Mathematical modelling of stretch-induced membrane traffic in bladder umbrella cells
The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component...
Saved in:
Published in | Journal of theoretical biology Vol. 409; pp. 115 - 132 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
21.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of ‘fullness’ to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies.
•Multiscale model developed for vesicle traffic in response to mechanical stimuli.•Explanation for counterintuitive non-monotonic behaviour observed in experiments.•In vivo modelling uncovers potential root of bladder disorders in vesicle machinery.•Clinical potential demonstrated with extensions to mechanical role in innervation. |
---|---|
AbstractList | The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of ‘fullness’ to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate
in vivo
bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies. The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of ‘fullness’ to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies. •Multiscale model developed for vesicle traffic in response to mechanical stimuli.•Explanation for counterintuitive non-monotonic behaviour observed in experiments.•In vivo modelling uncovers potential root of bladder disorders in vesicle machinery.•Clinical potential demonstrated with extensions to mechanical role in innervation. The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of 'fullness' to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies. The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of 'fullness' to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies.The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of 'fullness' to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies. |
Author | Waters, S.L. Moulton, D.E. Apodaca, G. Sulzer, V. Byrne, H.M. |
AuthorAffiliation | a Mathematical Institute, University of Oxford, Oxford, UK b Departments of Medicine and Cell Biology, University of Pittsburgh, USA |
AuthorAffiliation_xml | – name: a Mathematical Institute, University of Oxford, Oxford, UK – name: b Departments of Medicine and Cell Biology, University of Pittsburgh, USA |
Author_xml | – sequence: 1 givenname: D.E. surname: Moulton fullname: Moulton, D.E. email: moulton@maths.ox.ac.uk organization: Mathematical Institute, University of Oxford, Oxford, UK – sequence: 2 givenname: V. surname: Sulzer fullname: Sulzer, V. organization: Mathematical Institute, University of Oxford, Oxford, UK – sequence: 3 givenname: G. surname: Apodaca fullname: Apodaca, G. organization: Departments of Medicine and Cell Biology, University of Pittsburgh, USA – sequence: 4 givenname: H.M. surname: Byrne fullname: Byrne, H.M. organization: Mathematical Institute, University of Oxford, Oxford, UK – sequence: 5 givenname: S.L. surname: Waters fullname: Waters, S.L. organization: Mathematical Institute, University of Oxford, Oxford, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27590325$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEUhoNU7G31D7iQLN3MmI9JJgERpGgVKm7uPmSSM725zExqkin4781w26IuuskJnPc5X-8FOlviAgi9paSlhMoPx_ZYhtCy-m-JaglnL9COEi0aJTp6hnaEMNYIqvk5usj5SAjRHZev0Dnrha5ysUP7H7YcYLYlODvhOXqYprDc4jjiXBIUd2jC4lcHHs8wD8kugEuy4xgcDgseJus9JLzWVCUtdvXNr9HL0U4Z3jzES7T_-mV_9a25-Xn9_erzTeM6SkvDQI9E8oGSnjLXDVL5vh-IYh60E7JXwCk4cGS0XnnZsapmg9VSSM2B80v06VT2bh1m8A6WOtlk7lKYbfptog3m38wSDuY23hvR9UopXQu8fyiQ4q8VcjFzyNsGdcu4ZkMVF1x2pN-k7_7u9dTk8ZJVwE4Cl2LOCcYnCSVms8sczWaX2ewyRJlKVUj9B7lQqhdxmzdMz6MfTyjUA98HSCa7AEs1KiRwxfgYnsP_AF_zsg8 |
CitedBy_id | crossref_primary_10_1242_jcs_202168 crossref_primary_10_1152_ajpcell_00218_2017 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119777 crossref_primary_10_1002_nau_24995 crossref_primary_10_1016_j_bpj_2021_11_019 crossref_primary_10_1016_j_heliyon_2023_e19427 crossref_primary_10_1152_physrev_00041_2019 crossref_primary_10_1016_j_vetmic_2018_06_013 |
Cites_doi | 10.1083/jcb.53.1.73 10.1016/j.bpj.2009.07.012 10.1089/ten.2006.12.635 10.1073/pnas.141199598 10.1016/S0021-9290(96)80013-3 10.1152/ajprenal.2002.282.2.F179 10.1002/nau.10082 10.1038/nrm2060 10.1002/ar.1091970107 10.1002/nau.20837 10.1152/jappl.1981.51.4.905 10.1007/s002320010040 10.1016/0021-9290(94)00169-5 10.1046/j.1600-0854.2003.00156.x 10.1006/jtbi.1996.0011 10.1080/00018739700101488 10.1113/jphysiol.1955.sp005327 10.1016/S1046-2023(03)00027-6 10.1091/mbc.01-09-0435 10.1002/nau.21131 10.1016/j.biomaterials.2008.09.034 10.1080/003655999750169385 10.1016/j.urology.2004.10.073 10.1073/pnas.0805636105 10.1046/j.1469-7580.1999.19430335.x 10.1007/BF01868937 10.1016/S0006-3495(00)76295-3 10.1002/nau.1930120108 10.1152/ajprenal.2000.278.6.F867 10.1002/nau.20914 10.1007/s10697-005-0039-y 10.1091/mbc.E08-04-0439 10.1016/S0006-3495(73)85983-1 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jtbi.2016.08.032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8541 |
EndPage | 132 |
ExternalDocumentID | PMC5478889 27590325 10_1016_j_jtbi_2016_08_032 S0022519316302740 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK079307 – fundername: NIDDK NIH HHS grantid: R37 DK054425 – fundername: NIDDK NIH HHS grantid: R01 DK104287 – fundername: NIDDK NIH HHS grantid: R01 DK099196 |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLV IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSZ T5K TN5 YQT ZMT ZU3 ~02 ~G- .GJ 29L 3O- 53G AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AETEA AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FA8 FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT R2- SEW SSH UQL VH1 WUQ XPP ZGI ZXP ZY4 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c411t-2e9f063b10712c4b68d77b082de9c5678e31ecec0fad8d642f062ba965693e33 |
IEDL.DBID | .~1 |
ISSN | 0022-5193 1095-8541 |
IngestDate | Thu Aug 21 13:38:00 EDT 2025 Fri Jul 11 15:27:25 EDT 2025 Wed Feb 19 02:43:14 EST 2025 Thu Apr 24 22:55:22 EDT 2025 Tue Jul 01 03:10:58 EDT 2025 Fri Feb 23 02:26:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Endocytosis Uroepithelium Exocytosis Mechanosensing |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-2e9f063b10712c4b68d77b082de9c5678e31ecec0fad8d642f062ba965693e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27590325 |
PQID | 1835364079 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5478889 proquest_miscellaneous_1835364079 pubmed_primary_27590325 crossref_primary_10_1016_j_jtbi_2016_08_032 crossref_citationtrail_10_1016_j_jtbi_2016_08_032 elsevier_sciencedirect_doi_10_1016_j_jtbi_2016_08_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-21 |
PublicationDateYYYYMMDD | 2016-11-21 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of theoretical biology |
PublicationTitleAlternate | J Theor Biol |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Burnstock (bib9) 1999; 194 Soldati, Schliwa (bib30) 2006; 7 Fry, Sadananda, Wood, Thiruchelvam, Jabr, Clayton (bib16) 2011; 30 Landau, Lev D., and Lifshitz, E.M., Course of Theoretical Physics 3 (1986): 109. Birder, Kanai, Cruz, Moore, Fry (bib6) 2010; 29 Wang, Truschel, Apodaca (bib33) 2003; 30 Birder, Ruggieri, Takeda, van Koeveringe, Veltkamp, Korstanje, Parsons, Fry (bib7) 2012 Morris, Homann (bib26) 2001; 179 Damaser (bib13) 1999; 33 Apodaca (bib3) 2003; 5 Iggo (bib18) 1955; 128 Apodaca (bib2) 2002; 282 Lipowski, R., and Sackmann, E., Handbook of Biological Physics (1995). Lewis, De Moura (bib24) 1984; 82 Korossis, Bolland, Southgate, Ingham, Fisher (bib21) 2009; 30 Wang, Naruse, Stamenovic, Fredberg, Mijailovich, Toric-Norrelykke, Polte, Mannix, Ingber (bib34) 2001; 98 Bykova, Regirer (bib10) 2005; 40 Korossis, Bolland, Ingham, Fisher, Kearney, Southgate (bib22) 2006; 12 Truschel, Wang, Ruiz, Leung, Rojas, Lavelle, Zeidel, Stoffer, Apodaca (bib32) 2002; 13 Yu, Khandelwal, Apodaca (bib35) 2009; 20 Staehelin, Chlapowski, Bonneville (bib31) 1972; 53 Hildebran, Goerke, Clements (bib17) 1981; 51 Coldinq-Jørqensen, Steven (bib12) 1993; 12 Tian, Capraro, Esposito, Baumgart (bib38) 2009; 97 Carattino, Prakasam, Ruiz, Clayton, McGuire, Gallo, Apodaca (bib11) 2013; 305 Lewis (bib23) 2000; 278 Khandelwal, Ruiz, Balestreire-Hawryluk, Weisz, Goldenring, Apodaca (bib20) 2008; 105 Sachs, Morris (bib28) 2015 Alroy, Weinstein (bib1) 1980; 197 Bastiaanssen, Van Leeuwen, Vanderschoot, Redert (bib4) 1996; 178 Ingber (bib19) 2003 Damaser, Lehman (bib15) 1996; 29 Seifert (bib37) 1997; 46 Birder, De Groat, Mills, Morrison, Thor, Drake (bib5) 2009; 29 Oliver, Fowler, Mundy, Craggs (bib27) 2002; 22 Skalak, Tozeren, Zarda, Chien (bib29) 1973; 13 Rawicz (bib39) 2000; 79 Brubaker (bib8) 2004; 64 Lewis, S.A., de Moura, J.L., 1982. Damaser, Lehman (bib14) 1995; 28 Wang (10.1016/j.jtbi.2016.08.032_bib33) 2003; 30 Apodaca (10.1016/j.jtbi.2016.08.032_bib2) 2002; 282 Morris (10.1016/j.jtbi.2016.08.032_bib26) 2001; 179 Bastiaanssen (10.1016/j.jtbi.2016.08.032_bib4) 1996; 178 Hildebran (10.1016/j.jtbi.2016.08.032_bib17) 1981; 51 Korossis (10.1016/j.jtbi.2016.08.032_bib21) 2009; 30 Truschel (10.1016/j.jtbi.2016.08.032_bib32) 2002; 13 Fry (10.1016/j.jtbi.2016.08.032_bib16) 2011; 30 Birder (10.1016/j.jtbi.2016.08.032_bib7) 2012 10.1016/j.jtbi.2016.08.032_bib36 Sachs (10.1016/j.jtbi.2016.08.032_bib28) 2015 Soldati (10.1016/j.jtbi.2016.08.032_bib30) 2006; 7 Yu (10.1016/j.jtbi.2016.08.032_bib35) 2009; 20 Brubaker (10.1016/j.jtbi.2016.08.032_bib8) 2004; 64 Oliver (10.1016/j.jtbi.2016.08.032_bib27) 2002; 22 Rawicz (10.1016/j.jtbi.2016.08.032_bib39) 2000; 79 Birder (10.1016/j.jtbi.2016.08.032_bib6) 2010; 29 Alroy (10.1016/j.jtbi.2016.08.032_bib1) 1980; 197 Damaser (10.1016/j.jtbi.2016.08.032_bib14) 1995; 28 Staehelin (10.1016/j.jtbi.2016.08.032_bib31) 1972; 53 Burnstock (10.1016/j.jtbi.2016.08.032_bib9) 1999; 194 Iggo (10.1016/j.jtbi.2016.08.032_bib18) 1955; 128 Seifert (10.1016/j.jtbi.2016.08.032_bib37) 1997; 46 Lewis (10.1016/j.jtbi.2016.08.032_bib23) 2000; 278 Birder (10.1016/j.jtbi.2016.08.032_bib5) 2009; 29 Lewis (10.1016/j.jtbi.2016.08.032_bib24) 1984; 82 Carattino (10.1016/j.jtbi.2016.08.032_bib11) 2013; 305 10.1016/j.jtbi.2016.08.032_bib40 Tian (10.1016/j.jtbi.2016.08.032_bib38) 2009; 97 Ingber (10.1016/j.jtbi.2016.08.032_bib19) 2003 Khandelwal (10.1016/j.jtbi.2016.08.032_bib20) 2008; 105 Damaser (10.1016/j.jtbi.2016.08.032_bib13) 1999; 33 10.1016/j.jtbi.2016.08.032_bib25 Damaser (10.1016/j.jtbi.2016.08.032_bib15) 1996; 29 Wang (10.1016/j.jtbi.2016.08.032_bib34) 2001; 98 Coldinq-Jørqensen (10.1016/j.jtbi.2016.08.032_bib12) 1993; 12 Korossis (10.1016/j.jtbi.2016.08.032_bib22) 2006; 12 Skalak (10.1016/j.jtbi.2016.08.032_bib29) 1973; 13 Apodaca (10.1016/j.jtbi.2016.08.032_bib3) 2003; 5 Bykova (10.1016/j.jtbi.2016.08.032_bib10) 2005; 40 18987341 - Mol Biol Cell. 2009 Jan;20(1):282-95 12478595 - Neurourol Urodyn. 2003;22(1):7-16 13243351 - J Physiol. 1955 Jun 28;128(3):593-607 6895369 - J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):905-10 17139330 - Nat Rev Mol Cell Biol. 2006 Dec;7(12):897-908 6542593 - J Membr Biol. 1984;82(2):123-36 7601871 - J Biomech. 1995 Jun;28(6):725-32 8945660 - J Biomech. 1996 Dec;29(12):1615-9 12798135 - Methods. 2003 Jul;30(3):207-17 15086788 - Traffic. 2004 Mar;5(3):117-28 15621222 - Urology. 2004 Dec;64(6 Suppl 1):12-6 7425306 - Anat Rec. 1980 May;197(1):75-83 4697236 - Biophys J. 1973 Mar;13(3):245-64 18926570 - Biomaterials. 2009 Jan;30(2):266-75 22275289 - Neurourol Urodyn. 2012 Mar;31(3):293-9 10573777 - Scand J Urol Nephrol Suppl. 1999;201:51-8; discussion 76-102 10866959 - Biophys J. 2000 Jul;79(1):328-39 11438729 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7765-70 5013603 - J Cell Biol. 1972 Apr;53(1):73-91 10836974 - Am J Physiol Renal Physiol. 2000 Jun;278(6):F867-74 18843107 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15773-8 10386771 - J Anat. 1999 Apr;194 ( Pt 3):335-42 8481730 - Neurourol Urodyn. 1993;12(1):59-79 23884145 - Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1158-68 20025024 - Neurourol Urodyn. 2010;29(1):128-39 8729574 - J Theor Biol. 1996 Jan 21;178(2):113-33 20432319 - Neurourol Urodyn. 2010 Apr;29(4):598-602 21661015 - Neurourol Urodyn. 2011 Jun;30(5):692-9 11220366 - J Membr Biol. 2001 Jan 15;179(2):79-102 11788431 - Am J Physiol Renal Physiol. 2002 Feb;282(2):F179-90 16674279 - Tissue Eng. 2006 Apr;12(4):635-44 19751668 - Biophys J. 2009 Sep 16;97(6):1636-46 11907265 - Mol Biol Cell. 2002 Mar;13(3):830-46 |
References_xml | – volume: 29 start-page: 598 year: 2010 end-page: 602 ident: bib6 publication-title: Neurourol. Urodyn. – volume: 28 start-page: 725 year: 1995 end-page: 732 ident: bib14 publication-title: J. Biomech. – volume: 51 start-page: 905 year: 1981 end-page: 910 ident: bib17 publication-title: J. Appl. Physiol. – reference: Lewis, S.A., de Moura, J.L., 1982. – volume: 30 start-page: 692 year: 2011 end-page: 699 ident: bib16 publication-title: Neurourol. Urodyn. – volume: 22 start-page: 7 year: 2002 end-page: 16 ident: bib27 publication-title: Neurourol. Urodyn. – volume: 7 start-page: 897 year: 2006 end-page: 908 ident: bib30 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 282 start-page: F179 year: 2002 end-page: F190 ident: bib2 publication-title: Am. J. Physiol.-Ren. Physiol. – volume: 97 start-page: 1636 year: 2009 end-page: 1646 ident: bib38 publication-title: Biophysj – volume: 40 start-page: 1 year: 2005 end-page: 19 ident: bib10 publication-title: Fluid Dyn. – volume: 12 start-page: 59 year: 1993 end-page: 79 ident: bib12 publication-title: Neurourol. Urodyn. – volume: 82 start-page: 123 year: 1984 end-page: 136 ident: bib24 publication-title: J. Membr. Biol. – volume: 128 start-page: 593 year: 1955 ident: bib18 publication-title: J. Physiol. – volume: 13 start-page: 830 year: 2002 end-page: 846 ident: bib32 publication-title: Mol. Biol. Cell – volume: 30 start-page: 207 year: 2003 end-page: 217 ident: bib33 publication-title: Methods – reference: Landau, Lev D., and Lifshitz, E.M., Course of Theoretical Physics 3 (1986): 109. – year: 2015 ident: bib28 article-title: Mechanosensitive Ion Channels in Non Specialized Cells – volume: 64 start-page: 12 year: 2004 end-page: 16 ident: bib8 publication-title: Urology – volume: 197 start-page: 75 year: 1980 end-page: 83 ident: bib1 publication-title: Anat. Rec. – year: 2012 ident: bib7 publication-title: Neurourol. Urodyn. – volume: 278 start-page: F867 year: 2000 end-page: F874 ident: bib23 publication-title: Am. J. Physiol.-Ren. Physiol. – reference: Lipowski, R., and Sackmann, E., Handbook of Biological Physics (1995). – volume: 98 start-page: 7765 year: 2001 end-page: 7770 ident: bib34 publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 128 year: 2009 end-page: 139 ident: bib5 publication-title: Neurourol. Urodyn. – volume: 12 start-page: 635 year: 2006 end-page: 644 ident: bib22 publication-title: Tissue Eng. – volume: 105 start-page: 15773 year: 2008 end-page: 15778 ident: bib20 publication-title: Proc. Natl. Acad. Sci. USA – volume: 305 start-page: F1158 year: 2013 end-page: F1168 ident: bib11 publication-title: AJP: Ren. Physiol. – volume: 29 start-page: 1615 year: 1996 end-page: 1619 ident: bib15 publication-title: J. Biomech. – volume: 194 start-page: 335 year: 1999 end-page: 342 ident: bib9 publication-title: J. Anat. – volume: 46 start-page: 13 year: 1997 end-page: 137 ident: bib37 publication-title: Advances in Physics – volume: 178 start-page: 113 year: 1996 end-page: 133 ident: bib4 publication-title: J. Theor. Biol. – volume: 13 start-page: 245 year: 1973 end-page: 280 ident: bib29 publication-title: Biophys. J. – volume: 33 start-page: 51 year: 1999 end-page: 58 ident: bib13 publication-title: Scand. J. Urol. Nephrol. – volume: 79 start-page: 328 year: 2000 end-page: 339 ident: bib39 publication-title: Biophysical journal – volume: 179 start-page: 79 year: 2001 end-page: 102 ident: bib26 publication-title: J. Membr. Biol. – volume: 30 start-page: 266 year: 2009 end-page: 275 ident: bib21 publication-title: Biomaterials – volume: 20 start-page: 282 year: 2009 end-page: 295 ident: bib35 publication-title: Mol. Biol. Cell – year: 2003 ident: bib19 publication-title: Proc. Natl. Acad. Sci. – volume: 53 start-page: 73 year: 1972 end-page: 91 ident: bib31 publication-title: J. Cell Biol. – volume: 5 start-page: 117 year: 2003 end-page: 128 ident: bib3 publication-title: Traffic – volume: 53 start-page: 73 year: 1972 ident: 10.1016/j.jtbi.2016.08.032_bib31 publication-title: J. Cell Biol. doi: 10.1083/jcb.53.1.73 – volume: 97 start-page: 1636 issue: 6 year: 2009 ident: 10.1016/j.jtbi.2016.08.032_bib38 publication-title: Biophysj doi: 10.1016/j.bpj.2009.07.012 – volume: 305 start-page: F1158 year: 2013 ident: 10.1016/j.jtbi.2016.08.032_bib11 publication-title: AJP: Ren. Physiol. – ident: 10.1016/j.jtbi.2016.08.032_bib25 – volume: 12 start-page: 635 year: 2006 ident: 10.1016/j.jtbi.2016.08.032_bib22 publication-title: Tissue Eng. doi: 10.1089/ten.2006.12.635 – volume: 98 start-page: 7765 year: 2001 ident: 10.1016/j.jtbi.2016.08.032_bib34 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.141199598 – volume: 29 start-page: 1615 year: 1996 ident: 10.1016/j.jtbi.2016.08.032_bib15 publication-title: J. Biomech. doi: 10.1016/S0021-9290(96)80013-3 – volume: 282 start-page: F179 year: 2002 ident: 10.1016/j.jtbi.2016.08.032_bib2 publication-title: Am. J. Physiol.-Ren. Physiol. doi: 10.1152/ajprenal.2002.282.2.F179 – volume: 22 start-page: 7 year: 2002 ident: 10.1016/j.jtbi.2016.08.032_bib27 publication-title: Neurourol. Urodyn. doi: 10.1002/nau.10082 – volume: 7 start-page: 897 year: 2006 ident: 10.1016/j.jtbi.2016.08.032_bib30 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2060 – ident: 10.1016/j.jtbi.2016.08.032_bib40 – year: 2015 ident: 10.1016/j.jtbi.2016.08.032_bib28 – ident: 10.1016/j.jtbi.2016.08.032_bib36 – volume: 197 start-page: 75 year: 1980 ident: 10.1016/j.jtbi.2016.08.032_bib1 publication-title: Anat. Rec. doi: 10.1002/ar.1091970107 – volume: 29 start-page: 128 year: 2009 ident: 10.1016/j.jtbi.2016.08.032_bib5 publication-title: Neurourol. Urodyn. doi: 10.1002/nau.20837 – volume: 51 start-page: 905 year: 1981 ident: 10.1016/j.jtbi.2016.08.032_bib17 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1981.51.4.905 – volume: 179 start-page: 79 year: 2001 ident: 10.1016/j.jtbi.2016.08.032_bib26 publication-title: J. Membr. Biol. doi: 10.1007/s002320010040 – volume: 28 start-page: 725 year: 1995 ident: 10.1016/j.jtbi.2016.08.032_bib14 publication-title: J. Biomech. doi: 10.1016/0021-9290(94)00169-5 – volume: 5 start-page: 117 year: 2003 ident: 10.1016/j.jtbi.2016.08.032_bib3 publication-title: Traffic doi: 10.1046/j.1600-0854.2003.00156.x – volume: 178 start-page: 113 year: 1996 ident: 10.1016/j.jtbi.2016.08.032_bib4 publication-title: J. Theor. Biol. doi: 10.1006/jtbi.1996.0011 – volume: 46 start-page: 13 issue: 1 year: 1997 ident: 10.1016/j.jtbi.2016.08.032_bib37 publication-title: Advances in Physics doi: 10.1080/00018739700101488 – volume: 128 start-page: 593 year: 1955 ident: 10.1016/j.jtbi.2016.08.032_bib18 publication-title: J. Physiol. doi: 10.1113/jphysiol.1955.sp005327 – volume: 30 start-page: 207 year: 2003 ident: 10.1016/j.jtbi.2016.08.032_bib33 publication-title: Methods doi: 10.1016/S1046-2023(03)00027-6 – volume: 13 start-page: 830 year: 2002 ident: 10.1016/j.jtbi.2016.08.032_bib32 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.01-09-0435 – volume: 30 start-page: 692 year: 2011 ident: 10.1016/j.jtbi.2016.08.032_bib16 publication-title: Neurourol. Urodyn. doi: 10.1002/nau.21131 – volume: 30 start-page: 266 year: 2009 ident: 10.1016/j.jtbi.2016.08.032_bib21 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.09.034 – volume: 33 start-page: 51 year: 1999 ident: 10.1016/j.jtbi.2016.08.032_bib13 publication-title: Scand. J. Urol. Nephrol. doi: 10.1080/003655999750169385 – volume: 64 start-page: 12 year: 2004 ident: 10.1016/j.jtbi.2016.08.032_bib8 publication-title: Urology doi: 10.1016/j.urology.2004.10.073 – year: 2003 ident: 10.1016/j.jtbi.2016.08.032_bib19 publication-title: Proc. Natl. Acad. Sci. – volume: 105 start-page: 15773 year: 2008 ident: 10.1016/j.jtbi.2016.08.032_bib20 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0805636105 – volume: 194 start-page: 335 year: 1999 ident: 10.1016/j.jtbi.2016.08.032_bib9 publication-title: J. Anat. doi: 10.1046/j.1469-7580.1999.19430335.x – volume: 82 start-page: 123 year: 1984 ident: 10.1016/j.jtbi.2016.08.032_bib24 publication-title: J. Membr. Biol. doi: 10.1007/BF01868937 – volume: 79 start-page: 328 issue: 1 year: 2000 ident: 10.1016/j.jtbi.2016.08.032_bib39 publication-title: Biophysical journal doi: 10.1016/S0006-3495(00)76295-3 – volume: 12 start-page: 59 year: 1993 ident: 10.1016/j.jtbi.2016.08.032_bib12 publication-title: Neurourol. Urodyn. doi: 10.1002/nau.1930120108 – volume: 278 start-page: F867 year: 2000 ident: 10.1016/j.jtbi.2016.08.032_bib23 publication-title: Am. J. Physiol.-Ren. Physiol. doi: 10.1152/ajprenal.2000.278.6.F867 – volume: 29 start-page: 598 year: 2010 ident: 10.1016/j.jtbi.2016.08.032_bib6 publication-title: Neurourol. Urodyn. doi: 10.1002/nau.20914 – volume: 40 start-page: 1 year: 2005 ident: 10.1016/j.jtbi.2016.08.032_bib10 publication-title: Fluid Dyn. doi: 10.1007/s10697-005-0039-y – volume: 20 start-page: 282 year: 2009 ident: 10.1016/j.jtbi.2016.08.032_bib35 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-04-0439 – year: 2012 ident: 10.1016/j.jtbi.2016.08.032_bib7 publication-title: Neurourol. Urodyn. – volume: 13 start-page: 245 year: 1973 ident: 10.1016/j.jtbi.2016.08.032_bib29 publication-title: Biophys. J. doi: 10.1016/S0006-3495(73)85983-1 – reference: 15086788 - Traffic. 2004 Mar;5(3):117-28 – reference: 22275289 - Neurourol Urodyn. 2012 Mar;31(3):293-9 – reference: 11220366 - J Membr Biol. 2001 Jan 15;179(2):79-102 – reference: 8481730 - Neurourol Urodyn. 1993;12(1):59-79 – reference: 18926570 - Biomaterials. 2009 Jan;30(2):266-75 – reference: 18843107 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15773-8 – reference: 12478595 - Neurourol Urodyn. 2003;22(1):7-16 – reference: 20432319 - Neurourol Urodyn. 2010 Apr;29(4):598-602 – reference: 20025024 - Neurourol Urodyn. 2010;29(1):128-39 – reference: 10866959 - Biophys J. 2000 Jul;79(1):328-39 – reference: 10573777 - Scand J Urol Nephrol Suppl. 1999;201:51-8; discussion 76-102 – reference: 7425306 - Anat Rec. 1980 May;197(1):75-83 – reference: 11907265 - Mol Biol Cell. 2002 Mar;13(3):830-46 – reference: 16674279 - Tissue Eng. 2006 Apr;12(4):635-44 – reference: 6895369 - J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):905-10 – reference: 4697236 - Biophys J. 1973 Mar;13(3):245-64 – reference: 23884145 - Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1158-68 – reference: 19751668 - Biophys J. 2009 Sep 16;97(6):1636-46 – reference: 15621222 - Urology. 2004 Dec;64(6 Suppl 1):12-6 – reference: 8945660 - J Biomech. 1996 Dec;29(12):1615-9 – reference: 21661015 - Neurourol Urodyn. 2011 Jun;30(5):692-9 – reference: 10836974 - Am J Physiol Renal Physiol. 2000 Jun;278(6):F867-74 – reference: 12798135 - Methods. 2003 Jul;30(3):207-17 – reference: 5013603 - J Cell Biol. 1972 Apr;53(1):73-91 – reference: 13243351 - J Physiol. 1955 Jun 28;128(3):593-607 – reference: 10386771 - J Anat. 1999 Apr;194 ( Pt 3):335-42 – reference: 7601871 - J Biomech. 1995 Jun;28(6):725-32 – reference: 8729574 - J Theor Biol. 1996 Jan 21;178(2):113-33 – reference: 6542593 - J Membr Biol. 1984;82(2):123-36 – reference: 11438729 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7765-70 – reference: 17139330 - Nat Rev Mol Cell Biol. 2006 Dec;7(12):897-908 – reference: 18987341 - Mol Biol Cell. 2009 Jan;20(1):282-95 – reference: 11788431 - Am J Physiol Renal Physiol. 2002 Feb;282(2):F179-90 |
SSID | ssj0009436 |
Score | 2.2340539 |
Snippet | The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115 |
SubjectTerms | Biological Transport, Active - physiology Cell Membrane - metabolism Endocytosis Exocytosis Humans Mechanosensing Models, Biological Surface Tension Urinary Bladder - cytology Urinary Bladder - metabolism Uroepithelium Urothelium - cytology Urothelium - metabolism |
Title | Mathematical modelling of stretch-induced membrane traffic in bladder umbrella cells |
URI | https://dx.doi.org/10.1016/j.jtbi.2016.08.032 https://www.ncbi.nlm.nih.gov/pubmed/27590325 https://www.proquest.com/docview/1835364079 https://pubmed.ncbi.nlm.nih.gov/PMC5478889 |
Volume | 409 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KRfAivq2PEsGbrJrHvo6lKFXRUwVvoclmcaXdFm0PXvztzuyjWsUePO5mwoaZ7DySb2YAToMUbWoqBh6PLB3duEvPqIh7aWiFGZjIhbZAWzwEvUd1--Q_NaBb58IQrLLS_aVOL7R19eai4ubFJMsox1dQ2qVEj4JiK4rblQppl59_fME8YlW0CSxQ60RdJc6UGK-XqckI3hUUZTyl-Ms4_XY-f2Iovxml6w1Yr7xJ1ikXvAkNl2_Batlf8n0b-vfzoqxIVTS9oexzNk4Z5YigwDwMyVG4CRu5EcbNuWP4GaoqwbKcmSGppVc2wyECSTE65X_bgf71Vb_b86o2Cp5VnE894eIUHRGDgR4XVpkgSsLQoOlPXGx9NFZOcmedvUwHSZRgPILUKKcYPb1YOil3oZmPc7cPLDEWDZpNOc5X3A6iRFq6mjU8UTawpgW8Zp-2VYlx6nQx1DWW7EUTyzWxXFP7SylacDafMykLbCyl9mup6IVtotECLJ13UotQ4_9D7EKWjmdvGlWaL-k2M27BXinS-TpE6Mc42W9BuCDsOQHV5l4cybPnokY3lUmLovjgn-s9hDV6oqRHwY-gOX2duWP0fqamXWzvNqx0bu56D59zGAX8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQJgQXxJvxDBI3VG1J-jwixDQe22lIu0VLmoqirUNsO_DvsfsYDMQOXBtbjezUj8b-DHDlJ-hTEzF0eGjo141tOdoNuZMERuihDm1g8mqLnt95dh8G3mANbqteGCqrLG1_YdNza10-aZbSbL6lKfX4Cmq7lBhRUG6FeXud0Km8GtRv7h87vS_sXTefFJgXrhND2TtTlHm9znRKFV5-juQpxV_-6Xf8-bOM8ptfam_DVhlQsptizzuwZrNdWC9GTH7sQb-7wGVFqnzuDTWgs0nCqE0EdeZgVo76jdnYjjF1zizD1xCwBEszpkdkmd7ZHJeoTorRj_7pPvTbd_3bjlNOUnCMy_nMETZKMBbRmOtxYVzth3EQaPT-sY2Mh_7KSm6NNa1kGIcxpiRIjaqKMNiLpJXyAGrZJLNHwGJt0KeZhCO_y80wjKWh21nNY9f4RjeAV-JTpkQZp2EXI1WVk70qErkikSuagClFA64XPG8FxsZKaq_Silo6KQqdwEq-y0qFCj8hEheKdDKfKrRqnqQLzagBh4VKF_sQgRchs9eAYEnZCwKC515eydKXHKabkNLCMDr-534vYKPT7z6pp_ve4wls0gr1QAp-CrXZ-9yeYTA00-flYf8EYU0IrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modelling+of+stretch-induced+membrane+traffic+in+bladder+umbrella+cells&rft.jtitle=Journal+of+theoretical+biology&rft.au=Moulton%2C+D+E&rft.au=Sulzer%2C+V&rft.au=Apodaca%2C+G&rft.au=Byrne%2C+H+M&rft.date=2016-11-21&rft.eissn=1095-8541&rft.volume=409&rft.spage=115&rft_id=info:doi/10.1016%2Fj.jtbi.2016.08.032&rft_id=info%3Apmid%2F27590325&rft.externalDocID=27590325 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon |