MHC-Mismatched Islet Allografts Are Vulnerable to Autoimmune Recognition In Vivo
When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease re...
Saved in:
Published in | The Journal of immunology (1950) Vol. 175; no. 4; pp. 2309 - 2316 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Assoc Immnol
15.08.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1767 1550-6606 |
DOI | 10.4049/jimmunol.175.4.2309 |
Cover
Abstract | When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-Ag7)-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the “indirect” (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo. |
---|---|
AbstractList | When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo. When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-Ag7)-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the “indirect” (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo. When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo. When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A super(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo. |
Author | Crawford, Megan L Gill, Ronald G Pham, Kim Kupfer, Tinalyn M |
Author_xml | – sequence: 1 fullname: Kupfer, Tinalyn M – sequence: 2 fullname: Crawford, Megan L – sequence: 3 fullname: Pham, Kim – sequence: 4 fullname: Gill, Ronald G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16081800$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPCL0BCPsFpw_hj7d1jFAGN1AqEoFfLcWYTV951sb1E_Ht2SSsQl57m8rwzo_e5IGdDHJCQ1wyWEmT7_s73_TjEsGS6XsolF9A-IwtW11ApBeqMLAA4r5hW-pxc5HwHAAq4fEHOmYKGNQAL8uXmal3d-Nzb4g64o5scsNBVCHGfbFcyXSWkt2MYMNltQFoiXY0l_jmN9Cu6uB988XGgm4He-p_xJXne2ZDx1cO8JN8_fvi2vqquP3_arFfXlZOMlYp3NSDHDlqnxVYK3chO85113NU175QQTEhmOShh0bEOoG663VYIq5BrzcUleXvae5_ijxFzMb3PDkOwA8YxG9XIGpSUT4JTe63W9Qy-eQDHbY87c598b9Mv81jWBIgT4FLMOWH3FwEzKzGPSualRppZyZRq_0s5X-xcWUnWhyey707Zg98fjj6hmUSFMD3IzPF4_If8DQU4oL0 |
CitedBy_id | crossref_primary_10_1002_advs_202003708 crossref_primary_10_4049_jimmunol_176_3_1637 crossref_primary_10_1080_19382014_2020_1763719 crossref_primary_10_1097_TP_0b013e31816b70bf crossref_primary_10_1097_01_med_0000216970_66998_df crossref_primary_10_1016_j_healun_2012_05_018 crossref_primary_10_4049_jimmunol_180_8_5177 crossref_primary_10_1016_j_matbio_2008_08_001 crossref_primary_10_1038_s41467_018_03953_y crossref_primary_10_4049_jimmunol_1700856 crossref_primary_10_3389_fimmu_2020_580483 crossref_primary_10_1111_j_1365_3083_2006_01863_x crossref_primary_10_2337_db09_0498 crossref_primary_10_1126_scitranslmed_3003835 crossref_primary_10_3389_fendo_2017_00343 crossref_primary_10_4049_jimmunol_181_7_4603 crossref_primary_10_1016_j_jaut_2009_07_001 crossref_primary_10_2337_db06_1445 crossref_primary_10_2337_db11_1784 crossref_primary_10_1097_MOT_0000000000000263 crossref_primary_10_1097_TP_0000000000002896 crossref_primary_10_4161_chim_2_4_19017 crossref_primary_10_1016_j_stem_2018_05_016 crossref_primary_10_1016_j_ultrasmedbio_2022_03_013 crossref_primary_10_1016_j_transproceed_2008_01_054 crossref_primary_10_1177_09636897221136149 crossref_primary_10_4049_jimmunol_1401137 crossref_primary_10_1038_s41578_019_0112_5 crossref_primary_10_1111_j_1600_6143_2007_01889_x crossref_primary_10_1210_er_2008_0006 crossref_primary_10_1007_s00125_009_1593_3 crossref_primary_10_1016_j_jaut_2009_09_002 |
Cites_doi | 10.1073/pnas.86.20.8000 10.1016/S0041-1345(96)00457-5 10.1002/(SICI)1521-4141(199910)29:10<3410::AID-IMMU3410>3.0.CO;2-K 10.4049/jimmunol.139.12.4022 10.1002/eji.1830250430 10.1074/jbc.M009159200 10.1006/jaut.1993.1026 10.1073/pnas.94.1.213 10.1097/00007890-199604270-00027 10.2337/diab.38.1.S85 10.1016/S0896-8411(09)90018-X 10.2337/diab.31.4.S84 10.1084/jem.180.4.1367 10.1126/science.1910207 10.2337/diabetes.51.2.347 10.2337/diabetes.43.2.197 10.1007/978-3-642-75741-9_9 10.1126/science.2966437 10.4049/jimmunol.164.7.3913 10.1016/0167-5699(92)90118-Q 10.1097/00007890-198510000-00018 10.1002/eji.1830260815 10.1084/jem.189.7.1053 10.1084/jem.183.1.67 10.2337/diabetes.35.11.1302 10.1073/pnas.88.2.527 10.1038/icb.1989.12 10.1097/00007890-198807000-00001 10.1097/01.TP.0000128907.83111.C6 10.1007/BF00264909 10.2337/diabetes.37.10.1444 10.1016/S1074-7613(00)80681-0 10.1016/0092-8674(93)90730-E 10.2337/diabetes.37.7.930 10.1007/s001250100021 10.1016/S0167-5699(98)01394-2 10.2337/diabetes.45.3.328 10.1056/NEJM199609193351205 10.2337/diab.36.4.539 10.2337/diabetes.45.8.1121 10.2337/diabetes.51.11.3202 10.2337/diabetes.50.11.2464 10.1016/S0006-2952(97)00492-9 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 H94 7X8 |
DOI | 10.4049/jimmunol.175.4.2309 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 2316 |
ExternalDocumentID | 16081800 10_4049_jimmunol_175_4_2309 www175_4_2309 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK AI 55333 – fundername: NIDDK NIH HHS grantid: P30 DK57516 |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS 79B 85S 8RP AALRV AARDX ABEFU ABFLS ABOCM ABPPZ ABPTK ACGFS ACIWK ACNCT ACPRK ADACO ADBBV ADKFC AENEX AETEA AFFNX AFRAH AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL D0L DIK DU5 E3Z EBS EJD F5P FH7 FRP G8K GJ GX1 H13 IH2 J5H K-O K78 KQ8 L7B MVM MYA NEJ O0- OK1 P0W P2P PQEST PQQKQ R.V RHF RHI RZQ SJN TWZ VH1 WH7 WOQ X X7M XJT ZA5 ZE2 ZGI --- -~X .55 .GJ 0R~ 18M 5WD AAYXX ABCQX ABDFA ABDPE ABEJV ABGNP ABJNI ABXVV ACGFO ADIPN ADNWM ADXHL AFHIN AFOSN AGORE AHMMS AHWXS AI. AIZAD ARBBW BCRHZ BTFSW CITATION OCZFY OWPYF ROX TR2 W8F XSW XTH YHG CGR CUY CVF ECM EIF NPM VXZ YIN 7T5 H94 KOP 7X8 |
ID | FETCH-LOGICAL-c411t-2f50e2ef09c73b43784f72dac2c552f6331341a2063aec1f0058fdb33a6e27723 |
ISSN | 0022-1767 |
IngestDate | Thu Sep 04 23:04:03 EDT 2025 Fri Sep 05 07:01:51 EDT 2025 Wed Feb 19 02:35:24 EST 2025 Tue Jul 01 01:03:23 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Tue Nov 10 19:50:45 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c411t-2f50e2ef09c73b43784f72dac2c552f6331341a2063aec1f0058fdb33a6e27723 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://journals.aai.org/jimmunol/article-pdf/175/4/2309/1206766/2309.pdf |
PMID | 16081800 |
PQID | 17597754 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68450644 proquest_miscellaneous_17597754 pubmed_primary_16081800 crossref_primary_10_4049_jimmunol_175_4_2309 crossref_citationtrail_10_4049_jimmunol_175_4_2309 highwire_smallpub1_www175_4_2309 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-08-15 |
PublicationDateYYYYMMDD | 2005-08-15 |
PublicationDate_xml | – month: 08 year: 2005 text: 2005-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2005 |
Publisher | Am Assoc Immnol |
Publisher_xml | – name: Am Assoc Immnol |
References | 2023010121122636900_R30 2023010121122636900_R31 2023010121122636900_R10 2023010121122636900_R32 2023010121122636900_R11 2023010121122636900_R33 2023010121122636900_R12 2023010121122636900_R34 2023010121122636900_R13 2023010121122636900_R35 2023010121122636900_R14 2023010121122636900_R36 2023010121122636900_R15 2023010121122636900_R37 2023010121122636900_R16 2023010121122636900_R38 2023010121122636900_R17 2023010121122636900_R39 2023010121122636900_R18 2023010121122636900_R19 2023010121122636900_R9 2023010121122636900_R40 2023010121122636900_R8 2023010121122636900_R41 2023010121122636900_R20 2023010121122636900_R42 2023010121122636900_R21 2023010121122636900_R43 2023010121122636900_R5 2023010121122636900_R22 2023010121122636900_R44 2023010121122636900_R4 2023010121122636900_R23 2023010121122636900_R45 2023010121122636900_R7 2023010121122636900_R24 2023010121122636900_R46 2023010121122636900_R6 2023010121122636900_R25 2023010121122636900_R47 2023010121122636900_R26 2023010121122636900_R27 2023010121122636900_R28 2023010121122636900_R29 2023010121122636900_R1 2023010121122636900_R3 2023010121122636900_R2 |
References_xml | – ident: 2023010121122636900_R31 doi: 10.1073/pnas.86.20.8000 – ident: 2023010121122636900_R35 doi: 10.1016/S0041-1345(96)00457-5 – ident: 2023010121122636900_R37 doi: 10.1002/(SICI)1521-4141(199910)29:10<3410::AID-IMMU3410>3.0.CO;2-K – ident: 2023010121122636900_R19 doi: 10.4049/jimmunol.139.12.4022 – ident: 2023010121122636900_R1 – ident: 2023010121122636900_R13 doi: 10.1002/eji.1830250430 – ident: 2023010121122636900_R41 doi: 10.1074/jbc.M009159200 – ident: 2023010121122636900_R9 doi: 10.1006/jaut.1993.1026 – ident: 2023010121122636900_R33 doi: 10.1073/pnas.94.1.213 – ident: 2023010121122636900_R5 doi: 10.1097/00007890-199604270-00027 – ident: 2023010121122636900_R2 doi: 10.2337/diab.38.1.S85 – ident: 2023010121122636900_R11 doi: 10.1016/S0896-8411(09)90018-X – ident: 2023010121122636900_R23 doi: 10.2337/diab.31.4.S84 – ident: 2023010121122636900_R29 doi: 10.1084/jem.180.4.1367 – ident: 2023010121122636900_R36 doi: 10.1126/science.1910207 – ident: 2023010121122636900_R47 doi: 10.2337/diabetes.51.2.347 – ident: 2023010121122636900_R24 – ident: 2023010121122636900_R32 doi: 10.2337/diabetes.43.2.197 – ident: 2023010121122636900_R39 doi: 10.1007/978-3-642-75741-9_9 – ident: 2023010121122636900_R8 doi: 10.1126/science.2966437 – ident: 2023010121122636900_R18 doi: 10.4049/jimmunol.164.7.3913 – ident: 2023010121122636900_R43 doi: 10.1016/0167-5699(92)90118-Q – ident: 2023010121122636900_R27 doi: 10.1097/00007890-198510000-00018 – ident: 2023010121122636900_R10 doi: 10.1002/eji.1830260815 – ident: 2023010121122636900_R15 doi: 10.1084/jem.189.7.1053 – ident: 2023010121122636900_R16 doi: 10.1084/jem.183.1.67 – ident: 2023010121122636900_R45 doi: 10.2337/diabetes.35.11.1302 – ident: 2023010121122636900_R21 doi: 10.1073/pnas.88.2.527 – ident: 2023010121122636900_R46 doi: 10.1038/icb.1989.12 – ident: 2023010121122636900_R38 doi: 10.1097/00007890-198807000-00001 – ident: 2023010121122636900_R30 doi: 10.1097/01.TP.0000128907.83111.C6 – ident: 2023010121122636900_R42 doi: 10.1007/BF00264909 – ident: 2023010121122636900_R34 doi: 10.2337/diabetes.37.10.1444 – ident: 2023010121122636900_R28 doi: 10.1016/S1074-7613(00)80681-0 – ident: 2023010121122636900_R26 doi: 10.1016/0092-8674(93)90730-E – ident: 2023010121122636900_R3 – ident: 2023010121122636900_R12 doi: 10.2337/diabetes.37.7.930 – ident: 2023010121122636900_R40 doi: 10.1007/s001250100021 – ident: 2023010121122636900_R25 doi: 10.1016/S0167-5699(98)01394-2 – ident: 2023010121122636900_R14 doi: 10.2337/diabetes.45.3.328 – ident: 2023010121122636900_R20 – ident: 2023010121122636900_R4 doi: 10.1056/NEJM199609193351205 – ident: 2023010121122636900_R7 doi: 10.2337/diab.36.4.539 – ident: 2023010121122636900_R17 doi: 10.2337/diabetes.45.8.1121 – ident: 2023010121122636900_R22 doi: 10.2337/diabetes.51.11.3202 – ident: 2023010121122636900_R6 doi: 10.2337/diabetes.50.11.2464 – ident: 2023010121122636900_R44 doi: 10.1016/S0006-2952(97)00492-9 |
SSID | ssj0006024 |
Score | 1.9716594 |
Snippet | When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2309 |
SubjectTerms | Animals Antigen Presentation Autoantigens - immunology Autoantigens - metabolism CD4-Positive T-Lymphocytes - immunology Diabetes Mellitus, Type 1 - genetics Diabetes Mellitus, Type 1 - immunology Diabetes Mellitus, Type 1 - pathology Disease Models, Animal Female Histocompatibility Antigens Class II - biosynthesis Histocompatibility Antigens Class II - immunology Histocompatibility Testing Islets of Langerhans Transplantation - immunology Islets of Langerhans Transplantation - pathology Male Mice Mice, Inbred C57BL Mice, Inbred NOD Mice, Knockout Mice, SCID Mice, Transgenic Receptors, Antigen, T-Cell - genetics Recurrence Spleen - cytology Spleen - immunology Spleen - transplantation Transplantation, Isogeneic |
Title | MHC-Mismatched Islet Allografts Are Vulnerable to Autoimmune Recognition In Vivo |
URI | http://www.jimmunol.org/cgi/content/abstract/175/4/2309 https://www.ncbi.nlm.nih.gov/pubmed/16081800 https://www.proquest.com/docview/17597754 https://www.proquest.com/docview/68450644 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhAXBMtrefoAp5CQOH40x2oFW1gFrdDuqrcoSW1UqSSrNqGCn8KvZSbvohaxXKIqtUeuv-l4bM98Q8hr5hlfJUbYrs-EzZVI7STWiW3GgYphiUmYwGzk8LOcXvBPMzEbjX4NopbKInHSnzvzSv4HVXgHuGKW7DWQ7YTCC_gM-MITEIbnP2EcTo_tcLEGpxOmfm4BvLqwJsuKhtoUa2uy0tZluURiaUyQAjdzUhb5AlNCsFxDEzqU47mgdbn4ng891T5nrKaVwE41X9Ob6lbMHZwhnJZXpoUeSU4yK3S6y41VvGkD6EP9FasEd9-dNUnap4tvXRxQQ6_9pTqztk6crWMJgeesdWLmIE3AU3WtDUc31lXAXlW6csv8KjHQMz40pr4bDBZm8ETlLqPPYZODRr-ZCAcEOtzpOw8ptv9Y-rqARNgKoZioFRKBkIhHKOQGucmUqkIATmZ9-JB0GW-Z6PFn1oxWKOTdjpFsez0tE_X-XU3l3ZzfI3cboOmk1rH7ZKSzQ3KrLlT645DcDpsQjAfkbFvpaKV0tFc6kKFpr3S0yGmvdHSgdPRjRlHpHpKLD-_Pj6d2U5bDTrnnFTYzwtVMGzdIlZ9wX425UWwepywVghnp-0gSGDNwfmOdegYrV5p54vux1DCTzH9EDrI8008IhVYcU7-1RJIlGQee0GA5YBOvzZyl3hFh7bRFacNZj6VTAJ_9gB2Rt12nq5qy5e_NaYtHBHO3XAIOXrTZbIZNXrU4RWB98UotznRerlFMgByS-1vIMUdOSGjxuAa4H5NEOknXfXq98T4jd_r_23NyUKxK_QIc4yJ5WWnob17ftbM |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MHC-Mismatched+Islet+Allografts+Are+Vulnerable+to+Autoimmune+Recognition+In+Vivo&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Kupfer%2C+Tinalyn+M.&rft.au=Crawford%2C+Megan+L.&rft.au=Pham%2C+Kim&rft.au=Gill%2C+Ronald+G.&rft.date=2005-08-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=175&rft.issue=4&rft.spage=2309&rft.epage=2316&rft_id=info:doi/10.4049%2Fjimmunol.175.4.2309&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_175_4_2309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |