Changes in the pH of paddy soils after flooding and drainage: Modeling and validation

The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of twenty paddy soils with varying soil properties were subjected to a successive flooding and drainage period in this work. The soil pH was me...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 337; pp. 511 - 513
Main Authors Ding, Changfeng, Du, Shuyang, Ma, Yibing, Li, Xiaogang, Zhang, Taolin, Wang, Xingxiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of twenty paddy soils with varying soil properties were subjected to a successive flooding and drainage period in this work. The soil pH was measured in situ at intervals, and soil samples were collected after each pH measurement during drainage for an analysis of the moisture content. During the flooding period, the pH for soils with an initial pH < 6.5 increased to approximately 7.0, and for soils with an initial pH > 6.5, the pH first decreased and then increased to approximately 7.0. The changes were reversed during the drainage period, as the pH of acidic soils decreased linearly with the decreasing soil moisture content, while neutral-to-alkaline soils showed the opposite pattern. The developed predictive models indicated that the initial soil pH, cation exchange capacity, content of organic matter and flooding or drainage time were the main factors that controlled the change of soil pH after flooding and drainage. The models explained 82% and 67% of the soil pH variability after flooding and drainage, respectively. The predictive model of the soil pH change after flooding was further validated and was found to be reliable on the basis of a number of independent data points for which the predicted soil pH after flooding was within the 95% prediction intervals of the observations. The results suggested that the soil pH, which was determined in the laboratory using air-dried samples, could be corrected to the in situ pH through the developed predictive models. •Predictive models of the soil pH change after flooding and drainage were developed.•The models explained 82% and 67% of the soil pH variability, respectively.•Changes of soil pH depended on initial pH, CEC, OM, and flooding or drainage time.
AbstractList The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of twenty paddy soils with varying soil properties were subjected to a successive flooding and drainage period in this work. The soil pH was measured in situ at intervals, and soil samples were collected after each pH measurement during drainage for an analysis of the moisture content. During the flooding period, the pH for soils with an initial pH < 6.5 increased to approximately 7.0, and for soils with an initial pH > 6.5, the pH first decreased and then increased to approximately 7.0. The changes were reversed during the drainage period, as the pH of acidic soils decreased linearly with the decreasing soil moisture content, while neutral-to-alkaline soils showed the opposite pattern. The developed predictive models indicated that the initial soil pH, cation exchange capacity, content of organic matter and flooding or drainage time were the main factors that controlled the change of soil pH after flooding and drainage. The models explained 82% and 67% of the soil pH variability after flooding and drainage, respectively. The predictive model of the soil pH change after flooding was further validated and was found to be reliable on the basis of a number of independent data points for which the predicted soil pH after flooding was within the 95% prediction intervals of the observations. The results suggested that the soil pH, which was determined in the laboratory using air-dried samples, could be corrected to the in situ pH through the developed predictive models. •Predictive models of the soil pH change after flooding and drainage were developed.•The models explained 82% and 67% of the soil pH variability, respectively.•Changes of soil pH depended on initial pH, CEC, OM, and flooding or drainage time.
The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of twenty paddy soils with varying soil properties were subjected to a successive flooding and drainage period in this work. The soil pH was measured in situ at intervals, and soil samples were collected after each pH measurement during drainage for an analysis of the moisture content. During the flooding period, the pH for soils with an initial pH < 6.5 increased to approximately 7.0, and for soils with an initial pH > 6.5, the pH first decreased and then increased to approximately 7.0. The changes were reversed during the drainage period, as the pH of acidic soils decreased linearly with the decreasing soil moisture content, while neutral-to-alkaline soils showed the opposite pattern. The developed predictive models indicated that the initial soil pH, cation exchange capacity, content of organic matter and flooding or drainage time were the main factors that controlled the change of soil pH after flooding and drainage. The models explained 82% and 67% of the soil pH variability after flooding and drainage, respectively. The predictive model of the soil pH change after flooding was further validated and was found to be reliable on the basis of a number of independent data points for which the predicted soil pH after flooding was within the 95% prediction intervals of the observations. The results suggested that the soil pH, which was determined in the laboratory using air-dried samples, could be corrected to the in situ pH through the developed predictive models.
Author Ding, Changfeng
Zhang, Taolin
Du, Shuyang
Li, Xiaogang
Wang, Xingxiang
Ma, Yibing
Author_xml – sequence: 1
  givenname: Changfeng
  surname: Ding
  fullname: Ding, Changfeng
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 2
  givenname: Shuyang
  surname: Du
  fullname: Du, Shuyang
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 3
  givenname: Yibing
  surname: Ma
  fullname: Ma, Yibing
  organization: Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 4
  givenname: Xiaogang
  surname: Li
  fullname: Li, Xiaogang
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 5
  givenname: Taolin
  surname: Zhang
  fullname: Zhang, Taolin
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 6
  givenname: Xingxiang
  surname: Wang
  fullname: Wang, Xingxiang
  email: xxwang@issas.ac.cn
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
BookMark eNqFkE1PAjEQhnvARFD_gunRy2Jblv0wHjRExQTjRc7NbDu7lCzt2i4k_HuLyMULp8m8M-98PCMysM4iIbecjTnj2f163KDT6DcwFowXURwzLgZkyGI1yVnGL8kohHVMcybYkCxnK7ANBmos7VdIuzl1Ne1A6z0NzrSBQt2jp3XrnDa2oWA11R6MhQYf6Edc1p7kHbRGQ2-cvSYXNbQBb_7iFVm-vnzN5sni8-199rxIVMp5nwgssSgEz4QANlWItWIqA1WJlCEW6TQXSmgGAnha6gKqtGJMlWleTqo05pMrcnec23n3vcXQy40JCtsWLLptkEIIVuRpWRSx9fHYqrwLwWMtlel_j-3jN63kTB4IyrU8EZQHggc9Eoz27J-982YDfn_e-HQ0YuSwM-hlUAatQm08ql5qZ86N-AFKWJNt
CitedBy_id crossref_primary_10_1007_s11356_021_18328_y
crossref_primary_10_1016_j_envexpbot_2021_104625
crossref_primary_10_1016_j_ecoenv_2020_110887
crossref_primary_10_1016_j_scitotenv_2024_173340
crossref_primary_10_1128_aem_01262_24
crossref_primary_10_1016_S1002_0160_20_60061_3
crossref_primary_10_1016_j_ecoenv_2019_109641
crossref_primary_10_17221_435_2020_PSE
crossref_primary_10_1016_j_envres_2025_121087
crossref_primary_10_1016_j_still_2025_106527
crossref_primary_10_1007_s11368_022_03265_1
crossref_primary_10_2166_ws_2023_325
crossref_primary_10_3389_fenvs_2024_1479712
crossref_primary_10_3389_fmicb_2021_756752
crossref_primary_10_1016_j_scitotenv_2023_164232
crossref_primary_10_1016_j_agwat_2025_109337
crossref_primary_10_1016_j_envpol_2019_07_050
crossref_primary_10_1002_ldr_5350
crossref_primary_10_1016_j_catena_2020_105113
crossref_primary_10_1016_j_envres_2022_113748
crossref_primary_10_3389_fevo_2025_1523532
crossref_primary_10_1021_acs_est_3c00479
crossref_primary_10_1016_j_jhazmat_2022_129119
crossref_primary_10_1051_bioconf_20249201012
crossref_primary_10_1016_j_ecoenv_2022_113409
crossref_primary_10_1016_j_jes_2021_12_013
crossref_primary_10_1080_00103624_2023_2253843
crossref_primary_10_1016_j_scitotenv_2022_156346
crossref_primary_10_1016_j_jhazmat_2021_125131
crossref_primary_10_1016_j_envpol_2021_118005
crossref_primary_10_1016_j_soisec_2023_100114
crossref_primary_10_1016_j_psep_2020_04_003
crossref_primary_10_1021_acsearthspacechem_1c00213
crossref_primary_10_1007_s11368_020_02587_2
crossref_primary_10_1016_j_eti_2024_103839
crossref_primary_10_3390_agronomy12071718
crossref_primary_10_1016_j_chemosphere_2023_138558
crossref_primary_10_1016_j_jhazmat_2022_130321
crossref_primary_10_3390_su16146141
crossref_primary_10_1038_s41598_024_69533_x
crossref_primary_10_1016_j_agwat_2023_108586
crossref_primary_10_1016_j_chemosphere_2019_04_133
crossref_primary_10_1016_j_chemosphere_2022_134032
crossref_primary_10_1007_s10967_019_06783_4
crossref_primary_10_1016_j_jclepro_2023_137245
crossref_primary_10_1016_j_jclepro_2020_125557
crossref_primary_10_1016_j_still_2024_106032
crossref_primary_10_1016_j_scitotenv_2021_151342
crossref_primary_10_1016_j_scitotenv_2024_170189
crossref_primary_10_1016_j_gca_2024_06_029
crossref_primary_10_1016_j_envpol_2021_116561
crossref_primary_10_1016_j_ecoenv_2021_112404
crossref_primary_10_7717_peerj_7351
crossref_primary_10_1016_j_jclepro_2022_133098
crossref_primary_10_3389_fpls_2024_1512350
crossref_primary_10_1007_s10653_024_01944_1
crossref_primary_10_1111_1758_2229_13167
crossref_primary_10_1021_acs_jafc_4c09965
crossref_primary_10_1016_j_scitotenv_2023_162929
crossref_primary_10_1016_j_eti_2023_103412
crossref_primary_10_1016_j_scitotenv_2024_174193
crossref_primary_10_1002_rvr2_96
crossref_primary_10_1016_j_aoas_2023_05_002
crossref_primary_10_1111_sum_12867
crossref_primary_10_1016_j_scitotenv_2022_154338
crossref_primary_10_3390_ijerph19063339
crossref_primary_10_1016_j_geoderma_2023_116422
crossref_primary_10_1007_s10661_023_12052_5
crossref_primary_10_1007_s11771_022_5031_8
crossref_primary_10_1016_j_chemosphere_2022_134147
crossref_primary_10_1038_s41598_025_89132_8
crossref_primary_10_1016_j_jenvman_2021_113258
crossref_primary_10_1080_16742834_2020_1733388
crossref_primary_10_3389_fpls_2022_977297
crossref_primary_10_1002_jpln_202100311
crossref_primary_10_1007_s11104_021_05004_w
crossref_primary_10_3389_fpls_2024_1439772
crossref_primary_10_1016_j_geodrs_2023_e00745
crossref_primary_10_1016_j_ecoenv_2024_116978
crossref_primary_10_1016_j_scitotenv_2019_135350
crossref_primary_10_1016_j_seppur_2024_128440
crossref_primary_10_1016_j_scitotenv_2022_157484
crossref_primary_10_1016_j_scitotenv_2023_166435
crossref_primary_10_1080_00380768_2023_2288034
crossref_primary_10_1016_j_scitotenv_2020_138289
crossref_primary_10_3390_su12041627
crossref_primary_10_1016_j_jhydrol_2022_128108
crossref_primary_10_1016_j_scitotenv_2021_150159
crossref_primary_10_3389_fmicb_2022_1007237
crossref_primary_10_1016_j_agwat_2023_108265
crossref_primary_10_1016_j_jenvman_2023_118850
crossref_primary_10_1007_s12665_022_10304_0
crossref_primary_10_1016_j_scitotenv_2024_174500
crossref_primary_10_1016_j_jhydrol_2024_132531
crossref_primary_10_1016_j_rhisph_2022_100530
crossref_primary_10_1007_s11368_024_03837_3
crossref_primary_10_1016_j_eti_2023_103105
crossref_primary_10_1139_cjfr_2021_0109
crossref_primary_10_1007_s10661_021_09080_4
crossref_primary_10_1016_j_ecoenv_2020_111057
crossref_primary_10_1016_j_chemgeo_2021_120409
crossref_primary_10_2139_ssrn_3983771
crossref_primary_10_2139_ssrn_4148120
crossref_primary_10_1088_2515_7620_ad79bf
Cites_doi 10.1371/journal.pone.0097327
10.1016/j.geoderma.2010.03.009
10.1016/j.agee.2016.01.042
10.1111/j.1365-2486.2012.02694.x
10.1002/2017JG003968
10.1016/j.envpol.2018.04.033
10.1046/j.1365-2389.2000.00307.x
10.1071/EA9921105
10.1016/j.soilbio.2017.08.003
10.1016/0038-0717(95)00180-8
10.1016/j.geoderma.2015.11.021
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2018.10.012
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EndPage 513
ExternalDocumentID 10_1016_j_geoderma_2018_10_012
S0016706118312333
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AALCJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c411t-2e9e8821622a05ceefc0c6acb240ee84572c2d0a2a149d8ab4b00c94793b4d8a3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 23:31:53 EDT 2025
Tue Jul 01 04:04:48 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Tue Oct 01 07:16:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Predictive models
Organic matter
Soil water management
Cation exchange capacity
Soil pH change
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-2e9e8821622a05ceefc0c6acb240ee84572c2d0a2a149d8ab4b00c94793b4d8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2220874988
PQPubID 24069
PageCount 3
ParticipantIDs proquest_miscellaneous_2220874988
crossref_citationtrail_10_1016_j_geoderma_2018_10_012
crossref_primary_10_1016_j_geoderma_2018_10_012
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_10_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fang, Kou, Wang, Chen, Ding, Li, Yang, Qin, Liu, Zhang, Yang (bb0010) 2017; 122
Liu, Zhong, Meng, Wang, Zhang, Zhi, Zeng, Tang, Xu (bb0030) 2018; 239
Nielsen, Irizar, Nielsen, Kristiansen, Damgaard, Holmstrup, Petersen, Strandberg (bb0040) 2017; 115
Qi, Huang, Darilek (bb0045) 2014; 9
Lim, Seo, Kim, Kim, Kim, Owens, Kim (bb0025) 2016; 270
Minasny, Hong, Hartemink, Kim (bb0035) 2016; 221
Kögel-Knabner, Amelung, Cao, Fiedler, Frenzel, Jahn, Kalbitz, Kölbl, Schloter (bb0020) 2010; 157
Blake, Goulding, Mott, Poulton (bb0005) 2000; 51
Gao, Bai, Wang, Huang, Xiao (bb0015) 2011; 18
Sahrawat (bb0050) 2005; 88
Yan, Schubert, Mengel (bb0060) 1996; 28
Yang, Ji, Ma, Wang, Wang, Han, Mohammat, Robinson, Smith (bb0065) 2012; 18
Slattery, Ronnfeldt (bb0055) 1992; 32
Lim (10.1016/j.geoderma.2018.10.012_bb0025) 2016; 270
Blake (10.1016/j.geoderma.2018.10.012_bb0005) 2000; 51
Qi (10.1016/j.geoderma.2018.10.012_bb0045) 2014; 9
Sahrawat (10.1016/j.geoderma.2018.10.012_bb0050) 2005; 88
Kögel-Knabner (10.1016/j.geoderma.2018.10.012_bb0020) 2010; 157
Liu (10.1016/j.geoderma.2018.10.012_bb0030) 2018; 239
Gao (10.1016/j.geoderma.2018.10.012_bb0015) 2011; 18
Yang (10.1016/j.geoderma.2018.10.012_bb0065) 2012; 18
Minasny (10.1016/j.geoderma.2018.10.012_bb0035) 2016; 221
Nielsen (10.1016/j.geoderma.2018.10.012_bb0040) 2017; 115
Yan (10.1016/j.geoderma.2018.10.012_bb0060) 1996; 28
Fang (10.1016/j.geoderma.2018.10.012_bb0010) 2017; 122
Slattery (10.1016/j.geoderma.2018.10.012_bb0055) 1992; 32
References_xml – volume: 221
  start-page: 205
  year: 2016
  end-page: 213
  ident: bb0035
  article-title: Soil pH increase under paddy in South Korea between 2000 and 2012
  publication-title: Agric. Ecosyst. Environ.
– volume: 18
  start-page: 2292
  year: 2012
  end-page: 2300
  ident: bb0065
  article-title: Significant soil acidification across northern China's grasslands during 1980s–2000s
  publication-title: Glob. Chang. Biol.
– volume: 18
  start-page: 268
  year: 2011
  end-page: 271
  ident: bb0015
  article-title: Distribution of soil pH values and soil water contents in floodplain wetlands in the lower reach of Huolin River
  publication-title: Res. Soil Water Conserv.
– volume: 270
  start-page: 89
  year: 2016
  end-page: 97
  ident: bb0025
  article-title: Transfer functions for estimating phytoavailable Cd and Pb in metal contaminated paddy and upland soils: implications for phytoavailability based land management
  publication-title: Geoderma
– volume: 9
  year: 2014
  ident: bb0045
  article-title: Effect of drying on heavy metal fraction distribution in rice paddy soil
  publication-title: PLoS One
– volume: 88
  start-page: 735
  year: 2005
  end-page: 739
  ident: bb0050
  article-title: Fertility and organic matter in submerged rice soil
  publication-title: Curr. Sci.
– volume: 115
  start-page: 63
  year: 2017
  end-page: 65
  ident: bb0040
  article-title: measurements reveal extremely low pH in soil
  publication-title: Soil Biol. Biochem.
– volume: 32
  start-page: 1105
  year: 1992
  end-page: 1112
  ident: bb0055
  article-title: Seasonal variation of pH aluminium, and manganese in acid soils from north-eastern Victoria
  publication-title: Aust. J. Exp. Agric.
– volume: 51
  start-page: 345
  year: 2000
  end-page: 353
  ident: bb0005
  article-title: Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments
  publication-title: Eur. J. Soil Sci.
– volume: 157
  start-page: 1
  year: 2010
  end-page: 14
  ident: bb0020
  article-title: Biogeochemistry of paddy soils
  publication-title: Geoderma
– volume: 28
  start-page: 611
  year: 1996
  end-page: 624
  ident: bb0060
  article-title: Soil pH increase due to biological decarboxalation of organic anions
  publication-title: Soil Biol. Biochem.
– volume: 122
  start-page: 3088
  year: 2017
  end-page: 3097
  ident: bb0010
  article-title: Decreased soil cation exchange capacity across northern China's grasslands over the last three decades
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 239
  start-page: 308
  year: 2018
  end-page: 317
  ident: bb0030
  article-title: A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health
  publication-title: Environ. Pollut.
– volume: 9
  issue: 5
  year: 2014
  ident: 10.1016/j.geoderma.2018.10.012_bb0045
  article-title: Effect of drying on heavy metal fraction distribution in rice paddy soil
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097327
– volume: 157
  start-page: 1
  year: 2010
  ident: 10.1016/j.geoderma.2018.10.012_bb0020
  article-title: Biogeochemistry of paddy soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.009
– volume: 221
  start-page: 205
  year: 2016
  ident: 10.1016/j.geoderma.2018.10.012_bb0035
  article-title: Soil pH increase under paddy in South Korea between 2000 and 2012
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.01.042
– volume: 18
  start-page: 2292
  year: 2012
  ident: 10.1016/j.geoderma.2018.10.012_bb0065
  article-title: Significant soil acidification across northern China's grasslands during 1980s–2000s
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2012.02694.x
– volume: 122
  start-page: 3088
  year: 2017
  ident: 10.1016/j.geoderma.2018.10.012_bb0010
  article-title: Decreased soil cation exchange capacity across northern China's grasslands over the last three decades
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2017JG003968
– volume: 239
  start-page: 308
  year: 2018
  ident: 10.1016/j.geoderma.2018.10.012_bb0030
  article-title: A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.04.033
– volume: 51
  start-page: 345
  year: 2000
  ident: 10.1016/j.geoderma.2018.10.012_bb0005
  article-title: Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2000.00307.x
– volume: 32
  start-page: 1105
  year: 1992
  ident: 10.1016/j.geoderma.2018.10.012_bb0055
  article-title: Seasonal variation of pH aluminium, and manganese in acid soils from north-eastern Victoria
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA9921105
– volume: 18
  start-page: 268
  year: 2011
  ident: 10.1016/j.geoderma.2018.10.012_bb0015
  article-title: Distribution of soil pH values and soil water contents in floodplain wetlands in the lower reach of Huolin River
  publication-title: Res. Soil Water Conserv.
– volume: 115
  start-page: 63
  year: 2017
  ident: 10.1016/j.geoderma.2018.10.012_bb0040
  article-title: In situ measurements reveal extremely low pH in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.08.003
– volume: 28
  start-page: 611
  year: 1996
  ident: 10.1016/j.geoderma.2018.10.012_bb0060
  article-title: Soil pH increase due to biological decarboxalation of organic anions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(95)00180-8
– volume: 270
  start-page: 89
  year: 2016
  ident: 10.1016/j.geoderma.2018.10.012_bb0025
  article-title: Transfer functions for estimating phytoavailable Cd and Pb in metal contaminated paddy and upland soils: implications for phytoavailability based land management
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.021
– volume: 88
  start-page: 735
  year: 2005
  ident: 10.1016/j.geoderma.2018.10.012_bb0050
  article-title: Fertility and organic matter in submerged rice soil
  publication-title: Curr. Sci.
SSID ssj0017020
Score 2.5708942
Snippet The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 511
SubjectTerms acid soils
air drying
biogeochemistry
Cation exchange capacity
drainage
Organic matter
paddy soils
prediction
Predictive models
soil pH
Soil pH change
soil sampling
soil water content
Soil water management
water content
Title Changes in the pH of paddy soils after flooding and drainage: Modeling and validation
URI https://dx.doi.org/10.1016/j.geoderma.2018.10.012
https://www.proquest.com/docview/2220874988
Volume 337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EmfQYWuTixZfqhbCA1uSzM1kM1IslwcghPyGLr0t_fOj9AWSoaOEpIxd6fvTvbdd4Tce6kvAq2kYzwk1U7hwgpOL3Wk0pk2HhOqZOd_HQXxWDxP_EmLDJpaGEyrrLG_wvQSreuZXi3N3iLPscaXBSG4IzBKgF8PGT-FCNHKu5_bNA8WujU1IwscXP2tSngKOsKGYyX_EIu6mOXF-F8O6hdUl_5neEQO68CR9qt3OyYtW5yQg_77sibPsKdkXJUKrGheUIjr6CKm84wuAFs-6Gqez1a07AhOM0xWB5dFVZHSFHtEAKg8UGyLNmumwQDzqt3SGRkPH98GsVO3TXCMYGztcCstxM0s4Fy5PjjBzLgmUEaD87Y2En7IDU9dxRXcjtJIaQFHz0j8xKYFjL1z0i7mhb0g1JM6VB7XDNYLrnUkmUb2HyG9QBhuL4nfyCoxNac4traYJU3y2DRpZJygjHEeZHxJett9i4pVY-cO2agi-WEfCUD_zr13je4SODz4R0QVdr5ZJRAcuVEoZBRd_eP512QfRrLKTLsh7fVyY28hVFnrTmmLHbLXf3qJR18wv-hg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64HNSDuOJuBD3WadJ0ieBBXBjXkwPeYpJmpMPQGeyIePFP-Qd96SIqiAfx2LQJ5eXlfS_ty_cB7AZpyCOthGcCR6qd4oYVQS_1hNJdbQLKVcnOf30TtTv84i68G4O35iyMK6usY38V08toXbe0amu2hlnmzvjSKEY4QqfE8Bs0CtaX9uUZ923F4fkJTvIeY2ent8dtr5YW8AyndOQxKyzmljRiTPkhAkXX-CZSRiPAWZvwMGaGpb5iCncQaaI0R_c0wn2G0hyvAxx3HCY5hgsnm7D_-lFXQmO_5oKkkede79Ox5B46hVM4KwmPaLLvysoo-wkRv2FDCXhnczBbZ6rkqDLGPIzZfAFmjh4ea7YOuwid6mxCQbKcYCJJhm0y6JIhBrMXUgyyfkFKCXLSddXxiJFE5SlJnSgFRrED4nTY-k0zenxW6TstQedfjLkME_kgtytAAqFjFTBN8XnOtE4E1Y5uiIsg4obZVQgbW0lTk5g7LY2-bKrVerKxsXQ2du1o41VoffQbVjQev_YQzVTILw4pEWt-7bvTzJ3E1ep-wajcDp4KidmYn8RcJMnaH8bfhqn27fWVvDq_uVyHabwjqrK4DZgYPT7ZTcyTRnqr9EsC9_-9EN4BGK8kWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+the+pH+of+paddy+soils+after+flooding+and+drainage%3A+Modeling+and+validation&rft.jtitle=Geoderma&rft.au=Ding%2C+Changfeng&rft.au=Du%2C+Shuyang&rft.au=Ma%2C+Yibing&rft.au=Li%2C+Xiaogang&rft.date=2019-03-01&rft.issn=0016-7061&rft.volume=337+p.511-513&rft.spage=511&rft.epage=513&rft_id=info:doi/10.1016%2Fj.geoderma.2018.10.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon