Changes in the pH of paddy soils after flooding and drainage: Modeling and validation
The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of twenty paddy soils with varying soil properties were subjected to a successive flooding and drainage period in this work. The soil pH was me...
Saved in:
Published in | Geoderma Vol. 337; pp. 511 - 513 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of twenty paddy soils with varying soil properties were subjected to a successive flooding and drainage period in this work. The soil pH was measured in situ at intervals, and soil samples were collected after each pH measurement during drainage for an analysis of the moisture content. During the flooding period, the pH for soils with an initial pH < 6.5 increased to approximately 7.0, and for soils with an initial pH > 6.5, the pH first decreased and then increased to approximately 7.0. The changes were reversed during the drainage period, as the pH of acidic soils decreased linearly with the decreasing soil moisture content, while neutral-to-alkaline soils showed the opposite pattern. The developed predictive models indicated that the initial soil pH, cation exchange capacity, content of organic matter and flooding or drainage time were the main factors that controlled the change of soil pH after flooding and drainage. The models explained 82% and 67% of the soil pH variability after flooding and drainage, respectively. The predictive model of the soil pH change after flooding was further validated and was found to be reliable on the basis of a number of independent data points for which the predicted soil pH after flooding was within the 95% prediction intervals of the observations. The results suggested that the soil pH, which was determined in the laboratory using air-dried samples, could be corrected to the in situ pH through the developed predictive models.
•Predictive models of the soil pH change after flooding and drainage were developed.•The models explained 82% and 67% of the soil pH variability, respectively.•Changes of soil pH depended on initial pH, CEC, OM, and flooding or drainage time. |
---|---|
AbstractList | The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of twenty paddy soils with varying soil properties were subjected to a successive flooding and drainage period in this work. The soil pH was measured in situ at intervals, and soil samples were collected after each pH measurement during drainage for an analysis of the moisture content. During the flooding period, the pH for soils with an initial pH < 6.5 increased to approximately 7.0, and for soils with an initial pH > 6.5, the pH first decreased and then increased to approximately 7.0. The changes were reversed during the drainage period, as the pH of acidic soils decreased linearly with the decreasing soil moisture content, while neutral-to-alkaline soils showed the opposite pattern. The developed predictive models indicated that the initial soil pH, cation exchange capacity, content of organic matter and flooding or drainage time were the main factors that controlled the change of soil pH after flooding and drainage. The models explained 82% and 67% of the soil pH variability after flooding and drainage, respectively. The predictive model of the soil pH change after flooding was further validated and was found to be reliable on the basis of a number of independent data points for which the predicted soil pH after flooding was within the 95% prediction intervals of the observations. The results suggested that the soil pH, which was determined in the laboratory using air-dried samples, could be corrected to the in situ pH through the developed predictive models.
•Predictive models of the soil pH change after flooding and drainage were developed.•The models explained 82% and 67% of the soil pH variability, respectively.•Changes of soil pH depended on initial pH, CEC, OM, and flooding or drainage time. The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of twenty paddy soils with varying soil properties were subjected to a successive flooding and drainage period in this work. The soil pH was measured in situ at intervals, and soil samples were collected after each pH measurement during drainage for an analysis of the moisture content. During the flooding period, the pH for soils with an initial pH < 6.5 increased to approximately 7.0, and for soils with an initial pH > 6.5, the pH first decreased and then increased to approximately 7.0. The changes were reversed during the drainage period, as the pH of acidic soils decreased linearly with the decreasing soil moisture content, while neutral-to-alkaline soils showed the opposite pattern. The developed predictive models indicated that the initial soil pH, cation exchange capacity, content of organic matter and flooding or drainage time were the main factors that controlled the change of soil pH after flooding and drainage. The models explained 82% and 67% of the soil pH variability after flooding and drainage, respectively. The predictive model of the soil pH change after flooding was further validated and was found to be reliable on the basis of a number of independent data points for which the predicted soil pH after flooding was within the 95% prediction intervals of the observations. The results suggested that the soil pH, which was determined in the laboratory using air-dried samples, could be corrected to the in situ pH through the developed predictive models. |
Author | Ding, Changfeng Zhang, Taolin Du, Shuyang Li, Xiaogang Wang, Xingxiang Ma, Yibing |
Author_xml | – sequence: 1 givenname: Changfeng surname: Ding fullname: Ding, Changfeng organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 2 givenname: Shuyang surname: Du fullname: Du, Shuyang organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 3 givenname: Yibing surname: Ma fullname: Ma, Yibing organization: Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 4 givenname: Xiaogang surname: Li fullname: Li, Xiaogang organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 5 givenname: Taolin surname: Zhang fullname: Zhang, Taolin organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 6 givenname: Xingxiang surname: Wang fullname: Wang, Xingxiang email: xxwang@issas.ac.cn organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China |
BookMark | eNqFkE1PAjEQhnvARFD_gunRy2Jblv0wHjRExQTjRc7NbDu7lCzt2i4k_HuLyMULp8m8M-98PCMysM4iIbecjTnj2f163KDT6DcwFowXURwzLgZkyGI1yVnGL8kohHVMcybYkCxnK7ANBmos7VdIuzl1Ne1A6z0NzrSBQt2jp3XrnDa2oWA11R6MhQYf6Edc1p7kHbRGQ2-cvSYXNbQBb_7iFVm-vnzN5sni8-199rxIVMp5nwgssSgEz4QANlWItWIqA1WJlCEW6TQXSmgGAnha6gKqtGJMlWleTqo05pMrcnec23n3vcXQy40JCtsWLLptkEIIVuRpWRSx9fHYqrwLwWMtlel_j-3jN63kTB4IyrU8EZQHggc9Eoz27J-982YDfn_e-HQ0YuSwM-hlUAatQm08ql5qZ86N-AFKWJNt |
CitedBy_id | crossref_primary_10_1007_s11356_021_18328_y crossref_primary_10_1016_j_envexpbot_2021_104625 crossref_primary_10_1016_j_ecoenv_2020_110887 crossref_primary_10_1016_j_scitotenv_2024_173340 crossref_primary_10_1128_aem_01262_24 crossref_primary_10_1016_S1002_0160_20_60061_3 crossref_primary_10_1016_j_ecoenv_2019_109641 crossref_primary_10_17221_435_2020_PSE crossref_primary_10_1016_j_envres_2025_121087 crossref_primary_10_1016_j_still_2025_106527 crossref_primary_10_1007_s11368_022_03265_1 crossref_primary_10_2166_ws_2023_325 crossref_primary_10_3389_fenvs_2024_1479712 crossref_primary_10_3389_fmicb_2021_756752 crossref_primary_10_1016_j_scitotenv_2023_164232 crossref_primary_10_1016_j_agwat_2025_109337 crossref_primary_10_1016_j_envpol_2019_07_050 crossref_primary_10_1002_ldr_5350 crossref_primary_10_1016_j_catena_2020_105113 crossref_primary_10_1016_j_envres_2022_113748 crossref_primary_10_3389_fevo_2025_1523532 crossref_primary_10_1021_acs_est_3c00479 crossref_primary_10_1016_j_jhazmat_2022_129119 crossref_primary_10_1051_bioconf_20249201012 crossref_primary_10_1016_j_ecoenv_2022_113409 crossref_primary_10_1016_j_jes_2021_12_013 crossref_primary_10_1080_00103624_2023_2253843 crossref_primary_10_1016_j_scitotenv_2022_156346 crossref_primary_10_1016_j_jhazmat_2021_125131 crossref_primary_10_1016_j_envpol_2021_118005 crossref_primary_10_1016_j_soisec_2023_100114 crossref_primary_10_1016_j_psep_2020_04_003 crossref_primary_10_1021_acsearthspacechem_1c00213 crossref_primary_10_1007_s11368_020_02587_2 crossref_primary_10_1016_j_eti_2024_103839 crossref_primary_10_3390_agronomy12071718 crossref_primary_10_1016_j_chemosphere_2023_138558 crossref_primary_10_1016_j_jhazmat_2022_130321 crossref_primary_10_3390_su16146141 crossref_primary_10_1038_s41598_024_69533_x crossref_primary_10_1016_j_agwat_2023_108586 crossref_primary_10_1016_j_chemosphere_2019_04_133 crossref_primary_10_1016_j_chemosphere_2022_134032 crossref_primary_10_1007_s10967_019_06783_4 crossref_primary_10_1016_j_jclepro_2023_137245 crossref_primary_10_1016_j_jclepro_2020_125557 crossref_primary_10_1016_j_still_2024_106032 crossref_primary_10_1016_j_scitotenv_2021_151342 crossref_primary_10_1016_j_scitotenv_2024_170189 crossref_primary_10_1016_j_gca_2024_06_029 crossref_primary_10_1016_j_envpol_2021_116561 crossref_primary_10_1016_j_ecoenv_2021_112404 crossref_primary_10_7717_peerj_7351 crossref_primary_10_1016_j_jclepro_2022_133098 crossref_primary_10_3389_fpls_2024_1512350 crossref_primary_10_1007_s10653_024_01944_1 crossref_primary_10_1111_1758_2229_13167 crossref_primary_10_1021_acs_jafc_4c09965 crossref_primary_10_1016_j_scitotenv_2023_162929 crossref_primary_10_1016_j_eti_2023_103412 crossref_primary_10_1016_j_scitotenv_2024_174193 crossref_primary_10_1002_rvr2_96 crossref_primary_10_1016_j_aoas_2023_05_002 crossref_primary_10_1111_sum_12867 crossref_primary_10_1016_j_scitotenv_2022_154338 crossref_primary_10_3390_ijerph19063339 crossref_primary_10_1016_j_geoderma_2023_116422 crossref_primary_10_1007_s10661_023_12052_5 crossref_primary_10_1007_s11771_022_5031_8 crossref_primary_10_1016_j_chemosphere_2022_134147 crossref_primary_10_1038_s41598_025_89132_8 crossref_primary_10_1016_j_jenvman_2021_113258 crossref_primary_10_1080_16742834_2020_1733388 crossref_primary_10_3389_fpls_2022_977297 crossref_primary_10_1002_jpln_202100311 crossref_primary_10_1007_s11104_021_05004_w crossref_primary_10_3389_fpls_2024_1439772 crossref_primary_10_1016_j_geodrs_2023_e00745 crossref_primary_10_1016_j_ecoenv_2024_116978 crossref_primary_10_1016_j_scitotenv_2019_135350 crossref_primary_10_1016_j_seppur_2024_128440 crossref_primary_10_1016_j_scitotenv_2022_157484 crossref_primary_10_1016_j_scitotenv_2023_166435 crossref_primary_10_1080_00380768_2023_2288034 crossref_primary_10_1016_j_scitotenv_2020_138289 crossref_primary_10_3390_su12041627 crossref_primary_10_1016_j_jhydrol_2022_128108 crossref_primary_10_1016_j_scitotenv_2021_150159 crossref_primary_10_3389_fmicb_2022_1007237 crossref_primary_10_1016_j_agwat_2023_108265 crossref_primary_10_1016_j_jenvman_2023_118850 crossref_primary_10_1007_s12665_022_10304_0 crossref_primary_10_1016_j_scitotenv_2024_174500 crossref_primary_10_1016_j_jhydrol_2024_132531 crossref_primary_10_1016_j_rhisph_2022_100530 crossref_primary_10_1007_s11368_024_03837_3 crossref_primary_10_1016_j_eti_2023_103105 crossref_primary_10_1139_cjfr_2021_0109 crossref_primary_10_1007_s10661_021_09080_4 crossref_primary_10_1016_j_ecoenv_2020_111057 crossref_primary_10_1016_j_chemgeo_2021_120409 crossref_primary_10_2139_ssrn_3983771 crossref_primary_10_2139_ssrn_4148120 crossref_primary_10_1088_2515_7620_ad79bf |
Cites_doi | 10.1371/journal.pone.0097327 10.1016/j.geoderma.2010.03.009 10.1016/j.agee.2016.01.042 10.1111/j.1365-2486.2012.02694.x 10.1002/2017JG003968 10.1016/j.envpol.2018.04.033 10.1046/j.1365-2389.2000.00307.x 10.1071/EA9921105 10.1016/j.soilbio.2017.08.003 10.1016/0038-0717(95)00180-8 10.1016/j.geoderma.2015.11.021 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2018.10.012 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EndPage | 513 |
ExternalDocumentID | 10_1016_j_geoderma_2018_10_012 S0016706118312333 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AALCJ AAQXK AATTM AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c411t-2e9e8821622a05ceefc0c6acb240ee84572c2d0a2a149d8ab4b00c94793b4d8a3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 23:31:53 EDT 2025 Tue Jul 01 04:04:48 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Tue Oct 01 07:16:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Predictive models Organic matter Soil water management Cation exchange capacity Soil pH change |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-2e9e8821622a05ceefc0c6acb240ee84572c2d0a2a149d8ab4b00c94793b4d8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2220874988 |
PQPubID | 24069 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_2220874988 crossref_citationtrail_10_1016_j_geoderma_2018_10_012 crossref_primary_10_1016_j_geoderma_2018_10_012 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_10_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fang, Kou, Wang, Chen, Ding, Li, Yang, Qin, Liu, Zhang, Yang (bb0010) 2017; 122 Liu, Zhong, Meng, Wang, Zhang, Zhi, Zeng, Tang, Xu (bb0030) 2018; 239 Nielsen, Irizar, Nielsen, Kristiansen, Damgaard, Holmstrup, Petersen, Strandberg (bb0040) 2017; 115 Qi, Huang, Darilek (bb0045) 2014; 9 Lim, Seo, Kim, Kim, Kim, Owens, Kim (bb0025) 2016; 270 Minasny, Hong, Hartemink, Kim (bb0035) 2016; 221 Kögel-Knabner, Amelung, Cao, Fiedler, Frenzel, Jahn, Kalbitz, Kölbl, Schloter (bb0020) 2010; 157 Blake, Goulding, Mott, Poulton (bb0005) 2000; 51 Gao, Bai, Wang, Huang, Xiao (bb0015) 2011; 18 Sahrawat (bb0050) 2005; 88 Yan, Schubert, Mengel (bb0060) 1996; 28 Yang, Ji, Ma, Wang, Wang, Han, Mohammat, Robinson, Smith (bb0065) 2012; 18 Slattery, Ronnfeldt (bb0055) 1992; 32 Lim (10.1016/j.geoderma.2018.10.012_bb0025) 2016; 270 Blake (10.1016/j.geoderma.2018.10.012_bb0005) 2000; 51 Qi (10.1016/j.geoderma.2018.10.012_bb0045) 2014; 9 Sahrawat (10.1016/j.geoderma.2018.10.012_bb0050) 2005; 88 Kögel-Knabner (10.1016/j.geoderma.2018.10.012_bb0020) 2010; 157 Liu (10.1016/j.geoderma.2018.10.012_bb0030) 2018; 239 Gao (10.1016/j.geoderma.2018.10.012_bb0015) 2011; 18 Yang (10.1016/j.geoderma.2018.10.012_bb0065) 2012; 18 Minasny (10.1016/j.geoderma.2018.10.012_bb0035) 2016; 221 Nielsen (10.1016/j.geoderma.2018.10.012_bb0040) 2017; 115 Yan (10.1016/j.geoderma.2018.10.012_bb0060) 1996; 28 Fang (10.1016/j.geoderma.2018.10.012_bb0010) 2017; 122 Slattery (10.1016/j.geoderma.2018.10.012_bb0055) 1992; 32 |
References_xml | – volume: 221 start-page: 205 year: 2016 end-page: 213 ident: bb0035 article-title: Soil pH increase under paddy in South Korea between 2000 and 2012 publication-title: Agric. Ecosyst. Environ. – volume: 18 start-page: 2292 year: 2012 end-page: 2300 ident: bb0065 article-title: Significant soil acidification across northern China's grasslands during 1980s–2000s publication-title: Glob. Chang. Biol. – volume: 18 start-page: 268 year: 2011 end-page: 271 ident: bb0015 article-title: Distribution of soil pH values and soil water contents in floodplain wetlands in the lower reach of Huolin River publication-title: Res. Soil Water Conserv. – volume: 270 start-page: 89 year: 2016 end-page: 97 ident: bb0025 article-title: Transfer functions for estimating phytoavailable Cd and Pb in metal contaminated paddy and upland soils: implications for phytoavailability based land management publication-title: Geoderma – volume: 9 year: 2014 ident: bb0045 article-title: Effect of drying on heavy metal fraction distribution in rice paddy soil publication-title: PLoS One – volume: 88 start-page: 735 year: 2005 end-page: 739 ident: bb0050 article-title: Fertility and organic matter in submerged rice soil publication-title: Curr. Sci. – volume: 115 start-page: 63 year: 2017 end-page: 65 ident: bb0040 article-title: measurements reveal extremely low pH in soil publication-title: Soil Biol. Biochem. – volume: 32 start-page: 1105 year: 1992 end-page: 1112 ident: bb0055 article-title: Seasonal variation of pH aluminium, and manganese in acid soils from north-eastern Victoria publication-title: Aust. J. Exp. Agric. – volume: 51 start-page: 345 year: 2000 end-page: 353 ident: bb0005 article-title: Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments publication-title: Eur. J. Soil Sci. – volume: 157 start-page: 1 year: 2010 end-page: 14 ident: bb0020 article-title: Biogeochemistry of paddy soils publication-title: Geoderma – volume: 28 start-page: 611 year: 1996 end-page: 624 ident: bb0060 article-title: Soil pH increase due to biological decarboxalation of organic anions publication-title: Soil Biol. Biochem. – volume: 122 start-page: 3088 year: 2017 end-page: 3097 ident: bb0010 article-title: Decreased soil cation exchange capacity across northern China's grasslands over the last three decades publication-title: J. Geophys. Res. Biogeosci. – volume: 239 start-page: 308 year: 2018 end-page: 317 ident: bb0030 article-title: A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health publication-title: Environ. Pollut. – volume: 9 issue: 5 year: 2014 ident: 10.1016/j.geoderma.2018.10.012_bb0045 article-title: Effect of drying on heavy metal fraction distribution in rice paddy soil publication-title: PLoS One doi: 10.1371/journal.pone.0097327 – volume: 157 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2018.10.012_bb0020 article-title: Biogeochemistry of paddy soils publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.009 – volume: 221 start-page: 205 year: 2016 ident: 10.1016/j.geoderma.2018.10.012_bb0035 article-title: Soil pH increase under paddy in South Korea between 2000 and 2012 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.01.042 – volume: 18 start-page: 2292 year: 2012 ident: 10.1016/j.geoderma.2018.10.012_bb0065 article-title: Significant soil acidification across northern China's grasslands during 1980s–2000s publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02694.x – volume: 122 start-page: 3088 year: 2017 ident: 10.1016/j.geoderma.2018.10.012_bb0010 article-title: Decreased soil cation exchange capacity across northern China's grasslands over the last three decades publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/2017JG003968 – volume: 239 start-page: 308 year: 2018 ident: 10.1016/j.geoderma.2018.10.012_bb0030 article-title: A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.04.033 – volume: 51 start-page: 345 year: 2000 ident: 10.1016/j.geoderma.2018.10.012_bb0005 article-title: Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2000.00307.x – volume: 32 start-page: 1105 year: 1992 ident: 10.1016/j.geoderma.2018.10.012_bb0055 article-title: Seasonal variation of pH aluminium, and manganese in acid soils from north-eastern Victoria publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA9921105 – volume: 18 start-page: 268 year: 2011 ident: 10.1016/j.geoderma.2018.10.012_bb0015 article-title: Distribution of soil pH values and soil water contents in floodplain wetlands in the lower reach of Huolin River publication-title: Res. Soil Water Conserv. – volume: 115 start-page: 63 year: 2017 ident: 10.1016/j.geoderma.2018.10.012_bb0040 article-title: In situ measurements reveal extremely low pH in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.08.003 – volume: 28 start-page: 611 year: 1996 ident: 10.1016/j.geoderma.2018.10.012_bb0060 article-title: Soil pH increase due to biological decarboxalation of organic anions publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)00180-8 – volume: 270 start-page: 89 year: 2016 ident: 10.1016/j.geoderma.2018.10.012_bb0025 article-title: Transfer functions for estimating phytoavailable Cd and Pb in metal contaminated paddy and upland soils: implications for phytoavailability based land management publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.021 – volume: 88 start-page: 735 year: 2005 ident: 10.1016/j.geoderma.2018.10.012_bb0050 article-title: Fertility and organic matter in submerged rice soil publication-title: Curr. Sci. |
SSID | ssj0017020 |
Score | 2.5708942 |
Snippet | The precise determination and characterization of soil acidity was the basis for a robust and realistic assessment of many biogeochemical processes. Samples of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 511 |
SubjectTerms | acid soils air drying biogeochemistry Cation exchange capacity drainage Organic matter paddy soils prediction Predictive models soil pH Soil pH change soil sampling soil water content Soil water management water content |
Title | Changes in the pH of paddy soils after flooding and drainage: Modeling and validation |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.10.012 https://www.proquest.com/docview/2220874988 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EmfQYWuTixZfqhbCA1uSzM1kM1IslwcghPyGLr0t_fOj9AWSoaOEpIxd6fvTvbdd4Tce6kvAq2kYzwk1U7hwgpOL3Wk0pk2HhOqZOd_HQXxWDxP_EmLDJpaGEyrrLG_wvQSreuZXi3N3iLPscaXBSG4IzBKgF8PGT-FCNHKu5_bNA8WujU1IwscXP2tSngKOsKGYyX_EIu6mOXF-F8O6hdUl_5neEQO68CR9qt3OyYtW5yQg_77sibPsKdkXJUKrGheUIjr6CKm84wuAFs-6Gqez1a07AhOM0xWB5dFVZHSFHtEAKg8UGyLNmumwQDzqt3SGRkPH98GsVO3TXCMYGztcCstxM0s4Fy5PjjBzLgmUEaD87Y2En7IDU9dxRXcjtJIaQFHz0j8xKYFjL1z0i7mhb0g1JM6VB7XDNYLrnUkmUb2HyG9QBhuL4nfyCoxNac4traYJU3y2DRpZJygjHEeZHxJett9i4pVY-cO2agi-WEfCUD_zr13je4SODz4R0QVdr5ZJRAcuVEoZBRd_eP512QfRrLKTLsh7fVyY28hVFnrTmmLHbLXf3qJR18wv-hg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64HNSDuOJuBD3WadJ0ieBBXBjXkwPeYpJmpMPQGeyIePFP-Qd96SIqiAfx2LQJ5eXlfS_ty_cB7AZpyCOthGcCR6qd4oYVQS_1hNJdbQLKVcnOf30TtTv84i68G4O35iyMK6usY38V08toXbe0amu2hlnmzvjSKEY4QqfE8Bs0CtaX9uUZ923F4fkJTvIeY2ent8dtr5YW8AyndOQxKyzmljRiTPkhAkXX-CZSRiPAWZvwMGaGpb5iCncQaaI0R_c0wn2G0hyvAxx3HCY5hgsnm7D_-lFXQmO_5oKkkede79Ox5B46hVM4KwmPaLLvysoo-wkRv2FDCXhnczBbZ6rkqDLGPIzZfAFmjh4ea7YOuwid6mxCQbKcYCJJhm0y6JIhBrMXUgyyfkFKCXLSddXxiJFE5SlJnSgFRrED4nTY-k0zenxW6TstQedfjLkME_kgtytAAqFjFTBN8XnOtE4E1Y5uiIsg4obZVQgbW0lTk5g7LY2-bKrVerKxsXQ2du1o41VoffQbVjQev_YQzVTILw4pEWt-7bvTzJ3E1ep-wajcDp4KidmYn8RcJMnaH8bfhqn27fWVvDq_uVyHabwjqrK4DZgYPT7ZTcyTRnqr9EsC9_-9EN4BGK8kWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+the+pH+of+paddy+soils+after+flooding+and+drainage%3A+Modeling+and+validation&rft.jtitle=Geoderma&rft.au=Ding%2C+Changfeng&rft.au=Du%2C+Shuyang&rft.au=Ma%2C+Yibing&rft.au=Li%2C+Xiaogang&rft.date=2019-03-01&rft.issn=0016-7061&rft.volume=337+p.511-513&rft.spage=511&rft.epage=513&rft_id=info:doi/10.1016%2Fj.geoderma.2018.10.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |