Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products
Soil temperature is an important physical variable of soil and plays a key role in controlling the underground hydro-thermal processes in permafrost regions on the Qinghai-Tibetan Plateau (QTP). Daily soil temperatures were observed at five different vegetation cover sites (alpine wet meadow, alpine...
Saved in:
Published in | Geoderma Vol. 337; pp. 893 - 905 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil temperature is an important physical variable of soil and plays a key role in controlling the underground hydro-thermal processes in permafrost regions on the Qinghai-Tibetan Plateau (QTP). Daily soil temperatures were observed at five different vegetation cover sites (alpine wet meadow, alpine meadow, alpine steppe, alpine desert steppe and alpine desert) from 2012 to 2015 in permafrost regions on the QTP. The performance of three reanalysis soil temperature products (National Centers for Environmental Prediction Climate Forecast System and Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim), and Global Land Data Assimilation System (GLDAS- NOAH)) at four depths (0–10, 10–40, 40–100 and 100–200 cm) was evaluated using the observation data. The results revealed that the CFSR soil temperature products had the best performance at most sites and that GLDAS-NOAH and Era-Interim had the poorest performance. However, the original CFSR soil temperature products underestimated the lowest temperatures. The calibration models for CFSR soil temperature products were established using the observed daily soil temperature from 2013 to 2015 and were validated with observed data from 2012. The results showed that the calibrated CFSv2 products were closer to the observations at different depths in the study sites. Moreover, we investigated the variations of seasonal and annual mean soil temperature from 1980 to 2015 at depths of 0–10, 10–40, 40–100 and 100–200 cm using the soil temperature calibration results. It was found that the soil temperatures at different depths all warmed fastest in spring, more slowly in winter and slowest in autumn at most sites. In addition, the average annual soil temperature exhibited significant warming trends in the permafrost regions on the QTP. The effect was largest with alpine desert steppe and smallest with alpine wet meadow, with statistically significant rates of 0.0599, 0.0468, 0.0438, 0.0282 and 0.0145 °C/year in alpine desert steppe, alpine desert, alpine steppe, alpine meadow and alpine wet meadow, respectively. This research provides a foundation for understanding the thermal properties of permafrost on the Qinghai-Tibetan Plateau under climate change.
•Evaluate the performance of the reanalysis soil temperature products at different depths.•Establish calibration models for the reanalysis soil temperature products.•Examine the warming trend in the seasonal and annual mean soil temperatures. |
---|---|
AbstractList | Soil temperature is an important physical variable of soil and plays a key role in controlling the underground hydro-thermal processes in permafrost regions on the Qinghai-Tibetan Plateau (QTP). Daily soil temperatures were observed at five different vegetation cover sites (alpine wet meadow, alpine meadow, alpine steppe, alpine desert steppe and alpine desert) from 2012 to 2015 in permafrost regions on the QTP. The performance of three reanalysis soil temperature products (National Centers for Environmental Prediction Climate Forecast System and Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim), and Global Land Data Assimilation System (GLDAS- NOAH)) at four depths (0–10, 10–40, 40–100 and 100–200 cm) was evaluated using the observation data. The results revealed that the CFSR soil temperature products had the best performance at most sites and that GLDAS-NOAH and Era-Interim had the poorest performance. However, the original CFSR soil temperature products underestimated the lowest temperatures. The calibration models for CFSR soil temperature products were established using the observed daily soil temperature from 2013 to 2015 and were validated with observed data from 2012. The results showed that the calibrated CFSv2 products were closer to the observations at different depths in the study sites. Moreover, we investigated the variations of seasonal and annual mean soil temperature from 1980 to 2015 at depths of 0–10, 10–40, 40–100 and 100–200 cm using the soil temperature calibration results. It was found that the soil temperatures at different depths all warmed fastest in spring, more slowly in winter and slowest in autumn at most sites. In addition, the average annual soil temperature exhibited significant warming trends in the permafrost regions on the QTP. The effect was largest with alpine desert steppe and smallest with alpine wet meadow, with statistically significant rates of 0.0599, 0.0468, 0.0438, 0.0282 and 0.0145 °C/year in alpine desert steppe, alpine desert, alpine steppe, alpine meadow and alpine wet meadow, respectively. This research provides a foundation for understanding the thermal properties of permafrost on the Qinghai-Tibetan Plateau under climate change.
•Evaluate the performance of the reanalysis soil temperature products at different depths.•Establish calibration models for the reanalysis soil temperature products.•Examine the warming trend in the seasonal and annual mean soil temperatures. Soil temperature is an important physical variable of soil and plays a key role in controlling the underground hydro-thermal processes in permafrost regions on the Qinghai-Tibetan Plateau (QTP). Daily soil temperatures were observed at five different vegetation cover sites (alpine wet meadow, alpine meadow, alpine steppe, alpine desert steppe and alpine desert) from 2012 to 2015 in permafrost regions on the QTP. The performance of three reanalysis soil temperature products (National Centers for Environmental Prediction Climate Forecast System and Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim), and Global Land Data Assimilation System (GLDAS- NOAH)) at four depths (0–10, 10–40, 40–100 and 100–200 cm) was evaluated using the observation data. The results revealed that the CFSR soil temperature products had the best performance at most sites and that GLDAS-NOAH and Era-Interim had the poorest performance. However, the original CFSR soil temperature products underestimated the lowest temperatures. The calibration models for CFSR soil temperature products were established using the observed daily soil temperature from 2013 to 2015 and were validated with observed data from 2012. The results showed that the calibrated CFSv2 products were closer to the observations at different depths in the study sites. Moreover, we investigated the variations of seasonal and annual mean soil temperature from 1980 to 2015 at depths of 0–10, 10–40, 40–100 and 100–200 cm using the soil temperature calibration results. It was found that the soil temperatures at different depths all warmed fastest in spring, more slowly in winter and slowest in autumn at most sites. In addition, the average annual soil temperature exhibited significant warming trends in the permafrost regions on the QTP. The effect was largest with alpine desert steppe and smallest with alpine wet meadow, with statistically significant rates of 0.0599, 0.0468, 0.0438, 0.0282 and 0.0145 °C/year in alpine desert steppe, alpine desert, alpine steppe, alpine meadow and alpine wet meadow, respectively. This research provides a foundation for understanding the thermal properties of permafrost on the Qinghai-Tibetan Plateau under climate change. |
Author | Hu, Guojie Su, Youqi Xie, Changwei Li, Ren Wu, Tonghua Zhao, Lin Zhu, Xiaofan Wu, Xiaodong |
Author_xml | – sequence: 1 givenname: Guojie orcidid: 0000-0002-5428-0445 surname: Hu fullname: Hu, Guojie email: huguojie123@126.com organization: Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 2 givenname: Lin surname: Zhao fullname: Zhao, Lin email: linzhao@lzb.ac.cn organization: School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210000, China – sequence: 3 givenname: Ren surname: Li fullname: Li, Ren organization: Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 4 givenname: Xiaodong surname: Wu fullname: Wu, Xiaodong organization: Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 5 givenname: Tonghua surname: Wu fullname: Wu, Tonghua organization: Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 6 givenname: Changwei surname: Xie fullname: Xie, Changwei organization: Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 7 givenname: Xiaofan surname: Zhu fullname: Zhu, Xiaofan organization: Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 8 givenname: Youqi surname: Su fullname: Su, Youqi organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China |
BookMark | eNqFkM1uGyEUhVm4UpyfV4hYZjMueBiwpSxSRemPZKmtlHaL7sAdG2sGXGAi-Sn6ymXsZNNN2MC993zninNJZj54JOSWswVnXH7cL7YYLMYBFkvGV6W5YELMyJyVaaWY5BfkMqV9KRVbsjn5-xuig-yCT9R5moLracbhgBHyGJF2MQyUr1eM5kCLZTOpDtOCMkmZRtye2OBp3iH96fx2B656di1m8PRHDxlhpC0ktJMotAnjS3mDtwUGD_0xuUQPMdjR5HRNPnTQJ7x5va_Ir89Pz49fq833L98eP20qIzjPVd2hWFvZqFa0dS07bptaWgYSebeSSghQ2IpOQFsOmCWDZm2tVZKrVhW4viJ3Z9-y-M-IKevBJYN9Dx7DmPSSK1mLtVw1RSrPUlN-nCJ2-hDdAPGoOdNT6nqv31LXU-pTv6RewPv_QOPyKescwfXv4w9nHEsOLw6jTsahN2hdRJO1De49i382gKlm |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2023_116353 crossref_primary_10_3390_rs15020455 crossref_primary_10_1002_ppp_2219 crossref_primary_10_1002_joc_8057 crossref_primary_10_1002_joc_7366 crossref_primary_10_3389_fenvs_2022_836085 crossref_primary_10_1002_ppp_2056 crossref_primary_10_1007_s00704_023_04672_1 crossref_primary_10_3390_rs14133168 crossref_primary_10_1007_s11629_023_8389_7 crossref_primary_10_1016_j_earscirev_2021_103625 crossref_primary_10_3390_app12105088 crossref_primary_10_1007_s00704_019_03008_2 crossref_primary_10_1016_j_scitotenv_2020_140141 crossref_primary_10_1007_s00382_021_05860_3 crossref_primary_10_1016_j_accre_2024_12_005 crossref_primary_10_3390_rs15071894 crossref_primary_10_1111_2041_210X_14124 crossref_primary_10_1080_17538947_2023_2264267 crossref_primary_10_1111_gcb_15205 crossref_primary_10_1016_j_anucene_2020_107395 crossref_primary_10_1016_j_geoderma_2019_06_028 crossref_primary_10_1007_s00704_020_03149_9 crossref_primary_10_1016_j_geoderma_2020_114583 crossref_primary_10_1016_j_coldregions_2025_104495 crossref_primary_10_1016_j_agrformet_2023_109793 crossref_primary_10_1016_j_geomorph_2023_108895 crossref_primary_10_1029_2020JD032916 crossref_primary_10_1007_s00382_022_06155_x crossref_primary_10_1016_j_rse_2024_114564 crossref_primary_10_1016_j_geoderma_2023_116330 crossref_primary_10_1007_s00704_022_04083_8 crossref_primary_10_1016_j_geoderma_2025_117183 crossref_primary_10_5194_tc_18_1835_2024 crossref_primary_10_1016_j_geoderma_2020_114277 crossref_primary_10_5194_tc_14_2581_2020 crossref_primary_10_1029_2022EF002835 crossref_primary_10_3389_fenvs_2022_906821 crossref_primary_10_1016_j_catena_2021_105772 crossref_primary_10_3390_rs12152361 crossref_primary_10_1029_2020JD032588 crossref_primary_10_1038_s41612_024_00651_z crossref_primary_10_1007_s00704_019_02888_8 crossref_primary_10_1007_s00704_020_03291_4 crossref_primary_10_1016_j_ejrh_2023_101464 crossref_primary_10_1029_2023JD040369 crossref_primary_10_1016_j_accre_2023_01_007 crossref_primary_10_1016_j_ijthermalsci_2022_107487 crossref_primary_10_3390_land11122163 crossref_primary_10_1002_hyp_13765 crossref_primary_10_1016_j_catena_2020_104793 crossref_primary_10_1016_j_catena_2022_106811 crossref_primary_10_1007_s10462_020_09915_5 crossref_primary_10_3390_atmos13071031 crossref_primary_10_1016_j_coldregions_2020_103067 crossref_primary_10_1016_j_coldregions_2022_103509 crossref_primary_10_5194_essd_13_4207_2021 crossref_primary_10_1016_j_inpa_2020_06_001 crossref_primary_10_1016_j_scitotenv_2022_157624 crossref_primary_10_1016_j_rse_2021_112605 crossref_primary_10_1016_j_scitotenv_2021_148358 crossref_primary_10_1016_j_rhisph_2021_100451 crossref_primary_10_1007_s10584_019_02586_4 crossref_primary_10_1016_j_geoderma_2021_115330 crossref_primary_10_1016_j_pce_2022_103206 crossref_primary_10_1016_j_rse_2024_114240 crossref_primary_10_1093_jpe_rtae052 crossref_primary_10_3389_fpls_2022_974745 crossref_primary_10_1016_j_scitotenv_2022_158564 crossref_primary_10_1007_s00704_020_03135_1 crossref_primary_10_1109_TGRS_2022_3182359 crossref_primary_10_1016_j_accre_2024_01_004 crossref_primary_10_1016_j_earscirev_2020_103433 crossref_primary_10_3389_fenvs_2022_1051086 crossref_primary_10_1016_j_scitotenv_2020_136911 crossref_primary_10_1360_TB_2022_0849 crossref_primary_10_1029_2022JD037686 crossref_primary_10_1016_j_geoderma_2021_115083 crossref_primary_10_1016_j_geoderma_2024_116898 crossref_primary_10_3390_rs15123153 crossref_primary_10_1016_j_scitotenv_2023_162904 crossref_primary_10_1080_00295450_2019_1632093 crossref_primary_10_1016_j_earscirev_2024_104865 crossref_primary_10_1002_esp_5736 crossref_primary_10_1029_2021GL093306 crossref_primary_10_18307_2025_0153 crossref_primary_10_3390_rs14122854 crossref_primary_10_1038_s41598_022_23548_4 crossref_primary_10_1016_j_jhydrol_2023_130581 crossref_primary_10_1002_ecs2_4656 crossref_primary_10_1016_j_catena_2024_108440 crossref_primary_10_1016_j_catena_2022_106224 crossref_primary_10_1016_j_rse_2021_112666 crossref_primary_10_1002_ppp_2127 crossref_primary_10_1002_joc_7639 crossref_primary_10_1016_j_atmosres_2019_01_006 crossref_primary_10_1007_s00477_022_02268_1 crossref_primary_10_1007_s11430_019_9522_7 crossref_primary_10_1016_j_catena_2019_104399 crossref_primary_10_1016_j_catena_2020_104470 crossref_primary_10_1111_sum_12910 crossref_primary_10_1016_j_catena_2024_108158 |
Cites_doi | 10.1007/s12665-015-4313-y 10.1029/2004JD004910 10.13031/2013.31747 10.1016/j.gloplacha.2011.08.001 10.1029/2006JF000578 10.1002/ppp.1841 10.1007/s00704-012-0594-1 10.1073/pnas.0702737104 10.5194/tc-11-2527-2017 10.2136/vzj2016.01.0010 10.1175/BAMS-85-3-381 10.1002/ppp.688 10.1175/JHM-402.1 10.1016/0165-232X(91)90002-X 10.2307/1552109 10.1002/2016JD026388 10.1002/(SICI)1099-1530(199901/03)10:1<17::AID-PPP303>3.0.CO;2-4 10.1002/qj.828 10.1016/j.catena.2017.04.011 10.1029/2002JD003296 10.1016/j.geoderma.2017.07.017 10.1002/(SICI)1099-1530(199701)8:1<1::AID-PPP243>3.0.CO;2-U 10.1029/2004GL020358 10.1016/j.jhydrol.2014.08.014 10.1002/met.1421 10.1002/joc.5119 10.1016/j.ejsobi.2014.01.003 10.1029/2006JF000631 10.1007/s11434-012-5323-8 10.1016/j.gloplacha.2005.09.001 10.1002/(SICI)1099-1530(200001/03)11:1<43::AID-PPP332>3.0.CO;2-H 10.1016/0165-232X(91)90001-W 10.1175/1520-0442(2002)015<2089:ACSOMA>2.0.CO;2 10.1023/A:1010790203146 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y 10.1002/ppp.1971 10.1007/s11430-012-4379-2 10.1029/2009JG001248 10.1038/nature08930 10.1002/ppp.582 10.1007/s10584-014-1196-y 10.1139/e17-053 10.1175/JCLI-D-12-00823.1 10.5194/hess-19-389-2015 10.1029/2007WR005994 10.2136/vzj2004.0693 10.1016/j.coldregions.2012.12.004 10.1029/1999JD900232 10.1002/ppp.3430060404 10.1007/s00704-014-1107-1 10.1007/s12665-013-2924-8 10.1016/j.gloplacha.2004.02.003 10.1007/BF02883978 10.1175/1520-0450(2003)042<1139:ADSTDA>2.0.CO;2 10.1002/hyp.11383 10.1029/2007JD009549 10.1029/2002JD003334 10.1016/j.gloplacha.2003.04.001 10.1175/1520-0442(2001)014<4062:QUINRU>2.0.CO;2 10.1016/j.scitotenv.2017.09.052 10.1175/2010JCLI3645.1 10.1002/ppp.683 10.1029/2003GL019300 10.1029/2004WR003604 10.1007/s11769-015-0733-6 10.1007/BF02886326 10.1002/2013EF000165 10.1016/j.ijheatmasstransfer.2015.11.078 10.1016/j.geoderma.2014.05.016 10.1007/s00704-015-1407-0 10.1029/2010JD015012 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.10.044 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EndPage | 905 |
ExternalDocumentID | 10_1016_j_geoderma_2018_10_044 S0016706118310711 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AALCJ AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-3fe49d657b4b336f1d536d0a6e1f86744a7eb4f4abbbbac20a59ddd7617b73fe3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 16:07:47 EDT 2025 Tue Jul 01 04:04:48 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Tue Oct 01 07:16:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Observation Permafrost Soil temperature Reanalysis product Qinghai-Tibetan Plateau |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-3fe49d657b4b336f1d536d0a6e1f86744a7eb4f4abbbbac20a59ddd7617b73fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5428-0445 |
PQID | 2176349685 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2176349685 crossref_primary_10_1016_j_geoderma_2018_10_044 crossref_citationtrail_10_1016_j_geoderma_2018_10_044 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_10_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hu, Zhao, Li, Wu, Wu, Pang, Xiao, Qiao, Shi (bb0155) 2015; 25 IPCC (bb0180) 2007 Hu, Zhao, Wu, Li, Wu, Xie, Pang, Zou (bb0165) 2017; 156 You, Jiang, Wang, Pepin, Kang (bb0430) 2017; 4 Liu, Yu, Xie, Zhou, Li, Ge (bb0220) 2015; 34 Lu, Wu, Sheng, Zhang (bb0225) 2006; 28 Tang, Sheng, Chen (bb0340) 1979; 34 Gao, Wu (bb9610) 2015; 74 Moradkhani, Hsu, Gupta, Sorooshian (bb0240) 2005; 41 Smith, Legler, Verzone (bb0335) 2001; 14 Wu, Zhao, Hu, Liu, Li, Ding (bb0390) 2017; 613-614 Wang, Jin, Li, Zhao (bb0365) 2000; 11 Hu, Feng (bb0150) 2003; 42 Zhao, Ping, Yang, Cheng, Ding, Liu (bb0460) 2004; 43 Wang, Mao, Chang, Du (bb0370) 2014; 232 Qian, Gregorich, Gameda, Hopkins, Wang (bb0280) 2011; 116 Osterkamp (bb0255) 2005; 49 Zhao, Wu, Zhang (bb0465) 2008; 51 Yu, Zhou, Wang (bb0435) 2003 Zhang, Chen, Smith, Riseborough, Cihlar (bb0445) 2005; 110 Dee, Uppala, Simmons, Berrisford, Poli, Kobayashi, Andrae, Balmaseda, Balsamo, Bauer, Bechtold, Beljaars, van de Berg, Bidlot, Bormann, Delsol, Dragani, Fuentes, Geer, Haimberger, Healy, Hersbach, Holm, Isaksen, Kallberg, Koehler, Matricardi, McNally, Monge-Sanz, Morcrette, Park, Peubey, de Rosnay, Tavolato, Thepaut, Vitart (bb0065) 2011; 137 Hao, Zhuang, Pan, Jin, Zhu, Liu (bb0110) 2014; 126 Holmes, Owe, De Jeu, Kooi (bb0145) 2008; 44 Zhao, Wu, Marchenko, Sharkhuu (bb0470) 2010; 21 Romanovsky, Osterkamp (bb0300) 1995; 6 Feng, Tang, Wang (bb0080) 1998; 43 Lachenbruch (bb0205) 1994; 2331–1258 Osterkamp, Romanovsky (bb0265) 1999; 10 Qin, Wu, Wu, Li, Xie, Qiao, Hu, Zhu, Wang, Shang (bb0290) 2017; 31 Romanovsky, Osterkamp (bb0305) 1997; 8 Yanai, Wu (bb0410) 2006; 29 Wang, Zeng (bb0360) 2012; 117 Fang, Luo, Lyu (bb0075) 2018 Bockheim, Hall (bb0020) 2002; 98 Zhao, Li, Ding, Xiao, Sun, Liu (bb0475) 2011; 7 Burn, Smith (bb0030) 1988 Romanovsky, Drozdov, Oberman, Malkova, Kholodov, Marchenko, Moskalenko, Sergeev, Ukraintseva, Abramov, Gilichinsky, Vasiliev (bb0310) 2010; 21 Wang, Zhang, Sun, Wang, Huang, Wang, Feng (bb0375) 2015; 119 Hansson, Šimůnek, Mizoguchi, Lundin, Van Genuchten (bb0105) 2004; 3 Ye, Gao (bb0415) 1979 Huang, Zhan, Ju, Wang (bb0175) 2014; 519 Zhou, Guo, Qiu, Cheng, Li (bb0490) 2000 Costello, Horst (bb0060) 1991; 34 Niu, Sun, Hong (bb0245) 1997; 55 Pang, Zhao, Li (bb0270) 2011; 33 Xiao, Zhao, Dai, Li, Pang, Yao (bb0400) 2013; 87 Field, Raupach (bb0085) 2004 Payette, Delwaide, Caccianiga, Beauchemin (bb0275) 2004; 31 You, Fraedrich, Ren, Ye, Meng, Kang (bb0425) 2012; 109 Zhang, Li, Pang (bb0450) 2008; 63 Zhao, Wu, Xie, Li, Wu, Yao, Yue, Xiao (bb0480) 2017; 32 Saha, Moorthi, Wu, Wang, Nadiga, Tripp, Behringer, Hou, Chuang, Iredell, Ek, Meng, Yang, Mendez, Van Den Dool, Zhang, Wang, Chen, Becker (bb0320) 2014; 27 Zhu, Liu, Wu (bb0495) 2012; 55 Hu, Zhao, Wu, Li, Wu, Xie, Qiao, Shi, Li, Cheng (bb0160) 2016; 95 Wu, Sheng, Wu (bb0385) 2009; 39 Jiang, Jiang, Li, Shen (bb0185) 2017; 13(1) Rodell, Houser, Jambor, Gottschalck, Mitchell, Meng, Arsenault, Cosgrove, Radakovich, Bosilovich, Entin, Walker, Lohmann, Toll (bb0295) 2004; 85 Berg, Famiglietti, Walker, Houser (bb0015) 2003; 108 Walvoord, Kurylyk (bb0355) 2016; 15 Luo, Behera, Masumoto, Yamagata (bb0230) 2011; 24 Xie, Zhao, Wu, Qiao (bb0405) 2010; 32 Hu, Zhao, Wu, Wu, Li, Xie, Xiao, Pang, Liu, Hao, Shi, Qiao (bb0170) 2017; 306 Bandopadhyay, Ke, Nelson, Chen, Izaxon (bb0010) 1999 Guo, Li, Liu (bb0095) 2017; 37 Kane, Hinzman, Zarling (bb0195) 1991; 19 Han, Ma, Chen, Su (bb0100) 2017; 37 Wu, Nan, Zhao, Zhao, Cheng (bb0395) 2018; 29 Cheng, Wu (bb0050) 2007; 112 Shiklomanov, Streletskiy, Nelson, Hollister, Romanovsky, Tweedie, Bockheim, Brown (bb0325) 2010; 115 Rusticucci, Kousky (bb0315) 2002; 15 Ek, Mitchell, Lin, Rogers, Grunmann, Koren, Gayno, Tarpley (bb0070) 2003; 108 Jiao, Li, Zhao, Wu, Xiao, Hu, Qiao (bb0190) 2014; 36 Liu, Chen (bb0215) 2000; 20 Qin, Jiao, Ding, Yao, Bian, Jiawen, Wang, Liu, Diao (bb0285) 2006; 17 Trenberth, Fasullo (bb0350) 2013; 1 Bond-Lamberty, Thomson (bb0025) 2010; 464 Hinkel, Outcalt, Taylor (bb0130) 1997; 34 Zhang, Barry, Gilichinsky, Bykhovets, Sorokovikov, Ye (bb0440) 2001; 49 Koren, Schaake, Mitchell, Duan, Chen, Baker (bb0200) 1999; 104 Yesilirmak (bb0420) 2014; 21 Toosi, Schmidt, Castellano (bb0345) 2014; 61 Ma, Zhang, Li, Frauenfeld, Qin (bb0235) 2008; 113 Zou, Zhu, Zhou, Li, Ma (bb0505) 2014; 28 Harris, Vonder Muhll, Isaksen, Haeberli, Sollid, King, Holmlund, Dramis, Guglielmin, Palacios (bb0115) 2003; 39 Li, Zhao, Ding, Tonghua, Xiao, Du (bb0210) 2012; 57 Balsamo, Albergel, Beljaars, Boussetta, Brun, Cloke, Dee, Dutra, Munoz-Sabater, Pappenberger, de Rosnay, Stockdale, Vitart (bb0005) 2015; 19 Osterkamp (bb0260) 2007; 112 Helama, Tuomenvirta, Venalainen (bb0120) 2011; 79 Shur, Jorgenson (bb0330) 2007; 18 Wu, Zhang (bb0380) 2008; 113 Chen, Nan, Zhao, Ding, Chen, Pang (bb0040) 2015; 26 Zhu, Cuo, Zhang, Luo, Lettenmaier, Lin, Liu (bb0500) 2017 Zhao, Cheng, Li, Zhao, Wang (bb0455) 2000; 45 Chen, Yang, Qin, Cui, Lu, La, Han, Tang (bb0045) 2017; 122 Canadell, Le Quere, Raupach, Field, Buitenhuis, Ciais, Conway, Gillett, Houghton, Marland (bb0035) 2007; 104 Goodrich (bb0090) 1978 Hogue, Bastidas, Gupta, Sorooshian, Mitchell, Emmerich (bb0140) 2005; 6 Oelke, Zhang, Serreze (bb0250) 2004; 31 Hinzman, Kane, Gieck, Everett (bb0135) 1991; 19 Zou, Zhao, Sheng, Chen, Hu, Wu, Wu, Xie, Wu, Pang, Wang, Du, Li, Liu, Li, Qin, Qiao, Wang, Shi, Cheng (bb0510) 2017; 11 Cheon, Ham, Lee, Park, Lee (bb0055) 2014; 71 Hinkel, Nelson, Shur, Brown, Everett (bb0125) 1996; 28 Zhou, Du (bb0485) 2016; 124 Osterkamp (10.1016/j.geoderma.2018.10.044_bb0265) 1999; 10 Li (10.1016/j.geoderma.2018.10.044_bb0210) 2012; 57 Lu (10.1016/j.geoderma.2018.10.044_bb0225) 2006; 28 Hu (10.1016/j.geoderma.2018.10.044_bb0165) 2017; 156 Romanovsky (10.1016/j.geoderma.2018.10.044_bb0300) 1995; 6 Dee (10.1016/j.geoderma.2018.10.044_bb0065) 2011; 137 Koren (10.1016/j.geoderma.2018.10.044_bb0200) 1999; 104 Fang (10.1016/j.geoderma.2018.10.044_bb0075) 2018 Bond-Lamberty (10.1016/j.geoderma.2018.10.044_bb0025) 2010; 464 Oelke (10.1016/j.geoderma.2018.10.044_bb0250) 2004; 31 Saha (10.1016/j.geoderma.2018.10.044_bb0320) 2014; 27 Wu (10.1016/j.geoderma.2018.10.044_bb0395) 2018; 29 You (10.1016/j.geoderma.2018.10.044_bb0425) 2012; 109 Kane (10.1016/j.geoderma.2018.10.044_bb0195) 1991; 19 Trenberth (10.1016/j.geoderma.2018.10.044_bb0350) 2013; 1 Zhao (10.1016/j.geoderma.2018.10.044_bb0475) 2011; 7 Xie (10.1016/j.geoderma.2018.10.044_bb0405) 2010; 32 IPCC (10.1016/j.geoderma.2018.10.044_bb0180) 2007 Liu (10.1016/j.geoderma.2018.10.044_bb0220) 2015; 34 Zou (10.1016/j.geoderma.2018.10.044_bb0505) 2014; 28 Wu (10.1016/j.geoderma.2018.10.044_bb0390) 2017; 613-614 Helama (10.1016/j.geoderma.2018.10.044_bb0120) 2011; 79 Cheon (10.1016/j.geoderma.2018.10.044_bb0055) 2014; 71 Bandopadhyay (10.1016/j.geoderma.2018.10.044_bb0010) 1999 Hinzman (10.1016/j.geoderma.2018.10.044_bb0135) 1991; 19 Hu (10.1016/j.geoderma.2018.10.044_bb0160) 2016; 95 Zhu (10.1016/j.geoderma.2018.10.044_bb0495) 2012; 55 Han (10.1016/j.geoderma.2018.10.044_bb0100) 2017; 37 Ma (10.1016/j.geoderma.2018.10.044_bb0235) 2008; 113 Holmes (10.1016/j.geoderma.2018.10.044_bb0145) 2008; 44 Ye (10.1016/j.geoderma.2018.10.044_bb0415) 1979 Costello (10.1016/j.geoderma.2018.10.044_bb0060) 1991; 34 Hinkel (10.1016/j.geoderma.2018.10.044_bb0130) 1997; 34 Huang (10.1016/j.geoderma.2018.10.044_bb0175) 2014; 519 Qin (10.1016/j.geoderma.2018.10.044_bb0285) 2006; 17 Zhao (10.1016/j.geoderma.2018.10.044_bb0465) 2008; 51 Wang (10.1016/j.geoderma.2018.10.044_bb0360) 2012; 117 Xiao (10.1016/j.geoderma.2018.10.044_bb0400) 2013; 87 You (10.1016/j.geoderma.2018.10.044_bb0430) 2017; 4 Qin (10.1016/j.geoderma.2018.10.044_bb0290) 2017; 31 Canadell (10.1016/j.geoderma.2018.10.044_bb0035) 2007; 104 Zhou (10.1016/j.geoderma.2018.10.044_bb0490) 2000 Yesilirmak (10.1016/j.geoderma.2018.10.044_bb0420) 2014; 21 Burn (10.1016/j.geoderma.2018.10.044_bb0030) 1988 Zhou (10.1016/j.geoderma.2018.10.044_bb0485) 2016; 124 Qian (10.1016/j.geoderma.2018.10.044_bb0280) 2011; 116 Hansson (10.1016/j.geoderma.2018.10.044_bb0105) 2004; 3 Bockheim (10.1016/j.geoderma.2018.10.044_bb0020) 2002; 98 Rodell (10.1016/j.geoderma.2018.10.044_bb0295) 2004; 85 Zhao (10.1016/j.geoderma.2018.10.044_bb0455) 2000; 45 Pang (10.1016/j.geoderma.2018.10.044_bb0270) 2011; 33 Rusticucci (10.1016/j.geoderma.2018.10.044_bb0315) 2002; 15 Shiklomanov (10.1016/j.geoderma.2018.10.044_bb0325) 2010; 115 Zhang (10.1016/j.geoderma.2018.10.044_bb0450) 2008; 63 Osterkamp (10.1016/j.geoderma.2018.10.044_bb0255) 2005; 49 Chen (10.1016/j.geoderma.2018.10.044_bb0040) 2015; 26 Wang (10.1016/j.geoderma.2018.10.044_bb0375) 2015; 119 Lachenbruch (10.1016/j.geoderma.2018.10.044_bb0205) 1994; 2331–1258 Hinkel (10.1016/j.geoderma.2018.10.044_bb0125) 1996; 28 Wang (10.1016/j.geoderma.2018.10.044_bb0365) 2000; 11 Berg (10.1016/j.geoderma.2018.10.044_bb0015) 2003; 108 Smith (10.1016/j.geoderma.2018.10.044_bb0335) 2001; 14 Niu (10.1016/j.geoderma.2018.10.044_bb0245) 1997; 55 Hu (10.1016/j.geoderma.2018.10.044_bb0155) 2015; 25 Chen (10.1016/j.geoderma.2018.10.044_bb0045) 2017; 122 Balsamo (10.1016/j.geoderma.2018.10.044_bb0005) 2015; 19 Toosi (10.1016/j.geoderma.2018.10.044_bb0345) 2014; 61 Field (10.1016/j.geoderma.2018.10.044_bb0085) 2004 Jiao (10.1016/j.geoderma.2018.10.044_bb0190) 2014; 36 Liu (10.1016/j.geoderma.2018.10.044_bb0215) 2000; 20 Hogue (10.1016/j.geoderma.2018.10.044_bb0140) 2005; 6 Hu (10.1016/j.geoderma.2018.10.044_bb0150) 2003; 42 Zhu (10.1016/j.geoderma.2018.10.044_bb0500) 2017 Wang (10.1016/j.geoderma.2018.10.044_bb0370) 2014; 232 Zhao (10.1016/j.geoderma.2018.10.044_bb0470) 2010; 21 Hao (10.1016/j.geoderma.2018.10.044_bb0110) 2014; 126 Osterkamp (10.1016/j.geoderma.2018.10.044_bb0260) 2007; 112 Luo (10.1016/j.geoderma.2018.10.044_bb0230) 2011; 24 Gao (10.1016/j.geoderma.2018.10.044_bb9610) 2015; 74 Zhao (10.1016/j.geoderma.2018.10.044_bb0460) 2004; 43 Moradkhani (10.1016/j.geoderma.2018.10.044_bb0240) 2005; 41 Shur (10.1016/j.geoderma.2018.10.044_bb0330) 2007; 18 Walvoord (10.1016/j.geoderma.2018.10.044_bb0355) 2016; 15 Payette (10.1016/j.geoderma.2018.10.044_bb0275) 2004; 31 Zhao (10.1016/j.geoderma.2018.10.044_bb0480) 2017; 32 Guo (10.1016/j.geoderma.2018.10.044_bb0095) 2017; 37 Romanovsky (10.1016/j.geoderma.2018.10.044_bb0305) 1997; 8 Cheng (10.1016/j.geoderma.2018.10.044_bb0050) 2007; 112 Ek (10.1016/j.geoderma.2018.10.044_bb0070) 2003; 108 Romanovsky (10.1016/j.geoderma.2018.10.044_bb0310) 2010; 21 Wu (10.1016/j.geoderma.2018.10.044_bb0385) 2009; 39 Tang (10.1016/j.geoderma.2018.10.044_bb0340) 1979; 34 Zou (10.1016/j.geoderma.2018.10.044_bb0510) 2017; 11 Yu (10.1016/j.geoderma.2018.10.044_bb0435) 2003 Feng (10.1016/j.geoderma.2018.10.044_bb0080) 1998; 43 Goodrich (10.1016/j.geoderma.2018.10.044_bb0090) 1978 Wu (10.1016/j.geoderma.2018.10.044_bb0380) 2008; 113 Jiang (10.1016/j.geoderma.2018.10.044_bb0185) 2017; 13(1) Harris (10.1016/j.geoderma.2018.10.044_bb0115) 2003; 39 Zhang (10.1016/j.geoderma.2018.10.044_bb0440) 2001; 49 Zhang (10.1016/j.geoderma.2018.10.044_bb0445) 2005; 110 Yanai (10.1016/j.geoderma.2018.10.044_bb0410) 2006; 29 Hu (10.1016/j.geoderma.2018.10.044_bb0170) 2017; 306 |
References_xml | – volume: 31 start-page: 4647 year: 2017 end-page: 4659 ident: bb0290 article-title: Assessment of reanalysis soil moisture products in the permafrost regions of the central of the Qinghai–Tibet Plateau publication-title: Hydrol. Process. – volume: 57 start-page: 4609 year: 2012 end-page: 4616 ident: bb0210 article-title: Temporal and spatial variations of the active layer along the Qinghai-Tibet highway in a permafrost region publication-title: Sci. Bull. – volume: 8 start-page: 1 year: 1997 end-page: 22 ident: bb0305 article-title: Thawing of the active layer on the coastal plain of the Alaskan Arctic publication-title: Permafr. Periglac. Process. – volume: 27 start-page: 2185 year: 2014 end-page: 2208 ident: bb0320 article-title: The NCEP climate forecast system version 2 publication-title: J. Clim. – volume: 61 start-page: 68 year: 2014 end-page: 71 ident: bb0345 article-title: Soil temperature is an important regulatory control on dissolved organic carbon supply and uptake of soil solution nitrate publication-title: Eur. J. Soil Biol. – start-page: 71 year: 1999 end-page: 78 ident: bb0010 article-title: Analysis and prediction of water infiltration in underground, frozen placer mines publication-title: Mining in the Arctic – volume: 25 start-page: 713 year: 2015 end-page: 727 ident: bb0155 article-title: Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China publication-title: Chin. Geogr. Sci. – volume: 87 start-page: 68 year: 2013 end-page: 77 ident: bb0400 article-title: Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau publication-title: Cold Reg. Sci. Technol. – volume: 29 start-page: 513 year: 2006 end-page: 549 ident: bb0410 article-title: Effects of the Tibetan publication-title: Plateau – volume: 110 start-page: 1 year: 2005 end-page: 15 ident: bb0445 article-title: Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change publication-title: J. Geophys. Res.-Atmos. – volume: 115 start-page: 1 year: 2010 end-page: 14 ident: bb0325 article-title: Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska publication-title: J. Geophys. Res. Biogeosci. – volume: 29 start-page: 86 year: 2018 end-page: 99 ident: bb0395 article-title: Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Plateau publication-title: Permafr. Periglac. Process. – volume: 28 start-page: 642 year: 2006 end-page: 647 ident: bb0225 article-title: Heat and water difference of active layers beneath different surface conditions near Beiluhe in Qinghai-Xizang Plateau publication-title: J. Glaciol. Geocryol. – volume: 19 start-page: 389 year: 2015 end-page: 407 ident: bb0005 article-title: ERA-interim/land: a global land surface reanalysis data set publication-title: Hydrol. Earth Syst. Sci. – volume: 113 start-page: 1 year: 2008 end-page: 15 ident: bb0235 article-title: Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China publication-title: J. Geophys. Res.-Atmos. – volume: 3 start-page: 693 year: 2004 end-page: 704 ident: bb0105 article-title: Water flow and heat transport in frozen soil publication-title: Vadose Zone J. – volume: 464 start-page: 579 year: 2010 end-page: U132 ident: bb0025 article-title: Temperature-associated increases in the global soil respiration record publication-title: Nature – volume: 104 start-page: 18866 year: 2007 end-page: 18870 ident: bb0035 article-title: Contributions to accelerating atmospheric CO(2) growth from economic activity, carbon intensity, and efficiency of natural sinks publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 137 start-page: 553 year: 2011 end-page: 597 ident: bb0065 article-title: The ERA-interim reanalysis: configuration and performance of the data assimilation system publication-title: Q. J. R. Meteorol. Soc. – volume: 51 start-page: 1670 year: 2008 end-page: 1681 ident: bb0465 article-title: Seasonal characteristic and interannual variability of the atmospheric hydrological cycle in the Yangtze River basin during the summer monsoon period publication-title: Chin. J. Geophys. – year: 2000 ident: bb0490 article-title: China Permafrost – volume: 18 start-page: 7 year: 2007 end-page: 19 ident: bb0330 article-title: Patterns of permafrost formation and degradation in relation to climate and ecosystems publication-title: Permafr. Periglac. Process. – volume: 613-614 start-page: 1165 year: 2017 end-page: 1174 ident: bb0390 article-title: Permafrost and land cover as controlling factors for light fraction organic matter on the southern Qinghai-Tibetan plateau publication-title: Sci. Total Environ. – volume: 79 start-page: 37 year: 2011 end-page: 47 ident: bb0120 article-title: Boreal and subarctic soils under climatic change publication-title: Glob. Planet. Chang. – year: 1978 ident: bb0090 article-title: Some Results of a Numerical Study of Ground Thermal Regimes – volume: 306 start-page: 244 year: 2017 end-page: 251 ident: bb0170 article-title: A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan Plateau publication-title: Geoderma – volume: 26 start-page: 160 year: 2015 end-page: 174 ident: bb0040 article-title: Noah modelling of the permafrost distribution and characteristics in the west Kunlun area, Qinghai-Tibet Plateau, China publication-title: Permafr. Periglac. Process. – volume: 74 start-page: 2883 year: 2015 end-page: 2891 ident: bb9610 article-title: Period analysis and trend forecast for soil temperature in the Qinghai-Xizang Highway by wavelet transformation publication-title: Environ. Earth Sci. – volume: 15 start-page: 20 year: 2016 ident: bb0355 article-title: Hydrologic impacts of thawing permafrost-a review publication-title: Vadose Zone J. – volume: 13(1) start-page: 11 year: 2017 end-page: 24 ident: bb0185 article-title: Evaluation of the extreme temperature and its trend in China simulated by CMIP5 models publication-title: Progressus Inquisitiones de Mutatione Climatis – volume: 39 start-page: 215 year: 2003 end-page: 225 ident: bb0115 article-title: Warming permafrost in European mountains publication-title: Glob. Planet. Chang. – volume: 28 start-page: 300 year: 1996 end-page: 310 ident: bb0125 article-title: Temporal changes in moisture content of the active layer and near-surface permafrost at Barrow, Alaska, USA: 1962–1994 publication-title: Arct. Alp. Res. – volume: 109 start-page: 485 year: 2012 end-page: 496 ident: bb0425 article-title: Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis publication-title: Theor. Appl. Climatol. – start-page: 99 year: 1988 end-page: 104 ident: bb0030 article-title: Observations of the “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada publication-title: Arctic – volume: 36 start-page: 237 year: 2014 end-page: 247 ident: bb0190 article-title: Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer publication-title: J. Glaciol. Geocryol. – volume: 7 start-page: 307 year: 2011 end-page: 316 ident: bb0475 article-title: Soil thermal regime in Qinghai-Tibet plateau and its adjacent regions during 1977–2006 publication-title: Adv. Clim. Chang. Res. – volume: 4 start-page: 1 year: 2017 end-page: 15 ident: bb0430 article-title: Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations publication-title: Clim. Dyn. – volume: 34 start-page: 653 year: 2015 end-page: 665 ident: bb0220 article-title: Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau publication-title: Plateau Meteorol. – volume: 34 start-page: 904 year: 1991 end-page: 908 ident: bb0060 article-title: Soil-temperature sensor installation - a comparison of 2 methods publication-title: Trans. ASAE – volume: 20 start-page: 1729 year: 2000 end-page: 1742 ident: bb0215 article-title: Climatic warming in the Tibetan Plateau during recent decades publication-title: Int. J. Climatol. – volume: 34 start-page: 667 year: 1997 end-page: 678 ident: bb0130 article-title: Seasonal patterns of coupled flow in the active layer at three sites in northwest North America publication-title: Can. J. Earth Sci. – volume: 71 start-page: 5215 year: 2014 end-page: 5230 ident: bb0055 article-title: Soil temperatures in four metropolitan cities of Korea from 1960 to 2010: implications for climate change and urban heat publication-title: Environ. Earth Sci. – volume: 45 start-page: 2181 year: 2000 end-page: 2187 ident: bb0455 article-title: Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau publication-title: Chin. Sci. Bull. – start-page: 278 year: 1979 ident: bb0415 article-title: The Meteorology of the Qinghai-Xizang (Tibet) Plateau – volume: 21 start-page: 136 year: 2010 end-page: 155 ident: bb0310 article-title: Thermal state of permafrost in Russia publication-title: Permafr. Periglac. Process. – volume: 15 start-page: 2089 year: 2002 end-page: 2101 ident: bb0315 article-title: A comparative study of maximum and minimum temperatures over Argentina: NCEP-NCAR reanalysis versus station data publication-title: J. Clim. – volume: 11 start-page: 2527 year: 2017 end-page: 2542 ident: bb0510 article-title: A new map of permafrost distribution on the Tibetan Plateau publication-title: Cryosphere – volume: 10 start-page: 17 year: 1999 end-page: 37 ident: bb0265 article-title: Evidence for warming and thawing of discontinuous permafrost in Alaska publication-title: Permafr. Periglac. Process. – volume: 28 start-page: 139 year: 2014 end-page: 149 ident: bb0505 article-title: Validation and application of reanalysis temperature data over the Tibetan Plateau publication-title: J. Meteorol. Res. – volume: 11 start-page: 43 year: 2000 end-page: 53 ident: bb0365 article-title: Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts publication-title: Permafr. Periglac. Process. – volume: 232 start-page: 414 year: 2014 end-page: 425 ident: bb0370 article-title: Impacts of surface soil organic content on the soil thermal dynamics of alpine meadows in permafrost regions: data from field observations publication-title: Geoderma – volume: 49 start-page: 187 year: 2005 end-page: 202 ident: bb0255 article-title: The recent wan-ning of permafrost in Alaska publication-title: Glob. Planet. Chang. – volume: 21 start-page: 859 year: 2014 end-page: 866 ident: bb0420 article-title: Soil temperature trends in Buyuk Menderes Basin, Turkey publication-title: Meteorol. Appl. – volume: 14 start-page: 4062 year: 2001 end-page: 4072 ident: bb0335 article-title: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations publication-title: J. Clim. – volume: 55 start-page: 779 year: 2012 end-page: 786 ident: bb0495 article-title: An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets publication-title: Sci. China Earth Sci. – volume: 112 year: 2007 ident: bb0050 article-title: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau publication-title: J. Geophys. Res. Earth Surf. – volume: 1 start-page: 19 year: 2013 end-page: 32 ident: bb0350 article-title: An apparent hiatus in global warming? publication-title: Earth's Future – volume: 43 start-page: 1745 year: 1998 end-page: 1749 ident: bb0080 article-title: New evidence for the Qinghai-Xizang(Tibet) Plateau as a pilot region of climatic fluctuation in China publication-title: Chin. Sci. Bull. – volume: 95 start-page: 815 year: 2016 end-page: 823 ident: bb0160 article-title: New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux publication-title: Int. J. Heat Mass Transf. – volume: 49 start-page: 41 year: 2001 end-page: 76 ident: bb0440 article-title: An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia publication-title: Clim. Chang. – volume: 6 start-page: 313 year: 1995 end-page: 335 ident: bb0300 article-title: Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska publication-title: Permafr. Periglac. Process. – volume: 98 start-page: 82 year: 2002 end-page: 90 ident: bb0020 article-title: Permafrost, active-layer dynamics and periglacial environments of continental Antarctica: periglacial and permafrost research in the southern hemisphere publication-title: S. Afr. J. Sci. – volume: 32 start-page: 883 year: 2010 end-page: 890 ident: bb0405 article-title: Features and changing tendency of the permafrost in Mahan Mountain, Lanzhou publication-title: J. Glaciol. Geocryol. – volume: 85 start-page: 381 year: 2004 end-page: 394 ident: bb0295 article-title: The global land data assimilation system publication-title: Bull. Am. Meteorol. Soc. – year: 2007 ident: bb0180 article-title: Climate Change Synthesis Report – volume: 37 start-page: 4757 year: 2017 end-page: 4767 ident: bb0100 article-title: Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 publication-title: Int. J. Climatol. – volume: 519 start-page: 711 year: 2014 end-page: 719 ident: bb0175 article-title: Improved reconstruction of soil thermal field using two-depth measurements of soil temperature publication-title: J. Hydrol. – volume: 112 start-page: 1 year: 2007 end-page: 10 ident: bb0260 article-title: Characteristics of the recent warming of permafrost in Alaska publication-title: J. Geophys. Res. Earth Surf. – volume: 41 start-page: 1 year: 2005 end-page: 17 ident: bb0240 article-title: Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter publication-title: Water Resour. Res. – volume: 44 start-page: 1 year: 2008 end-page: 11 ident: bb0145 article-title: Estimating the soil temperature profile from a single depth observation: a simple empirical heatflow solution publication-title: Water Resour. Res. – volume: 108 year: 2003 ident: bb0015 article-title: Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes publication-title: J. Geophys. Res.-Atmos. – volume: 119 start-page: 99 year: 2015 end-page: 111 ident: bb0375 article-title: Comparison of surface air temperature derived from NCEP/DOE R2, ERA-Interim, and observations in the arid northwestern China: a consideration of altitude errors publication-title: Theor. Appl. Climatol. – volume: 126 start-page: 135 year: 2014 end-page: 150 ident: bb0110 article-title: Soil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008: an analysis with a process-based soil physical model and AmeriFlux data publication-title: Clim. Chang. – volume: 19 start-page: 111 year: 1991 end-page: 122 ident: bb0195 article-title: Thermal response of the active layer to climatic warming in a permafrost environment publication-title: Cold Reg. Sci. Technol. – volume: 43 start-page: 19 year: 2004 end-page: 31 ident: bb0460 article-title: Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China publication-title: Glob. Planet. Chang. – volume: 39 start-page: 1570 year: 2009 end-page: 1578 ident: bb0385 article-title: Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau. Science in China. Series D publication-title: Earth Sci. – volume: 31 start-page: 1 year: 2004 end-page: 4 ident: bb0250 article-title: Modeling evidence for recent warming of the Arctic soil thermal regime publication-title: Geophys. Res. Lett. – volume: 34 start-page: 34 year: 1979 end-page: 42 ident: bb0340 article-title: On climatic characteristics of the Xizang Plateau monsoon publication-title: Acta Geograph. Sin. – volume: 33 start-page: 349 year: 2011 end-page: 356 ident: bb0270 article-title: Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet highway publication-title: J. Glaciol. Geocryol. – volume: 124 start-page: 241 year: 2016 end-page: 266 ident: bb0485 article-title: Regional differences in the surface energy budget over China: an evaluation of a selection of CMIP5 models publication-title: Theor. Appl. Climatol. – volume: 122 start-page: 5780 year: 2017 end-page: 5792 ident: bb0045 article-title: Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan plateau publication-title: J. Geophys. Res.-Atmos. – start-page: 1 year: 2018 end-page: 13 ident: bb0075 article-title: Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014 publication-title: Theor. Appl. Climatol. – volume: 17 start-page: 649 year: 2006 end-page: 656 ident: bb0285 article-title: Progress on cryospheric studies by international and Chinese communities and perspectives publication-title: J. Appl. Meteorol. Sci. – volume: 55 start-page: 398 year: 1997 end-page: 405 ident: bb0245 article-title: Numerical simulation on water and heat transport in the desert soil and atmospheric boundary layer publication-title: Acta Meteorol. Sin. – volume: 37 start-page: 1102 year: 2017 end-page: 1110 ident: bb0095 article-title: Simulated change in soil temperature on the Tibetan Plateau from 1901 to 2010 publication-title: J. Quat. Sci. – volume: 19 start-page: 95 year: 1991 end-page: 110 ident: bb0135 article-title: Hydrologic and thermal properties of the active layer in the Alaskan Arctic publication-title: Cold Reg. Sci. Technol. – volume: 24 start-page: 1626 year: 2011 end-page: 1646 ident: bb0230 article-title: Impact of global ocean surface warming on seasonal-to-interannual climate prediction publication-title: J. Clim. – start-page: 1 year: 2017 end-page: 19 ident: bb0500 article-title: Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013 publication-title: Clim. Dyn. – volume: 113 start-page: 1 year: 2008 end-page: 22 ident: bb0380 article-title: Recent permafrost warming on the Qinghai-Tibetan Plateau publication-title: J. Geophys. Res. – volume: 32 start-page: 1159 year: 2017 end-page: 1168 ident: bb0480 article-title: Support geoscience research, environmental management, and engineering construction with investigation and monitoring on permafrost in the Qinghai-Tibet Plateau, China publication-title: Bull. Chin. Acad. Sci. – volume: 2331–1258 year: 1994 ident: bb0205 article-title: Permafrost, the Active Layer, and Changing Climate publication-title: US Geological Survey – volume: 116 start-page: 1 year: 2011 end-page: 16 ident: bb0280 article-title: Observed soil temperature trends associated with climate change in Canada publication-title: J. Geophys. Res.-Atmos. – year: 2004 ident: bb0085 article-title: Toward CO2 Stabilization: Issues, Strategies, and Consequences – year: 2003 ident: bb0435 article-title: Specifications for Surface Meteorological Observation – volume: 6 start-page: 68 year: 2005 end-page: 84 ident: bb0140 article-title: Evaluation and transferability of the Noah land surface model in semiarid environments publication-title: J. Hydrometeorol. – volume: 31 year: 2004 ident: bb0275 article-title: Accelerated thawing of subarctic peatland permafrost over the last 50 years publication-title: Geophys. Res. Lett. – volume: 104 start-page: 19569 year: 1999 end-page: 19585 ident: bb0200 article-title: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models publication-title: J. Geophys. Res.-Atmos. – volume: 63 start-page: 1151 year: 2008 end-page: 1159 ident: bb0450 article-title: Variation characteristics of soil temperature over Qinghai-Xizang Plateau in the past 45 years publication-title: Acta Geograph. Sin. – volume: 42 start-page: 1139 year: 2003 end-page: 1156 ident: bb0150 article-title: A daily soil temperature dataset and soil temperature climatology of the contiguous United States publication-title: J. Appl. Meteorol. – volume: 21 start-page: 198 year: 2010 end-page: 207 ident: bb0470 article-title: Thermal state of permafrost and active layer in Central Asia during the international polar year publication-title: Permafr. Periglac. Process. – volume: 117 start-page: 1 year: 2012 end-page: 12 ident: bb0360 article-title: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau publication-title: J. Geophys. Res.-Atmos. – volume: 108 start-page: 1 year: 2003 end-page: 16 ident: bb0070 article-title: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model publication-title: J. Geophys. Res. Atmos. – volume: 156 start-page: 244 year: 2017 end-page: 251 ident: bb0165 article-title: Comparison of the thermal conductivity parameterizations for a freeze-thaw algorithm with a multi-layered soil in permafrost regions publication-title: Catena – volume: 74 start-page: 2883 issue: 4 year: 2015 ident: 10.1016/j.geoderma.2018.10.044_bb9610 article-title: Period analysis and trend forecast for soil temperature in the Qinghai-Xizang Highway by wavelet transformation publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4313-y – volume: 110 start-page: 1 issue: D3 year: 2005 ident: 10.1016/j.geoderma.2018.10.044_bb0445 article-title: Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2004JD004910 – volume: 113 start-page: 1 issue: D13 year: 2008 ident: 10.1016/j.geoderma.2018.10.044_bb0380 article-title: Recent permafrost warming on the Qinghai-Tibetan Plateau publication-title: J. Geophys. Res. – volume: 34 start-page: 904 issue: 3 year: 1991 ident: 10.1016/j.geoderma.2018.10.044_bb0060 article-title: Soil-temperature sensor installation - a comparison of 2 methods publication-title: Trans. ASAE doi: 10.13031/2013.31747 – volume: 79 start-page: 37 issue: 1–2 year: 2011 ident: 10.1016/j.geoderma.2018.10.044_bb0120 article-title: Boreal and subarctic soils under climatic change publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2011.08.001 – volume: 112 start-page: 1 issue: F2 year: 2007 ident: 10.1016/j.geoderma.2018.10.044_bb0260 article-title: Characteristics of the recent warming of permafrost in Alaska publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2006JF000578 – volume: 26 start-page: 160 issue: 2 year: 2015 ident: 10.1016/j.geoderma.2018.10.044_bb0040 article-title: Noah modelling of the permafrost distribution and characteristics in the west Kunlun area, Qinghai-Tibet Plateau, China publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1841 – volume: 109 start-page: 485 issue: 3–4 year: 2012 ident: 10.1016/j.geoderma.2018.10.044_bb0425 article-title: Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-012-0594-1 – volume: 36 start-page: 237 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0190 article-title: Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer publication-title: J. Glaciol. Geocryol. – volume: 104 start-page: 18866 issue: 47 year: 2007 ident: 10.1016/j.geoderma.2018.10.044_bb0035 article-title: Contributions to accelerating atmospheric CO(2) growth from economic activity, carbon intensity, and efficiency of natural sinks publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0702737104 – volume: 11 start-page: 2527 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0510 article-title: A new map of permafrost distribution on the Tibetan Plateau publication-title: Cryosphere doi: 10.5194/tc-11-2527-2017 – volume: 15 start-page: 20 issue: 6 year: 2016 ident: 10.1016/j.geoderma.2018.10.044_bb0355 article-title: Hydrologic impacts of thawing permafrost-a review publication-title: Vadose Zone J. doi: 10.2136/vzj2016.01.0010 – volume: 32 start-page: 883 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2018.10.044_bb0405 article-title: Features and changing tendency of the permafrost in Mahan Mountain, Lanzhou publication-title: J. Glaciol. Geocryol. – start-page: 71 year: 1999 ident: 10.1016/j.geoderma.2018.10.044_bb0010 article-title: Analysis and prediction of water infiltration in underground, frozen placer mines – volume: 85 start-page: 381 issue: 3 year: 2004 ident: 10.1016/j.geoderma.2018.10.044_bb0295 article-title: The global land data assimilation system publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-85-3-381 – volume: 21 start-page: 198 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2018.10.044_bb0470 article-title: Thermal state of permafrost and active layer in Central Asia during the international polar year publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.688 – volume: 6 start-page: 68 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2018.10.044_bb0140 article-title: Evaluation and transferability of the Noah land surface model in semiarid environments publication-title: J. Hydrometeorol. doi: 10.1175/JHM-402.1 – volume: 98 start-page: 82 issue: 1 & 2 year: 2002 ident: 10.1016/j.geoderma.2018.10.044_bb0020 article-title: Permafrost, active-layer dynamics and periglacial environments of continental Antarctica: periglacial and permafrost research in the southern hemisphere publication-title: S. Afr. J. Sci. – volume: 51 start-page: 1670 issue: 6 year: 2008 ident: 10.1016/j.geoderma.2018.10.044_bb0465 article-title: Seasonal characteristic and interannual variability of the atmospheric hydrological cycle in the Yangtze River basin during the summer monsoon period publication-title: Chin. J. Geophys. – volume: 19 start-page: 111 issue: 2 year: 1991 ident: 10.1016/j.geoderma.2018.10.044_bb0195 article-title: Thermal response of the active layer to climatic warming in a permafrost environment publication-title: Cold Reg. Sci. Technol. doi: 10.1016/0165-232X(91)90002-X – volume: 55 start-page: 398 issue: 4 year: 1997 ident: 10.1016/j.geoderma.2018.10.044_bb0245 article-title: Numerical simulation on water and heat transport in the desert soil and atmospheric boundary layer publication-title: Acta Meteorol. Sin. – volume: 28 start-page: 300 issue: 3 year: 1996 ident: 10.1016/j.geoderma.2018.10.044_bb0125 article-title: Temporal changes in moisture content of the active layer and near-surface permafrost at Barrow, Alaska, USA: 1962–1994 publication-title: Arct. Alp. Res. doi: 10.2307/1552109 – volume: 122 start-page: 5780 issue: 11 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0045 article-title: Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan plateau publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2016JD026388 – volume: 10 start-page: 17 issue: 1 year: 1999 ident: 10.1016/j.geoderma.2018.10.044_bb0265 article-title: Evidence for warming and thawing of discontinuous permafrost in Alaska publication-title: Permafr. Periglac. Process. doi: 10.1002/(SICI)1099-1530(199901/03)10:1<17::AID-PPP303>3.0.CO;2-4 – year: 2003 ident: 10.1016/j.geoderma.2018.10.044_bb0435 – volume: 137 start-page: 553 issue: 656 year: 2011 ident: 10.1016/j.geoderma.2018.10.044_bb0065 article-title: The ERA-interim reanalysis: configuration and performance of the data assimilation system publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.828 – volume: 156 start-page: 244 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0165 article-title: Comparison of the thermal conductivity parameterizations for a freeze-thaw algorithm with a multi-layered soil in permafrost regions publication-title: Catena doi: 10.1016/j.catena.2017.04.011 – start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0500 article-title: Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013 publication-title: Clim. Dyn. – volume: 13(1) start-page: 11 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0185 article-title: Evaluation of the extreme temperature and its trend in China simulated by CMIP5 models – volume: 108 start-page: 1 issue: D22 year: 2003 ident: 10.1016/j.geoderma.2018.10.044_bb0070 article-title: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2002JD003296 – volume: 306 start-page: 244 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0170 article-title: A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan Plateau publication-title: Geoderma doi: 10.1016/j.geoderma.2017.07.017 – year: 2007 ident: 10.1016/j.geoderma.2018.10.044_bb0180 – volume: 8 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.geoderma.2018.10.044_bb0305 article-title: Thawing of the active layer on the coastal plain of the Alaskan Arctic publication-title: Permafr. Periglac. Process. doi: 10.1002/(SICI)1099-1530(199701)8:1<1::AID-PPP243>3.0.CO;2-U – volume: 31 issue: 18 year: 2004 ident: 10.1016/j.geoderma.2018.10.044_bb0275 article-title: Accelerated thawing of subarctic peatland permafrost over the last 50 years publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020358 – volume: 519 start-page: 711 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0175 article-title: Improved reconstruction of soil thermal field using two-depth measurements of soil temperature publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.08.014 – volume: 21 start-page: 859 issue: 4 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0420 article-title: Soil temperature trends in Buyuk Menderes Basin, Turkey publication-title: Meteorol. Appl. doi: 10.1002/met.1421 – volume: 37 start-page: 4757 issue: 14 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0100 article-title: Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012 publication-title: Int. J. Climatol. doi: 10.1002/joc.5119 – volume: 61 start-page: 68 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0345 article-title: Soil temperature is an important regulatory control on dissolved organic carbon supply and uptake of soil solution nitrate publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2014.01.003 – start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2018.10.044_bb0075 article-title: Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014 publication-title: Theor. Appl. Climatol. – volume: 17 start-page: 649 issue: 6 year: 2006 ident: 10.1016/j.geoderma.2018.10.044_bb0285 article-title: Progress on cryospheric studies by international and Chinese communities and perspectives publication-title: J. Appl. Meteorol. Sci. – volume: 112 issue: F2 year: 2007 ident: 10.1016/j.geoderma.2018.10.044_bb0050 article-title: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2006JF000631 – start-page: 99 year: 1988 ident: 10.1016/j.geoderma.2018.10.044_bb0030 article-title: Observations of the “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada publication-title: Arctic – volume: 37 start-page: 1102 issue: 5 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0095 article-title: Simulated change in soil temperature on the Tibetan Plateau from 1901 to 2010 publication-title: J. Quat. Sci. – volume: 57 start-page: 4609 issue: 35 year: 2012 ident: 10.1016/j.geoderma.2018.10.044_bb0210 article-title: Temporal and spatial variations of the active layer along the Qinghai-Tibet highway in a permafrost region publication-title: Sci. Bull. doi: 10.1007/s11434-012-5323-8 – volume: 49 start-page: 187 issue: 3–4 year: 2005 ident: 10.1016/j.geoderma.2018.10.044_bb0255 article-title: The recent wan-ning of permafrost in Alaska publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2005.09.001 – volume: 11 start-page: 43 issue: 1 year: 2000 ident: 10.1016/j.geoderma.2018.10.044_bb0365 article-title: Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts publication-title: Permafr. Periglac. Process. doi: 10.1002/(SICI)1099-1530(200001/03)11:1<43::AID-PPP332>3.0.CO;2-H – year: 2000 ident: 10.1016/j.geoderma.2018.10.044_bb0490 – volume: 19 start-page: 95 issue: 2 year: 1991 ident: 10.1016/j.geoderma.2018.10.044_bb0135 article-title: Hydrologic and thermal properties of the active layer in the Alaskan Arctic publication-title: Cold Reg. Sci. Technol. doi: 10.1016/0165-232X(91)90001-W – volume: 2331–1258 year: 1994 ident: 10.1016/j.geoderma.2018.10.044_bb0205 article-title: Permafrost, the Active Layer, and Changing Climate – volume: 15 start-page: 2089 issue: 15 year: 2002 ident: 10.1016/j.geoderma.2018.10.044_bb0315 article-title: A comparative study of maximum and minimum temperatures over Argentina: NCEP-NCAR reanalysis versus station data publication-title: J. Clim. doi: 10.1175/1520-0442(2002)015<2089:ACSOMA>2.0.CO;2 – volume: 49 start-page: 41 issue: 1–2 year: 2001 ident: 10.1016/j.geoderma.2018.10.044_bb0440 article-title: An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia publication-title: Clim. Chang. doi: 10.1023/A:1010790203146 – volume: 20 start-page: 1729 issue: 14 year: 2000 ident: 10.1016/j.geoderma.2018.10.044_bb0215 article-title: Climatic warming in the Tibetan Plateau during recent decades publication-title: Int. J. Climatol. doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y – volume: 29 start-page: 86 year: 2018 ident: 10.1016/j.geoderma.2018.10.044_bb0395 article-title: Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Plateau publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1971 – volume: 7 start-page: 307 issue: 5 year: 2011 ident: 10.1016/j.geoderma.2018.10.044_bb0475 article-title: Soil thermal regime in Qinghai-Tibet plateau and its adjacent regions during 1977–2006 publication-title: Adv. Clim. Chang. Res. – volume: 29 start-page: 513 issue: 5 year: 2006 ident: 10.1016/j.geoderma.2018.10.044_bb0410 article-title: Effects of the Tibetan publication-title: Plateau – volume: 55 start-page: 779 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2018.10.044_bb0495 article-title: An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-012-4379-2 – volume: 115 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2018.10.044_bb0325 article-title: Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2009JG001248 – volume: 464 start-page: 579 issue: 7288 year: 2010 ident: 10.1016/j.geoderma.2018.10.044_bb0025 article-title: Temperature-associated increases in the global soil respiration record publication-title: Nature doi: 10.1038/nature08930 – volume: 18 start-page: 7 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2018.10.044_bb0330 article-title: Patterns of permafrost formation and degradation in relation to climate and ecosystems publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.582 – volume: 126 start-page: 135 issue: 1–2 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0110 article-title: Soil thermal dynamics of terrestrial ecosystems of the conterminous United States from 1948 to 2008: an analysis with a process-based soil physical model and AmeriFlux data publication-title: Clim. Chang. doi: 10.1007/s10584-014-1196-y – volume: 34 start-page: 667 issue: 5 year: 1997 ident: 10.1016/j.geoderma.2018.10.044_bb0130 article-title: Seasonal patterns of coupled flow in the active layer at three sites in northwest North America publication-title: Can. J. Earth Sci. doi: 10.1139/e17-053 – volume: 27 start-page: 2185 issue: 6 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0320 article-title: The NCEP climate forecast system version 2 publication-title: J. Clim. doi: 10.1175/JCLI-D-12-00823.1 – volume: 28 start-page: 642 issue: 5 year: 2006 ident: 10.1016/j.geoderma.2018.10.044_bb0225 article-title: Heat and water difference of active layers beneath different surface conditions near Beiluhe in Qinghai-Xizang Plateau publication-title: J. Glaciol. Geocryol. – volume: 19 start-page: 389 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2018.10.044_bb0005 article-title: ERA-interim/land: a global land surface reanalysis data set publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-389-2015 – start-page: 278 year: 1979 ident: 10.1016/j.geoderma.2018.10.044_bb0415 – volume: 44 start-page: 1 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2018.10.044_bb0145 article-title: Estimating the soil temperature profile from a single depth observation: a simple empirical heatflow solution publication-title: Water Resour. Res. doi: 10.1029/2007WR005994 – volume: 3 start-page: 693 issue: 2 year: 2004 ident: 10.1016/j.geoderma.2018.10.044_bb0105 article-title: Water flow and heat transport in frozen soil publication-title: Vadose Zone J. doi: 10.2136/vzj2004.0693 – volume: 34 start-page: 34 issue: 1 year: 1979 ident: 10.1016/j.geoderma.2018.10.044_bb0340 article-title: On climatic characteristics of the Xizang Plateau monsoon publication-title: Acta Geograph. Sin. – volume: 87 start-page: 68 year: 2013 ident: 10.1016/j.geoderma.2018.10.044_bb0400 article-title: Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2012.12.004 – volume: 104 start-page: 19569 issue: D16 year: 1999 ident: 10.1016/j.geoderma.2018.10.044_bb0200 article-title: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/1999JD900232 – volume: 6 start-page: 313 issue: 4 year: 1995 ident: 10.1016/j.geoderma.2018.10.044_bb0300 article-title: Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.3430060404 – volume: 119 start-page: 99 issue: 1–2 year: 2015 ident: 10.1016/j.geoderma.2018.10.044_bb0375 article-title: Comparison of surface air temperature derived from NCEP/DOE R2, ERA-Interim, and observations in the arid northwestern China: a consideration of altitude errors publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-014-1107-1 – volume: 71 start-page: 5215 issue: 12 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0055 article-title: Soil temperatures in four metropolitan cities of Korea from 1960 to 2010: implications for climate change and urban heat publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2924-8 – volume: 43 start-page: 19 issue: 1–2 year: 2004 ident: 10.1016/j.geoderma.2018.10.044_bb0460 article-title: Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2004.02.003 – volume: 43 start-page: 1745 issue: 6 year: 1998 ident: 10.1016/j.geoderma.2018.10.044_bb0080 article-title: New evidence for the Qinghai-Xizang(Tibet) Plateau as a pilot region of climatic fluctuation in China publication-title: Chin. Sci. Bull. doi: 10.1007/BF02883978 – volume: 42 start-page: 1139 issue: 8 year: 2003 ident: 10.1016/j.geoderma.2018.10.044_bb0150 article-title: A daily soil temperature dataset and soil temperature climatology of the contiguous United States publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2003)042<1139:ADSTDA>2.0.CO;2 – volume: 117 start-page: 1 year: 2012 ident: 10.1016/j.geoderma.2018.10.044_bb0360 article-title: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau publication-title: J. Geophys. Res.-Atmos. – volume: 34 start-page: 653 issue: 3 year: 2015 ident: 10.1016/j.geoderma.2018.10.044_bb0220 article-title: Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau publication-title: Plateau Meteorol. – volume: 31 start-page: 4647 issue: 26 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0290 article-title: Assessment of reanalysis soil moisture products in the permafrost regions of the central of the Qinghai–Tibet Plateau publication-title: Hydrol. Process. doi: 10.1002/hyp.11383 – volume: 113 start-page: 1 issue: D15 year: 2008 ident: 10.1016/j.geoderma.2018.10.044_bb0235 article-title: Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2007JD009549 – volume: 108 issue: D16 year: 2003 ident: 10.1016/j.geoderma.2018.10.044_bb0015 article-title: Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2002JD003334 – volume: 39 start-page: 215 issue: 3–4 year: 2003 ident: 10.1016/j.geoderma.2018.10.044_bb0115 article-title: Warming permafrost in European mountains publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2003.04.001 – volume: 14 start-page: 4062 issue: 20 year: 2001 ident: 10.1016/j.geoderma.2018.10.044_bb0335 article-title: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<4062:QUINRU>2.0.CO;2 – volume: 28 start-page: 139 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0505 article-title: Validation and application of reanalysis temperature data over the Tibetan Plateau publication-title: J. Meteorol. Res. – volume: 613-614 start-page: 1165 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0390 article-title: Permafrost and land cover as controlling factors for light fraction organic matter on the southern Qinghai-Tibetan plateau publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.052 – volume: 32 start-page: 1159 issue: 10 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0480 article-title: Support geoscience research, environmental management, and engineering construction with investigation and monitoring on permafrost in the Qinghai-Tibet Plateau, China publication-title: Bull. Chin. Acad. Sci. – volume: 24 start-page: 1626 issue: 6 year: 2011 ident: 10.1016/j.geoderma.2018.10.044_bb0230 article-title: Impact of global ocean surface warming on seasonal-to-interannual climate prediction publication-title: J. Clim. doi: 10.1175/2010JCLI3645.1 – volume: 4 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2018.10.044_bb0430 article-title: Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations publication-title: Clim. Dyn. – volume: 33 start-page: 349 issue: 2 year: 2011 ident: 10.1016/j.geoderma.2018.10.044_bb0270 article-title: Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet highway publication-title: J. Glaciol. Geocryol. – volume: 21 start-page: 136 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2018.10.044_bb0310 article-title: Thermal state of permafrost in Russia publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.683 – volume: 31 start-page: 1 issue: 7 year: 2004 ident: 10.1016/j.geoderma.2018.10.044_bb0250 article-title: Modeling evidence for recent warming of the Arctic soil thermal regime publication-title: Geophys. Res. Lett. doi: 10.1029/2003GL019300 – volume: 63 start-page: 1151 issue: 11 year: 2008 ident: 10.1016/j.geoderma.2018.10.044_bb0450 article-title: Variation characteristics of soil temperature over Qinghai-Xizang Plateau in the past 45 years publication-title: Acta Geograph. Sin. – volume: 41 start-page: 1 issue: 5 year: 2005 ident: 10.1016/j.geoderma.2018.10.044_bb0240 article-title: Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter publication-title: Water Resour. Res. doi: 10.1029/2004WR003604 – volume: 25 start-page: 713 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2018.10.044_bb0155 article-title: Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-015-0733-6 – volume: 45 start-page: 2181 issue: 23 year: 2000 ident: 10.1016/j.geoderma.2018.10.044_bb0455 article-title: Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau publication-title: Chin. Sci. Bull. doi: 10.1007/BF02886326 – year: 2004 ident: 10.1016/j.geoderma.2018.10.044_bb0085 – volume: 1 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.geoderma.2018.10.044_bb0350 article-title: An apparent hiatus in global warming? publication-title: Earth's Future doi: 10.1002/2013EF000165 – volume: 95 start-page: 815 year: 2016 ident: 10.1016/j.geoderma.2018.10.044_bb0160 article-title: New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.11.078 – year: 1978 ident: 10.1016/j.geoderma.2018.10.044_bb0090 – volume: 232 start-page: 414 year: 2014 ident: 10.1016/j.geoderma.2018.10.044_bb0370 article-title: Impacts of surface soil organic content on the soil thermal dynamics of alpine meadows in permafrost regions: data from field observations publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.016 – volume: 124 start-page: 241 issue: 1–2 year: 2016 ident: 10.1016/j.geoderma.2018.10.044_bb0485 article-title: Regional differences in the surface energy budget over China: an evaluation of a selection of CMIP5 models publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1407-0 – volume: 116 start-page: 1 year: 2011 ident: 10.1016/j.geoderma.2018.10.044_bb0280 article-title: Observed soil temperature trends associated with climate change in Canada publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2010JD015012 – volume: 39 start-page: 1570 issue: 11 year: 2009 ident: 10.1016/j.geoderma.2018.10.044_bb0385 article-title: Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau. Science in China. Series D publication-title: Earth Sci. |
SSID | ssj0017020 |
Score | 2.5655186 |
Snippet | Soil temperature is an important physical variable of soil and plays a key role in controlling the underground hydro-thermal processes in permafrost regions on... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 893 |
SubjectTerms | alpine meadows autumn China climate change Observation Permafrost Qinghai-Tibetan Plateau Reanalysis product Soil temperature spring steppes thermal properties vegetation cover weather forecasting wetlands winter |
Title | Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.10.044 https://www.proquest.com/docview/2176349685 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wTwWvdhubRHBdRVoVFQcVbSZpUK0u77OPqX_AvO9OmiwriwZ6aNFNCZpqZSWe-IeQMZNb7OBfgm7A04kKzSINihqaRroh1Dg8x2mIoB4_85lk8L5GLLhcGwyrD3t_u6c1uHXp6YTV747LEHF8mFagjhrWyVJPfy7lCKT9_X4R5MBUHaEYmIxz9JUv4DXiEBcca_CGWnmOUF-e_KagfW3Wjf642yHowHGm_ndsmWfLVFlnrv0wCeIbfJh9P4Pi2J3C0rOi0LkcUoacCbjLFVBIK7n9MZzWFuQgcNcaZFZj7QbFIA9LWFQWzkN6DVns1ZfRQWg8mJL0bgV1q5hQVn8NBtcUjXbg3lQNiE_BN6LhFkZ3ukMery4eLQRQKLkQ5Z2wWJYXn2kmhLLdJIgvmRCIdcM2zIpWKc6O85QU3Fi7EdjRCO-cUWEFWAXGyS5aruvJ7hMbK5Yl2RoNLyV2RpMIzk4C4-Di24ETtE9GtcpYHNHIsijHKurCzt6zjTobcwX7gzj7pLejGLR7HnxS6Y2L2TbIyUBp_0p52XM_gs8N_Kaby9XyagScnEWs_FQf_eP8hWYWWbmPajsjybDL3x2DkzOxJI8UnZKV_fTsYfgLQxf59 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZQObAcELCLFpaHkfYaGit-xMcKLSqvipXKiptlxw6bqkoq2v4O_vLONA5akBAHckrsTGR5Jp4Ze-YbQn6CzIaQFgJ8E5YnXGiWaFDM8GilL1NdQCdGW4zk8J5fPYiHNXLe5cJgWGVc-9s1fbVax5Z-nM3-rKowx5dJBeqIYa0shfm964hOJXpkfXB5PRy9HCaoNKIzMpkgwX-JwhNgE9YcW0EQsfwMA704f09HvVmtVyroYptsRduRDtrh7ZC1UO-SzcHjU8TPCF_J8x_wfdtNOFrVdN5UU4roUxE6mWI2CWU6T-mioTAWgW_NcGQlpn9QrNOAtE1NwTKkv0Gx_bVVMq5cACuS3k3BNLVLirrP40uNw11duLe1B2IbIU7orAWSnX8j9xe_xufDJNZcSArO2CLJysC1l0I57rJMlsyLTHpgXGBlLhXnVgXHS24dXAjvaIX23iswhJwC4myP9OqmDt8JTZUvMu2tBq-S-zLLRWA2A4kJaerAj9onoptlU0RAcqyLMTVd5NnEdNwxyB1sB-7sk_4L3ayF5PiQQndMNK-Ey4De-JD2tOO6gT8Pj1NsHZrl3IAzJxFuPxcHn_j-CdkYjm9vzM3l6PoH-QI9ug1xOyS9xdMyHIHNs3DHUab_AXy5AT0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+in+soil+temperature+from+1980+to+2015+in+permafrost+regions+on+the+Qinghai-Tibetan+Plateau+based+on+observed+and+reanalysis+products&rft.jtitle=Geoderma&rft.au=Hu%2C+Guojie&rft.au=Zhao%2C+Lin&rft.au=Li%2C+Ren&rft.au=Wu%2C+Xiaodong&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.volume=337&rft.spage=893&rft.epage=905&rft_id=info:doi/10.1016%2Fj.geoderma.2018.10.044&rft.externalDocID=S0016706118310711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |