primary_10_1016_j_compbiomed_2022_105214
crossref_primary_10_1016_j_compbiomed_2020_103670
crossref_primary_10_1016_j_compbiomed_2022_105216
crossref_primary_10_1016_j_compbiomed_2023_107414
crossref_primary_10_1021_acs_jpclett_2c03906
crossref_primary_10_1016_j_compbiomed_2023_107137
crossref_primary_10_3390_math13010118
crossref_primary_10_1109_TCBB_2022_3153963
crossref_primary_10_1016_j_chemolab_2024_105065
crossref_primary_10_1007_s12539_021_00488_7
crossref_primary_10_3390_molecules28135013
crossref_primary_10_1007_s13755_023_00243_w
crossref_primary_10_1021_acsomega_0c03972
crossref_primary_10_1093_bioinformatics_btab548
crossref_primary_10_3389_fmicb_2020_580382
crossref_primary_10_1007_s10489_021_02495_z
crossref_primary_10_1093_bioinformatics_btab384
crossref_primary_10_1016_j_compbiomed_2024_109218
crossref_primary_10_1049_cje_2021_06_003
crossref_primary_10_1371_journal_pcbi_1010511
crossref_primary_10_1055_a_2306_8311
crossref_primary_10_2174_1574893616666211119093100
crossref_primary_10_1016_j_compbiomed_2023_107545
crossref_primary_10_1093_bib_bbac434
crossref_primary_10_1109_JSTARS_2021_3110994
crossref_primary_10_1007_s12539_021_00456_1
crossref_primary_10_2174_0113816128282837240130102817
crossref_primary_10_1186_s12859_023_05387_w
crossref_primary_10_3389_fnagi_2023_1176400
crossref_primary_10_1016_j_ymeth_2023_06_006
crossref_primary_10_3389_fmicb_2022_1092467
crossref_primary_10_1016_j_inffus_2023_101950
crossref_primary_10_1016_j_ab_2024_115691
crossref_primary_10_1093_bfgp_elad037
crossref_primary_10_1016_j_imu_2024_101604
crossref_primary_10_1186_s12859_023_05447_1
crossref_primary_10_3389_fbioe_2020_00245
crossref_primary_10_1038_s44385_024_00003_9
crossref_primary_10_1093_bioinformatics_btac006
crossref_primary_10_1021_acs_jpclett_1c00867
crossref_primary_10_1109_ACCESS_2022_3217926
crossref_primary_10_1186_s12859_023_05620_6
crossref_primary_10_1109_ACCESS_2020_2980897
crossref_primary_10_1186_s12859_022_05101_2
crossref_primary_10_1007_s12539_021_00484_x
crossref_primary_10_1155_2020_8845133
crossref_primary_10_1038_s41598_024_57879_1
crossref_primary_10_3389_fgene_2023_1272016
Cites_doi 10.1093/nar/gkw1092
10.1093/bib/bby098
10.1093/bib/bbx041
10.1093/bioinformatics/btz111
10.1016/j.jtbi.2014.06.008
10.1093/bioinformatics/bty593
10.1186/s12859-016-1377-y
10.1016/j.ymeth.2017.05.016
10.1093/nar/gkh081
10.1093/bioinformatics/bty543
10.1016/j.compbiolchem.2011.10.003
10.1016/j.ymeth.2015.04.036
10.1371/journal.pone.0193959
10.1038/srep40376
10.1016/j.neucom.2016.10.039
10.1016/j.febslet.2008.02.024
10.1155/2018/1425608
10.24963/ijcai.2017/497
10.1093/nar/gkm862
10.1016/j.cmpb.2017.09.003
10.1186/s12859-018-2254-7
10.1016/j.omtn.2018.12.002
10.1023/A:1010933404324
10.1093/bib/bbv066
10.1038/nmeth.2810
10.1186/s13321-015-0089-z
10.1021/acs.molpharmaceut.9b00384
10.1093/bioinformatics/bts670
10.1371/journal.pcbi.1004760
10.1093/bioinformatics/btp433
10.1038/s41467-017-00680-8
10.3390/molecules22071119
10.1208/s12248-017-0092-6
10.1186/s13321-016-0128-4
10.1038/s41598-017-18025-2
10.1016/j.aca.2016.01.014
10.1371/journal.pone.0062975
10.1093/bioinformatics/btv256
10.1093/bioinformatics/bti1141
10.1089/cmb.2010.0213
10.1016/j.compbiolchem.2017.03.011
10.1016/j.ygeno.2018.12.007
10.1093/bib/bby002
10.1109/TCBB.2016.2530062
10.1021/acs.jcim.9b00129
10.1093/nar/gkj067
10.1371/journal.pone.0011764
10.2174/1568026617666170414145015
10.1093/bioinformatics/btx160
10.1186/s12859-016-0977-x
10.1093/bioinformatics/bts360
10.1002/prot.21082
10.1093/bioinformatics/btr500
10.1016/j.aca.2012.09.021
10.1093/bioinformatics/btw244
10.1371/journal.pone.0171839
10.2174/1389203720666190123164310
10.1093/bioinformatics/btq176
10.1109/ACCESS.2019.2910277
10.1038/nrd.2016.230
10.1039/c2mb00002d
10.1186/s12864-018-5031-0
10.1186/s12859-018-2095-4
10.1093/bioinformatics/btx731
10.1016/j.ymeth.2016.06.024
10.1016/j.ymeth.2019.02.009
10.1093/nar/gkv1075
10.1145/2939672.2939785
10.1186/1752-0509-4-S2-S6
10.1517/17425255.2014.950222
10.1038/nbt1284
10.3390/molecules22122056
10.1093/bioinformatics/btn409
10.1093/bioinformatics/btw318
10.1186/s12859-016-1005-x
10.1016/j.jtbi.2018.12.024
10.1021/acs.jproteome.6b00618
10.2174/092986711798347270
10.1186/1752-0509-9-S3-S4
10.1186/s12859-016-0890-3
10.1186/s13321-018-0284-9
10.1039/C5MB00615E
10.3390/molecules24162999
10.1093/bioinformatics/btn162
10.1093/bioinformatics/bts412
10.1093/bib/bbt056
10.1186/s12859-018-2199-x
10.1093/bib/bbu010
10.1016/j.compbiolchem.2018.11.028
10.1186/s12859-017-1845-z
10.2174/1389200219666180821094047
10.1016/j.vascn.2015.11.002
10.1093/bioinformatics/btt307
10.1016/j.neucom.2016.03.080
10.1155/2017/6340316
10.1038/s41598-017-10724-0
10.1186/s12859-017-1460-z
10.1371/journal.pcbi.1002503
10.1016/j.cmpb.2018.08.011
10.2174/1389203718666161114111656
10.1186/1752-0509-7-S6-S3
10.1093/bioinformatics/btt234
10.1093/bioinformatics/bts413
10.2174/1389203718666161108091609
10.1371/journal.pone.0080129
10.1016/j.ins.2017.08.045
10.3389/fgene.2019.00459
10.1371/journal.pcbi.1007129
10.1093/bioinformatics/btv695
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz152
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Genetics Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 462
ExternalDocumentID 31885041
10_1093_bib_bbz152
10.1093/bib/bbz152
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABPQP
ABXZS
ACUXJ
AHGBF
ALXQX
ANAKG
CITATION
JXSIZ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c411t-4394571b1a8809db78cfc4b1aef5be95cb4db4e7a37d8dbeccd59d84ba6034183
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 14:12:04 EDT 2025
Mon Jun 30 08:52:06 EDT 2025
Wed Feb 19 02:29:57 EST 2025
Tue Jul 01 03:39:28 EDT 2025
Thu Apr 24 22:54:36 EDT 2025
Thu Feb 27 05:38:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ensemble learning
drug-target interaction
machine learning
cascade deep forest
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-4394571b1a8809db78cfc4b1aef5be95cb4db4e7a37d8dbeccd59d84ba6034183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31885041
PQID 2529966678
PQPubID 26846
PageCount 12
ParticipantIDs proquest_miscellaneous_2331437166
proquest_journals_2529966678
pubmed_primary_31885041
crossref_primary_10_1093_bib_bbz152
crossref_citationtrail_10_1093_bib_bbz152
oup_primary_10_1093_bib_bbz152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan-18
PublicationDateYYYYMMDD 2021-01-18
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Zhou (2021012203304079400_ref106)
Luo (2021012203304079400_ref37) 2017; 8
Chen (2021012203304079400_ref19) 2012; 8
Zong (2021012203304079400_ref42) 2017; 33
Seal (2021012203304079400_ref44) 2018; 19
Wang (2021012203304079400_ref90) 2013; 29
Wadhwa (2021012203304079400_ref110) 2018; 13
Chen (2021012203304079400_ref4) 2016; 17
Ban (2021012203304079400_ref46) 2019; 18
Mousavian (2021012203304079400_ref60) 2014; 10
Ding (2021012203304079400_ref3) 2014; 15
Nascimento (2021012203304079400_ref31) 2016; 17
Chen (2021012203304079400_ref113) 2018
Yin (2021012203304079400_ref114) 2019; 16
Hao (2021012203304079400_ref66) 2016; 909
Wang (2021012203304079400_ref24) 2013
Gunther (2021012203304079400_ref100) 2008; 36
Rayhan (2021012203304079400_ref77) 2017; 7
Ba-Alawi (2021012203304079400_ref28) 2016; 8
Ding (2021012203304079400_ref108) 2016; 32
Ezzat (2021012203304079400_ref34) 2017; 14
Kanehisa (2021012203304079400_ref98) 2017; 45
Meng (2021012203304079400_ref76) 2017; 22
Zhang (2021012203304079400_ref11) 2019; 20
Seal (2021012203304079400_ref26) 2015; 7
Lan (2021012203304079400_ref29) 2016; 206
Wen (2021012203304079400_ref92) 2017; 16
Guo (2021012203304079400_ref97) 2018; 19
Wishart (2021012203304079400_ref101) 2006; 34
Zhang (2021012203304079400_ref6) 2017; 17
Durán (2021012203304079400_ref33) 2018
Liu (2021012203304079400_ref61) 2015; 31
Lee (2021012203304079400_ref43) 2018; 19
Wang (2021012203304079400_ref105) 2014; 11
Zhang (2021012203304079400_ref40) 2017; 22
Min (2021012203304079400_ref111) 2017; 18
Alaimo (2021012203304079400_ref21) 2013; 29
Cao (2021012203304079400_ref54) 2012; 752
Chen (2021012203304079400_ref87) 2013; 8
Rayhan (2021012203304079400_ref85) 2019; 464
Breiman (2021012203304079400_ref107) 2001; 45
Wang (2021012203304079400_ref82) 2018; 19
Wang (2021012203304079400_ref52) 2011; 35
Takarabe (2021012203304079400_ref104) 2012; 28
Karimi (2021012203304079400_ref118) 2019; 35
Yuan (2021012203304079400_ref70) 2016; 32
Li (2021012203304079400_ref83) 2019; 24
Wang (2021012203304079400_ref45) 2018; 2018
Yan (2021012203304079400_ref47) 2019; 78
Ozturk (2021012203304079400_ref69) 2016; 17
Zhang (2021012203304079400_ref78) 2017; 228
Cheng (2021012203304079400_ref20) 2012; 8
Fu (2021012203304079400_ref65) 2016; 17
Ding (2021012203304079400_ref10) 2019
Qu (2021012203304079400_ref115) 2019; 14
Ozturk (2021012203304079400_ref117) 2018; 34
Chen (2021012203304079400_ref109) 2016
Tabei (2021012203304079400_ref57) 2013; 7
Leslie (2021012203304079400_ref102) 2002
Mahmud (2021012203304079400_ref84) 2019; 7
Xia (2021012203304079400_ref49) 2010; 4
Kim (2021012203304079400_ref25) 2013; 8
Li (2021012203304079400_ref67) 2016; 32
Shi (2021012203304079400_ref81) 2018; 111
Xie (2021012203304079400_ref91) 2018; 19
Yang (2021012203304079400_ref59) 2014
Li (2021012203304079400_ref75) 2017; 7
Zhu (2021012203304079400_ref89) 2005; 21
Zhang (2021012203304079400_ref41) 2017; 69
Zhao (2021012203304079400_ref18) 2010; 5
Ezzat (2021012203304079400_ref64) 2016; 17
Chen (2021012203304079400_ref8) 2018; 23
Pahikkala (2021012203304079400_ref62) 2015; 16
Yan (2021012203304079400_ref27) 2016; 12
Lu (2021012203304079400_ref36) 2017; 18
Ding (2021012203304079400_ref71) 2017; 418
Cheng (2021012203304079400_ref5) 2017; 19
Hao (2021012203304079400_ref35) 2017; 7
Liu (2021012203304079400_ref30) 2016; 12
Xuan (2021012203304079400_ref86) 2019; 10
Perlman (2021012203304079400_ref53) 2011; 18
Peska (2021012203304079400_ref38) 2017; 152
Ezzat (2021012203304079400_ref72) 2017; 129
Nanni (2021012203304079400_ref58) 2014; 359
Mousavian (2021012203304079400_ref68) 2016; 78
Laarhoven (2021012203304079400_ref50) 2011; 27
Zhao (2021012203304079400_ref12) 2019; 20
Anusuya (2021012203304079400_ref7) 2018; 19
Alaimo (2021012203304079400_ref22) 2015; 9
Sharma (2021012203304079400_ref80) 2018; 165
Yamanishi (2021012203304079400_ref15) 2008; 24
Wang (2021012203304079400_ref116) 2019; 59
Bleakley (2021012203304079400_ref16) 2009; 25
Lee (2021012203304079400_ref94) 2019; 15
Olayan (2021012203304079400_ref79) 2018; 34
Wu (2021012203304079400_ref39) 2017; 18
Kuhn (2021012203304079400_ref103) 2016; 44
Gu (2021012203304079400_ref88) 2016
Mei (2021012203304079400_ref23) 2013; 29
Su (2021012203304079400_ref96) 2019; 166
Bolgar (2021012203304079400_ref32) 2017; 18
Ezzat (2021012203304079400_ref9) 2019; 20
Sousa (2021012203304079400_ref14) 2006; 65
Keum (2021012203304079400_ref74) 2017; 12
Kuhn (2021012203304079400_ref2) 2008; 582
Jiang (2021012203304079400_ref73) 2017; 2017
Tian (2021012203304079400_ref93) 2016; 110
Schomburg (2021012203304079400_ref99) 2004; 32
Tabei (2021012203304079400_ref56) 2012; 28
Santos (2021012203304079400_ref1) 2017; 16
Yamanishi (2021012203304079400_ref17) 2010; 26
Keiser (2021012203304079400_ref13) 2007; 25
Qu (2021012203304079400_ref112) 2018; 10
Shi (2021012203304079400_ref63) 2015; 83
Wan (2021012203304079400_ref95) 2019; 35
Yu (2021012203304079400_ref51) 2011; 18
Gonen (2021012203304079400_ref55) 2012; 28
Jacob (2021012203304079400_ref48) 2008; 24
References_xml – volume: 45
  start-page: D353
  year: 2017
  ident: 2021012203304079400_ref98
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1092
– year: 2018
  ident: 2021012203304079400_ref113
  article-title: MicroRNA-small molecule association identification: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby098
– start-page: 1183
  year: 2018
  ident: 2021012203304079400_ref33
  article-title: Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx041
– volume: 35
  start-page: 3329
  year: 2019
  ident: 2021012203304079400_ref118
  article-title: DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz111
– volume: 359
  start-page: 120
  year: 2014
  ident: 2021012203304079400_ref58
  article-title: A set of descriptors for identifying the protein-drug interaction in cellular networking
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2014.06.008
– volume: 34
  start-page: i821
  year: 2018
  ident: 2021012203304079400_ref117
  article-title: DeepDTA: deep drug-target binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty593
– volume: 17
  start-page: 509
  year: 2016
  ident: 2021012203304079400_ref64
  article-title: Drug-target interaction prediction via class imbalance-aware ensemble learning
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1377-y
– volume: 129
  start-page: 81
  year: 2017
  ident: 2021012203304079400_ref72
  article-title: Drug-target interaction prediction using ensemble learning and dimensionality reduction
  publication-title: Methods
  doi: 10.1016/j.ymeth.2017.05.016
– volume: 18
  start-page: 851
  year: 2017
  ident: 2021012203304079400_ref111
  article-title: Deep learning in bioinformatics
  publication-title: Brief Bioinform
– volume: 32
  start-page: D431
  year: 2004
  ident: 2021012203304079400_ref99
  article-title: BRENDA, the enzyme database: updates and major new developments
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh081
– volume: 35
  start-page: 104
  year: 2019
  ident: 2021012203304079400_ref95
  article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty543
– volume: 35
  start-page: 353
  year: 2011
  ident: 2021012203304079400_ref52
  article-title: Kernel-based data fusion improves the drug-protein interaction prediction
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2011.10.003
– volume: 83
  start-page: 98
  year: 2015
  ident: 2021012203304079400_ref63
  article-title: Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.04.036
– volume: 13
  start-page: e0193959
  year: 2018
  ident: 2021012203304079400_ref110
  article-title: A hierarchical anatomical classification schema for prediction of phenotypic side effects
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193959
– volume: 7
  start-page: 40376
  year: 2017
  ident: 2021012203304079400_ref35
  article-title: Predicting drug-target interactions by dual-network integrated logistic matrix factorization
  publication-title: Sci Rep
  doi: 10.1038/srep40376
– volume: 228
  start-page: 256
  year: 2017
  ident: 2021012203304079400_ref78
  article-title: DrugRPE: random projection ensemble approach to drug-target interaction prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.039
– volume: 582
  start-page: 1283
  year: 2008
  ident: 2021012203304079400_ref2
  article-title: Large-scale prediction of drug-target relationships
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2008.02.024
– volume: 2018
  start-page: 1425608
  year: 2018
  ident: 2021012203304079400_ref45
  article-title: Drug-target interaction prediction via dual Laplacian graph regularized matrix completion
  publication-title: Biomed Res Int
  doi: 10.1155/2018/1425608
– ident: 2021012203304079400_ref106
  article-title: Deep forest: Towards an alternative to deep neural networks
  doi: 10.24963/ijcai.2017/497
– volume: 36
  start-page: D919
  year: 2008
  ident: 2021012203304079400_ref100
  article-title: SuperTarget and matador: resources for exploring drug-target relationships
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm862
– volume: 152
  start-page: 15
  year: 2017
  ident: 2021012203304079400_ref38
  article-title: Drug-target interaction prediction: a Bayesian ranking approach
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2017.09.003
– start-page: 148
  year: 2014
  ident: 2021012203304079400_ref59
  article-title: Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data
  publication-title: Pac Symp Biocomput
– volume: 19
  start-page: 265
  year: 2018
  ident: 2021012203304079400_ref44
  article-title: Netpredictor: R and shiny package to perform drug-target network analysis and prediction of missing links
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2254-7
– volume: 14
  start-page: 274
  year: 2019
  ident: 2021012203304079400_ref115
  article-title: In Silico prediction of small molecule-miRNA associations based on the HeteSim algorithm
  publication-title: Mol Ther Nucleic Acid
  doi: 10.1016/j.omtn.2018.12.002
– volume: 45
  start-page: 5
  year: 2001
  ident: 2021012203304079400_ref107
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 17
  start-page: 696
  year: 2016
  ident: 2021012203304079400_ref4
  article-title: Drug-target interaction prediction: databases, web servers and computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv066
– start-page: 7185
  volume-title: Proceedings of the 35th Chinese Control Conference 2016
  year: 2016
  ident: 2021012203304079400_ref88
– volume: 11
  start-page: 333
  year: 2014
  ident: 2021012203304079400_ref105
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume: 7
  start-page: 40
  year: 2015
  ident: 2021012203304079400_ref26
  article-title: Optimizing drug-target interaction prediction based on random walk on heterogeneous networks
  publication-title: J Chem
  doi: 10.1186/s13321-015-0089-z
– volume: 16
  start-page: 3157
  year: 2019
  ident: 2021012203304079400_ref114
  article-title: Prediction of small molecule-MicroRNA associations by sparse learning and heterogeneous graph inference
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.9b00384
– volume: 29
  start-page: 238
  year: 2013
  ident: 2021012203304079400_ref23
  article-title: Drug-target interaction prediction by learning from local information and neighbors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts670
– volume: 12
  start-page: e1004760
  year: 2016
  ident: 2021012203304079400_ref30
  article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004760
– volume: 25
  start-page: 2397
  year: 2009
  ident: 2021012203304079400_ref16
  article-title: Supervised prediction of drug-target interactions using bipartite local models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp433
– volume: 8
  start-page: 573
  year: 2017
  ident: 2021012203304079400_ref37
  article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00680-8
– volume: 22
  start-page: 1119
  year: 2017
  ident: 2021012203304079400_ref76
  article-title: Prediction of drug-target interaction networks from the integration of protein sequences and drug chemical structures
  publication-title: Molecules
  doi: 10.3390/molecules22071119
– volume: 19
  start-page: 1264
  year: 2017
  ident: 2021012203304079400_ref5
  article-title: Large-scale prediction of drug-target interaction: a data-centric review
  publication-title: AAPS J
  doi: 10.1208/s12248-017-0092-6
– volume: 8
  start-page: 15
  year: 2016
  ident: 2021012203304079400_ref28
  article-title: DASPfind: new efficient method to predict drug-target interactions
  publication-title: J Chem
  doi: 10.1186/s13321-016-0128-4
– volume: 7
  start-page: 17731
  year: 2017
  ident: 2021012203304079400_ref77
  article-title: iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18025-2
– volume: 909
  start-page: 41
  year: 2016
  ident: 2021012203304079400_ref66
  article-title: Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2016.01.014
– volume: 8
  start-page: e62975
  year: 2013
  ident: 2021012203304079400_ref87
  article-title: A semi-supervised method for drug-target interaction prediction with consistency in networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062975
– volume: 31
  start-page: i221
  year: 2015
  ident: 2021012203304079400_ref61
  article-title: Improving compound-protein interaction prediction by building up highly credible negative samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv256
– volume: 21
  start-page: ii245
  issue: Suppl 2
  year: 2005
  ident: 2021012203304079400_ref89
  article-title: A probabilistic model for mining implicit 'chemical compound-gene' relations from literature
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1141
– volume: 18
  start-page: 133
  year: 2011
  ident: 2021012203304079400_ref53
  article-title: Combining drug and gene similarity measures for drug-target elucidation
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2010.0213
– volume: 69
  start-page: 185
  year: 2017
  ident: 2021012203304079400_ref41
  article-title: Drug-target interaction prediction by integrating multiview network data
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2017.03.011
– volume: 111
  start-page: 1839
  year: 2018
  ident: 2021012203304079400_ref81
  article-title: Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure
  publication-title: Genomics.
  doi: 10.1016/j.ygeno.2018.12.007
– volume: 20
  start-page: 1337
  year: 2019
  ident: 2021012203304079400_ref9
  article-title: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby002
– year: 2019
  ident: 2021012203304079400_ref10
  article-title: The computational models of drug-target interaction prediction
  publication-title: Protein Pept Lett
– volume: 14
  start-page: 646
  year: 2017
  ident: 2021012203304079400_ref34
  article-title: Drug-target interaction prediction with graph regularized matrix factorization
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2530062
– volume: 59
  start-page: 1668
  year: 2019
  ident: 2021012203304079400_ref116
  article-title: RFSMMA: a new computational model to identify and prioritize potential small molecule-MiRNA associations
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00129
– volume: 34
  start-page: D668
  year: 2006
  ident: 2021012203304079400_ref101
  article-title: DrugBank: a comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj067
– volume: 5
  start-page: e11764
  year: 2010
  ident: 2021012203304079400_ref18
  article-title: Network-based relating pharmacological and genomic spaces for drug target identification
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011764
– volume: 17
  start-page: 2456
  year: 2017
  ident: 2021012203304079400_ref6
  article-title: Some remarks on prediction of drug-target interaction with network models
  publication-title: Curr Top Med Chem
  doi: 10.2174/1568026617666170414145015
– volume: 33
  start-page: 2337
  year: 2017
  ident: 2021012203304079400_ref42
  article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx160
– volume: 17
  start-page: 128
  year: 2016
  ident: 2021012203304079400_ref69
  article-title: A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-0977-x
– volume: 28
  start-page: 2304
  year: 2012
  ident: 2021012203304079400_ref55
  article-title: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts360
– volume: 23
  year: 2018
  ident: 2021012203304079400_ref8
  article-title: Machine learning for drug-target interaction prediction
  publication-title: Molecules
– volume: 65
  start-page: 15
  year: 2006
  ident: 2021012203304079400_ref14
  article-title: Protein-ligand docking: current status and future challenges
  publication-title: Proteins
  doi: 10.1002/prot.21082
– start-page: 564
  year: 2002
  ident: 2021012203304079400_ref102
  article-title: The spectrum kernel: a string kernel for SVM protein classification
  publication-title: Pac Symp Biocomput
– volume: 27
  start-page: 3036
  year: 2011
  ident: 2021012203304079400_ref50
  article-title: Gaussian interaction profile kernels for predicting drug-target interaction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr500
– volume: 752
  start-page: 1
  year: 2012
  ident: 2021012203304079400_ref54
  article-title: Large-scale prediction of drug-target interactions using protein sequences and drug topological structures
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2012.09.021
– volume: 32
  start-page: i18
  year: 2016
  ident: 2021012203304079400_ref70
  article-title: DrugE-rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw244
– volume: 12
  start-page: e0171839
  year: 2017
  ident: 2021012203304079400_ref74
  article-title: SELF-BLM: prediction of drug-target interactions via self-training SVM
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171839
– volume: 20
  start-page: 492
  year: 2019
  ident: 2021012203304079400_ref12
  article-title: Computational model development of drug-target interaction prediction: a review
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/1389203720666190123164310
– volume: 26
  start-page: i246
  year: 2010
  ident: 2021012203304079400_ref17
  article-title: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq176
– volume: 7
  start-page: 48699
  year: 2019
  ident: 2021012203304079400_ref84
  article-title: iDTi-CSsmoteB: identification of drug-target interaction based on drug chemical structure and protein sequence using XGBoost with over-sampling technique SMOTE
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2910277
– volume: 16
  start-page: 19
  year: 2017
  ident: 2021012203304079400_ref1
  article-title: A comprehensive map of molecular drug targets, nature reviews
  publication-title: Drug Des Discov
  doi: 10.1038/nrd.2016.230
– volume: 8
  start-page: 1970
  year: 2012
  ident: 2021012203304079400_ref19
  article-title: Drug-target interaction prediction by random walk on the heterogeneous network
  publication-title: Mol BioSyst
  doi: 10.1039/c2mb00002d
– volume: 19
  start-page: 667
  year: 2018
  ident: 2021012203304079400_ref91
  article-title: Deep learning-based transcriptome data classification for drug-target interaction prediction
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5031-0
– volume: 19
  start-page: 118
  year: 2018
  ident: 2021012203304079400_ref97
  article-title: BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2095-4
– volume: 34
  start-page: 1164
  year: 2018
  ident: 2021012203304079400_ref79
  article-title: DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx731
– volume: 110
  start-page: 64
  year: 2016
  ident: 2021012203304079400_ref93
  article-title: Boosting compound-protein interaction prediction by deep learning
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.06.024
– volume: 166
  start-page: 91
  year: 2019
  ident: 2021012203304079400_ref96
  article-title: Deep-resp-forest: a deep forest model to predict anti-cancer drug response
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.02.009
– volume: 44
  start-page: D1075
  year: 2016
  ident: 2021012203304079400_ref103
  article-title: The SIDER database of drugs and side effects
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1075
– start-page: 785
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2021012203304079400_ref109
  doi: 10.1145/2939672.2939785
– volume: 18
  start-page: 333
  year: 2017
  ident: 2021012203304079400_ref39
  article-title: SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning
  publication-title: Brief Bioinform
– volume: 4
  start-page: S6
  issue: Suppl 2
  year: 2010
  ident: 2021012203304079400_ref49
  article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S2-S6
– volume: 10
  start-page: 1273
  year: 2014
  ident: 2021012203304079400_ref60
  article-title: Drug-target interaction prediction via chemogenomic space: learning-based methods
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.2014.950222
– volume: 25
  start-page: 197
  year: 2007
  ident: 2021012203304079400_ref13
  article-title: Relating protein pharmacology by ligand chemistry
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1284
– volume: 22
  start-page: 2056
  year: 2017
  ident: 2021012203304079400_ref40
  article-title: Drug-target interaction prediction through label propagation with linear neighborhood information
  publication-title: Molecules
  doi: 10.3390/molecules22122056
– volume: 18
  start-page: 100615
  year: 2019
  ident: 2021012203304079400_ref46
  article-title: NRLMFbeta: beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug-target interaction prediction
  publication-title: Biochem Biophys Rep
– volume: 24
  start-page: 2149
  year: 2008
  ident: 2021012203304079400_ref48
  article-title: Protein-ligand interaction prediction: an improved chemogenomics approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn409
– volume: 32
  start-page: 2768
  year: 2016
  ident: 2021012203304079400_ref108
  article-title: TarPmiR: a new approach for microRNA target site prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw318
– volume: 17
  start-page: 160
  year: 2016
  ident: 2021012203304079400_ref65
  article-title: Predicting drug target interactions using meta-path-based semantic network analysis
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1005-x
– volume: 464
  start-page: 1
  year: 2019
  ident: 2021012203304079400_ref85
  article-title: CFSBoost: cumulative feature subspace boosting for drug-target interaction prediction
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.12.024
– volume: 16
  start-page: 1401
  year: 2017
  ident: 2021012203304079400_ref92
  article-title: Deep-learning-based drug-target interaction prediction
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.6b00618
– volume: 18
  start-page: 5687
  year: 2011
  ident: 2021012203304079400_ref51
  article-title: Using feature selection technique for drug-target interaction networks prediction
  publication-title: Curr Med Chem
  doi: 10.2174/092986711798347270
– volume: 9
  start-page: S4
  issue: Suppl 3
  year: 2015
  ident: 2021012203304079400_ref22
  article-title: DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-9-S3-S4
– volume: 17
  start-page: 46
  year: 2016
  ident: 2021012203304079400_ref31
  article-title: A multiple kernel learning algorithm for drug-target interaction prediction
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-0890-3
– volume: 10
  start-page: 30
  year: 2018
  ident: 2021012203304079400_ref112
  article-title: Inferring potential small molecule-miRNA association based on triple layer heterogeneous network
  publication-title: J Chem
  doi: 10.1186/s13321-018-0284-9
– volume: 12
  start-page: 520
  year: 2016
  ident: 2021012203304079400_ref27
  article-title: Prediction of drug-target interaction by label propagation with mutual interaction information derived from heterogeneous network
  publication-title: Mol BioSyst
  doi: 10.1039/C5MB00615E
– volume: 24
  start-page: 2999
  year: 2019
  ident: 2021012203304079400_ref83
  article-title: Drug-target interaction prediction based on drug fingerprint information and protein sequence
  publication-title: Molecules
  doi: 10.3390/molecules24162999
– start-page: 53
  year: 2013
  ident: 2021012203304079400_ref24
  article-title: Drug target predictions based on heterogeneous graph inference
  publication-title: Pac Symp Biocomput
– volume: 24
  start-page: i232
  year: 2008
  ident: 2021012203304079400_ref15
  article-title: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn162
– volume: 28
  start-page: i487
  year: 2012
  ident: 2021012203304079400_ref56
  article-title: Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts412
– volume: 15
  start-page: 734
  year: 2014
  ident: 2021012203304079400_ref3
  article-title: Similarity-based machine learning methods for predicting drug-target interactions: a brief review
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbt056
– volume: 19
  start-page: 208
  year: 2018
  ident: 2021012203304079400_ref43
  article-title: Identification of drug-target interaction by a random walk with restart method on an interactome network
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2199-x
– volume: 16
  start-page: 325
  year: 2015
  ident: 2021012203304079400_ref62
  article-title: Toward more realistic drug-target interaction predictions
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbu010
– volume: 78
  start-page: 460
  year: 2019
  ident: 2021012203304079400_ref47
  article-title: Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2018.11.028
– volume: 18
  start-page: 440
  year: 2017
  ident: 2021012203304079400_ref32
  article-title: VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-017-1845-z
– volume: 20
  start-page: 194
  year: 2019
  ident: 2021012203304079400_ref11
  article-title: Recent advances in the machine learning-based drug-target interaction prediction
  publication-title: Curr Drug Metab
  doi: 10.2174/1389200219666180821094047
– volume: 78
  start-page: 42
  year: 2016
  ident: 2021012203304079400_ref68
  article-title: Drug-target interaction prediction from PSSM based evolutionary information
  publication-title: J Pharmacol Toxicol Methods
  doi: 10.1016/j.vascn.2015.11.002
– volume: 29
  start-page: 2004
  year: 2013
  ident: 2021012203304079400_ref21
  article-title: Drug-target interaction prediction through domain-tuned network-based inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt307
– volume: 206
  start-page: 50
  year: 2016
  ident: 2021012203304079400_ref29
  article-title: Predicting drug-target interaction using positive-unlabeled learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.080
– volume: 2017
  start-page: 6340316
  year: 2017
  ident: 2021012203304079400_ref73
  article-title: DrugECs: an ensemble system with feature subspaces for accurate drug-target interaction prediction
  publication-title: Biomed Res Int
  doi: 10.1155/2017/6340316
– volume: 7
  start-page: 11174
  year: 2017
  ident: 2021012203304079400_ref75
  article-title: In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-10724-0
– volume: 18
  start-page: 39
  year: 2017
  ident: 2021012203304079400_ref36
  article-title: Link prediction in drug-target interactions network using similarity indices
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-017-1460-z
– volume: 8
  start-page: e1002503
  year: 2012
  ident: 2021012203304079400_ref20
  article-title: Prediction of drug-target interactions and drug repositioning via network-based inference
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002503
– volume: 165
  start-page: 151
  year: 2018
  ident: 2021012203304079400_ref80
  article-title: BE-DTI': ensemble framework for drug target interaction prediction using dimensionality reduction and active learning
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2018.08.011
– volume: 19
  start-page: 445
  year: 2018
  ident: 2021012203304079400_ref82
  article-title: RFDT: a rotation Forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/1389203718666161114111656
– volume: 7
  start-page: S3
  issue: Suppl 6
  year: 2013
  ident: 2021012203304079400_ref57
  article-title: Scalable prediction of compound-protein interactions using minwise hashing
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-7-S6-S3
– volume: 29
  start-page: i126
  year: 2013
  ident: 2021012203304079400_ref90
  article-title: Predicting drug-target interactions using restricted Boltzmann machines
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt234
– volume: 28
  start-page: i611
  year: 2012
  ident: 2021012203304079400_ref104
  article-title: Drug target prediction using adverse event report systems: a pharmacogenomic approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts413
– volume: 19
  start-page: 537
  year: 2018
  ident: 2021012203304079400_ref7
  article-title: Drug-target interactions: prediction methods and applications
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/1389203718666161108091609
– volume: 8
  start-page: e80129
  year: 2013
  ident: 2021012203304079400_ref25
  article-title: Predicting drug-target interactions using drug-drug interactions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080129
– volume: 418
  start-page: 546
  year: 2017
  ident: 2021012203304079400_ref71
  article-title: Identification of drug-target interactions via multiple information integration
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.08.045
– volume: 10
  start-page: 459
  year: 2019
  ident: 2021012203304079400_ref86
  article-title: Gradient boosting decision tree-based method for predicting interactions between target genes and drugs
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00459
– volume: 15
  start-page: e1007129
  year: 2019
  ident: 2021012203304079400_ref94
  article-title: DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007129
– volume: 32
  start-page: 1057
  year: 2016
  ident: 2021012203304079400_ref67
  article-title: Identification of drug-target interaction from interactome network with 'guilt-by-association' principle and topology features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv695
SSID ssj0020781
Score 2.6169913
Snippet Abstract Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively...
Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement...
Drug-target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational prediction of DTIs can effectively complement...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 451
SubjectTerms Artificial neural networks
Computer applications
Datasets
Drugs
Feature extraction
Machine learning
Neural networks
Predictions
Similarity
Source code
Therapeutic targets
Title DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features
URI https://www.ncbi.nlm.nih.gov/pubmed/31885041
https://www.proquest.com/docview/2529966678
https://www.proquest.com/docview/2331437166
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR39ZHWdGLh8VudjfZeJNqqYJ6aaG3kH1EBWlL0x701zuTTQvFoseQSQIz2f2-ZWa-IeRKxSaJilgw7WPJpFOSGe5T1raikMIXyijsRn5-iXsD-TRUw7qIplyTwk_FjfkwN8Z8A9DATgvoiwr5_dfh8liFcjWhhyhhKO6-ECFdeXQFdlZa2X4xygpZujtku6aE9C7EcJds-NEe2QxDIr_2yeS-_8g6991bmlObl1jPTp33Ewp0E15Lq1k2dFaVv5YU-BydTDH7gh6n44K66fyNhYJviuIQ09DKUFIEMEfB6P0L27Zo4SuRz_KADLoP_U6P1XMSmJWczxg2t6qEG57DYkydSbQtrIRLdLVPlTXSGemTXCROOwyaU6nT0uRxG0BMi0PSGI1H_phQHUtgdEWKMl4yt0CeItgRPffa21gmokmuF27MbC0ijrMsPrOQzBYZuDwLLm-Sy6XtJEhnrLVqQTT-NDhbBCqr11eZRSrCgxogbZNcLG_DysB0Rz7y4znYCAFkEM6DcZMchQAvPwM7mVZtyU_--_op2YqwiqXNGddnpDGbzv050JCZaVV_4Q_HV9o2
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DTI-CDF%3A+a+cascade+deep+forest+model+towards+the+prediction+of+drug-target+interactions+based+on+hybrid+features&rft.jtitle=Briefings+in+bioinformatics&rft.au=Chu%2C+Yanyi&rft.au=Kaushik%2C+Aman+Chandra&rft.au=Wang%2C+Xiangeng&rft.au=Wang%2C+Wei&rft.date=2021-01-18&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=451&rft_id=info:doi/10.1093%2Fbib%2Fbbz152&rft_id=info%3Apmid%2F31885041&rft.externalDocID=31885041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon