Mathematical modelling of stretch-induced membrane traffic in bladder umbrella cells

The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical biology Vol. 409; pp. 115 - 132
Main Authors Moulton, D.E., Sulzer, V., Apodaca, G., Byrne, H.M., Waters, S.L.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 21.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of ‘fullness’ to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies. •Multiscale model developed for vesicle traffic in response to mechanical stimuli.•Explanation for counterintuitive non-monotonic behaviour observed in experiments.•In vivo modelling uncovers potential root of bladder disorders in vesicle machinery.•Clinical potential demonstrated with extensions to mechanical role in innervation.
AbstractList The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of ‘fullness’ to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies.
The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of ‘fullness’ to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies. •Multiscale model developed for vesicle traffic in response to mechanical stimuli.•Explanation for counterintuitive non-monotonic behaviour observed in experiments.•In vivo modelling uncovers potential root of bladder disorders in vesicle machinery.•Clinical potential demonstrated with extensions to mechanical role in innervation.
The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of 'fullness' to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies.
The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of 'fullness' to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies.The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular interest: these cells actively change their surface area through exo- and endocytosis of cytoplasmic vesicles, and likely form a critical component in the mechanosensing process that communicates the sense of 'fullness' to the nervous system. In this paper we develop a first mechanical model for vesicle trafficking in umbrella cells in response to membrane tension during bladder filling. Recent experiments conducted on a disc of uroepithelial tissue motivate our model development. These experiments subject bladder tissue to fixed pressure differences and exhibit counterintuitive area changes. Through analysis of the mathematical model and comparison with experimental data in this setup, we gain an intuitive understanding of the biophysical processes involved and calibrate the vesicle trafficking rate parameters in our model. We then adapt the model to simulate in vivo bladder filling and investigate the potential effect of abnormalities in the vesicle trafficking machinery on bladder pathologies.
Author Waters, S.L.
Moulton, D.E.
Apodaca, G.
Sulzer, V.
Byrne, H.M.
AuthorAffiliation a Mathematical Institute, University of Oxford, Oxford, UK
b Departments of Medicine and Cell Biology, University of Pittsburgh, USA
AuthorAffiliation_xml – name: a Mathematical Institute, University of Oxford, Oxford, UK
– name: b Departments of Medicine and Cell Biology, University of Pittsburgh, USA
Author_xml – sequence: 1
  givenname: D.E.
  surname: Moulton
  fullname: Moulton, D.E.
  email: moulton@maths.ox.ac.uk
  organization: Mathematical Institute, University of Oxford, Oxford, UK
– sequence: 2
  givenname: V.
  surname: Sulzer
  fullname: Sulzer, V.
  organization: Mathematical Institute, University of Oxford, Oxford, UK
– sequence: 3
  givenname: G.
  surname: Apodaca
  fullname: Apodaca, G.
  organization: Departments of Medicine and Cell Biology, University of Pittsburgh, USA
– sequence: 4
  givenname: H.M.
  surname: Byrne
  fullname: Byrne, H.M.
  organization: Mathematical Institute, University of Oxford, Oxford, UK
– sequence: 5
  givenname: S.L.
  surname: Waters
  fullname: Waters, S.L.
  organization: Mathematical Institute, University of Oxford, Oxford, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27590325$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEUhoNU7G31D7iQLN3MmI9JJgERpGgVKm7uPmSSM725zExqkin4781w26IuuskJnPc5X-8FOlviAgi9paSlhMoPx_ZYhtCy-m-JaglnL9COEi0aJTp6hnaEMNYIqvk5usj5SAjRHZev0Dnrha5ysUP7H7YcYLYlODvhOXqYprDc4jjiXBIUd2jC4lcHHs8wD8kugEuy4xgcDgseJus9JLzWVCUtdvXNr9HL0U4Z3jzES7T_-mV_9a25-Xn9_erzTeM6SkvDQI9E8oGSnjLXDVL5vh-IYh60E7JXwCk4cGS0XnnZsapmg9VSSM2B80v06VT2bh1m8A6WOtlk7lKYbfptog3m38wSDuY23hvR9UopXQu8fyiQ4q8VcjFzyNsGdcu4ZkMVF1x2pN-k7_7u9dTk8ZJVwE4Cl2LOCcYnCSVms8sczWaX2ewyRJlKVUj9B7lQqhdxmzdMz6MfTyjUA98HSCa7AEs1KiRwxfgYnsP_AF_zsg8
CitedBy_id crossref_primary_10_1242_jcs_202168
crossref_primary_10_1152_ajpcell_00218_2017
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119777
crossref_primary_10_1002_nau_24995
crossref_primary_10_1016_j_bpj_2021_11_019
crossref_primary_10_1016_j_heliyon_2023_e19427
crossref_primary_10_1152_physrev_00041_2019
crossref_primary_10_1016_j_vetmic_2018_06_013
Cites_doi 10.1083/jcb.53.1.73
10.1016/j.bpj.2009.07.012
10.1089/ten.2006.12.635
10.1073/pnas.141199598
10.1016/S0021-9290(96)80013-3
10.1152/ajprenal.2002.282.2.F179
10.1002/nau.10082
10.1038/nrm2060
10.1002/ar.1091970107
10.1002/nau.20837
10.1152/jappl.1981.51.4.905
10.1007/s002320010040
10.1016/0021-9290(94)00169-5
10.1046/j.1600-0854.2003.00156.x
10.1006/jtbi.1996.0011
10.1080/00018739700101488
10.1113/jphysiol.1955.sp005327
10.1016/S1046-2023(03)00027-6
10.1091/mbc.01-09-0435
10.1002/nau.21131
10.1016/j.biomaterials.2008.09.034
10.1080/003655999750169385
10.1016/j.urology.2004.10.073
10.1073/pnas.0805636105
10.1046/j.1469-7580.1999.19430335.x
10.1007/BF01868937
10.1016/S0006-3495(00)76295-3
10.1002/nau.1930120108
10.1152/ajprenal.2000.278.6.F867
10.1002/nau.20914
10.1007/s10697-005-0039-y
10.1091/mbc.E08-04-0439
10.1016/S0006-3495(73)85983-1
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jtbi.2016.08.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8541
EndPage 132
ExternalDocumentID PMC5478889
27590325
10_1016_j_jtbi_2016_08_032
S0022519316302740
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK079307
– fundername: NIDDK NIH HHS
  grantid: R37 DK054425
– fundername: NIDDK NIH HHS
  grantid: R01 DK104287
– fundername: NIDDK NIH HHS
  grantid: R01 DK099196
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLV
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSZ
T5K
TN5
YQT
ZMT
ZU3
~02
~G-
.GJ
29L
3O-
53G
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FA8
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEW
SSH
UQL
VH1
WUQ
XPP
ZGI
ZXP
ZY4
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c411t-2e9f063b10712c4b68d77b082de9c5678e31ecec0fad8d642f062ba965693e33
IEDL.DBID .~1
ISSN 0022-5193
1095-8541
IngestDate Thu Aug 21 13:38:00 EDT 2025
Fri Jul 11 15:27:25 EDT 2025
Wed Feb 19 02:43:14 EST 2025
Thu Apr 24 22:55:22 EDT 2025
Tue Jul 01 03:10:58 EDT 2025
Fri Feb 23 02:26:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Endocytosis
Uroepithelium
Exocytosis
Mechanosensing
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-2e9f063b10712c4b68d77b082de9c5678e31ecec0fad8d642f062ba965693e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27590325
PQID 1835364079
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5478889
proquest_miscellaneous_1835364079
pubmed_primary_27590325
crossref_primary_10_1016_j_jtbi_2016_08_032
crossref_citationtrail_10_1016_j_jtbi_2016_08_032
elsevier_sciencedirect_doi_10_1016_j_jtbi_2016_08_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-21
PublicationDateYYYYMMDD 2016-11-21
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of theoretical biology
PublicationTitleAlternate J Theor Biol
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Burnstock (bib9) 1999; 194
Soldati, Schliwa (bib30) 2006; 7
Fry, Sadananda, Wood, Thiruchelvam, Jabr, Clayton (bib16) 2011; 30
Landau, Lev D., and Lifshitz, E.M., Course of Theoretical Physics 3 (1986): 109.
Birder, Kanai, Cruz, Moore, Fry (bib6) 2010; 29
Wang, Truschel, Apodaca (bib33) 2003; 30
Birder, Ruggieri, Takeda, van Koeveringe, Veltkamp, Korstanje, Parsons, Fry (bib7) 2012
Morris, Homann (bib26) 2001; 179
Damaser (bib13) 1999; 33
Apodaca (bib3) 2003; 5
Iggo (bib18) 1955; 128
Apodaca (bib2) 2002; 282
Lipowski, R., and Sackmann, E., Handbook of Biological Physics (1995).
Lewis, De Moura (bib24) 1984; 82
Korossis, Bolland, Southgate, Ingham, Fisher (bib21) 2009; 30
Wang, Naruse, Stamenovic, Fredberg, Mijailovich, Toric-Norrelykke, Polte, Mannix, Ingber (bib34) 2001; 98
Bykova, Regirer (bib10) 2005; 40
Korossis, Bolland, Ingham, Fisher, Kearney, Southgate (bib22) 2006; 12
Truschel, Wang, Ruiz, Leung, Rojas, Lavelle, Zeidel, Stoffer, Apodaca (bib32) 2002; 13
Yu, Khandelwal, Apodaca (bib35) 2009; 20
Staehelin, Chlapowski, Bonneville (bib31) 1972; 53
Hildebran, Goerke, Clements (bib17) 1981; 51
Coldinq-Jørqensen, Steven (bib12) 1993; 12
Tian, Capraro, Esposito, Baumgart (bib38) 2009; 97
Carattino, Prakasam, Ruiz, Clayton, McGuire, Gallo, Apodaca (bib11) 2013; 305
Lewis (bib23) 2000; 278
Khandelwal, Ruiz, Balestreire-Hawryluk, Weisz, Goldenring, Apodaca (bib20) 2008; 105
Sachs, Morris (bib28) 2015
Alroy, Weinstein (bib1) 1980; 197
Bastiaanssen, Van Leeuwen, Vanderschoot, Redert (bib4) 1996; 178
Ingber (bib19) 2003
Damaser, Lehman (bib15) 1996; 29
Seifert (bib37) 1997; 46
Birder, De Groat, Mills, Morrison, Thor, Drake (bib5) 2009; 29
Oliver, Fowler, Mundy, Craggs (bib27) 2002; 22
Skalak, Tozeren, Zarda, Chien (bib29) 1973; 13
Rawicz (bib39) 2000; 79
Brubaker (bib8) 2004; 64
Lewis, S.A., de Moura, J.L., 1982.
Damaser, Lehman (bib14) 1995; 28
Wang (10.1016/j.jtbi.2016.08.032_bib33) 2003; 30
Apodaca (10.1016/j.jtbi.2016.08.032_bib2) 2002; 282
Morris (10.1016/j.jtbi.2016.08.032_bib26) 2001; 179
Bastiaanssen (10.1016/j.jtbi.2016.08.032_bib4) 1996; 178
Hildebran (10.1016/j.jtbi.2016.08.032_bib17) 1981; 51
Korossis (10.1016/j.jtbi.2016.08.032_bib21) 2009; 30
Truschel (10.1016/j.jtbi.2016.08.032_bib32) 2002; 13
Fry (10.1016/j.jtbi.2016.08.032_bib16) 2011; 30
Birder (10.1016/j.jtbi.2016.08.032_bib7) 2012
10.1016/j.jtbi.2016.08.032_bib36
Sachs (10.1016/j.jtbi.2016.08.032_bib28) 2015
Soldati (10.1016/j.jtbi.2016.08.032_bib30) 2006; 7
Yu (10.1016/j.jtbi.2016.08.032_bib35) 2009; 20
Brubaker (10.1016/j.jtbi.2016.08.032_bib8) 2004; 64
Oliver (10.1016/j.jtbi.2016.08.032_bib27) 2002; 22
Rawicz (10.1016/j.jtbi.2016.08.032_bib39) 2000; 79
Birder (10.1016/j.jtbi.2016.08.032_bib6) 2010; 29
Alroy (10.1016/j.jtbi.2016.08.032_bib1) 1980; 197
Damaser (10.1016/j.jtbi.2016.08.032_bib14) 1995; 28
Staehelin (10.1016/j.jtbi.2016.08.032_bib31) 1972; 53
Burnstock (10.1016/j.jtbi.2016.08.032_bib9) 1999; 194
Iggo (10.1016/j.jtbi.2016.08.032_bib18) 1955; 128
Seifert (10.1016/j.jtbi.2016.08.032_bib37) 1997; 46
Lewis (10.1016/j.jtbi.2016.08.032_bib23) 2000; 278
Birder (10.1016/j.jtbi.2016.08.032_bib5) 2009; 29
Lewis (10.1016/j.jtbi.2016.08.032_bib24) 1984; 82
Carattino (10.1016/j.jtbi.2016.08.032_bib11) 2013; 305
10.1016/j.jtbi.2016.08.032_bib40
Tian (10.1016/j.jtbi.2016.08.032_bib38) 2009; 97
Ingber (10.1016/j.jtbi.2016.08.032_bib19) 2003
Khandelwal (10.1016/j.jtbi.2016.08.032_bib20) 2008; 105
Damaser (10.1016/j.jtbi.2016.08.032_bib13) 1999; 33
10.1016/j.jtbi.2016.08.032_bib25
Damaser (10.1016/j.jtbi.2016.08.032_bib15) 1996; 29
Wang (10.1016/j.jtbi.2016.08.032_bib34) 2001; 98
Coldinq-Jørqensen (10.1016/j.jtbi.2016.08.032_bib12) 1993; 12
Korossis (10.1016/j.jtbi.2016.08.032_bib22) 2006; 12
Skalak (10.1016/j.jtbi.2016.08.032_bib29) 1973; 13
Apodaca (10.1016/j.jtbi.2016.08.032_bib3) 2003; 5
Bykova (10.1016/j.jtbi.2016.08.032_bib10) 2005; 40
18987341 - Mol Biol Cell. 2009 Jan;20(1):282-95
12478595 - Neurourol Urodyn. 2003;22(1):7-16
13243351 - J Physiol. 1955 Jun 28;128(3):593-607
6895369 - J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):905-10
17139330 - Nat Rev Mol Cell Biol. 2006 Dec;7(12):897-908
6542593 - J Membr Biol. 1984;82(2):123-36
7601871 - J Biomech. 1995 Jun;28(6):725-32
8945660 - J Biomech. 1996 Dec;29(12):1615-9
12798135 - Methods. 2003 Jul;30(3):207-17
15086788 - Traffic. 2004 Mar;5(3):117-28
15621222 - Urology. 2004 Dec;64(6 Suppl 1):12-6
7425306 - Anat Rec. 1980 May;197(1):75-83
4697236 - Biophys J. 1973 Mar;13(3):245-64
18926570 - Biomaterials. 2009 Jan;30(2):266-75
22275289 - Neurourol Urodyn. 2012 Mar;31(3):293-9
10573777 - Scand J Urol Nephrol Suppl. 1999;201:51-8; discussion 76-102
10866959 - Biophys J. 2000 Jul;79(1):328-39
11438729 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7765-70
5013603 - J Cell Biol. 1972 Apr;53(1):73-91
10836974 - Am J Physiol Renal Physiol. 2000 Jun;278(6):F867-74
18843107 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15773-8
10386771 - J Anat. 1999 Apr;194 ( Pt 3):335-42
8481730 - Neurourol Urodyn. 1993;12(1):59-79
23884145 - Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1158-68
20025024 - Neurourol Urodyn. 2010;29(1):128-39
8729574 - J Theor Biol. 1996 Jan 21;178(2):113-33
20432319 - Neurourol Urodyn. 2010 Apr;29(4):598-602
21661015 - Neurourol Urodyn. 2011 Jun;30(5):692-9
11220366 - J Membr Biol. 2001 Jan 15;179(2):79-102
11788431 - Am J Physiol Renal Physiol. 2002 Feb;282(2):F179-90
16674279 - Tissue Eng. 2006 Apr;12(4):635-44
19751668 - Biophys J. 2009 Sep 16;97(6):1636-46
11907265 - Mol Biol Cell. 2002 Mar;13(3):830-46
References_xml – volume: 29
  start-page: 598
  year: 2010
  end-page: 602
  ident: bib6
  publication-title: Neurourol. Urodyn.
– volume: 28
  start-page: 725
  year: 1995
  end-page: 732
  ident: bib14
  publication-title: J. Biomech.
– volume: 51
  start-page: 905
  year: 1981
  end-page: 910
  ident: bib17
  publication-title: J. Appl. Physiol.
– reference: Lewis, S.A., de Moura, J.L., 1982.
– volume: 30
  start-page: 692
  year: 2011
  end-page: 699
  ident: bib16
  publication-title: Neurourol. Urodyn.
– volume: 22
  start-page: 7
  year: 2002
  end-page: 16
  ident: bib27
  publication-title: Neurourol. Urodyn.
– volume: 7
  start-page: 897
  year: 2006
  end-page: 908
  ident: bib30
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 282
  start-page: F179
  year: 2002
  end-page: F190
  ident: bib2
  publication-title: Am. J. Physiol.-Ren. Physiol.
– volume: 97
  start-page: 1636
  year: 2009
  end-page: 1646
  ident: bib38
  publication-title: Biophysj
– volume: 40
  start-page: 1
  year: 2005
  end-page: 19
  ident: bib10
  publication-title: Fluid Dyn.
– volume: 12
  start-page: 59
  year: 1993
  end-page: 79
  ident: bib12
  publication-title: Neurourol. Urodyn.
– volume: 82
  start-page: 123
  year: 1984
  end-page: 136
  ident: bib24
  publication-title: J. Membr. Biol.
– volume: 128
  start-page: 593
  year: 1955
  ident: bib18
  publication-title: J. Physiol.
– volume: 13
  start-page: 830
  year: 2002
  end-page: 846
  ident: bib32
  publication-title: Mol. Biol. Cell
– volume: 30
  start-page: 207
  year: 2003
  end-page: 217
  ident: bib33
  publication-title: Methods
– reference: Landau, Lev D., and Lifshitz, E.M., Course of Theoretical Physics 3 (1986): 109.
– year: 2015
  ident: bib28
  article-title: Mechanosensitive Ion Channels in Non Specialized Cells
– volume: 64
  start-page: 12
  year: 2004
  end-page: 16
  ident: bib8
  publication-title: Urology
– volume: 197
  start-page: 75
  year: 1980
  end-page: 83
  ident: bib1
  publication-title: Anat. Rec.
– year: 2012
  ident: bib7
  publication-title: Neurourol. Urodyn.
– volume: 278
  start-page: F867
  year: 2000
  end-page: F874
  ident: bib23
  publication-title: Am. J. Physiol.-Ren. Physiol.
– reference: Lipowski, R., and Sackmann, E., Handbook of Biological Physics (1995).
– volume: 98
  start-page: 7765
  year: 2001
  end-page: 7770
  ident: bib34
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 128
  year: 2009
  end-page: 139
  ident: bib5
  publication-title: Neurourol. Urodyn.
– volume: 12
  start-page: 635
  year: 2006
  end-page: 644
  ident: bib22
  publication-title: Tissue Eng.
– volume: 105
  start-page: 15773
  year: 2008
  end-page: 15778
  ident: bib20
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 305
  start-page: F1158
  year: 2013
  end-page: F1168
  ident: bib11
  publication-title: AJP: Ren. Physiol.
– volume: 29
  start-page: 1615
  year: 1996
  end-page: 1619
  ident: bib15
  publication-title: J. Biomech.
– volume: 194
  start-page: 335
  year: 1999
  end-page: 342
  ident: bib9
  publication-title: J. Anat.
– volume: 46
  start-page: 13
  year: 1997
  end-page: 137
  ident: bib37
  publication-title: Advances in Physics
– volume: 178
  start-page: 113
  year: 1996
  end-page: 133
  ident: bib4
  publication-title: J. Theor. Biol.
– volume: 13
  start-page: 245
  year: 1973
  end-page: 280
  ident: bib29
  publication-title: Biophys. J.
– volume: 33
  start-page: 51
  year: 1999
  end-page: 58
  ident: bib13
  publication-title: Scand. J. Urol. Nephrol.
– volume: 79
  start-page: 328
  year: 2000
  end-page: 339
  ident: bib39
  publication-title: Biophysical journal
– volume: 179
  start-page: 79
  year: 2001
  end-page: 102
  ident: bib26
  publication-title: J. Membr. Biol.
– volume: 30
  start-page: 266
  year: 2009
  end-page: 275
  ident: bib21
  publication-title: Biomaterials
– volume: 20
  start-page: 282
  year: 2009
  end-page: 295
  ident: bib35
  publication-title: Mol. Biol. Cell
– year: 2003
  ident: bib19
  publication-title: Proc. Natl. Acad. Sci.
– volume: 53
  start-page: 73
  year: 1972
  end-page: 91
  ident: bib31
  publication-title: J. Cell Biol.
– volume: 5
  start-page: 117
  year: 2003
  end-page: 128
  ident: bib3
  publication-title: Traffic
– volume: 53
  start-page: 73
  year: 1972
  ident: 10.1016/j.jtbi.2016.08.032_bib31
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.53.1.73
– volume: 97
  start-page: 1636
  issue: 6
  year: 2009
  ident: 10.1016/j.jtbi.2016.08.032_bib38
  publication-title: Biophysj
  doi: 10.1016/j.bpj.2009.07.012
– volume: 305
  start-page: F1158
  year: 2013
  ident: 10.1016/j.jtbi.2016.08.032_bib11
  publication-title: AJP: Ren. Physiol.
– ident: 10.1016/j.jtbi.2016.08.032_bib25
– volume: 12
  start-page: 635
  year: 2006
  ident: 10.1016/j.jtbi.2016.08.032_bib22
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.12.635
– volume: 98
  start-page: 7765
  year: 2001
  ident: 10.1016/j.jtbi.2016.08.032_bib34
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.141199598
– volume: 29
  start-page: 1615
  year: 1996
  ident: 10.1016/j.jtbi.2016.08.032_bib15
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(96)80013-3
– volume: 282
  start-page: F179
  year: 2002
  ident: 10.1016/j.jtbi.2016.08.032_bib2
  publication-title: Am. J. Physiol.-Ren. Physiol.
  doi: 10.1152/ajprenal.2002.282.2.F179
– volume: 22
  start-page: 7
  year: 2002
  ident: 10.1016/j.jtbi.2016.08.032_bib27
  publication-title: Neurourol. Urodyn.
  doi: 10.1002/nau.10082
– volume: 7
  start-page: 897
  year: 2006
  ident: 10.1016/j.jtbi.2016.08.032_bib30
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2060
– ident: 10.1016/j.jtbi.2016.08.032_bib40
– year: 2015
  ident: 10.1016/j.jtbi.2016.08.032_bib28
– ident: 10.1016/j.jtbi.2016.08.032_bib36
– volume: 197
  start-page: 75
  year: 1980
  ident: 10.1016/j.jtbi.2016.08.032_bib1
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1091970107
– volume: 29
  start-page: 128
  year: 2009
  ident: 10.1016/j.jtbi.2016.08.032_bib5
  publication-title: Neurourol. Urodyn.
  doi: 10.1002/nau.20837
– volume: 51
  start-page: 905
  year: 1981
  ident: 10.1016/j.jtbi.2016.08.032_bib17
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1981.51.4.905
– volume: 179
  start-page: 79
  year: 2001
  ident: 10.1016/j.jtbi.2016.08.032_bib26
  publication-title: J. Membr. Biol.
  doi: 10.1007/s002320010040
– volume: 28
  start-page: 725
  year: 1995
  ident: 10.1016/j.jtbi.2016.08.032_bib14
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)00169-5
– volume: 5
  start-page: 117
  year: 2003
  ident: 10.1016/j.jtbi.2016.08.032_bib3
  publication-title: Traffic
  doi: 10.1046/j.1600-0854.2003.00156.x
– volume: 178
  start-page: 113
  year: 1996
  ident: 10.1016/j.jtbi.2016.08.032_bib4
  publication-title: J. Theor. Biol.
  doi: 10.1006/jtbi.1996.0011
– volume: 46
  start-page: 13
  issue: 1
  year: 1997
  ident: 10.1016/j.jtbi.2016.08.032_bib37
  publication-title: Advances in Physics
  doi: 10.1080/00018739700101488
– volume: 128
  start-page: 593
  year: 1955
  ident: 10.1016/j.jtbi.2016.08.032_bib18
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1955.sp005327
– volume: 30
  start-page: 207
  year: 2003
  ident: 10.1016/j.jtbi.2016.08.032_bib33
  publication-title: Methods
  doi: 10.1016/S1046-2023(03)00027-6
– volume: 13
  start-page: 830
  year: 2002
  ident: 10.1016/j.jtbi.2016.08.032_bib32
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.01-09-0435
– volume: 30
  start-page: 692
  year: 2011
  ident: 10.1016/j.jtbi.2016.08.032_bib16
  publication-title: Neurourol. Urodyn.
  doi: 10.1002/nau.21131
– volume: 30
  start-page: 266
  year: 2009
  ident: 10.1016/j.jtbi.2016.08.032_bib21
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.09.034
– volume: 33
  start-page: 51
  year: 1999
  ident: 10.1016/j.jtbi.2016.08.032_bib13
  publication-title: Scand. J. Urol. Nephrol.
  doi: 10.1080/003655999750169385
– volume: 64
  start-page: 12
  year: 2004
  ident: 10.1016/j.jtbi.2016.08.032_bib8
  publication-title: Urology
  doi: 10.1016/j.urology.2004.10.073
– year: 2003
  ident: 10.1016/j.jtbi.2016.08.032_bib19
  publication-title: Proc. Natl. Acad. Sci.
– volume: 105
  start-page: 15773
  year: 2008
  ident: 10.1016/j.jtbi.2016.08.032_bib20
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0805636105
– volume: 194
  start-page: 335
  year: 1999
  ident: 10.1016/j.jtbi.2016.08.032_bib9
  publication-title: J. Anat.
  doi: 10.1046/j.1469-7580.1999.19430335.x
– volume: 82
  start-page: 123
  year: 1984
  ident: 10.1016/j.jtbi.2016.08.032_bib24
  publication-title: J. Membr. Biol.
  doi: 10.1007/BF01868937
– volume: 79
  start-page: 328
  issue: 1
  year: 2000
  ident: 10.1016/j.jtbi.2016.08.032_bib39
  publication-title: Biophysical journal
  doi: 10.1016/S0006-3495(00)76295-3
– volume: 12
  start-page: 59
  year: 1993
  ident: 10.1016/j.jtbi.2016.08.032_bib12
  publication-title: Neurourol. Urodyn.
  doi: 10.1002/nau.1930120108
– volume: 278
  start-page: F867
  year: 2000
  ident: 10.1016/j.jtbi.2016.08.032_bib23
  publication-title: Am. J. Physiol.-Ren. Physiol.
  doi: 10.1152/ajprenal.2000.278.6.F867
– volume: 29
  start-page: 598
  year: 2010
  ident: 10.1016/j.jtbi.2016.08.032_bib6
  publication-title: Neurourol. Urodyn.
  doi: 10.1002/nau.20914
– volume: 40
  start-page: 1
  year: 2005
  ident: 10.1016/j.jtbi.2016.08.032_bib10
  publication-title: Fluid Dyn.
  doi: 10.1007/s10697-005-0039-y
– volume: 20
  start-page: 282
  year: 2009
  ident: 10.1016/j.jtbi.2016.08.032_bib35
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E08-04-0439
– year: 2012
  ident: 10.1016/j.jtbi.2016.08.032_bib7
  publication-title: Neurourol. Urodyn.
– volume: 13
  start-page: 245
  year: 1973
  ident: 10.1016/j.jtbi.2016.08.032_bib29
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(73)85983-1
– reference: 15086788 - Traffic. 2004 Mar;5(3):117-28
– reference: 22275289 - Neurourol Urodyn. 2012 Mar;31(3):293-9
– reference: 11220366 - J Membr Biol. 2001 Jan 15;179(2):79-102
– reference: 8481730 - Neurourol Urodyn. 1993;12(1):59-79
– reference: 18926570 - Biomaterials. 2009 Jan;30(2):266-75
– reference: 18843107 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15773-8
– reference: 12478595 - Neurourol Urodyn. 2003;22(1):7-16
– reference: 20432319 - Neurourol Urodyn. 2010 Apr;29(4):598-602
– reference: 20025024 - Neurourol Urodyn. 2010;29(1):128-39
– reference: 10866959 - Biophys J. 2000 Jul;79(1):328-39
– reference: 10573777 - Scand J Urol Nephrol Suppl. 1999;201:51-8; discussion 76-102
– reference: 7425306 - Anat Rec. 1980 May;197(1):75-83
– reference: 11907265 - Mol Biol Cell. 2002 Mar;13(3):830-46
– reference: 16674279 - Tissue Eng. 2006 Apr;12(4):635-44
– reference: 6895369 - J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):905-10
– reference: 4697236 - Biophys J. 1973 Mar;13(3):245-64
– reference: 23884145 - Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1158-68
– reference: 19751668 - Biophys J. 2009 Sep 16;97(6):1636-46
– reference: 15621222 - Urology. 2004 Dec;64(6 Suppl 1):12-6
– reference: 8945660 - J Biomech. 1996 Dec;29(12):1615-9
– reference: 21661015 - Neurourol Urodyn. 2011 Jun;30(5):692-9
– reference: 10836974 - Am J Physiol Renal Physiol. 2000 Jun;278(6):F867-74
– reference: 12798135 - Methods. 2003 Jul;30(3):207-17
– reference: 5013603 - J Cell Biol. 1972 Apr;53(1):73-91
– reference: 13243351 - J Physiol. 1955 Jun 28;128(3):593-607
– reference: 10386771 - J Anat. 1999 Apr;194 ( Pt 3):335-42
– reference: 7601871 - J Biomech. 1995 Jun;28(6):725-32
– reference: 8729574 - J Theor Biol. 1996 Jan 21;178(2):113-33
– reference: 6542593 - J Membr Biol. 1984;82(2):123-36
– reference: 11438729 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7765-70
– reference: 17139330 - Nat Rev Mol Cell Biol. 2006 Dec;7(12):897-908
– reference: 18987341 - Mol Biol Cell. 2009 Jan;20(1):282-95
– reference: 11788431 - Am J Physiol Renal Physiol. 2002 Feb;282(2):F179-90
SSID ssj0009436
Score 2.2340539
Snippet The bladder is a complex organ that is highly adaptive to its mechanical environment. The umbrella cells in the bladder uroepithelium are of particular...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115
SubjectTerms Biological Transport, Active - physiology
Cell Membrane - metabolism
Endocytosis
Exocytosis
Humans
Mechanosensing
Models, Biological
Surface Tension
Urinary Bladder - cytology
Urinary Bladder - metabolism
Uroepithelium
Urothelium - cytology
Urothelium - metabolism
Title Mathematical modelling of stretch-induced membrane traffic in bladder umbrella cells
URI https://dx.doi.org/10.1016/j.jtbi.2016.08.032
https://www.ncbi.nlm.nih.gov/pubmed/27590325
https://www.proquest.com/docview/1835364079
https://pubmed.ncbi.nlm.nih.gov/PMC5478889
Volume 409
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KRfAivq2PEsGbrJrHvo6lKFXRUwVvoclmcaXdFm0PXvztzuyjWsUePO5mwoaZ7DySb2YAToMUbWoqBh6PLB3duEvPqIh7aWiFGZjIhbZAWzwEvUd1--Q_NaBb58IQrLLS_aVOL7R19eai4ubFJMsox1dQ2qVEj4JiK4rblQppl59_fME8YlW0CSxQ60RdJc6UGK-XqckI3hUUZTyl-Ms4_XY-f2Iovxml6w1Yr7xJ1ikXvAkNl2_Batlf8n0b-vfzoqxIVTS9oexzNk4Z5YigwDwMyVG4CRu5EcbNuWP4GaoqwbKcmSGppVc2wyECSTE65X_bgf71Vb_b86o2Cp5VnE894eIUHRGDgR4XVpkgSsLQoOlPXGx9NFZOcmedvUwHSZRgPILUKKcYPb1YOil3oZmPc7cPLDEWDZpNOc5X3A6iRFq6mjU8UTawpgW8Zp-2VYlx6nQx1DWW7EUTyzWxXFP7SylacDafMykLbCyl9mup6IVtotECLJ13UotQ4_9D7EKWjmdvGlWaL-k2M27BXinS-TpE6Mc42W9BuCDsOQHV5l4cybPnokY3lUmLovjgn-s9hDV6oqRHwY-gOX2duWP0fqamXWzvNqx0bu56D59zGAX8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQJgQXxJvxDBI3VG1J-jwixDQe22lIu0VLmoqirUNsO_DvsfsYDMQOXBtbjezUj8b-DHDlJ-hTEzF0eGjo141tOdoNuZMERuihDm1g8mqLnt95dh8G3mANbqteGCqrLG1_YdNza10-aZbSbL6lKfX4Cmq7lBhRUG6FeXud0Km8GtRv7h87vS_sXTefFJgXrhND2TtTlHm9znRKFV5-juQpxV_-6Xf8-bOM8ptfam_DVhlQsptizzuwZrNdWC9GTH7sQb-7wGVFqnzuDTWgs0nCqE0EdeZgVo76jdnYjjF1zizD1xCwBEszpkdkmd7ZHJeoTorRj_7pPvTbd_3bjlNOUnCMy_nMETZKMBbRmOtxYVzth3EQaPT-sY2Mh_7KSm6NNa1kGIcxpiRIjaqKMNiLpJXyAGrZJLNHwGJt0KeZhCO_y80wjKWh21nNY9f4RjeAV-JTpkQZp2EXI1WVk70qErkikSuagClFA64XPG8FxsZKaq_Silo6KQqdwEq-y0qFCj8hEheKdDKfKrRqnqQLzagBh4VKF_sQgRchs9eAYEnZCwKC515eydKXHKabkNLCMDr-534vYKPT7z6pp_ve4wls0gr1QAp-CrXZ-9yeYTA00-flYf8EYU0IrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modelling+of+stretch-induced+membrane+traffic+in+bladder+umbrella+cells&rft.jtitle=Journal+of+theoretical+biology&rft.au=Moulton%2C+D+E&rft.au=Sulzer%2C+V&rft.au=Apodaca%2C+G&rft.au=Byrne%2C+H+M&rft.date=2016-11-21&rft.eissn=1095-8541&rft.volume=409&rft.spage=115&rft_id=info:doi/10.1016%2Fj.jtbi.2016.08.032&rft_id=info%3Apmid%2F27590325&rft.externalDocID=27590325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon