Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration
Soil aggregate size significantly impacts microbial communities and soil respiration. Soil total porosity and pH can regulate the distribution of soil bacteria and fungal communities within aggregates, thereby influencing soil respiration. However, it is unclear how it affects the microbial communit...
Saved in:
Published in | Geoderma Vol. 337; pp. 444 - 452 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil aggregate size significantly impacts microbial communities and soil respiration. Soil total porosity and pH can regulate the distribution of soil bacteria and fungal communities within aggregates, thereby influencing soil respiration. However, it is unclear how it affects the microbial community composition distributed in soil aggregates, especially for fungal communities. The roles of soil total porosity and pH in controlling the microbial composition of soil aggregates are also unknown. In this study, we used high-throughput sequencing of the 16S rRNA and ITS gene regions to target bacterial and fungal members of aggregate samples of four sizes (2–4 mm, 1–2 mm, 0.25–1 mm and <0.25 mm). Our results showed that high respiration occurred in soil aggregates of 2–4 mm and 1–2 mm when there was high soil total porosity and low soil pH than in aggregates of 0.25–1 mm and <0.25 mm. Moreover, soil aggregates of 2–4 mm and 1–2 mm were dominated by four bacterial families (Oxalobacteraceae, Sphingomonadaceae, Cytophagaceae and Gemmatimonadaceae) and two fungal families (Lasiosphaeriaceae and Rhizophlyctidaceae), while the 0.25–1 mm and <0.25 mm aggregates were dominated by two bacterial families (Bacillaceae and Clostridiaceae) and one fungal family (Nectriaceae). Our results suggest that soil organic carbon and total porosity positively influenced the bacterial Shannon index, which led to a further positive influence on soil aggregate respiration, while soil pH positively affected the soil fungal Shannon index, leading to increased negative control of the respiration of soil aggregates.
The structural equation modeling (SEM) results show that soil total porosity could directly influence soil respiration. In addition, soil organic carbon and total porosity had a significantly positive direct effect on bacterial Shannon index. Additionally, the soil pH showed a direct negative effect on fungal Shannon index and soil respiration. Soil bacterial and fungal Shannon index had a significantly positive and negative direct effect on soil respiration, respectively. Our study suggests that the difference distribution of soil organic carbon, pH, total porosity in aggregates controlling the soil microbial diversity, and then affect soil aggregate respiration. [Display omitted]
•Soil aggregates size significantly impacts microbial communities and soil respiration.•High respiration occurred in macro-aggregates with high soil total porosity and low soil pH.•Soil bacterial Shannon index positively influenced the soil respiration.•Soil fungal Shannon index negatively affected the soil respiration. |
---|---|
AbstractList | Soil aggregate size significantly impacts microbial communities and soil respiration. Soil total porosity and pH can regulate the distribution of soil bacteria and fungal communities within aggregates, thereby influencing soil respiration. However, it is unclear how it affects the microbial community composition distributed in soil aggregates, especially for fungal communities. The roles of soil total porosity and pH in controlling the microbial composition of soil aggregates are also unknown. In this study, we used high-throughput sequencing of the 16S rRNA and ITS gene regions to target bacterial and fungal members of aggregate samples of four sizes (2–4 mm, 1–2 mm, 0.25–1 mm and <0.25 mm). Our results showed that high respiration occurred in soil aggregates of 2–4 mm and 1–2 mm when there was high soil total porosity and low soil pH than in aggregates of 0.25–1 mm and <0.25 mm. Moreover, soil aggregates of 2–4 mm and 1–2 mm were dominated by four bacterial families (Oxalobacteraceae, Sphingomonadaceae, Cytophagaceae and Gemmatimonadaceae) and two fungal families (Lasiosphaeriaceae and Rhizophlyctidaceae), while the 0.25–1 mm and <0.25 mm aggregates were dominated by two bacterial families (Bacillaceae and Clostridiaceae) and one fungal family (Nectriaceae). Our results suggest that soil organic carbon and total porosity positively influenced the bacterial Shannon index, which led to a further positive influence on soil aggregate respiration, while soil pH positively affected the soil fungal Shannon index, leading to increased negative control of the respiration of soil aggregates. Soil aggregate size significantly impacts microbial communities and soil respiration. Soil total porosity and pH can regulate the distribution of soil bacteria and fungal communities within aggregates, thereby influencing soil respiration. However, it is unclear how it affects the microbial community composition distributed in soil aggregates, especially for fungal communities. The roles of soil total porosity and pH in controlling the microbial composition of soil aggregates are also unknown. In this study, we used high-throughput sequencing of the 16S rRNA and ITS gene regions to target bacterial and fungal members of aggregate samples of four sizes (2–4 mm, 1–2 mm, 0.25–1 mm and <0.25 mm). Our results showed that high respiration occurred in soil aggregates of 2–4 mm and 1–2 mm when there was high soil total porosity and low soil pH than in aggregates of 0.25–1 mm and <0.25 mm. Moreover, soil aggregates of 2–4 mm and 1–2 mm were dominated by four bacterial families (Oxalobacteraceae, Sphingomonadaceae, Cytophagaceae and Gemmatimonadaceae) and two fungal families (Lasiosphaeriaceae and Rhizophlyctidaceae), while the 0.25–1 mm and <0.25 mm aggregates were dominated by two bacterial families (Bacillaceae and Clostridiaceae) and one fungal family (Nectriaceae). Our results suggest that soil organic carbon and total porosity positively influenced the bacterial Shannon index, which led to a further positive influence on soil aggregate respiration, while soil pH positively affected the soil fungal Shannon index, leading to increased negative control of the respiration of soil aggregates. The structural equation modeling (SEM) results show that soil total porosity could directly influence soil respiration. In addition, soil organic carbon and total porosity had a significantly positive direct effect on bacterial Shannon index. Additionally, the soil pH showed a direct negative effect on fungal Shannon index and soil respiration. Soil bacterial and fungal Shannon index had a significantly positive and negative direct effect on soil respiration, respectively. Our study suggests that the difference distribution of soil organic carbon, pH, total porosity in aggregates controlling the soil microbial diversity, and then affect soil aggregate respiration. [Display omitted] •Soil aggregates size significantly impacts microbial communities and soil respiration.•High respiration occurred in macro-aggregates with high soil total porosity and low soil pH.•Soil bacterial Shannon index positively influenced the soil respiration.•Soil fungal Shannon index negatively affected the soil respiration. |
Author | Liu, Nan Yang, Chao Zhang, Yingjun |
Author_xml | – sequence: 1 givenname: Chao surname: Yang fullname: Yang, Chao – sequence: 2 givenname: Nan surname: Liu fullname: Liu, Nan – sequence: 3 givenname: Yingjun surname: Zhang fullname: Zhang, Yingjun email: zhangyj@cau.edu.cn |
BookMark | eNqFkLtOwzAUhj0UibbwCigjS4rtXJEYQBU3qRIDMBvHPg6uEjvYDhJvj0NgYel0Lv6_I_lboYWxBhA6I3hDMCkv9psWrATX8w3FpI7LDcZ0gZY4vqYVLskxWnm_j2OFKV6it2eru4S3rYOWB_BJrGMXuyS8Q6L7gYuQWJX4KdbEAZzmETAyUaNpYyts349GBx1ha-agAz9ox4O25gQdKd55OP2ta_R6d_uyfUh3T_eP25tdKnJCQppxKTIhLqtaiLppspJneV7IQmEoVU0JkIKAKoloRJE3KpcFB14BSCKVoqTI1uh8vjs4-zGCD6zXXkDXcQN29IxSiusqq_MsRss5Kpz13oFig9M9d1-MYDZpZHv2p5FNGqd91BjBq3-g0OHnl8Fx3R3Gr2ccoodPDY55ocEIkNqBCExafejEN8aRmgI |
CitedBy_id | crossref_primary_10_1016_j_soilbio_2020_107849 crossref_primary_10_1016_j_jenvman_2023_119058 crossref_primary_10_5194_soil_6_483_2020 crossref_primary_10_1007_s11104_023_06225_x crossref_primary_10_1016_j_envres_2024_120037 crossref_primary_10_1016_j_eti_2023_103335 crossref_primary_10_1016_j_scitotenv_2022_161359 crossref_primary_10_1016_j_indcrop_2024_120144 crossref_primary_10_3390_su14127024 crossref_primary_10_1016_j_jaridenv_2021_104586 crossref_primary_10_1016_j_scitotenv_2023_167624 crossref_primary_10_7717_peerj_8078 crossref_primary_10_1016_j_wse_2021_12_005 crossref_primary_10_7717_peerj_8230 crossref_primary_10_1007_s11368_021_03093_9 crossref_primary_10_1080_03650340_2021_1895432 crossref_primary_10_1093_femsec_fiaf002 crossref_primary_10_1007_s42729_024_01828_4 crossref_primary_10_1016_j_scitotenv_2022_161360 crossref_primary_10_1016_j_catena_2021_105358 crossref_primary_10_1111_ejss_12997 crossref_primary_10_1007_s11368_023_03528_5 crossref_primary_10_3389_fmicb_2023_1203796 crossref_primary_10_1590_1678_992x_2023_0057 crossref_primary_10_1016_j_foreco_2019_117491 crossref_primary_10_3390_agronomy13051197 crossref_primary_10_1007_s00248_021_01826_4 crossref_primary_10_1080_03650340_2020_1771316 crossref_primary_10_1016_j_jclepro_2024_141241 crossref_primary_10_3390_ijerph191912919 crossref_primary_10_1016_j_catena_2021_105486 crossref_primary_10_1016_j_soilbio_2024_109452 crossref_primary_10_1016_j_catena_2024_108057 crossref_primary_10_3390_agronomy10070933 crossref_primary_10_3390_f12030376 crossref_primary_10_1016_j_agrformet_2021_108506 crossref_primary_10_1016_j_scitotenv_2021_148684 crossref_primary_10_1080_00103624_2023_2285950 crossref_primary_10_1038_s43705_023_00312_x crossref_primary_10_1007_s42773_023_00291_1 crossref_primary_10_1016_j_jclepro_2022_130378 crossref_primary_10_1007_s11104_023_06084_6 crossref_primary_10_1016_j_jia_2024_09_026 crossref_primary_10_1016_j_jhazmat_2024_134322 crossref_primary_10_1007_s11104_024_06804_6 crossref_primary_10_1007_s40333_020_0013_x crossref_primary_10_1016_j_catena_2023_107237 crossref_primary_10_1016_j_catena_2023_107359 crossref_primary_10_7717_peerj_11807 crossref_primary_10_1002_ldr_3703 crossref_primary_10_3390_f15010077 crossref_primary_10_1002_ldr_4110 crossref_primary_10_3389_fmicb_2020_594284 crossref_primary_10_3390_agronomy11112127 crossref_primary_10_3390_agronomy12092224 crossref_primary_10_1016_j_jenvman_2022_115919 crossref_primary_10_1016_j_scitotenv_2020_139568 crossref_primary_10_1007_s42729_022_00844_6 crossref_primary_10_1016_j_jclepro_2023_139776 crossref_primary_10_1021_acs_jafc_1c03776 crossref_primary_10_1016_j_catena_2024_107941 crossref_primary_10_1016_j_jece_2025_115765 crossref_primary_10_1016_j_jhazmat_2021_125103 crossref_primary_10_1016_j_rhisph_2022_100507 crossref_primary_10_3389_fmicb_2020_01677 crossref_primary_10_1016_j_catena_2021_105828 crossref_primary_10_1016_j_apsoil_2024_105444 crossref_primary_10_1016_j_geoderma_2021_115101 crossref_primary_10_1016_j_apsoil_2024_105448 crossref_primary_10_1016_j_scitotenv_2024_177100 crossref_primary_10_7717_peerj_13254 crossref_primary_10_1002_ldr_4467 crossref_primary_10_1016_j_scitotenv_2020_144300 crossref_primary_10_1016_j_scitotenv_2021_151907 crossref_primary_10_3390_su15118790 crossref_primary_10_1007_s11104_023_05953_4 crossref_primary_10_1007_s11104_025_07228_6 crossref_primary_10_3389_fmicb_2022_840774 crossref_primary_10_1016_j_ufug_2020_126743 crossref_primary_10_34133_ehs_0031 crossref_primary_10_1111_1462_2920_16587 crossref_primary_10_1186_s13717_024_00557_x crossref_primary_10_1016_j_agwat_2022_107750 crossref_primary_10_1038_s41598_023_30338_z crossref_primary_10_3390_f13122110 crossref_primary_10_1016_j_ecoenv_2023_115215 crossref_primary_10_1016_j_scitotenv_2024_175213 crossref_primary_10_1016_j_ecoenv_2024_116726 crossref_primary_10_1080_15226514_2025_2468298 crossref_primary_10_3390_f13020276 crossref_primary_10_1139_cjss_2020_0150 crossref_primary_10_1007_s11104_022_05313_8 crossref_primary_10_1007_s11104_020_04749_0 crossref_primary_10_1016_j_catena_2022_106195 crossref_primary_10_1016_j_scitotenv_2020_142595 crossref_primary_10_1093_jambio_lxad163 crossref_primary_10_3390_land12020459 crossref_primary_10_2478_foecol_2019_0017 crossref_primary_10_1007_s11104_024_06572_3 crossref_primary_10_1038_s41598_021_91182_7 crossref_primary_10_1016_j_soilbio_2022_108833 crossref_primary_10_1016_j_envpol_2024_125324 crossref_primary_10_1002_ece3_11353 crossref_primary_10_2139_ssrn_4169738 crossref_primary_10_1016_j_soilbio_2023_108953 crossref_primary_10_3390_agronomy14040677 crossref_primary_10_1002_agj2_20613 crossref_primary_10_1016_j_agwat_2023_108263 crossref_primary_10_1007_s11368_024_03942_3 crossref_primary_10_1016_j_apsoil_2020_103671 crossref_primary_10_3390_d15010082 crossref_primary_10_1016_j_spc_2023_11_022 crossref_primary_10_1016_j_envpol_2024_123791 crossref_primary_10_1007_s11676_020_01110_0 crossref_primary_10_1080_20964129_2021_1935326 crossref_primary_10_1080_03650340_2023_2170363 crossref_primary_10_7717_peerj_7949 crossref_primary_10_1016_j_scitotenv_2021_148258 crossref_primary_10_1002_ldr_4438 crossref_primary_10_1007_s12355_023_01274_z crossref_primary_10_1007_s12275_020_9266_5 crossref_primary_10_1021_acs_est_4c03116 crossref_primary_10_1186_s13717_024_00522_8 crossref_primary_10_1007_s11056_024_10078_2 crossref_primary_10_1016_j_geoderma_2021_115514 crossref_primary_10_1007_s11104_022_05738_1 crossref_primary_10_1080_00380768_2020_1780471 crossref_primary_10_1080_03650340_2021_1928088 crossref_primary_10_1016_j_apsoil_2021_104132 crossref_primary_10_1016_j_scitotenv_2023_163030 crossref_primary_10_1017_S001447972100020X crossref_primary_10_1016_j_catena_2023_107567 crossref_primary_10_1016_j_envres_2024_120361 crossref_primary_10_1038_s41467_023_37900_3 crossref_primary_10_1016_j_soilbio_2019_107692 |
Cites_doi | 10.1016/j.still.2010.05.002 10.1016/j.geoderma.2015.01.022 10.1007/s12275-014-4129-6 10.1007/s10533-005-2237-4 10.1016/j.geoderma.2016.02.027 10.1007/s10886-012-0135-5 10.1016/j.still.2008.02.003 10.1038/ismej.2010.58 10.2136/sssaj1986.03615995005000030017x 10.1016/j.soilbio.2008.05.021 10.1073/pnas.0610045104 10.1016/j.geoderma.2013.10.023 10.1016/j.soilbio.2014.09.002 10.1038/ismej.2008.127 10.1016/j.soilbio.2010.01.013 10.1016/j.apsoil.2010.10.002 10.1007/s00248-009-9590-0 10.1016/j.soilbio.2005.02.007 10.1016/j.scitotenv.2015.09.080 10.1007/s00374-014-0957-0 10.1016/j.ijfoodmicro.2009.01.013 10.1128/AEM.69.3.1800-1809.2003 10.1016/j.still.2007.10.012 10.1016/j.soilbio.2011.11.012 10.1007/s00248-012-0028-8 10.1016/j.jembe.2006.02.015 10.1016/j.apsoil.2014.12.003 10.1016/j.still.2004.03.020 10.1016/j.catena.2011.06.011 10.1016/j.soilbio.2012.07.013 10.1016/j.soilbio.2016.01.016 10.1016/j.ejsobi.2017.04.002 10.1016/j.ejsobi.2017.03.001 10.1073/pnas.0611525104 10.1016/j.still.2015.12.011 10.1016/j.apsoil.2015.01.014 10.1016/j.soilbio.2013.03.023 10.1016/0168-1605(91)90063-U 10.1016/j.geoderma.2004.03.005 10.1111/j.1462-2920.2012.02799.x 10.1111/1462-2920.13512 10.1016/j.soilbio.2016.03.010 10.1016/j.soilbio.2007.03.007 10.1016/j.catena.2017.10.001 10.1016/j.scitotenv.2016.04.122 10.1007/s12275-016-6526-5 10.1016/j.soilbio.2014.11.009 10.17221/25/2009-PSE 10.1111/1574-6941.12231 10.1007/s00374-017-1198-9 10.1016/j.soilbio.2013.01.006 10.1007/s11104-014-2210-x 10.1016/j.catena.2017.01.029 10.1016/j.soilbio.2016.03.013 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.10.002 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EndPage | 452 |
ExternalDocumentID | 10_1016_j_geoderma_2018_10_002 S0016706117322206 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AALCJ AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-3adc3cc978cc8bb36a3445d5f0e6f821e151ef61cbc54bf4d5aea7eed1dff2153 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 11:45:36 EDT 2025 Tue Jul 01 04:04:48 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 Tue Oct 01 07:16:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fungal community Soil pH Soil aggregate respiration High-throughput sequencing Soil total porosity Bacterial community |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-3adc3cc978cc8bb36a3445d5f0e6f821e151ef61cbc54bf4d5aea7eed1dff2153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2220873843 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2220873843 crossref_primary_10_1016_j_geoderma_2018_10_002 crossref_citationtrail_10_1016_j_geoderma_2018_10_002 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_10_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bartram, Jiang, Lynch, Masella, Nicol, Dushoff, Neufeld (bb0005) 2014; 87 Butterly, Phillips, Wiltshire, Franks, Armstrong, Chen, Mele, Tang (bb0025) 2016; 97 Girvan, Bullimore, Pretty, Osborn, Ball (bb0100) 2003; 69 Kim, Roh, Choi, Kim, Choi, Ahn, Kim, Lee, Joa, Kang, Lee, Ahn, Song, Weon (bb0135) 2016; 54 Tian, Pausch, Yu, Blagodatskaya, Gao, Kuzyakov (bb0230) 2015; 90 Effmert, Kalderas, Warnke, Piechulla (bb0075) 2012; 38 Deng, Cheng, Hui, Zhang, Li, Zhang (bb0050) 2016; 541 Dimitriu, Grayston (bb0055) 2010; 59 Dong, Liu, Yan, Tian, Zhang, Zhang (bb0065) 2017; 80 Regelink, Stoof, Rousseva, Weng, Lair, Kram, Nikolaidis, Kercheva, Banwart, Comans (bb0200) 2015; 247 Tripathi, Kim, Singh, Lee-Cruz, Lai-Hoe, Ainuddin, Go, Rahim, Husni, Chun, Adams (bb0240) 2012; 64 Razafimbelo, Albrecht, Oliver, Chevallier, Chapuis-Lardy, Feller (bb0195) 2008; 98 Shen, Xiong, Zhang, Feng, Lin, Li, Liang, Chu (bb0210) 2013; 57 Zhang, Li, Lu, Zhang, Liang (bb0280) 2013; 62 Min, Guo, Zhang, Zhou, Ma, Ye, Liang, Hou (bb0170) 2016; 66 Lauber, Strickland, Bradford, Fierer (bb0140) 2008; 40 Rousk, Baath, Brookes, Lauber, Lozupone, Caporaso, Knight, Fierer (bb0205) 2010; 4 von Lutzow, Kogel-Knabner, Ekschmittb, Flessa, Guggenberger, Matzner, Marschner (bb0245) 2007; 39 Cookson, Abaye, Marschner, Murphy, Stockdale, Goulding (bb0035) 2005; 37 Elliott (bb0080) 1986; 50 Delgado-Baquerizo, Garcia-Palacios, Milla, Gallardo, Maestre (bb0045) 2015; 81 Don, Bohme, Dohrmann, Poeplau, Tebbe (bb0060) 2017; 53 Zhao, Guggenberger, Shibistova, Thao, Shi, Li (bb0290) 2014; 384 Xiong, Liu, Lin, Zhang, Zeng, Hou, Yang, Yao, Knight, Chu (bb0270) 2012; 14 Li, Zhang, Zhang, Liu, Liu, Chen (bb0155) 2015; 10 Li, Yao, Qiao, Zou, You, Han, Zhang (bb0150) 2015; 88 Wheeler, Hurdman, Pitt (bb0260) 1991; 12 Jiang, Wright, Wang, Li (bb0115) 2011; 87 Gao, Lin, Liu, Wu, Alamus (bb0095) 2018; 160 Fernandez, Quiroga, Zorati, Noellemeyer (bb0085) 2010; 109 Bostrom, O'Brien, Roos, Ekebom (bb0015) 2006; 335 Bimuller, Kreyling, Kolbl, von Lutzow, Kogel-Knabner (bb0010) 2016; 160 Spohn, Klaus, Wanek, Richter (bb0215) 2016; 96 Zhang, Ding, Yu, He (bb0285) 2015; 51 Sun, Dsouza, Gilbert, Guo, Wang, Guo, Ni, Chu (bb0220) 2016; 18 Gupta, Germida (bb0105) 2015; 80 Bronick, Lal (bb0020) 2005; 124 Wei, Ma, Wang, Wei, Hao, Shao, Zhang (bb0255) 2016; 272 Tian, Pausch, Yu, Blagodatskaya, Kuzyakov (bb0235) 2016; 97 Helgason, Walley, Germida (bb0110) 2010; 46 Rabbi, Wilson, Lockwood, Daniel, Young (bb0190) 2014; 216 Nevarez, Vasseur, Le Madec, Le Bras, Coroller, Leguerinel, Barbier (bb0175) 2009; 130 Frey (bb0090) 2005 Noellemeyer, Frank, Alvarez, Morazzo, Quiroga (bb0180) 2008; 99 Tangyuan, Bin, Nianyuan, Shenzhong, Zengjia (bb0225) 2009; 55 Yang, Liu, Zhang (bb0275) 2017; 80 Pagliai, Vignozzi (bb0185) 2002; 35 Wu, Yao, Bruggemann, Shen, Wolf, Dannenmann, Zheng, Butterbach-Bahl (bb0265) 2010; 42 Jones, Robeson, Lauber, Hamady, Knight, Fierer (bb0130) 2009; 3 Drury, Yang, Reynolds, Tan (bb0070) 2004; 79 Davinic, Fultz, Acosta-Martinez, Calderon, Cox, Dowd, Allen, Zak, Moore-Kucera (bb0040) 2012; 46 Ma, Ibekwe, Yang, Crowley (bb0165) 2016; 563 Wang, Li, Zheng (bb0250) 2017; 153 Carney, Hungate, Drake, Megonigal (bb0030) 2007; 104 Leifeld, Fuhrer (bb0145) 2005; 75 Jiang, Sun, Jin, Wang (bb0120) 2013; 60 Joa, Weon, Hyun, Jeun, Koh (bb0125) 2014; 52 Lozupone, Knight (bb0160) 2007; 104 Gupta (10.1016/j.geoderma.2018.10.002_bb0105) 2015; 80 Gao (10.1016/j.geoderma.2018.10.002_bb0095) 2018; 160 Regelink (10.1016/j.geoderma.2018.10.002_bb0200) 2015; 247 Elliott (10.1016/j.geoderma.2018.10.002_bb0080) 1986; 50 Sun (10.1016/j.geoderma.2018.10.002_bb0220) 2016; 18 Carney (10.1016/j.geoderma.2018.10.002_bb0030) 2007; 104 Butterly (10.1016/j.geoderma.2018.10.002_bb0025) 2016; 97 Bronick (10.1016/j.geoderma.2018.10.002_bb0020) 2005; 124 Davinic (10.1016/j.geoderma.2018.10.002_bb0040) 2012; 46 Li (10.1016/j.geoderma.2018.10.002_bb0150) 2015; 88 Don (10.1016/j.geoderma.2018.10.002_bb0060) 2017; 53 Dong (10.1016/j.geoderma.2018.10.002_bb0065) 2017; 80 Girvan (10.1016/j.geoderma.2018.10.002_bb0100) 2003; 69 Joa (10.1016/j.geoderma.2018.10.002_bb0125) 2014; 52 Spohn (10.1016/j.geoderma.2018.10.002_bb0215) 2016; 96 Zhao (10.1016/j.geoderma.2018.10.002_bb0290) 2014; 384 Yang (10.1016/j.geoderma.2018.10.002_bb0275) 2017; 80 Pagliai (10.1016/j.geoderma.2018.10.002_bb0185) 2002; 35 Noellemeyer (10.1016/j.geoderma.2018.10.002_bb0180) 2008; 99 Shen (10.1016/j.geoderma.2018.10.002_bb0210) 2013; 57 Helgason (10.1016/j.geoderma.2018.10.002_bb0110) 2010; 46 Bartram (10.1016/j.geoderma.2018.10.002_bb0005) 2014; 87 Wang (10.1016/j.geoderma.2018.10.002_bb0250) 2017; 153 Cookson (10.1016/j.geoderma.2018.10.002_bb0035) 2005; 37 Bostrom (10.1016/j.geoderma.2018.10.002_bb0015) 2006; 335 Frey (10.1016/j.geoderma.2018.10.002_bb0090) 2005 Leifeld (10.1016/j.geoderma.2018.10.002_bb0145) 2005; 75 Wei (10.1016/j.geoderma.2018.10.002_bb0255) 2016; 272 Wheeler (10.1016/j.geoderma.2018.10.002_bb0260) 1991; 12 Min (10.1016/j.geoderma.2018.10.002_bb0170) 2016; 66 Wu (10.1016/j.geoderma.2018.10.002_bb0265) 2010; 42 Razafimbelo (10.1016/j.geoderma.2018.10.002_bb0195) 2008; 98 Bimuller (10.1016/j.geoderma.2018.10.002_bb0010) 2016; 160 Jiang (10.1016/j.geoderma.2018.10.002_bb0120) 2013; 60 Jiang (10.1016/j.geoderma.2018.10.002_bb0115) 2011; 87 Lozupone (10.1016/j.geoderma.2018.10.002_bb0160) 2007; 104 Zhang (10.1016/j.geoderma.2018.10.002_bb0280) 2013; 62 Dimitriu (10.1016/j.geoderma.2018.10.002_bb0055) 2010; 59 Fernandez (10.1016/j.geoderma.2018.10.002_bb0085) 2010; 109 Jones (10.1016/j.geoderma.2018.10.002_bb0130) 2009; 3 von Lutzow (10.1016/j.geoderma.2018.10.002_bb0245) 2007; 39 Kim (10.1016/j.geoderma.2018.10.002_bb0135) 2016; 54 Lauber (10.1016/j.geoderma.2018.10.002_bb0140) 2008; 40 Tangyuan (10.1016/j.geoderma.2018.10.002_bb0225) 2009; 55 Tian (10.1016/j.geoderma.2018.10.002_bb0235) 2016; 97 Li (10.1016/j.geoderma.2018.10.002_bb0155) 2015; 10 Zhang (10.1016/j.geoderma.2018.10.002_bb0285) 2015; 51 Xiong (10.1016/j.geoderma.2018.10.002_bb0270) 2012; 14 Delgado-Baquerizo (10.1016/j.geoderma.2018.10.002_bb0045) 2015; 81 Tian (10.1016/j.geoderma.2018.10.002_bb0230) 2015; 90 Drury (10.1016/j.geoderma.2018.10.002_bb0070) 2004; 79 Deng (10.1016/j.geoderma.2018.10.002_bb0050) 2016; 541 Rabbi (10.1016/j.geoderma.2018.10.002_bb0190) 2014; 216 Rousk (10.1016/j.geoderma.2018.10.002_bb0205) 2010; 4 Tripathi (10.1016/j.geoderma.2018.10.002_bb0240) 2012; 64 Effmert (10.1016/j.geoderma.2018.10.002_bb0075) 2012; 38 Ma (10.1016/j.geoderma.2018.10.002_bb0165) 2016; 563 Nevarez (10.1016/j.geoderma.2018.10.002_bb0175) 2009; 130 |
References_xml | – volume: 109 start-page: 103 year: 2010 end-page: 109 ident: bb0085 article-title: Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage publication-title: Soil Tillage Res. – volume: 3 start-page: 442 year: 2009 end-page: 453 ident: bb0130 article-title: A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses publication-title: ISME J. – volume: 247 start-page: 24 year: 2015 end-page: 37 ident: bb0200 article-title: Linkages between aggregate formation, porosity and soil chemical properties publication-title: Geoderma – volume: 39 start-page: 2183 year: 2007 end-page: 2207 ident: bb0245 article-title: SOM fractionation methods: relevance to functional pools and to stabilization mechanisms publication-title: Soil Biol. Biochem. – volume: 335 start-page: 52 year: 2006 end-page: 73 ident: bb0015 article-title: Environmental variables explaining structural and functional diversity of seagrass macrofauna in an archipelago landscape publication-title: J. Exp. Mar. Biol. Ecol. – volume: 75 start-page: 433 year: 2005 end-page: 453 ident: bb0145 article-title: The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality publication-title: Biogeochemistry – volume: 4 start-page: 1340 year: 2010 end-page: 1351 ident: bb0205 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME J. – volume: 104 start-page: 4990 year: 2007 end-page: 4995 ident: bb0030 article-title: Altered soil microbial community at elevated CO2 leads to loss of soil carbon publication-title: Proc. Natl. Acad. Sci. USA – volume: 42 start-page: 773 year: 2010 end-page: 787 ident: bb0265 article-title: Effects of soil moisture and temperature on CO2 and CH4 soil atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China publication-title: Soil Biol. Biochem. – volume: 96 start-page: 74 year: 2016 end-page: 81 ident: bb0215 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling publication-title: Soil Biol. Biochem. – volume: 97 start-page: 157 year: 2016 end-page: 167 ident: bb0025 article-title: Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils publication-title: Soil Biol. Biochem. – volume: 563 start-page: 199 year: 2016 end-page: 209 ident: bb0165 article-title: Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations publication-title: Sci. Total Environ. – volume: 35 start-page: 71 year: 2002 end-page: 82 ident: bb0185 article-title: The soil pore system as an indicator of soil quality publication-title: Adv. Geoecol. – volume: 50 start-page: 627 year: 1986 end-page: 633 ident: bb0080 article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils publication-title: Soil Sci. Soc. Am. J. – volume: 130 start-page: 166 year: 2009 end-page: 171 ident: bb0175 article-title: Physiological traits of publication-title: Int. J. Food Microbiol. – volume: 104 start-page: 11436 year: 2007 end-page: 11440 ident: bb0160 article-title: Global patterns in bacterial diversity publication-title: Proc. Natl. Acad. Sci. USA – volume: 90 start-page: 1 year: 2015 end-page: 10 ident: bb0230 article-title: Aggregate size and their disruption affect C-14-labeled glucose mineralization and priming effect publication-title: Appl. Soil Ecol. – volume: 51 start-page: 137 year: 2015 end-page: 150 ident: bb0285 article-title: Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment publication-title: Biol. Fertil. Soils – volume: 69 start-page: 1800 year: 2003 end-page: 1809 ident: bb0100 article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils publication-title: Appl. Environ. Microbiol. – volume: 99 start-page: 179 year: 2008 end-page: 190 ident: bb0180 article-title: Carbon contents and aggregation related to soil physical and biological properties under a land-use sequence in the semiarid region of central Argentina publication-title: Soil Tillage Res. – volume: 14 start-page: 2457 year: 2012 end-page: 2466 ident: bb0270 article-title: Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau publication-title: Environ. Microbiol. – volume: 79 start-page: 87 year: 2004 end-page: 100 ident: bb0070 article-title: Influence of crop rotation and aggregate size on carbon dioxide production and denitritication publication-title: Soil Tillage Res. – volume: 160 start-page: 23 year: 2016 end-page: 33 ident: bb0010 article-title: Carbon and nitrogen mineralization in hierarchically structured aggregates of different size publication-title: Soil Tillage Res. – volume: 40 start-page: 2407 year: 2008 end-page: 2415 ident: bb0140 article-title: The influence of soil properties on the structure of bacterial and fungal communities across land-use types publication-title: Soil Biol. Biochem. – volume: 53 start-page: 445 year: 2017 end-page: 456 ident: bb0060 article-title: Microbial community composition affects soil organic carbon turnover in mineral soils publication-title: Biol. Fertil. Soils – start-page: 22 year: 2005 end-page: 28 ident: bb0090 article-title: Aggregation-microbial Aspects publication-title: Encyclopedia of Soils in the Environment – volume: 38 start-page: 665 year: 2012 end-page: 703 ident: bb0075 article-title: Volatile mediated interactions between bacteria and fungi in the soil publication-title: J. Chem. Ecol. – volume: 160 start-page: 310 year: 2018 end-page: 320 ident: bb0095 article-title: Water repellency as conditioned by physical and chemical parameters in grassland soil publication-title: Catena – volume: 97 start-page: 199 year: 2016 end-page: 210 ident: bb0235 article-title: Aggregate size and glucose level affect priming sources: a three-source-partitioning study publication-title: Soil Biol. Biochem. – volume: 64 start-page: 474 year: 2012 end-page: 484 ident: bb0240 article-title: Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too publication-title: Microb. Ecol. – volume: 153 start-page: 1 year: 2017 end-page: 8 ident: bb0250 article-title: Distribution of microbial biomass and activity within soil aggregates as affected by tea plantation age publication-title: Catena – volume: 98 start-page: 140 year: 2008 end-page: 149 ident: bb0195 article-title: Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems publication-title: Soil Tillage Res. – volume: 46 start-page: 63 year: 2012 end-page: 72 ident: bb0040 article-title: Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition publication-title: Soil Biol. Biochem. – volume: 12 start-page: 141 year: 1991 end-page: 150 ident: bb0260 article-title: Influence of pH on the growth of some toxigenic species of publication-title: Int. J. Food Microbiol. – volume: 62 start-page: 147 year: 2013 end-page: 156 ident: bb0280 article-title: Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems publication-title: Soil Biol. Biochem. – volume: 57 start-page: 204 year: 2013 end-page: 211 ident: bb0210 article-title: Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain publication-title: Soil Biol. Biochem. – volume: 81 start-page: 134 year: 2015 end-page: 142 ident: bb0045 article-title: Soil characteristics determine soil carbon and nitrogen availability during leaf litter decomposition regardless of litter quality publication-title: Soil Biol. Biochem. – volume: 80 start-page: 35 year: 2017 end-page: 42 ident: bb0065 article-title: Impact of no tillage vs. conventional tillage on the soil bacterial community structure in a winter wheat cropping succession in northern China publication-title: Eur. J. Soil Biol. – volume: 80 start-page: 77 year: 2017 end-page: 84 ident: bb0275 article-title: Effects of aggregates size and glucose addition on soil organic carbon mineralization and Q 10 values under wide temperature change conditions publication-title: Eur. J. Soil Biol. – volume: 54 start-page: 838 year: 2016 end-page: 845 ident: bb0135 article-title: Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea publication-title: J. Microbiol. – volume: 541 start-page: 230 year: 2016 end-page: 237 ident: bb0050 article-title: Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China publication-title: Sci. Total Environ. – volume: 10 year: 2015 ident: bb0155 article-title: Analysis of the microbiota of black stain in the primary dentition publication-title: PLoS One – volume: 87 start-page: 403 year: 2014 end-page: 415 ident: bb0005 article-title: Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm publication-title: FEMS Microbiol. Ecol. – volume: 37 start-page: 1726 year: 2005 end-page: 1737 ident: bb0035 article-title: The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure publication-title: Soil Biol. Biochem. – volume: 66 start-page: 117 year: 2016 end-page: 126 ident: bb0170 article-title: Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci. – volume: 80 start-page: A3 year: 2015 end-page: A9 ident: bb0105 article-title: Soil aggregation: influence on microbial biomass and implications for biological processes publication-title: Soil Biol. Biochem. – volume: 52 start-page: 995 year: 2014 end-page: 1001 ident: bb0125 article-title: Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash publication-title: J. Microbiol. – volume: 55 start-page: 327 year: 2009 end-page: 333 ident: bb0225 article-title: Effects of conservation tillage on soil porosity in maize-wheat cropping system publication-title: Plant Soil Environ. – volume: 216 start-page: 10 year: 2014 end-page: 18 ident: bb0190 article-title: Soil organic carbon mineralization rates in aggregates under contrasting land uses publication-title: Geoderma – volume: 88 start-page: 9 year: 2015 end-page: 20 ident: bb0150 article-title: Separation of soil microbial community structure by aggregate size to a large extent under agricultural practices during early pedogenesis of a Mollisol publication-title: Appl. Soil Ecol. – volume: 18 start-page: 5137 year: 2016 end-page: 5150 ident: bb0220 article-title: Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter publication-title: Environ. Microbiol. – volume: 384 start-page: 289 year: 2014 end-page: 301 ident: bb0290 article-title: Aspect-vegetation complex effects on biochemical characteristics and decomposability of soil organic carbon on the eastern Qinghai-Tibetan Plateau publication-title: Plant Soil – volume: 124 start-page: 3 year: 2005 end-page: 22 ident: bb0020 article-title: Soil structure and management: a review publication-title: Geoderma – volume: 59 start-page: 563 year: 2010 end-page: 573 ident: bb0055 article-title: Relationship between soil properties and patterns of bacterial beta-diversity across reclaimed and natural boreal forest soils publication-title: Microb. Ecol. – volume: 46 start-page: 390 year: 2010 end-page: 397 ident: bb0110 article-title: No-till soil management increases microbial biomass and alters community profiles in soil aggregates publication-title: Appl. Soil Ecol. – volume: 87 start-page: 276 year: 2011 end-page: 280 ident: bb0115 article-title: Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates publication-title: Catena – volume: 272 start-page: 1 year: 2016 end-page: 9 ident: bb0255 article-title: Long-term fertilization increases the temperature sensitivity of OC mineralization in soil aggregates of a highland agroecosystem publication-title: Geoderma – volume: 60 start-page: 1 year: 2013 end-page: 9 ident: bb0120 article-title: Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil publication-title: Soil Biol. Biochem. – volume: 109 start-page: 103 issue: 2 year: 2010 ident: 10.1016/j.geoderma.2018.10.002_bb0085 article-title: Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage publication-title: Soil Tillage Res. doi: 10.1016/j.still.2010.05.002 – volume: 247 start-page: 24 year: 2015 ident: 10.1016/j.geoderma.2018.10.002_bb0200 article-title: Linkages between aggregate formation, porosity and soil chemical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2015.01.022 – volume: 52 start-page: 995 issue: 12 year: 2014 ident: 10.1016/j.geoderma.2018.10.002_bb0125 article-title: Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash publication-title: J. Microbiol. doi: 10.1007/s12275-014-4129-6 – volume: 75 start-page: 433 issue: 3 year: 2005 ident: 10.1016/j.geoderma.2018.10.002_bb0145 article-title: The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality publication-title: Biogeochemistry doi: 10.1007/s10533-005-2237-4 – volume: 272 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0255 article-title: Long-term fertilization increases the temperature sensitivity of OC mineralization in soil aggregates of a highland agroecosystem publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.027 – volume: 38 start-page: 665 issue: 6 year: 2012 ident: 10.1016/j.geoderma.2018.10.002_bb0075 article-title: Volatile mediated interactions between bacteria and fungi in the soil publication-title: J. Chem. Ecol. doi: 10.1007/s10886-012-0135-5 – volume: 99 start-page: 179 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2018.10.002_bb0180 article-title: Carbon contents and aggregation related to soil physical and biological properties under a land-use sequence in the semiarid region of central Argentina publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.02.003 – volume: 4 start-page: 1340 issue: 10 year: 2010 ident: 10.1016/j.geoderma.2018.10.002_bb0205 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME J. doi: 10.1038/ismej.2010.58 – volume: 50 start-page: 627 issue: 3 year: 1986 ident: 10.1016/j.geoderma.2018.10.002_bb0080 article-title: Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1986.03615995005000030017x – volume: 40 start-page: 2407 issue: 9 year: 2008 ident: 10.1016/j.geoderma.2018.10.002_bb0140 article-title: The influence of soil properties on the structure of bacterial and fungal communities across land-use types publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.05.021 – volume: 104 start-page: 4990 issue: 12 year: 2007 ident: 10.1016/j.geoderma.2018.10.002_bb0030 article-title: Altered soil microbial community at elevated CO2 leads to loss of soil carbon publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610045104 – volume: 216 start-page: 10 year: 2014 ident: 10.1016/j.geoderma.2018.10.002_bb0190 article-title: Soil organic carbon mineralization rates in aggregates under contrasting land uses publication-title: Geoderma doi: 10.1016/j.geoderma.2013.10.023 – volume: 80 start-page: A3 year: 2015 ident: 10.1016/j.geoderma.2018.10.002_bb0105 article-title: Soil aggregation: influence on microbial biomass and implications for biological processes publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.09.002 – volume: 3 start-page: 442 issue: 4 year: 2009 ident: 10.1016/j.geoderma.2018.10.002_bb0130 article-title: A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses publication-title: ISME J. doi: 10.1038/ismej.2008.127 – volume: 42 start-page: 773 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2018.10.002_bb0265 article-title: Effects of soil moisture and temperature on CO2 and CH4 soil atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.01.013 – volume: 46 start-page: 390 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2018.10.002_bb0110 article-title: No-till soil management increases microbial biomass and alters community profiles in soil aggregates publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2010.10.002 – volume: 59 start-page: 563 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2018.10.002_bb0055 article-title: Relationship between soil properties and patterns of bacterial beta-diversity across reclaimed and natural boreal forest soils publication-title: Microb. Ecol. doi: 10.1007/s00248-009-9590-0 – volume: 37 start-page: 1726 issue: 9 year: 2005 ident: 10.1016/j.geoderma.2018.10.002_bb0035 article-title: The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.02.007 – volume: 541 start-page: 230 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0050 article-title: Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.080 – volume: 51 start-page: 137 issue: 2 year: 2015 ident: 10.1016/j.geoderma.2018.10.002_bb0285 article-title: Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-014-0957-0 – volume: 130 start-page: 166 issue: 3 year: 2009 ident: 10.1016/j.geoderma.2018.10.002_bb0175 article-title: Physiological traits of Penicillium glabrum strain LCP 08.5568, a filamentous fungus isolated from bottled aromatised mineral water publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2009.01.013 – volume: 69 start-page: 1800 issue: 3 year: 2003 ident: 10.1016/j.geoderma.2018.10.002_bb0100 article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.3.1800-1809.2003 – volume: 98 start-page: 140 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2018.10.002_bb0195 article-title: Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems publication-title: Soil Tillage Res. doi: 10.1016/j.still.2007.10.012 – volume: 66 start-page: 117 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0170 article-title: Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci. – volume: 46 start-page: 63 year: 2012 ident: 10.1016/j.geoderma.2018.10.002_bb0040 article-title: Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.11.012 – volume: 64 start-page: 474 issue: 2 year: 2012 ident: 10.1016/j.geoderma.2018.10.002_bb0240 article-title: Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too publication-title: Microb. Ecol. doi: 10.1007/s00248-012-0028-8 – volume: 335 start-page: 52 issue: 1 year: 2006 ident: 10.1016/j.geoderma.2018.10.002_bb0015 article-title: Environmental variables explaining structural and functional diversity of seagrass macrofauna in an archipelago landscape publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/j.jembe.2006.02.015 – volume: 88 start-page: 9 year: 2015 ident: 10.1016/j.geoderma.2018.10.002_bb0150 article-title: Separation of soil microbial community structure by aggregate size to a large extent under agricultural practices during early pedogenesis of a Mollisol publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.12.003 – volume: 79 start-page: 87 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2018.10.002_bb0070 article-title: Influence of crop rotation and aggregate size on carbon dioxide production and denitritication publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.03.020 – volume: 87 start-page: 276 issue: 2 year: 2011 ident: 10.1016/j.geoderma.2018.10.002_bb0115 article-title: Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates publication-title: Catena doi: 10.1016/j.catena.2011.06.011 – volume: 57 start-page: 204 year: 2013 ident: 10.1016/j.geoderma.2018.10.002_bb0210 article-title: Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.07.013 – volume: 96 start-page: 74 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0215 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.01.016 – volume: 80 start-page: 77 year: 2017 ident: 10.1016/j.geoderma.2018.10.002_bb0275 article-title: Effects of aggregates size and glucose addition on soil organic carbon mineralization and Q 10 values under wide temperature change conditions publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2017.04.002 – volume: 10 issue: 9 year: 2015 ident: 10.1016/j.geoderma.2018.10.002_bb0155 article-title: Analysis of the microbiota of black stain in the primary dentition publication-title: PLoS One – volume: 80 start-page: 35 year: 2017 ident: 10.1016/j.geoderma.2018.10.002_bb0065 article-title: Impact of no tillage vs. conventional tillage on the soil bacterial community structure in a winter wheat cropping succession in northern China publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2017.03.001 – volume: 104 start-page: 11436 issue: 27 year: 2007 ident: 10.1016/j.geoderma.2018.10.002_bb0160 article-title: Global patterns in bacterial diversity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0611525104 – volume: 35 start-page: 71 year: 2002 ident: 10.1016/j.geoderma.2018.10.002_bb0185 article-title: The soil pore system as an indicator of soil quality publication-title: Adv. Geoecol. – volume: 160 start-page: 23 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0010 article-title: Carbon and nitrogen mineralization in hierarchically structured aggregates of different size publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.12.011 – volume: 90 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2018.10.002_bb0230 article-title: Aggregate size and their disruption affect C-14-labeled glucose mineralization and priming effect publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.01.014 – volume: 62 start-page: 147 year: 2013 ident: 10.1016/j.geoderma.2018.10.002_bb0280 article-title: Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.03.023 – start-page: 22 year: 2005 ident: 10.1016/j.geoderma.2018.10.002_bb0090 article-title: Aggregation-microbial Aspects – volume: 12 start-page: 141 issue: 2–3 year: 1991 ident: 10.1016/j.geoderma.2018.10.002_bb0260 article-title: Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium publication-title: Int. J. Food Microbiol. doi: 10.1016/0168-1605(91)90063-U – volume: 124 start-page: 3 issue: 1–2 year: 2005 ident: 10.1016/j.geoderma.2018.10.002_bb0020 article-title: Soil structure and management: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2004.03.005 – volume: 14 start-page: 2457 issue: 9 year: 2012 ident: 10.1016/j.geoderma.2018.10.002_bb0270 article-title: Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2012.02799.x – volume: 18 start-page: 5137 issue: 12 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0220 article-title: Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13512 – volume: 97 start-page: 157 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0025 article-title: Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.010 – volume: 39 start-page: 2183 issue: 9 year: 2007 ident: 10.1016/j.geoderma.2018.10.002_bb0245 article-title: SOM fractionation methods: relevance to functional pools and to stabilization mechanisms publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.03.007 – volume: 160 start-page: 310 year: 2018 ident: 10.1016/j.geoderma.2018.10.002_bb0095 article-title: Water repellency as conditioned by physical and chemical parameters in grassland soil publication-title: Catena doi: 10.1016/j.catena.2017.10.001 – volume: 563 start-page: 199 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0165 article-title: Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.04.122 – volume: 54 start-page: 838 issue: 12 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0135 article-title: Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea publication-title: J. Microbiol. doi: 10.1007/s12275-016-6526-5 – volume: 81 start-page: 134 year: 2015 ident: 10.1016/j.geoderma.2018.10.002_bb0045 article-title: Soil characteristics determine soil carbon and nitrogen availability during leaf litter decomposition regardless of litter quality publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.11.009 – volume: 55 start-page: 327 issue: 8 year: 2009 ident: 10.1016/j.geoderma.2018.10.002_bb0225 article-title: Effects of conservation tillage on soil porosity in maize-wheat cropping system publication-title: Plant Soil Environ. doi: 10.17221/25/2009-PSE – volume: 87 start-page: 403 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2018.10.002_bb0005 article-title: Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12231 – volume: 53 start-page: 445 issue: 4 year: 2017 ident: 10.1016/j.geoderma.2018.10.002_bb0060 article-title: Microbial community composition affects soil organic carbon turnover in mineral soils publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-017-1198-9 – volume: 60 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2018.10.002_bb0120 article-title: Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.01.006 – volume: 384 start-page: 289 issue: 1–2 year: 2014 ident: 10.1016/j.geoderma.2018.10.002_bb0290 article-title: Aspect-vegetation complex effects on biochemical characteristics and decomposability of soil organic carbon on the eastern Qinghai-Tibetan Plateau publication-title: Plant Soil doi: 10.1007/s11104-014-2210-x – volume: 153 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2018.10.002_bb0250 article-title: Distribution of microbial biomass and activity within soil aggregates as affected by tea plantation age publication-title: Catena doi: 10.1016/j.catena.2017.01.029 – volume: 97 start-page: 199 year: 2016 ident: 10.1016/j.geoderma.2018.10.002_bb0235 article-title: Aggregate size and glucose level affect priming sources: a three-source-partitioning study publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.013 |
SSID | ssj0017020 |
Score | 2.592434 |
Snippet | Soil aggregate size significantly impacts microbial communities and soil respiration. Soil total porosity and pH can regulate the distribution of soil bacteria... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 444 |
SubjectTerms | Bacillaceae Bacterial community Clostridiaceae community structure Cytophagaceae fungal communities Fungal community Gemmatimonadaceae genes high-throughput nucleotide sequencing High-throughput sequencing internal transcribed spacers Lasiosphaeriaceae Nectriaceae Oxalobacteraceae porosity ribosomal RNA Soil aggregate respiration soil aggregates soil bacteria soil fungi soil organic carbon Soil pH soil respiration Soil total porosity Sphingomonadaceae |
Title | Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.10.002 https://www.proquest.com/docview/2220873843 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEA5iL-2h9EntQ1LoddXs5rEeRVpsC15awds2yWZFkV1Z9drf3skmK22heOhxQxLCzGS-yWbmC0IPgqt-DLgWCBVzOKCwLOhHHLa74UIYmoUkrdg-x3w0oS9TNm2gYV0LY9Mqve93Pr3y1r6l66XZXc3ntsaXcAFwRIS9LahotykV1so7n7s0DyJ6npqRwHqg97cq4QXoyD44VvEPkbhTZXmFfwHUL1dd4c_TCTr2gSMeuLWdoobJz9DRYFZ68gxzjj7eivkSyxkcoe3PsTUu3UPzBkOUh109JC4yvLbdlKNphillnmKAN4AKrF25iCVZxUXuOpb-Mh4UeIEmT4_vw1HgX1AINCVkE0Qy1ZHWcFLUOlYq4jKilKUs6xmexSExgPcm40QrzahN2WPSSAGwSdIM1MSiS9TMi9xcISyo4RpmqQICJokiYS8VQhkZhhk4hRZitdgS7enF7SsXy6TOI1sktbgTK27bDuJuoe5u3MoRbOwd0a-1kvwwlQRQYO_Y-1qNCewjezkic1Ns14k1oVhEMY2u_zH_DTqEr75LUrtFzU25NXcQtWxUuzLLNjoYPL-Oxl_bGO57 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLZQGYABcYobI8EYWieOnQ4MFYcKLSyAxGZsx0FFKKl6CLHwp_iDPMdOBUiIAXV1bMv6_Py-5_gdCB1yppoJ8FrAVcLgghJnQTNicNwN49zQLCRpme3zhrXv6dVD_DCDPqpYGOtW6XW_0-mltvYtdY9mvd_r2RhfwjjQEeH2taDBvGdlx7y9wr1teHJ5Bpt8FIYX53en7cCXFgg0JWQURDLVkdZwhdI6USpiMqI0TuOsYViWhMQAEZqMEa10TK0vWyyN5MAnJM1g_bZUBOj9WQrqwpZNOH6f-JUQ3vC5IAkAAMv7Epb8DEJhK5yVCY9Icly6lYW_MeIPbigJ72IJLXpLFbccGMtoxuQraKH1NPDZOswqerwtei9YPsGd3f6NG-KBq2xvMJiV2AVg4iLDQ9tNubzQMKXMUwx8CtyEtYtPsVldcZG7jgP_-g8Ss4bup4LrOqrlRW42EObUMA2zlBZILIkiYSPlXBkZhhlooU0UV7AJ7fOZ27IaL6JyXHsWFdzCwm3bAe5NVJ-M67uMHn-OaFa7Ir7JpgDa-XPsQbWNAg6ufY2RuSnGQ2FlNuFRQqOtf8y_j-bad9dd0b286WyjefjSdB5yO6g2GozNLphMI7VXiihGj9M-E58wuizS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+aggregates+regulate+the+impact+of+soil+bacterial+and+fungal+communities+on+soil+respiration&rft.jtitle=Geoderma&rft.au=Yang%2C+Chao&rft.au=Liu%2C+Nan&rft.au=Zhang%2C+Yingjun&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.volume=337&rft.spage=444&rft.epage=452&rft_id=info:doi/10.1016%2Fj.geoderma.2018.10.002&rft.externalDocID=S0016706117322206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |