MHC-Mismatched Islet Allografts Are Vulnerable to Autoimmune Recognition In Vivo

When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease re...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 175; no. 4; pp. 2309 - 2316
Main Authors Kupfer, Tinalyn M, Crawford, Megan L, Pham, Kim, Gill, Ronald G
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 15.08.2005
Subjects
Online AccessGet full text
ISSN0022-1767
1550-6606
DOI10.4049/jimmunol.175.4.2309

Cover

Abstract When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-Ag7)-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the “indirect” (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.
AbstractList When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.
When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-Ag7)-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the “indirect” (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.
When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.
When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A super(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.
Author Crawford, Megan L
Gill, Ronald G
Pham, Kim
Kupfer, Tinalyn M
Author_xml – sequence: 1
  fullname: Kupfer, Tinalyn M
– sequence: 2
  fullname: Crawford, Megan L
– sequence: 3
  fullname: Pham, Kim
– sequence: 4
  fullname: Gill, Ronald G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16081800$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPCL0BCPsFpw_hj7d1jFAGN1AqEoFfLcWYTV951sb1E_Ht2SSsQl57m8rwzo_e5IGdDHJCQ1wyWEmT7_s73_TjEsGS6XsolF9A-IwtW11ApBeqMLAA4r5hW-pxc5HwHAAq4fEHOmYKGNQAL8uXmal3d-Nzb4g64o5scsNBVCHGfbFcyXSWkt2MYMNltQFoiXY0l_jmN9Cu6uB988XGgm4He-p_xJXne2ZDx1cO8JN8_fvi2vqquP3_arFfXlZOMlYp3NSDHDlqnxVYK3chO85113NU175QQTEhmOShh0bEOoG663VYIq5BrzcUleXvae5_ijxFzMb3PDkOwA8YxG9XIGpSUT4JTe63W9Qy-eQDHbY87c598b9Mv81jWBIgT4FLMOWH3FwEzKzGPSualRppZyZRq_0s5X-xcWUnWhyey707Zg98fjj6hmUSFMD3IzPF4_If8DQU4oL0
CitedBy_id crossref_primary_10_1002_advs_202003708
crossref_primary_10_4049_jimmunol_176_3_1637
crossref_primary_10_1080_19382014_2020_1763719
crossref_primary_10_1097_TP_0b013e31816b70bf
crossref_primary_10_1097_01_med_0000216970_66998_df
crossref_primary_10_1016_j_healun_2012_05_018
crossref_primary_10_4049_jimmunol_180_8_5177
crossref_primary_10_1016_j_matbio_2008_08_001
crossref_primary_10_1038_s41467_018_03953_y
crossref_primary_10_4049_jimmunol_1700856
crossref_primary_10_3389_fimmu_2020_580483
crossref_primary_10_1111_j_1365_3083_2006_01863_x
crossref_primary_10_2337_db09_0498
crossref_primary_10_1126_scitranslmed_3003835
crossref_primary_10_3389_fendo_2017_00343
crossref_primary_10_4049_jimmunol_181_7_4603
crossref_primary_10_1016_j_jaut_2009_07_001
crossref_primary_10_2337_db06_1445
crossref_primary_10_2337_db11_1784
crossref_primary_10_1097_MOT_0000000000000263
crossref_primary_10_1097_TP_0000000000002896
crossref_primary_10_4161_chim_2_4_19017
crossref_primary_10_1016_j_stem_2018_05_016
crossref_primary_10_1016_j_ultrasmedbio_2022_03_013
crossref_primary_10_1016_j_transproceed_2008_01_054
crossref_primary_10_1177_09636897221136149
crossref_primary_10_4049_jimmunol_1401137
crossref_primary_10_1038_s41578_019_0112_5
crossref_primary_10_1111_j_1600_6143_2007_01889_x
crossref_primary_10_1210_er_2008_0006
crossref_primary_10_1007_s00125_009_1593_3
crossref_primary_10_1016_j_jaut_2009_09_002
Cites_doi 10.1073/pnas.86.20.8000
10.1016/S0041-1345(96)00457-5
10.1002/(SICI)1521-4141(199910)29:10<3410::AID-IMMU3410>3.0.CO;2-K
10.4049/jimmunol.139.12.4022
10.1002/eji.1830250430
10.1074/jbc.M009159200
10.1006/jaut.1993.1026
10.1073/pnas.94.1.213
10.1097/00007890-199604270-00027
10.2337/diab.38.1.S85
10.1016/S0896-8411(09)90018-X
10.2337/diab.31.4.S84
10.1084/jem.180.4.1367
10.1126/science.1910207
10.2337/diabetes.51.2.347
10.2337/diabetes.43.2.197
10.1007/978-3-642-75741-9_9
10.1126/science.2966437
10.4049/jimmunol.164.7.3913
10.1016/0167-5699(92)90118-Q
10.1097/00007890-198510000-00018
10.1002/eji.1830260815
10.1084/jem.189.7.1053
10.1084/jem.183.1.67
10.2337/diabetes.35.11.1302
10.1073/pnas.88.2.527
10.1038/icb.1989.12
10.1097/00007890-198807000-00001
10.1097/01.TP.0000128907.83111.C6
10.1007/BF00264909
10.2337/diabetes.37.10.1444
10.1016/S1074-7613(00)80681-0
10.1016/0092-8674(93)90730-E
10.2337/diabetes.37.7.930
10.1007/s001250100021
10.1016/S0167-5699(98)01394-2
10.2337/diabetes.45.3.328
10.1056/NEJM199609193351205
10.2337/diab.36.4.539
10.2337/diabetes.45.8.1121
10.2337/diabetes.51.11.3202
10.2337/diabetes.50.11.2464
10.1016/S0006-2952(97)00492-9
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
7X8
DOI 10.4049/jimmunol.175.4.2309
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 2316
ExternalDocumentID 16081800
10_4049_jimmunol_175_4_2309
www175_4_2309
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK AI 55333
– fundername: NIDDK NIH HHS
  grantid: P30 DK57516
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
79B
85S
8RP
AALRV
AARDX
ABEFU
ABFLS
ABOCM
ABPPZ
ABPTK
ACGFS
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
ADKFC
AENEX
AETEA
AFFNX
AFRAH
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
G8K
GJ
GX1
H13
IH2
J5H
K-O
K78
KQ8
L7B
MVM
MYA
NEJ
O0-
OK1
P0W
P2P
PQEST
PQQKQ
R.V
RHF
RHI
RZQ
SJN
TWZ
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZE2
ZGI
---
-~X
.55
.GJ
0R~
18M
5WD
AAYXX
ABCQX
ABDFA
ABDPE
ABEJV
ABGNP
ABJNI
ABXVV
ACGFO
ADIPN
ADNWM
ADXHL
AFHIN
AFOSN
AGORE
AHMMS
AHWXS
AI.
AIZAD
ARBBW
BCRHZ
BTFSW
CITATION
OCZFY
OWPYF
ROX
TR2
W8F
XSW
XTH
YHG
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIN
7T5
H94
KOP
7X8
ID FETCH-LOGICAL-c411t-2f50e2ef09c73b43784f72dac2c552f6331341a2063aec1f0058fdb33a6e27723
ISSN 0022-1767
IngestDate Thu Sep 04 23:04:03 EDT 2025
Fri Sep 05 07:01:51 EDT 2025
Wed Feb 19 02:35:24 EST 2025
Tue Jul 01 01:03:23 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
Tue Nov 10 19:50:45 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-2f50e2ef09c73b43784f72dac2c552f6331341a2063aec1f0058fdb33a6e27723
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://journals.aai.org/jimmunol/article-pdf/175/4/2309/1206766/2309.pdf
PMID 16081800
PQID 17597754
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_68450644
proquest_miscellaneous_17597754
pubmed_primary_16081800
crossref_primary_10_4049_jimmunol_175_4_2309
crossref_citationtrail_10_4049_jimmunol_175_4_2309
highwire_smallpub1_www175_4_2309
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-08-15
PublicationDateYYYYMMDD 2005-08-15
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2005
Publisher Am Assoc Immnol
Publisher_xml – name: Am Assoc Immnol
References 2023010121122636900_R30
2023010121122636900_R31
2023010121122636900_R10
2023010121122636900_R32
2023010121122636900_R11
2023010121122636900_R33
2023010121122636900_R12
2023010121122636900_R34
2023010121122636900_R13
2023010121122636900_R35
2023010121122636900_R14
2023010121122636900_R36
2023010121122636900_R15
2023010121122636900_R37
2023010121122636900_R16
2023010121122636900_R38
2023010121122636900_R17
2023010121122636900_R39
2023010121122636900_R18
2023010121122636900_R19
2023010121122636900_R9
2023010121122636900_R40
2023010121122636900_R8
2023010121122636900_R41
2023010121122636900_R20
2023010121122636900_R42
2023010121122636900_R21
2023010121122636900_R43
2023010121122636900_R5
2023010121122636900_R22
2023010121122636900_R44
2023010121122636900_R4
2023010121122636900_R23
2023010121122636900_R45
2023010121122636900_R7
2023010121122636900_R24
2023010121122636900_R46
2023010121122636900_R6
2023010121122636900_R25
2023010121122636900_R47
2023010121122636900_R26
2023010121122636900_R27
2023010121122636900_R28
2023010121122636900_R29
2023010121122636900_R1
2023010121122636900_R3
2023010121122636900_R2
References_xml – ident: 2023010121122636900_R31
  doi: 10.1073/pnas.86.20.8000
– ident: 2023010121122636900_R35
  doi: 10.1016/S0041-1345(96)00457-5
– ident: 2023010121122636900_R37
  doi: 10.1002/(SICI)1521-4141(199910)29:10<3410::AID-IMMU3410>3.0.CO;2-K
– ident: 2023010121122636900_R19
  doi: 10.4049/jimmunol.139.12.4022
– ident: 2023010121122636900_R1
– ident: 2023010121122636900_R13
  doi: 10.1002/eji.1830250430
– ident: 2023010121122636900_R41
  doi: 10.1074/jbc.M009159200
– ident: 2023010121122636900_R9
  doi: 10.1006/jaut.1993.1026
– ident: 2023010121122636900_R33
  doi: 10.1073/pnas.94.1.213
– ident: 2023010121122636900_R5
  doi: 10.1097/00007890-199604270-00027
– ident: 2023010121122636900_R2
  doi: 10.2337/diab.38.1.S85
– ident: 2023010121122636900_R11
  doi: 10.1016/S0896-8411(09)90018-X
– ident: 2023010121122636900_R23
  doi: 10.2337/diab.31.4.S84
– ident: 2023010121122636900_R29
  doi: 10.1084/jem.180.4.1367
– ident: 2023010121122636900_R36
  doi: 10.1126/science.1910207
– ident: 2023010121122636900_R47
  doi: 10.2337/diabetes.51.2.347
– ident: 2023010121122636900_R24
– ident: 2023010121122636900_R32
  doi: 10.2337/diabetes.43.2.197
– ident: 2023010121122636900_R39
  doi: 10.1007/978-3-642-75741-9_9
– ident: 2023010121122636900_R8
  doi: 10.1126/science.2966437
– ident: 2023010121122636900_R18
  doi: 10.4049/jimmunol.164.7.3913
– ident: 2023010121122636900_R43
  doi: 10.1016/0167-5699(92)90118-Q
– ident: 2023010121122636900_R27
  doi: 10.1097/00007890-198510000-00018
– ident: 2023010121122636900_R10
  doi: 10.1002/eji.1830260815
– ident: 2023010121122636900_R15
  doi: 10.1084/jem.189.7.1053
– ident: 2023010121122636900_R16
  doi: 10.1084/jem.183.1.67
– ident: 2023010121122636900_R45
  doi: 10.2337/diabetes.35.11.1302
– ident: 2023010121122636900_R21
  doi: 10.1073/pnas.88.2.527
– ident: 2023010121122636900_R46
  doi: 10.1038/icb.1989.12
– ident: 2023010121122636900_R38
  doi: 10.1097/00007890-198807000-00001
– ident: 2023010121122636900_R30
  doi: 10.1097/01.TP.0000128907.83111.C6
– ident: 2023010121122636900_R42
  doi: 10.1007/BF00264909
– ident: 2023010121122636900_R34
  doi: 10.2337/diabetes.37.10.1444
– ident: 2023010121122636900_R28
  doi: 10.1016/S1074-7613(00)80681-0
– ident: 2023010121122636900_R26
  doi: 10.1016/0092-8674(93)90730-E
– ident: 2023010121122636900_R3
– ident: 2023010121122636900_R12
  doi: 10.2337/diabetes.37.7.930
– ident: 2023010121122636900_R40
  doi: 10.1007/s001250100021
– ident: 2023010121122636900_R25
  doi: 10.1016/S0167-5699(98)01394-2
– ident: 2023010121122636900_R14
  doi: 10.2337/diabetes.45.3.328
– ident: 2023010121122636900_R20
– ident: 2023010121122636900_R4
  doi: 10.1056/NEJM199609193351205
– ident: 2023010121122636900_R7
  doi: 10.2337/diab.36.4.539
– ident: 2023010121122636900_R17
  doi: 10.2337/diabetes.45.8.1121
– ident: 2023010121122636900_R22
  doi: 10.2337/diabetes.51.11.3202
– ident: 2023010121122636900_R6
  doi: 10.2337/diabetes.50.11.2464
– ident: 2023010121122636900_R44
  doi: 10.1016/S0006-2952(97)00492-9
SSID ssj0006024
Score 1.9716594
Snippet When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2309
SubjectTerms Animals
Antigen Presentation
Autoantigens - immunology
Autoantigens - metabolism
CD4-Positive T-Lymphocytes - immunology
Diabetes Mellitus, Type 1 - genetics
Diabetes Mellitus, Type 1 - immunology
Diabetes Mellitus, Type 1 - pathology
Disease Models, Animal
Female
Histocompatibility Antigens Class II - biosynthesis
Histocompatibility Antigens Class II - immunology
Histocompatibility Testing
Islets of Langerhans Transplantation - immunology
Islets of Langerhans Transplantation - pathology
Male
Mice
Mice, Inbred C57BL
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Mice, Transgenic
Receptors, Antigen, T-Cell - genetics
Recurrence
Spleen - cytology
Spleen - immunology
Spleen - transplantation
Transplantation, Isogeneic
Title MHC-Mismatched Islet Allografts Are Vulnerable to Autoimmune Recognition In Vivo
URI http://www.jimmunol.org/cgi/content/abstract/175/4/2309
https://www.ncbi.nlm.nih.gov/pubmed/16081800
https://www.proquest.com/docview/17597754
https://www.proquest.com/docview/68450644
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhAXBMtrefoAp5CQOH40x2oFW1gFrdDuqrcoSW1UqSSrNqGCn8KvZSbvohaxXKIqtUeuv-l4bM98Q8hr5hlfJUbYrs-EzZVI7STWiW3GgYphiUmYwGzk8LOcXvBPMzEbjX4NopbKInHSnzvzSv4HVXgHuGKW7DWQ7YTCC_gM-MITEIbnP2EcTo_tcLEGpxOmfm4BvLqwJsuKhtoUa2uy0tZluURiaUyQAjdzUhb5AlNCsFxDEzqU47mgdbn4ng891T5nrKaVwE41X9Ob6lbMHZwhnJZXpoUeSU4yK3S6y41VvGkD6EP9FasEd9-dNUnap4tvXRxQQ6_9pTqztk6crWMJgeesdWLmIE3AU3WtDUc31lXAXlW6csv8KjHQMz40pr4bDBZm8ETlLqPPYZODRr-ZCAcEOtzpOw8ptv9Y-rqARNgKoZioFRKBkIhHKOQGucmUqkIATmZ9-JB0GW-Z6PFn1oxWKOTdjpFsez0tE_X-XU3l3ZzfI3cboOmk1rH7ZKSzQ3KrLlT645DcDpsQjAfkbFvpaKV0tFc6kKFpr3S0yGmvdHSgdPRjRlHpHpKLD-_Pj6d2U5bDTrnnFTYzwtVMGzdIlZ9wX425UWwepywVghnp-0gSGDNwfmOdegYrV5p54vux1DCTzH9EDrI8008IhVYcU7-1RJIlGQee0GA5YBOvzZyl3hFh7bRFacNZj6VTAJ_9gB2Rt12nq5qy5e_NaYtHBHO3XAIOXrTZbIZNXrU4RWB98UotznRerlFMgByS-1vIMUdOSGjxuAa4H5NEOknXfXq98T4jd_r_23NyUKxK_QIc4yJ5WWnob17ftbM
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MHC-Mismatched+Islet+Allografts+Are+Vulnerable+to+Autoimmune+Recognition+In+Vivo&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Kupfer%2C+Tinalyn+M.&rft.au=Crawford%2C+Megan+L.&rft.au=Pham%2C+Kim&rft.au=Gill%2C+Ronald+G.&rft.date=2005-08-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=175&rft.issue=4&rft.spage=2309&rft.epage=2316&rft_id=info:doi/10.4049%2Fjimmunol.175.4.2309&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_175_4_2309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon