A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid

•A novel isobaric A-CAES system based on volatile fluid has been proposed.•Waste heat has employed to make IA-CAES more efficient and stable.•Proposed IA-CAES is more efficient and capacity than A-CAES.•CO2 is selected as volatile fluid for its environmentally properties and high saturation pressure...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 210; pp. 198 - 210
Main Authors Chen, Long Xiang, Xie, Mei Na, Zhao, Pan Pan, Wang, Feng Xiang, Hu, Peng, Wang, Dong Xiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel isobaric A-CAES system based on volatile fluid has been proposed.•Waste heat has employed to make IA-CAES more efficient and stable.•Proposed IA-CAES is more efficient and capacity than A-CAES.•CO2 is selected as volatile fluid for its environmentally properties and high saturation pressure.•Mixtures contain CO2 are investigated to enhance the working temperature range of IA-CAES. Adiabatic compressed air energy storage (A-CAES) is regarded as a promising and emerging storage technology with excellent power and storage capacity. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the throttling of compressed air. To increase the performance of the system, a novel isobaric adiabatic compressed air energy storage (IA-CAES) is proposed on the base of volatile fluid. The air storage vessel is divided into two parts by a piston, one part for air storage and the other has introduced into suitable volatile fluid. The waste heat is utilized to keep the volatile in a desirable pressure in discharging process, which impairs the effect of ambient temperature on pressure of volatile and makes the IA-CAES system stable. CO2 is selected as the pure volatile fluid own to its environmentally properties and high saturation pressure, while the IA-CAES system based on the CO2 can work in the mid and high latitudes only, due to its low critical temperature (304.13 K). 3 binary mixtures namely CO2/HC-600, CO2/HFC-32 and CO2/HFO-1234ze(E) are investigated to improve the critical temperature of CO2, trends to adapt to a wide range of ambient temperatures for IA-CAES system. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show, when CO2 is selected as the pure volatile fluid and the ambient temperature is higher than 288.15 K (15 °C), the average of total exergy efficiency (TEE) of IA-CAES improves more than 4% compared with that of A-CAES. When the waste heat is considered as free, the round trip efficiency (RTE) improved more than 6% and power capacity increased by more than 49% compared to the conventional A-CAES system. The CO2/HC-600 mixture with the compositions 0.85/0.15 has been proposed as the mixture volatile fluid. Compare with the conventional A-CAES system, the RTE and discharge time improved 6.26% and increased by 56.44%, respectively. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the IA-CAES systems.
AbstractList Adiabatic compressed air energy storage (A-CAES) is regarded as a promising and emerging storage technology with excellent power and storage capacity. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the throttling of compressed air. To increase the performance of the system, a novel isobaric adiabatic compressed air energy storage (IA-CAES) is proposed on the base of volatile fluid. The air storage vessel is divided into two parts by a piston, one part for air storage and the other has introduced into suitable volatile fluid. The waste heat is utilized to keep the volatile in a desirable pressure in discharging process, which impairs the effect of ambient temperature on pressure of volatile and makes the IA-CAES system stable. CO₂ is selected as the pure volatile fluid own to its environmentally properties and high saturation pressure, while the IA-CAES system based on the CO₂ can work in the mid and high latitudes only, due to its low critical temperature (304.13 K). 3 binary mixtures namely CO₂/HC-600, CO₂/HFC-32 and CO₂/HFO-1234ze(E) are investigated to improve the critical temperature of CO₂, trends to adapt to a wide range of ambient temperatures for IA-CAES system. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show, when CO₂ is selected as the pure volatile fluid and the ambient temperature is higher than 288.15 K (15 °C), the average of total exergy efficiency (TEE) of IA-CAES improves more than 4% compared with that of A-CAES. When the waste heat is considered as free, the round trip efficiency (RTE) improved more than 6% and power capacity increased by more than 49% compared to the conventional A-CAES system. The CO₂/HC-600 mixture with the compositions 0.85/0.15 has been proposed as the mixture volatile fluid. Compare with the conventional A-CAES system, the RTE and discharge time improved 6.26% and increased by 56.44%, respectively. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the IA-CAES systems.
•A novel isobaric A-CAES system based on volatile fluid has been proposed.•Waste heat has employed to make IA-CAES more efficient and stable.•Proposed IA-CAES is more efficient and capacity than A-CAES.•CO2 is selected as volatile fluid for its environmentally properties and high saturation pressure.•Mixtures contain CO2 are investigated to enhance the working temperature range of IA-CAES. Adiabatic compressed air energy storage (A-CAES) is regarded as a promising and emerging storage technology with excellent power and storage capacity. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the throttling of compressed air. To increase the performance of the system, a novel isobaric adiabatic compressed air energy storage (IA-CAES) is proposed on the base of volatile fluid. The air storage vessel is divided into two parts by a piston, one part for air storage and the other has introduced into suitable volatile fluid. The waste heat is utilized to keep the volatile in a desirable pressure in discharging process, which impairs the effect of ambient temperature on pressure of volatile and makes the IA-CAES system stable. CO2 is selected as the pure volatile fluid own to its environmentally properties and high saturation pressure, while the IA-CAES system based on the CO2 can work in the mid and high latitudes only, due to its low critical temperature (304.13 K). 3 binary mixtures namely CO2/HC-600, CO2/HFC-32 and CO2/HFO-1234ze(E) are investigated to improve the critical temperature of CO2, trends to adapt to a wide range of ambient temperatures for IA-CAES system. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show, when CO2 is selected as the pure volatile fluid and the ambient temperature is higher than 288.15 K (15 °C), the average of total exergy efficiency (TEE) of IA-CAES improves more than 4% compared with that of A-CAES. When the waste heat is considered as free, the round trip efficiency (RTE) improved more than 6% and power capacity increased by more than 49% compared to the conventional A-CAES system. The CO2/HC-600 mixture with the compositions 0.85/0.15 has been proposed as the mixture volatile fluid. Compare with the conventional A-CAES system, the RTE and discharge time improved 6.26% and increased by 56.44%, respectively. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the IA-CAES systems.
Author Zhao, Pan Pan
Chen, Long Xiang
Wang, Dong Xiang
Hu, Peng
Wang, Feng Xiang
Xie, Mei Na
Author_xml – sequence: 1
  givenname: Long Xiang
  orcidid: 0000-0001-9613-2056
  surname: Chen
  fullname: Chen, Long Xiang
  organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 2
  givenname: Mei Na
  surname: Xie
  fullname: Xie, Mei Na
  organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 3
  givenname: Pan Pan
  surname: Zhao
  fullname: Zhao, Pan Pan
  organization: Hefei General Machinery Research Institute, Hefei 230088, China
– sequence: 4
  givenname: Feng Xiang
  surname: Wang
  fullname: Wang, Feng Xiang
  email: fengxiang.wang@fjirsm.ac.cn
  organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 5
  givenname: Peng
  orcidid: 0000-0003-0173-3647
  surname: Hu
  fullname: Hu, Peng
  email: hupeng@ustc.edu.cn
  organization: Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
– sequence: 6
  givenname: Dong Xiang
  surname: Wang
  fullname: Wang, Dong Xiang
  organization: Hefei Meiling Company Limited Co. Ltd, Hefei 230601, China
BookMark eNqFkD1PwzAQhi1UJNrCX0Aey5Dgy5cTiYGqKlCpEgMwW459Ka7SuNhupf57UgUWFqa74X3e0z0TMupsh4TcAouBQXG_jeUeO3SbU5ww4DFAzFh1QcZQ8iSqAMoRGbOUFVFSQHVFJt5vGWMJJGxMNnPa2SO21HhbS2cUldrIWoZ-U3a3d-g9aiqNo8MN6oN1coN0tppHi_ny7Y76kw-4o7aj4RNpLT1S29CjbfuWFmnTHoy-JpeNbD3e_Mwp-Xhavi9eovXr82oxX0cqAwhRKqs0VXneKA4FMA26SjKWpSzPVNXwvEaouQZVaywRSpCy4WmWK82R80YW6ZTMht69s18H9EHsjFfYtrJDe_Ai6T_P8ywp0z5aDFHlrPcOG7F3ZifdSQATZ7NiK37NirNZASB6sz348AdUJvS_2i44adr_8ccBx97D0aATXhnsFGrjUAWhrfmv4huSnZus
CitedBy_id crossref_primary_10_1016_j_psep_2023_12_024
crossref_primary_10_2139_ssrn_4127799
crossref_primary_10_1016_j_energy_2024_133682
crossref_primary_10_1016_j_renene_2023_04_017
crossref_primary_10_1016_j_energy_2023_128134
crossref_primary_10_1016_j_est_2024_111627
crossref_primary_10_1016_j_enconman_2020_113679
crossref_primary_10_1016_j_enconman_2022_115218
crossref_primary_10_1002_er_7077
crossref_primary_10_1016_j_est_2020_101900
crossref_primary_10_1016_j_enconman_2021_114297
crossref_primary_10_1016_j_est_2021_103009
crossref_primary_10_1049_rpg2_13184
crossref_primary_10_1016_j_est_2021_102995
crossref_primary_10_1016_j_applthermaleng_2023_120568
crossref_primary_10_1016_j_est_2025_115361
crossref_primary_10_3390_en12050906
crossref_primary_10_1016_j_energy_2022_125351
crossref_primary_10_1039_D2SE01319C
crossref_primary_10_1016_j_enconman_2025_119657
crossref_primary_10_1002_est2_481
crossref_primary_10_1016_j_applthermaleng_2023_120280
crossref_primary_10_1016_j_est_2023_109250
crossref_primary_10_1049_rpg2_12186
crossref_primary_10_1016_j_renene_2020_04_144
crossref_primary_10_1016_j_enconman_2017_12_055
crossref_primary_10_1016_j_energy_2022_123607
crossref_primary_10_1016_j_rser_2023_113290
crossref_primary_10_1016_j_renene_2023_119285
crossref_primary_10_1016_j_apenergy_2018_06_068
crossref_primary_10_1016_j_energy_2021_120905
crossref_primary_10_3390_en16062646
crossref_primary_10_3390_e22121440
crossref_primary_10_1016_j_enconman_2020_112573
crossref_primary_10_1016_j_energy_2022_123731
crossref_primary_10_1016_j_psep_2024_04_094
crossref_primary_10_1016_j_enconman_2019_02_016
crossref_primary_10_1016_j_scs_2023_105163
crossref_primary_10_1007_s12206_022_0546_3
crossref_primary_10_1016_j_renene_2018_11_046
crossref_primary_10_1016_j_isci_2021_102440
crossref_primary_10_1016_j_sftr_2025_100504
crossref_primary_10_1016_j_est_2024_115001
crossref_primary_10_1016_j_est_2020_101487
crossref_primary_10_1016_j_est_2021_102614
crossref_primary_10_1016_j_est_2023_109645
crossref_primary_10_1016_j_energy_2021_122325
crossref_primary_10_1016_j_applthermaleng_2023_121021
crossref_primary_10_1016_j_energy_2024_134082
crossref_primary_10_1016_j_energy_2021_121759
crossref_primary_10_1016_j_energy_2019_116472
crossref_primary_10_1016_j_est_2023_106778
crossref_primary_10_1016_j_enconman_2022_116583
crossref_primary_10_1016_j_enconman_2020_112811
crossref_primary_10_1016_j_energy_2024_130821
crossref_primary_10_1016_j_energy_2023_128783
crossref_primary_10_1016_j_energy_2024_130309
crossref_primary_10_1016_j_applthermaleng_2022_118440
crossref_primary_10_1063_1_5095969
crossref_primary_10_1115_1_4049453
crossref_primary_10_1016_j_est_2024_112146
crossref_primary_10_1016_j_enconman_2018_09_049
crossref_primary_10_1016_j_energy_2022_125367
crossref_primary_10_1177_0957650919861490
crossref_primary_10_1016_j_apenergy_2023_122019
crossref_primary_10_1007_s11708_024_0921_0
crossref_primary_10_3390_e21111065
Cites_doi 10.1016/j.est.2017.03.006
10.1016/j.energy.2013.12.010
10.1016/j.renene.2017.01.002
10.1016/j.energy.2014.09.030
10.1016/j.apenergy.2015.08.026
10.1016/j.apenergy.2016.07.059
10.1016/j.applthermaleng.2012.04.005
10.1016/j.apenergy.2016.10.058
10.1016/j.energy.2016.02.125
10.1016/j.energy.2017.05.047
10.1016/j.est.2017.05.014
10.1016/j.apenergy.2014.09.081
10.1016/j.enconman.2015.11.049
10.1038/nature11475
10.1016/j.apenergy.2016.01.095
10.1016/j.apenergy.2014.03.013
10.1016/j.apenergy.2016.06.091
10.1109/JPROC.2011.2163049
10.1016/j.apenergy.2016.08.014
10.1016/j.energy.2015.04.052
10.1016/j.apenergy.2011.08.019
10.1016/j.apenergy.2016.02.108
10.1016/j.apenergy.2014.08.028
10.1016/j.apenergy.2014.04.103
10.1016/j.rser.2014.10.011
10.1016/j.enpol.2009.04.002
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.11.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 210
ExternalDocumentID 10_1016_j_apenergy_2017_11_009
S030626191731588X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c411t-3a933c55fc71610d1d924043054c9f75be1b7d1cbde8e181aaf7345cd7e77fa63
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 11:10:29 EDT 2025
Tue Jul 01 02:53:20 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Fri Feb 23 02:45:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CO2 mixtures
IA-CAES
Waste heat
Adiabatic compressed air energy storage
Thermodynamic analyses
Isobaric
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-3a933c55fc71610d1d924043054c9f75be1b7d1cbde8e181aaf7345cd7e77fa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0173-3647
0000-0001-9613-2056
PQID 2000554283
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2000554283
crossref_primary_10_1016_j_apenergy_2017_11_009
crossref_citationtrail_10_1016_j_apenergy_2017_11_009
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_11_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Raju, Kumar (b0040) 2012; 89
Alami, Aokal, Abed, Alhemyari (b0095) 2017; 106
Denholm, Sioshansi (b0030) 2009; 37
Budt, Wolf, Span, Yan (b0090) 2016; 170
Facci (b0070) 2015; 158
Zao, Wu, Hu, Xu, Rasmussen (b0025) 2015; 137
Chen, Hu, Sheng, Xie (b0100) 2017; 131
Cheung, Carriveau, Ting (b0015) 2014; 134
Pimm, Garvey, de Jong (b0115) 2014; 66
Fang, Xia, Jiang (b0135) 2015; 86
Granado, Pang, Wallace (b0010) 2016; 170
Wolf, Budt (b0080) 2014; 125
Liu, Wang (b0075) 2016; 108
Luo, Wang, Dooner, Clarke (b0020) 2015; 137
Odukomaiya, Abu-Heiba, Gluesenkamp, Abdelaziz, Jackson, Daniel (b0125) 2016; 179
Sciacovelli, Li, Chen, Wu, Wang, Garvey (b0055) 2017; 185
Zakeri, Syri (b0045) 2015; 42
Zhang, Yang, Li, Xu (b0060) 2014; 77
Nielsen, Leithner (b0105) 2009; 4
Wang, Xiong, Ting, Carriveau, Wang (b0110) 2016; 180
Jubeh, Najjar (b0065) 2012; 44
Calm JM, Hourahan GC. Physical, safety and environmental data for current and alternative refrigerants. In: 23th International congress of refrigeration, Prague, Czech Republic; 2011, Paper No. 915.
Chu, Majumdar (b0005) 2012; 488
Ineropera, DeWitt, Bergrnan, Lavine (b0145) 2007
Mazloum, Sayah, Nemer (b0120) 2017; 11
Odukomaiya, Kokou, Hussein, Abu-heiba, Graham, Momen (b0130) 2017; 12
NIST Standard Reference Database 23. NIST thermodynamic and transport properties of refrigerants and refrigerant mixture REFPROP, version 9.1; 2013.
Wang, Zhang, Yang, Zhou, Wang (b0085) 2016; 103
Grazzini, Milazzo (b0035) 2012; 100
Briola, Di Marco, Gabbrielli, Riccardi (b0050) 2016; 178
Facci (10.1016/j.apenergy.2017.11.009_b0070) 2015; 158
Chen (10.1016/j.apenergy.2017.11.009_b0100) 2017; 131
Briola (10.1016/j.apenergy.2017.11.009_b0050) 2016; 178
Nielsen (10.1016/j.apenergy.2017.11.009_b0105) 2009; 4
Liu (10.1016/j.apenergy.2017.11.009_b0075) 2016; 108
Ineropera (10.1016/j.apenergy.2017.11.009_b0145) 2007
Denholm (10.1016/j.apenergy.2017.11.009_b0030) 2009; 37
Granado (10.1016/j.apenergy.2017.11.009_b0010) 2016; 170
Jubeh (10.1016/j.apenergy.2017.11.009_b0065) 2012; 44
Zao (10.1016/j.apenergy.2017.11.009_b0025) 2015; 137
Fang (10.1016/j.apenergy.2017.11.009_b0135) 2015; 86
10.1016/j.apenergy.2017.11.009_b0150
Grazzini (10.1016/j.apenergy.2017.11.009_b0035) 2012; 100
Cheung (10.1016/j.apenergy.2017.11.009_b0015) 2014; 134
Raju (10.1016/j.apenergy.2017.11.009_b0040) 2012; 89
Luo (10.1016/j.apenergy.2017.11.009_b0020) 2015; 137
Alami (10.1016/j.apenergy.2017.11.009_b0095) 2017; 106
Odukomaiya (10.1016/j.apenergy.2017.11.009_b0130) 2017; 12
Zakeri (10.1016/j.apenergy.2017.11.009_b0045) 2015; 42
Wolf (10.1016/j.apenergy.2017.11.009_b0080) 2014; 125
Wang (10.1016/j.apenergy.2017.11.009_b0110) 2016; 180
Wang (10.1016/j.apenergy.2017.11.009_b0085) 2016; 103
Zhang (10.1016/j.apenergy.2017.11.009_b0060) 2014; 77
10.1016/j.apenergy.2017.11.009_b0140
Sciacovelli (10.1016/j.apenergy.2017.11.009_b0055) 2017; 185
Mazloum (10.1016/j.apenergy.2017.11.009_b0120) 2017; 11
Chu (10.1016/j.apenergy.2017.11.009_b0005) 2012; 488
Budt (10.1016/j.apenergy.2017.11.009_b0090) 2016; 170
Pimm (10.1016/j.apenergy.2017.11.009_b0115) 2014; 66
Odukomaiya (10.1016/j.apenergy.2017.11.009_b0125) 2016; 179
References_xml – volume: 180
  start-page: 810
  year: 2016
  end-page: 822
  ident: b0110
  article-title: Conventional and advanced exergy analyses of an underwater compressed air energy storage system
  publication-title: Appl Energy
– volume: 100
  start-page: 461
  year: 2012
  end-page: 472
  ident: b0035
  article-title: A thermodynamic analysis of multistage adiabatic CAES
  publication-title: Proc IEEE
– volume: 89
  start-page: 474
  year: 2012
  end-page: 481
  ident: b0040
  article-title: Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant
  publication-title: Appl Energy
– volume: 42
  start-page: 569
  year: 2015
  end-page: 596
  ident: b0045
  article-title: Electrical energy storage systems: a comparative life cycle cost analysis
  publication-title: Renew Sustain Energy Rev
– volume: 37
  start-page: 3149
  year: 2009
  end-page: 3158
  ident: b0030
  article-title: The value of compressed air energy storage with wind in transmission-constrained electric power systems
  publication-title: Energy Policy
– reference: NIST Standard Reference Database 23. NIST thermodynamic and transport properties of refrigerants and refrigerant mixture REFPROP, version 9.1; 2013.
– volume: 170
  start-page: 250
  year: 2016
  end-page: 268
  ident: b0090
  article-title: A review on compressed air energy storage: basic principles, past milestones and recent developments
  publication-title: Appl Energy
– volume: 106
  start-page: 201
  year: 2017
  end-page: 211
  ident: b0095
  article-title: Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications
  publication-title: Renew Energy
– volume: 4
  start-page: 253
  year: 2009
  end-page: 263
  ident: b0105
  article-title: Dynamic simulation of an innovative compressed air energy storage plant - detailed modelling of the storage cavern
  publication-title: WSEAS Trans Power Syst
– volume: 11
  start-page: 178
  year: 2017
  end-page: 190
  ident: b0120
  article-title: Dynamic modeling and simulation of an Isobaric adiabatic compressed air energy storage (IA-CAES) system
  publication-title: J Energy Storage
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: b0005
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
– volume: 170
  start-page: 476
  year: 2016
  end-page: 488
  ident: b0010
  article-title: Synergy of smart grids and hybrid distributed generation on the value of energy storage
  publication-title: Appl Energy
– volume: 77
  start-page: 460
  year: 2014
  end-page: 477
  ident: b0060
  article-title: Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage
  publication-title: Energy
– volume: 108
  start-page: 566
  year: 2016
  end-page: 578
  ident: b0075
  article-title: A comparative research of two adiabatic compressed air energy storage systems
  publication-title: Energy Convers Manag
– volume: 131
  start-page: 259
  year: 2017
  end-page: 266
  ident: b0100
  article-title: A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source
  publication-title: Energy
– volume: 179
  start-page: 948
  year: 2016
  end-page: 960
  ident: b0125
  article-title: Thermal analysis of near-isothermal compressed gas energy storage system
  publication-title: Appl Energy
– volume: 158
  start-page: 243
  year: 2015
  end-page: 254
  ident: b0070
  article-title: Trigenerative micro compressed air energy storage: concept and thermodynamic assessment
  publication-title: Appl Energy
– volume: 185
  start-page: 16
  year: 2017
  end-page: 28
  ident: b0055
  article-title: Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage – link between components performance and plant performance
  publication-title: Appl Energy
– volume: 134
  start-page: 239
  year: 2014
  end-page: 247
  ident: b0015
  article-title: Parameters affecting scalable underwater compressed air energy storage
  publication-title: Appl Energy
– volume: 125
  start-page: 158
  year: 2014
  end-page: 164
  ident: b0080
  article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage
  publication-title: Appl Energy
– volume: 178
  start-page: 758
  year: 2016
  end-page: 772
  ident: b0050
  article-title: A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves
  publication-title: Appl Energy
– year: 2007
  ident: b0145
  article-title: Fundamentals of heat and mass transfer
– volume: 137
  start-page: 511
  year: 2015
  end-page: 536
  ident: b0020
  article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation
  publication-title: Appl Energy
– volume: 44
  start-page: 85
  year: 2012
  end-page: 89
  ident: b0065
  article-title: Green solution for power generation by adoption of adiabatic CAES system
  publication-title: Appl Therm Eng
– volume: 103
  start-page: 182
  year: 2016
  end-page: 191
  ident: b0085
  article-title: Experimental study of compressed air energy storage system with thermal energy storage
  publication-title: Energy
– volume: 66
  start-page: 496
  year: 2014
  end-page: 508
  ident: b0115
  article-title: Design and testing of energy bags for underwater compressed air energy storage
  publication-title: Energy
– volume: 86
  start-page: 589
  year: 2015
  end-page: 602
  ident: b0135
  article-title: Key issues and solutions in a district heating system using low-grade industrial waste heat
  publication-title: Energy
– volume: 12
  start-page: 276
  year: 2017
  end-page: 287
  ident: b0130
  article-title: Near-isothermal-isobaric compressed gas energy storage
  publication-title: J Energy Storage
– reference: Calm JM, Hourahan GC. Physical, safety and environmental data for current and alternative refrigerants. In: 23th International congress of refrigeration, Prague, Czech Republic; 2011, Paper No. 915.
– volume: 137
  start-page: 545
  year: 2015
  end-page: 553
  ident: b0025
  article-title: Review of energy storage system for wind power integration support
  publication-title: Appl Energy
– volume: 11
  start-page: 178
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.009_b0120
  article-title: Dynamic modeling and simulation of an Isobaric adiabatic compressed air energy storage (IA-CAES) system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2017.03.006
– volume: 66
  start-page: 496
  year: 2014
  ident: 10.1016/j.apenergy.2017.11.009_b0115
  article-title: Design and testing of energy bags for underwater compressed air energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2013.12.010
– volume: 106
  start-page: 201
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.009_b0095
  article-title: Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.01.002
– volume: 4
  start-page: 253
  year: 2009
  ident: 10.1016/j.apenergy.2017.11.009_b0105
  article-title: Dynamic simulation of an innovative compressed air energy storage plant - detailed modelling of the storage cavern
  publication-title: WSEAS Trans Power Syst
– volume: 77
  start-page: 460
  year: 2014
  ident: 10.1016/j.apenergy.2017.11.009_b0060
  article-title: Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.030
– volume: 158
  start-page: 243
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.009_b0070
  article-title: Trigenerative micro compressed air energy storage: concept and thermodynamic assessment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.026
– volume: 179
  start-page: 948
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.009_b0125
  article-title: Thermal analysis of near-isothermal compressed gas energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.059
– volume: 44
  start-page: 85
  issue: 44
  year: 2012
  ident: 10.1016/j.apenergy.2017.11.009_b0065
  article-title: Green solution for power generation by adoption of adiabatic CAES system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.04.005
– ident: 10.1016/j.apenergy.2017.11.009_b0150
– volume: 185
  start-page: 16
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.009_b0055
  article-title: Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage – link between components performance and plant performance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.058
– volume: 103
  start-page: 182
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.009_b0085
  article-title: Experimental study of compressed air energy storage system with thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.125
– volume: 131
  start-page: 259
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.009_b0100
  article-title: A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.047
– volume: 12
  start-page: 276
  year: 2017
  ident: 10.1016/j.apenergy.2017.11.009_b0130
  article-title: Near-isothermal-isobaric compressed gas energy storage
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2017.05.014
– volume: 137
  start-page: 511
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.009_b0020
  article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.09.081
– volume: 108
  start-page: 566
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.009_b0075
  article-title: A comparative research of two adiabatic compressed air energy storage systems
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.11.049
– volume: 488
  start-page: 294
  issue: 7411
  year: 2012
  ident: 10.1016/j.apenergy.2017.11.009_b0005
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 170
  start-page: 476
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.009_b0010
  article-title: Synergy of smart grids and hybrid distributed generation on the value of energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.095
– volume: 125
  start-page: 158
  year: 2014
  ident: 10.1016/j.apenergy.2017.11.009_b0080
  article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.013
– volume: 178
  start-page: 758
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.009_b0050
  article-title: A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.091
– volume: 100
  start-page: 461
  year: 2012
  ident: 10.1016/j.apenergy.2017.11.009_b0035
  article-title: A thermodynamic analysis of multistage adiabatic CAES
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2011.2163049
– volume: 180
  start-page: 810
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.009_b0110
  article-title: Conventional and advanced exergy analyses of an underwater compressed air energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.014
– volume: 86
  start-page: 589
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.009_b0135
  article-title: Key issues and solutions in a district heating system using low-grade industrial waste heat
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.052
– ident: 10.1016/j.apenergy.2017.11.009_b0140
– volume: 89
  start-page: 474
  year: 2012
  ident: 10.1016/j.apenergy.2017.11.009_b0040
  article-title: Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.08.019
– volume: 170
  start-page: 250
  year: 2016
  ident: 10.1016/j.apenergy.2017.11.009_b0090
  article-title: A review on compressed air energy storage: basic principles, past milestones and recent developments
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.108
– volume: 134
  start-page: 239
  year: 2014
  ident: 10.1016/j.apenergy.2017.11.009_b0015
  article-title: Parameters affecting scalable underwater compressed air energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.028
– volume: 137
  start-page: 545
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.009_b0025
  article-title: Review of energy storage system for wind power integration support
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.103
– volume: 42
  start-page: 569
  year: 2015
  ident: 10.1016/j.apenergy.2017.11.009_b0045
  article-title: Electrical energy storage systems: a comparative life cycle cost analysis
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.10.011
– volume: 37
  start-page: 3149
  issue: 8
  year: 2009
  ident: 10.1016/j.apenergy.2017.11.009_b0030
  article-title: The value of compressed air energy storage with wind in transmission-constrained electric power systems
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.04.002
– year: 2007
  ident: 10.1016/j.apenergy.2017.11.009_b0145
SSID ssj0002120
Score 2.5247993
Snippet •A novel isobaric A-CAES system based on volatile fluid has been proposed.•Waste heat has employed to make IA-CAES more efficient and stable.•Proposed IA-CAES...
Adiabatic compressed air energy storage (A-CAES) is regarded as a promising and emerging storage technology with excellent power and storage capacity....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 198
SubjectTerms Adiabatic compressed air energy storage
air
ambient temperature
carbon dioxide
CO2 mixtures
exergy
heat
IA-CAES
Isobaric
latitude
mathematical models
storage technology
Thermodynamic analyses
Waste heat
wastes
Title A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid
URI https://dx.doi.org/10.1016/j.apenergy.2017.11.009
https://www.proquest.com/docview/2000554283
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFLUQ3ZQFamkR9IFciQVdOInjV2Y5ioJCK9gAUnYjP9GgaCYiSZd8O_fOo9CqEosuZ2Rb1lz73GPNuceEnDqv5SilMYuwfJiMmWPWK8HGMXDtkxMqw2rkyys9v5U_FmqxQ6Z9LQzKKjvsbzG9QevuzbD7msNVWQ6vke0i_-dGcDWZLLCCXRpc5YPHZ5nHuLNmhMYMW7-oEr4f2FVsKuxQ4mUG6OaJwsR_J6i_oLrJP-fvyH5HHGnezu092YnVAdl7YSd4QA5nz1Vr0LTbtusP5C6nVf0rLmm5hu0LyEfRkcChWStFTXljIB6oLR9oO1OKmklAGnp2kbNpPrv-TlvLZ1pXFCgjxeRH60QB3GCUZaRpuS3DR3J7PruZzll3wwLzkvMNEzYTwiuVPByb-CjwAMexxgVM-iwZ5SJ3JnDvQpxE4ALWJiOk8sFEY5LV4pDsVnUVjwgNOnmvlTMyCem5dtqMhY9Weg0wIv0xUf1nLXxnP463YCyLXmd2X_ThKDAccDYpIBzHZPi736o14Hi1R9ZHrfhjKRWQJV7t-60PcwH7DH-e2CrW2zVe1zkC6gVs7NN_jP-ZvIUnlA8yrr6Q3c3DNn4FVrNxJ82yPSFv8ouf86sngDH5Iw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELVoOLQ9VJQWlVJaV-qhPZjEsb3OHldRUFIgF0DKzbK9NloU7UYk6e9nZj-Aokocel17LMtjv3nWzjwT8sP5RA5iHLIA24fJkDpmvRJsGHKe-OiESrEa-WKeTK_l74Va7JBxVwuDaZUt9jeYXqN1-6XfrmZ_VRT9S2S7yP-5FlyNRotXZBfVqVSP7Gazs-n8AZCHrToj9Gdo8KRQ-PbErkJdZIdZXvoEBT0xN_HfMeoZWtch6HSPvGu5I82a6b0nO6HcJ2-fKAruk4PJY-EadG1P7voDucloWf0JS1qs4QQD-FEUJXCo10oxrbzWEM-pLe5oM1OKaZMANvTnLGPjbHL5izaqz7QqKbBGivGPVpECvsEoy0DjclvkH8n16eRqPGXtIwvMS843TNhUCK9U9HBz4oOc53Ajq4XApE-jVi5wp3PuXR5GAeiAtVELqXyug9bRJuKA9MqqDJ8IzZPofaKcllFIzxOX6KHwwUqfAJJIf0hUt6zGtwrk-BDG0nSpZremc4dBd8D1xIA7Dkn_wW7VaHC8aJF2XjN_7SYDgeJF2--dmw0cNfx_YstQbdf4YucA2BcQss__Mf438np6dXFuzmfzsyPyBlowm5Bx9YX0NnfbcAwkZ-O-tpv4HgRo-9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+isobaric+adiabatic+compressed+air+energy+storage+%28IA-CAES%29+system+on+the+base+of+volatile+fluid&rft.jtitle=Applied+energy&rft.au=Chen%2C+Long+Xiang&rft.au=Xie%2C+Mei+Na&rft.au=Zhao%2C+Pan+Pan&rft.au=Wang%2C+Feng+Xiang&rft.date=2018-01-15&rft.issn=0306-2619&rft.volume=210+p.198-210&rft.spage=198&rft.epage=210&rft_id=info:doi/10.1016%2Fj.apenergy.2017.11.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon