A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid
•A novel isobaric A-CAES system based on volatile fluid has been proposed.•Waste heat has employed to make IA-CAES more efficient and stable.•Proposed IA-CAES is more efficient and capacity than A-CAES.•CO2 is selected as volatile fluid for its environmentally properties and high saturation pressure...
Saved in:
Published in | Applied energy Vol. 210; pp. 198 - 210 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel isobaric A-CAES system based on volatile fluid has been proposed.•Waste heat has employed to make IA-CAES more efficient and stable.•Proposed IA-CAES is more efficient and capacity than A-CAES.•CO2 is selected as volatile fluid for its environmentally properties and high saturation pressure.•Mixtures contain CO2 are investigated to enhance the working temperature range of IA-CAES.
Adiabatic compressed air energy storage (A-CAES) is regarded as a promising and emerging storage technology with excellent power and storage capacity. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the throttling of compressed air. To increase the performance of the system, a novel isobaric adiabatic compressed air energy storage (IA-CAES) is proposed on the base of volatile fluid. The air storage vessel is divided into two parts by a piston, one part for air storage and the other has introduced into suitable volatile fluid. The waste heat is utilized to keep the volatile in a desirable pressure in discharging process, which impairs the effect of ambient temperature on pressure of volatile and makes the IA-CAES system stable. CO2 is selected as the pure volatile fluid own to its environmentally properties and high saturation pressure, while the IA-CAES system based on the CO2 can work in the mid and high latitudes only, due to its low critical temperature (304.13 K). 3 binary mixtures namely CO2/HC-600, CO2/HFC-32 and CO2/HFO-1234ze(E) are investigated to improve the critical temperature of CO2, trends to adapt to a wide range of ambient temperatures for IA-CAES system. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show, when CO2 is selected as the pure volatile fluid and the ambient temperature is higher than 288.15 K (15 °C), the average of total exergy efficiency (TEE) of IA-CAES improves more than 4% compared with that of A-CAES. When the waste heat is considered as free, the round trip efficiency (RTE) improved more than 6% and power capacity increased by more than 49% compared to the conventional A-CAES system. The CO2/HC-600 mixture with the compositions 0.85/0.15 has been proposed as the mixture volatile fluid. Compare with the conventional A-CAES system, the RTE and discharge time improved 6.26% and increased by 56.44%, respectively. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the IA-CAES systems. |
---|---|
AbstractList | Adiabatic compressed air energy storage (A-CAES) is regarded as a promising and emerging storage technology with excellent power and storage capacity. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the throttling of compressed air. To increase the performance of the system, a novel isobaric adiabatic compressed air energy storage (IA-CAES) is proposed on the base of volatile fluid. The air storage vessel is divided into two parts by a piston, one part for air storage and the other has introduced into suitable volatile fluid. The waste heat is utilized to keep the volatile in a desirable pressure in discharging process, which impairs the effect of ambient temperature on pressure of volatile and makes the IA-CAES system stable. CO₂ is selected as the pure volatile fluid own to its environmentally properties and high saturation pressure, while the IA-CAES system based on the CO₂ can work in the mid and high latitudes only, due to its low critical temperature (304.13 K). 3 binary mixtures namely CO₂/HC-600, CO₂/HFC-32 and CO₂/HFO-1234ze(E) are investigated to improve the critical temperature of CO₂, trends to adapt to a wide range of ambient temperatures for IA-CAES system. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show, when CO₂ is selected as the pure volatile fluid and the ambient temperature is higher than 288.15 K (15 °C), the average of total exergy efficiency (TEE) of IA-CAES improves more than 4% compared with that of A-CAES. When the waste heat is considered as free, the round trip efficiency (RTE) improved more than 6% and power capacity increased by more than 49% compared to the conventional A-CAES system. The CO₂/HC-600 mixture with the compositions 0.85/0.15 has been proposed as the mixture volatile fluid. Compare with the conventional A-CAES system, the RTE and discharge time improved 6.26% and increased by 56.44%, respectively. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the IA-CAES systems. •A novel isobaric A-CAES system based on volatile fluid has been proposed.•Waste heat has employed to make IA-CAES more efficient and stable.•Proposed IA-CAES is more efficient and capacity than A-CAES.•CO2 is selected as volatile fluid for its environmentally properties and high saturation pressure.•Mixtures contain CO2 are investigated to enhance the working temperature range of IA-CAES. Adiabatic compressed air energy storage (A-CAES) is regarded as a promising and emerging storage technology with excellent power and storage capacity. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the throttling of compressed air. To increase the performance of the system, a novel isobaric adiabatic compressed air energy storage (IA-CAES) is proposed on the base of volatile fluid. The air storage vessel is divided into two parts by a piston, one part for air storage and the other has introduced into suitable volatile fluid. The waste heat is utilized to keep the volatile in a desirable pressure in discharging process, which impairs the effect of ambient temperature on pressure of volatile and makes the IA-CAES system stable. CO2 is selected as the pure volatile fluid own to its environmentally properties and high saturation pressure, while the IA-CAES system based on the CO2 can work in the mid and high latitudes only, due to its low critical temperature (304.13 K). 3 binary mixtures namely CO2/HC-600, CO2/HFC-32 and CO2/HFO-1234ze(E) are investigated to improve the critical temperature of CO2, trends to adapt to a wide range of ambient temperatures for IA-CAES system. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show, when CO2 is selected as the pure volatile fluid and the ambient temperature is higher than 288.15 K (15 °C), the average of total exergy efficiency (TEE) of IA-CAES improves more than 4% compared with that of A-CAES. When the waste heat is considered as free, the round trip efficiency (RTE) improved more than 6% and power capacity increased by more than 49% compared to the conventional A-CAES system. The CO2/HC-600 mixture with the compositions 0.85/0.15 has been proposed as the mixture volatile fluid. Compare with the conventional A-CAES system, the RTE and discharge time improved 6.26% and increased by 56.44%, respectively. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the IA-CAES systems. |
Author | Zhao, Pan Pan Chen, Long Xiang Wang, Dong Xiang Hu, Peng Wang, Feng Xiang Xie, Mei Na |
Author_xml | – sequence: 1 givenname: Long Xiang orcidid: 0000-0001-9613-2056 surname: Chen fullname: Chen, Long Xiang organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China – sequence: 2 givenname: Mei Na surname: Xie fullname: Xie, Mei Na organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China – sequence: 3 givenname: Pan Pan surname: Zhao fullname: Zhao, Pan Pan organization: Hefei General Machinery Research Institute, Hefei 230088, China – sequence: 4 givenname: Feng Xiang surname: Wang fullname: Wang, Feng Xiang email: fengxiang.wang@fjirsm.ac.cn organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China – sequence: 5 givenname: Peng orcidid: 0000-0003-0173-3647 surname: Hu fullname: Hu, Peng email: hupeng@ustc.edu.cn organization: Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China – sequence: 6 givenname: Dong Xiang surname: Wang fullname: Wang, Dong Xiang organization: Hefei Meiling Company Limited Co. Ltd, Hefei 230601, China |
BookMark | eNqFkD1PwzAQhi1UJNrCX0Aey5Dgy5cTiYGqKlCpEgMwW459Ka7SuNhupf57UgUWFqa74X3e0z0TMupsh4TcAouBQXG_jeUeO3SbU5ww4DFAzFh1QcZQ8iSqAMoRGbOUFVFSQHVFJt5vGWMJJGxMNnPa2SO21HhbS2cUldrIWoZ-U3a3d-g9aiqNo8MN6oN1coN0tppHi_ny7Y76kw-4o7aj4RNpLT1S29CjbfuWFmnTHoy-JpeNbD3e_Mwp-Xhavi9eovXr82oxX0cqAwhRKqs0VXneKA4FMA26SjKWpSzPVNXwvEaouQZVaywRSpCy4WmWK82R80YW6ZTMht69s18H9EHsjFfYtrJDe_Ai6T_P8ywp0z5aDFHlrPcOG7F3ZifdSQATZ7NiK37NirNZASB6sz348AdUJvS_2i44adr_8ccBx97D0aATXhnsFGrjUAWhrfmv4huSnZus |
CitedBy_id | crossref_primary_10_1016_j_psep_2023_12_024 crossref_primary_10_2139_ssrn_4127799 crossref_primary_10_1016_j_energy_2024_133682 crossref_primary_10_1016_j_renene_2023_04_017 crossref_primary_10_1016_j_energy_2023_128134 crossref_primary_10_1016_j_est_2024_111627 crossref_primary_10_1016_j_enconman_2020_113679 crossref_primary_10_1016_j_enconman_2022_115218 crossref_primary_10_1002_er_7077 crossref_primary_10_1016_j_est_2020_101900 crossref_primary_10_1016_j_enconman_2021_114297 crossref_primary_10_1016_j_est_2021_103009 crossref_primary_10_1049_rpg2_13184 crossref_primary_10_1016_j_est_2021_102995 crossref_primary_10_1016_j_applthermaleng_2023_120568 crossref_primary_10_1016_j_est_2025_115361 crossref_primary_10_3390_en12050906 crossref_primary_10_1016_j_energy_2022_125351 crossref_primary_10_1039_D2SE01319C crossref_primary_10_1016_j_enconman_2025_119657 crossref_primary_10_1002_est2_481 crossref_primary_10_1016_j_applthermaleng_2023_120280 crossref_primary_10_1016_j_est_2023_109250 crossref_primary_10_1049_rpg2_12186 crossref_primary_10_1016_j_renene_2020_04_144 crossref_primary_10_1016_j_enconman_2017_12_055 crossref_primary_10_1016_j_energy_2022_123607 crossref_primary_10_1016_j_rser_2023_113290 crossref_primary_10_1016_j_renene_2023_119285 crossref_primary_10_1016_j_apenergy_2018_06_068 crossref_primary_10_1016_j_energy_2021_120905 crossref_primary_10_3390_en16062646 crossref_primary_10_3390_e22121440 crossref_primary_10_1016_j_enconman_2020_112573 crossref_primary_10_1016_j_energy_2022_123731 crossref_primary_10_1016_j_psep_2024_04_094 crossref_primary_10_1016_j_enconman_2019_02_016 crossref_primary_10_1016_j_scs_2023_105163 crossref_primary_10_1007_s12206_022_0546_3 crossref_primary_10_1016_j_renene_2018_11_046 crossref_primary_10_1016_j_isci_2021_102440 crossref_primary_10_1016_j_sftr_2025_100504 crossref_primary_10_1016_j_est_2024_115001 crossref_primary_10_1016_j_est_2020_101487 crossref_primary_10_1016_j_est_2021_102614 crossref_primary_10_1016_j_est_2023_109645 crossref_primary_10_1016_j_energy_2021_122325 crossref_primary_10_1016_j_applthermaleng_2023_121021 crossref_primary_10_1016_j_energy_2024_134082 crossref_primary_10_1016_j_energy_2021_121759 crossref_primary_10_1016_j_energy_2019_116472 crossref_primary_10_1016_j_est_2023_106778 crossref_primary_10_1016_j_enconman_2022_116583 crossref_primary_10_1016_j_enconman_2020_112811 crossref_primary_10_1016_j_energy_2024_130821 crossref_primary_10_1016_j_energy_2023_128783 crossref_primary_10_1016_j_energy_2024_130309 crossref_primary_10_1016_j_applthermaleng_2022_118440 crossref_primary_10_1063_1_5095969 crossref_primary_10_1115_1_4049453 crossref_primary_10_1016_j_est_2024_112146 crossref_primary_10_1016_j_enconman_2018_09_049 crossref_primary_10_1016_j_energy_2022_125367 crossref_primary_10_1177_0957650919861490 crossref_primary_10_1016_j_apenergy_2023_122019 crossref_primary_10_1007_s11708_024_0921_0 crossref_primary_10_3390_e21111065 |
Cites_doi | 10.1016/j.est.2017.03.006 10.1016/j.energy.2013.12.010 10.1016/j.renene.2017.01.002 10.1016/j.energy.2014.09.030 10.1016/j.apenergy.2015.08.026 10.1016/j.apenergy.2016.07.059 10.1016/j.applthermaleng.2012.04.005 10.1016/j.apenergy.2016.10.058 10.1016/j.energy.2016.02.125 10.1016/j.energy.2017.05.047 10.1016/j.est.2017.05.014 10.1016/j.apenergy.2014.09.081 10.1016/j.enconman.2015.11.049 10.1038/nature11475 10.1016/j.apenergy.2016.01.095 10.1016/j.apenergy.2014.03.013 10.1016/j.apenergy.2016.06.091 10.1109/JPROC.2011.2163049 10.1016/j.apenergy.2016.08.014 10.1016/j.energy.2015.04.052 10.1016/j.apenergy.2011.08.019 10.1016/j.apenergy.2016.02.108 10.1016/j.apenergy.2014.08.028 10.1016/j.apenergy.2014.04.103 10.1016/j.rser.2014.10.011 10.1016/j.enpol.2009.04.002 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2017.11.009 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 210 |
ExternalDocumentID | 10_1016_j_apenergy_2017_11_009 S030626191731588X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-3a933c55fc71610d1d924043054c9f75be1b7d1cbde8e181aaf7345cd7e77fa63 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 11:10:29 EDT 2025 Tue Jul 01 02:53:20 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Fri Feb 23 02:45:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CO2 mixtures IA-CAES Waste heat Adiabatic compressed air energy storage Thermodynamic analyses Isobaric |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-3a933c55fc71610d1d924043054c9f75be1b7d1cbde8e181aaf7345cd7e77fa63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0173-3647 0000-0001-9613-2056 |
PQID | 2000554283 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000554283 crossref_primary_10_1016_j_apenergy_2017_11_009 crossref_citationtrail_10_1016_j_apenergy_2017_11_009 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_11_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-15 |
PublicationDateYYYYMMDD | 2018-01-15 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Raju, Kumar (b0040) 2012; 89 Alami, Aokal, Abed, Alhemyari (b0095) 2017; 106 Denholm, Sioshansi (b0030) 2009; 37 Budt, Wolf, Span, Yan (b0090) 2016; 170 Facci (b0070) 2015; 158 Zao, Wu, Hu, Xu, Rasmussen (b0025) 2015; 137 Chen, Hu, Sheng, Xie (b0100) 2017; 131 Cheung, Carriveau, Ting (b0015) 2014; 134 Pimm, Garvey, de Jong (b0115) 2014; 66 Fang, Xia, Jiang (b0135) 2015; 86 Granado, Pang, Wallace (b0010) 2016; 170 Wolf, Budt (b0080) 2014; 125 Liu, Wang (b0075) 2016; 108 Luo, Wang, Dooner, Clarke (b0020) 2015; 137 Odukomaiya, Abu-Heiba, Gluesenkamp, Abdelaziz, Jackson, Daniel (b0125) 2016; 179 Sciacovelli, Li, Chen, Wu, Wang, Garvey (b0055) 2017; 185 Zakeri, Syri (b0045) 2015; 42 Zhang, Yang, Li, Xu (b0060) 2014; 77 Nielsen, Leithner (b0105) 2009; 4 Wang, Xiong, Ting, Carriveau, Wang (b0110) 2016; 180 Jubeh, Najjar (b0065) 2012; 44 Calm JM, Hourahan GC. Physical, safety and environmental data for current and alternative refrigerants. In: 23th International congress of refrigeration, Prague, Czech Republic; 2011, Paper No. 915. Chu, Majumdar (b0005) 2012; 488 Ineropera, DeWitt, Bergrnan, Lavine (b0145) 2007 Mazloum, Sayah, Nemer (b0120) 2017; 11 Odukomaiya, Kokou, Hussein, Abu-heiba, Graham, Momen (b0130) 2017; 12 NIST Standard Reference Database 23. NIST thermodynamic and transport properties of refrigerants and refrigerant mixture REFPROP, version 9.1; 2013. Wang, Zhang, Yang, Zhou, Wang (b0085) 2016; 103 Grazzini, Milazzo (b0035) 2012; 100 Briola, Di Marco, Gabbrielli, Riccardi (b0050) 2016; 178 Facci (10.1016/j.apenergy.2017.11.009_b0070) 2015; 158 Chen (10.1016/j.apenergy.2017.11.009_b0100) 2017; 131 Briola (10.1016/j.apenergy.2017.11.009_b0050) 2016; 178 Nielsen (10.1016/j.apenergy.2017.11.009_b0105) 2009; 4 Liu (10.1016/j.apenergy.2017.11.009_b0075) 2016; 108 Ineropera (10.1016/j.apenergy.2017.11.009_b0145) 2007 Denholm (10.1016/j.apenergy.2017.11.009_b0030) 2009; 37 Granado (10.1016/j.apenergy.2017.11.009_b0010) 2016; 170 Jubeh (10.1016/j.apenergy.2017.11.009_b0065) 2012; 44 Zao (10.1016/j.apenergy.2017.11.009_b0025) 2015; 137 Fang (10.1016/j.apenergy.2017.11.009_b0135) 2015; 86 10.1016/j.apenergy.2017.11.009_b0150 Grazzini (10.1016/j.apenergy.2017.11.009_b0035) 2012; 100 Cheung (10.1016/j.apenergy.2017.11.009_b0015) 2014; 134 Raju (10.1016/j.apenergy.2017.11.009_b0040) 2012; 89 Luo (10.1016/j.apenergy.2017.11.009_b0020) 2015; 137 Alami (10.1016/j.apenergy.2017.11.009_b0095) 2017; 106 Odukomaiya (10.1016/j.apenergy.2017.11.009_b0130) 2017; 12 Zakeri (10.1016/j.apenergy.2017.11.009_b0045) 2015; 42 Wolf (10.1016/j.apenergy.2017.11.009_b0080) 2014; 125 Wang (10.1016/j.apenergy.2017.11.009_b0110) 2016; 180 Wang (10.1016/j.apenergy.2017.11.009_b0085) 2016; 103 Zhang (10.1016/j.apenergy.2017.11.009_b0060) 2014; 77 10.1016/j.apenergy.2017.11.009_b0140 Sciacovelli (10.1016/j.apenergy.2017.11.009_b0055) 2017; 185 Mazloum (10.1016/j.apenergy.2017.11.009_b0120) 2017; 11 Chu (10.1016/j.apenergy.2017.11.009_b0005) 2012; 488 Budt (10.1016/j.apenergy.2017.11.009_b0090) 2016; 170 Pimm (10.1016/j.apenergy.2017.11.009_b0115) 2014; 66 Odukomaiya (10.1016/j.apenergy.2017.11.009_b0125) 2016; 179 |
References_xml | – volume: 180 start-page: 810 year: 2016 end-page: 822 ident: b0110 article-title: Conventional and advanced exergy analyses of an underwater compressed air energy storage system publication-title: Appl Energy – volume: 100 start-page: 461 year: 2012 end-page: 472 ident: b0035 article-title: A thermodynamic analysis of multistage adiabatic CAES publication-title: Proc IEEE – volume: 89 start-page: 474 year: 2012 end-page: 481 ident: b0040 article-title: Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant publication-title: Appl Energy – volume: 42 start-page: 569 year: 2015 end-page: 596 ident: b0045 article-title: Electrical energy storage systems: a comparative life cycle cost analysis publication-title: Renew Sustain Energy Rev – volume: 37 start-page: 3149 year: 2009 end-page: 3158 ident: b0030 article-title: The value of compressed air energy storage with wind in transmission-constrained electric power systems publication-title: Energy Policy – reference: NIST Standard Reference Database 23. NIST thermodynamic and transport properties of refrigerants and refrigerant mixture REFPROP, version 9.1; 2013. – volume: 170 start-page: 250 year: 2016 end-page: 268 ident: b0090 article-title: A review on compressed air energy storage: basic principles, past milestones and recent developments publication-title: Appl Energy – volume: 106 start-page: 201 year: 2017 end-page: 211 ident: b0095 article-title: Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications publication-title: Renew Energy – volume: 4 start-page: 253 year: 2009 end-page: 263 ident: b0105 article-title: Dynamic simulation of an innovative compressed air energy storage plant - detailed modelling of the storage cavern publication-title: WSEAS Trans Power Syst – volume: 11 start-page: 178 year: 2017 end-page: 190 ident: b0120 article-title: Dynamic modeling and simulation of an Isobaric adiabatic compressed air energy storage (IA-CAES) system publication-title: J Energy Storage – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: b0005 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature – volume: 170 start-page: 476 year: 2016 end-page: 488 ident: b0010 article-title: Synergy of smart grids and hybrid distributed generation on the value of energy storage publication-title: Appl Energy – volume: 77 start-page: 460 year: 2014 end-page: 477 ident: b0060 article-title: Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage publication-title: Energy – volume: 108 start-page: 566 year: 2016 end-page: 578 ident: b0075 article-title: A comparative research of two adiabatic compressed air energy storage systems publication-title: Energy Convers Manag – volume: 131 start-page: 259 year: 2017 end-page: 266 ident: b0100 article-title: A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source publication-title: Energy – volume: 179 start-page: 948 year: 2016 end-page: 960 ident: b0125 article-title: Thermal analysis of near-isothermal compressed gas energy storage system publication-title: Appl Energy – volume: 158 start-page: 243 year: 2015 end-page: 254 ident: b0070 article-title: Trigenerative micro compressed air energy storage: concept and thermodynamic assessment publication-title: Appl Energy – volume: 185 start-page: 16 year: 2017 end-page: 28 ident: b0055 article-title: Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage – link between components performance and plant performance publication-title: Appl Energy – volume: 134 start-page: 239 year: 2014 end-page: 247 ident: b0015 article-title: Parameters affecting scalable underwater compressed air energy storage publication-title: Appl Energy – volume: 125 start-page: 158 year: 2014 end-page: 164 ident: b0080 article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage publication-title: Appl Energy – volume: 178 start-page: 758 year: 2016 end-page: 772 ident: b0050 article-title: A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves publication-title: Appl Energy – year: 2007 ident: b0145 article-title: Fundamentals of heat and mass transfer – volume: 137 start-page: 511 year: 2015 end-page: 536 ident: b0020 article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation publication-title: Appl Energy – volume: 44 start-page: 85 year: 2012 end-page: 89 ident: b0065 article-title: Green solution for power generation by adoption of adiabatic CAES system publication-title: Appl Therm Eng – volume: 103 start-page: 182 year: 2016 end-page: 191 ident: b0085 article-title: Experimental study of compressed air energy storage system with thermal energy storage publication-title: Energy – volume: 66 start-page: 496 year: 2014 end-page: 508 ident: b0115 article-title: Design and testing of energy bags for underwater compressed air energy storage publication-title: Energy – volume: 86 start-page: 589 year: 2015 end-page: 602 ident: b0135 article-title: Key issues and solutions in a district heating system using low-grade industrial waste heat publication-title: Energy – volume: 12 start-page: 276 year: 2017 end-page: 287 ident: b0130 article-title: Near-isothermal-isobaric compressed gas energy storage publication-title: J Energy Storage – reference: Calm JM, Hourahan GC. Physical, safety and environmental data for current and alternative refrigerants. In: 23th International congress of refrigeration, Prague, Czech Republic; 2011, Paper No. 915. – volume: 137 start-page: 545 year: 2015 end-page: 553 ident: b0025 article-title: Review of energy storage system for wind power integration support publication-title: Appl Energy – volume: 11 start-page: 178 year: 2017 ident: 10.1016/j.apenergy.2017.11.009_b0120 article-title: Dynamic modeling and simulation of an Isobaric adiabatic compressed air energy storage (IA-CAES) system publication-title: J Energy Storage doi: 10.1016/j.est.2017.03.006 – volume: 66 start-page: 496 year: 2014 ident: 10.1016/j.apenergy.2017.11.009_b0115 article-title: Design and testing of energy bags for underwater compressed air energy storage publication-title: Energy doi: 10.1016/j.energy.2013.12.010 – volume: 106 start-page: 201 year: 2017 ident: 10.1016/j.apenergy.2017.11.009_b0095 article-title: Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications publication-title: Renew Energy doi: 10.1016/j.renene.2017.01.002 – volume: 4 start-page: 253 year: 2009 ident: 10.1016/j.apenergy.2017.11.009_b0105 article-title: Dynamic simulation of an innovative compressed air energy storage plant - detailed modelling of the storage cavern publication-title: WSEAS Trans Power Syst – volume: 77 start-page: 460 year: 2014 ident: 10.1016/j.apenergy.2017.11.009_b0060 article-title: Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage publication-title: Energy doi: 10.1016/j.energy.2014.09.030 – volume: 158 start-page: 243 year: 2015 ident: 10.1016/j.apenergy.2017.11.009_b0070 article-title: Trigenerative micro compressed air energy storage: concept and thermodynamic assessment publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.026 – volume: 179 start-page: 948 year: 2016 ident: 10.1016/j.apenergy.2017.11.009_b0125 article-title: Thermal analysis of near-isothermal compressed gas energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.059 – volume: 44 start-page: 85 issue: 44 year: 2012 ident: 10.1016/j.apenergy.2017.11.009_b0065 article-title: Green solution for power generation by adoption of adiabatic CAES system publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.04.005 – ident: 10.1016/j.apenergy.2017.11.009_b0150 – volume: 185 start-page: 16 year: 2017 ident: 10.1016/j.apenergy.2017.11.009_b0055 article-title: Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage – link between components performance and plant performance publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.10.058 – volume: 103 start-page: 182 year: 2016 ident: 10.1016/j.apenergy.2017.11.009_b0085 article-title: Experimental study of compressed air energy storage system with thermal energy storage publication-title: Energy doi: 10.1016/j.energy.2016.02.125 – volume: 131 start-page: 259 year: 2017 ident: 10.1016/j.apenergy.2017.11.009_b0100 article-title: A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source publication-title: Energy doi: 10.1016/j.energy.2017.05.047 – volume: 12 start-page: 276 year: 2017 ident: 10.1016/j.apenergy.2017.11.009_b0130 article-title: Near-isothermal-isobaric compressed gas energy storage publication-title: J Energy Storage doi: 10.1016/j.est.2017.05.014 – volume: 137 start-page: 511 year: 2015 ident: 10.1016/j.apenergy.2017.11.009_b0020 article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.09.081 – volume: 108 start-page: 566 year: 2016 ident: 10.1016/j.apenergy.2017.11.009_b0075 article-title: A comparative research of two adiabatic compressed air energy storage systems publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.11.049 – volume: 488 start-page: 294 issue: 7411 year: 2012 ident: 10.1016/j.apenergy.2017.11.009_b0005 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 170 start-page: 476 year: 2016 ident: 10.1016/j.apenergy.2017.11.009_b0010 article-title: Synergy of smart grids and hybrid distributed generation on the value of energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.095 – volume: 125 start-page: 158 year: 2014 ident: 10.1016/j.apenergy.2017.11.009_b0080 article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.03.013 – volume: 178 start-page: 758 year: 2016 ident: 10.1016/j.apenergy.2017.11.009_b0050 article-title: A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.091 – volume: 100 start-page: 461 year: 2012 ident: 10.1016/j.apenergy.2017.11.009_b0035 article-title: A thermodynamic analysis of multistage adiabatic CAES publication-title: Proc IEEE doi: 10.1109/JPROC.2011.2163049 – volume: 180 start-page: 810 year: 2016 ident: 10.1016/j.apenergy.2017.11.009_b0110 article-title: Conventional and advanced exergy analyses of an underwater compressed air energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.014 – volume: 86 start-page: 589 year: 2015 ident: 10.1016/j.apenergy.2017.11.009_b0135 article-title: Key issues and solutions in a district heating system using low-grade industrial waste heat publication-title: Energy doi: 10.1016/j.energy.2015.04.052 – ident: 10.1016/j.apenergy.2017.11.009_b0140 – volume: 89 start-page: 474 year: 2012 ident: 10.1016/j.apenergy.2017.11.009_b0040 article-title: Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.08.019 – volume: 170 start-page: 250 year: 2016 ident: 10.1016/j.apenergy.2017.11.009_b0090 article-title: A review on compressed air energy storage: basic principles, past milestones and recent developments publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.108 – volume: 134 start-page: 239 year: 2014 ident: 10.1016/j.apenergy.2017.11.009_b0015 article-title: Parameters affecting scalable underwater compressed air energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.028 – volume: 137 start-page: 545 year: 2015 ident: 10.1016/j.apenergy.2017.11.009_b0025 article-title: Review of energy storage system for wind power integration support publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.103 – volume: 42 start-page: 569 year: 2015 ident: 10.1016/j.apenergy.2017.11.009_b0045 article-title: Electrical energy storage systems: a comparative life cycle cost analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.10.011 – volume: 37 start-page: 3149 issue: 8 year: 2009 ident: 10.1016/j.apenergy.2017.11.009_b0030 article-title: The value of compressed air energy storage with wind in transmission-constrained electric power systems publication-title: Energy Policy doi: 10.1016/j.enpol.2009.04.002 – year: 2007 ident: 10.1016/j.apenergy.2017.11.009_b0145 |
SSID | ssj0002120 |
Score | 2.5247993 |
Snippet | •A novel isobaric A-CAES system based on volatile fluid has been proposed.•Waste heat has employed to make IA-CAES more efficient and stable.•Proposed IA-CAES... Adiabatic compressed air energy storage (A-CAES) is regarded as a promising and emerging storage technology with excellent power and storage capacity.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 198 |
SubjectTerms | Adiabatic compressed air energy storage air ambient temperature carbon dioxide CO2 mixtures exergy heat IA-CAES Isobaric latitude mathematical models storage technology Thermodynamic analyses Waste heat wastes |
Title | A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid |
URI | https://dx.doi.org/10.1016/j.apenergy.2017.11.009 https://www.proquest.com/docview/2000554283 |
Volume | 210 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFLUQ3ZQFamkR9IFciQVdOInjV2Y5ioJCK9gAUnYjP9GgaCYiSZd8O_fOo9CqEosuZ2Rb1lz73GPNuceEnDqv5SilMYuwfJiMmWPWK8HGMXDtkxMqw2rkyys9v5U_FmqxQ6Z9LQzKKjvsbzG9QevuzbD7msNVWQ6vke0i_-dGcDWZLLCCXRpc5YPHZ5nHuLNmhMYMW7-oEr4f2FVsKuxQ4mUG6OaJwsR_J6i_oLrJP-fvyH5HHGnezu092YnVAdl7YSd4QA5nz1Vr0LTbtusP5C6nVf0rLmm5hu0LyEfRkcChWStFTXljIB6oLR9oO1OKmklAGnp2kbNpPrv-TlvLZ1pXFCgjxeRH60QB3GCUZaRpuS3DR3J7PruZzll3wwLzkvMNEzYTwiuVPByb-CjwAMexxgVM-iwZ5SJ3JnDvQpxE4ALWJiOk8sFEY5LV4pDsVnUVjwgNOnmvlTMyCem5dtqMhY9Weg0wIv0xUf1nLXxnP463YCyLXmd2X_ThKDAccDYpIBzHZPi736o14Hi1R9ZHrfhjKRWQJV7t-60PcwH7DH-e2CrW2zVe1zkC6gVs7NN_jP-ZvIUnlA8yrr6Q3c3DNn4FVrNxJ82yPSFv8ouf86sngDH5Iw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELVoOLQ9VJQWlVJaV-qhPZjEsb3OHldRUFIgF0DKzbK9NloU7UYk6e9nZj-Aokocel17LMtjv3nWzjwT8sP5RA5iHLIA24fJkDpmvRJsGHKe-OiESrEa-WKeTK_l74Va7JBxVwuDaZUt9jeYXqN1-6XfrmZ_VRT9S2S7yP-5FlyNRotXZBfVqVSP7Gazs-n8AZCHrToj9Gdo8KRQ-PbErkJdZIdZXvoEBT0xN_HfMeoZWtch6HSPvGu5I82a6b0nO6HcJ2-fKAruk4PJY-EadG1P7voDucloWf0JS1qs4QQD-FEUJXCo10oxrbzWEM-pLe5oM1OKaZMANvTnLGPjbHL5izaqz7QqKbBGivGPVpECvsEoy0DjclvkH8n16eRqPGXtIwvMS843TNhUCK9U9HBz4oOc53Ajq4XApE-jVi5wp3PuXR5GAeiAtVELqXyug9bRJuKA9MqqDJ8IzZPofaKcllFIzxOX6KHwwUqfAJJIf0hUt6zGtwrk-BDG0nSpZremc4dBd8D1xIA7Dkn_wW7VaHC8aJF2XjN_7SYDgeJF2--dmw0cNfx_YstQbdf4YucA2BcQss__Mf438np6dXFuzmfzsyPyBlowm5Bx9YX0NnfbcAwkZ-O-tpv4HgRo-9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+isobaric+adiabatic+compressed+air+energy+storage+%28IA-CAES%29+system+on+the+base+of+volatile+fluid&rft.jtitle=Applied+energy&rft.au=Chen%2C+Long+Xiang&rft.au=Xie%2C+Mei+Na&rft.au=Zhao%2C+Pan+Pan&rft.au=Wang%2C+Feng+Xiang&rft.date=2018-01-15&rft.issn=0306-2619&rft.volume=210+p.198-210&rft.spage=198&rft.epage=210&rft_id=info:doi/10.1016%2Fj.apenergy.2017.11.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |